| ... | ... |
@@ -371,38 +371,37 @@ |
| 371 | 371 |
copy(_last_active[lo],w); |
| 372 | 372 |
copy(--_first[lo+1],_last_active[lo]--); |
| 373 | 373 |
for(int l=lo+1;l<new_level;l++) |
| 374 | 374 |
{
|
| 375 | 375 |
copy(_last_active[l],_first[l]); |
| 376 | 376 |
copy(--_first[l+1],_last_active[l]--); |
| 377 | 377 |
} |
| 378 | 378 |
copy(i,_first[new_level]); |
| 379 | 379 |
_level[i]=new_level; |
| 380 | 380 |
if(new_level>_highest_active) _highest_active=new_level; |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 |
/// |
|
| 383 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 384 | 384 |
|
| 385 |
///Mark the node as it did not reach the max level. It sets the |
|
| 386 |
///level to the under the max level value. The node will be never |
|
| 387 |
///more activated because the push operation from the maximum |
|
| 388 |
///level is forbidden in the push-relabel algorithms. The node |
|
| 389 |
///should be lifted previously to the top level. |
|
| 390 |
void markToBottom(Item i) {
|
|
| 385 |
///This function moves an inactive item to the top but one level. |
|
| 386 |
///It makes the underlying datastructure corrupt, so use is only if |
|
| 387 |
///you really know what it is for. |
|
| 388 |
///\pre The item is on the top level. |
|
| 389 |
void dirtyTopButOne(Item i) {
|
|
| 391 | 390 |
_level[i] = _max_level - 1; |
| 392 | 391 |
} |
| 393 | 392 |
|
| 394 |
///Lift all |
|
| 393 |
///Lift all items on and above a level to the top (and deactivate them). |
|
| 395 | 394 |
|
| 396 |
///This function lifts all |
|
| 395 |
///This function lifts all items on and above level \c l to \c |
|
| 397 | 396 |
///maxLevel(), and also deactivates them. |
| 398 | 397 |
void liftToTop(int l) |
| 399 | 398 |
{
|
| 400 | 399 |
const Vit f=_first[l]; |
| 401 | 400 |
const Vit tl=_first[_max_level]; |
| 402 | 401 |
for(Vit i=f;i!=tl;++i) |
| 403 | 402 |
_level[*i]=_max_level; |
| 404 | 403 |
for(int i=l;i<=_max_level;i++) |
| 405 | 404 |
{
|
| 406 | 405 |
_first[i]=f; |
| 407 | 406 |
_last_active[i]=f-1; |
| 408 | 407 |
} |
| ... | ... |
@@ -740,25 +739,25 @@ |
| 740 | 739 |
_prev.set(i, INVALID); |
| 741 | 740 |
_next.set(i, INVALID); |
| 742 | 741 |
} else {
|
| 743 | 742 |
_prev.set(_first[_highest_active], i); |
| 744 | 743 |
_next.set(i, _first[_highest_active]); |
| 745 | 744 |
_first[_highest_active] = i; |
| 746 | 745 |
} |
| 747 | 746 |
} |
| 748 | 747 |
|
| 749 | 748 |
///Lift the highest active to top. |
| 750 | 749 |
|
| 751 | 750 |
///Lift the item returned by highestActive() to the top level and |
| 752 |
///deactivates the |
|
| 751 |
///deactivates the item. |
|
| 753 | 752 |
/// |
| 754 | 753 |
void liftHighestActiveToTop() {
|
| 755 | 754 |
Item i = _first[_highest_active]; |
| 756 | 755 |
_level.set(i, _max_level); |
| 757 | 756 |
if (_next[i] != INVALID) {
|
| 758 | 757 |
_prev.set(_next[i], INVALID); |
| 759 | 758 |
_first[_highest_active] = _next[i]; |
| 760 | 759 |
} else {
|
| 761 | 760 |
_first[_highest_active] = INVALID; |
| 762 | 761 |
_last[_highest_active] = INVALID; |
| 763 | 762 |
} |
| 764 | 763 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| ... | ... |
@@ -888,38 +887,37 @@ |
| 888 | 887 |
_prev.set(i, INVALID); |
| 889 | 888 |
_next.set(i, INVALID); |
| 890 | 889 |
} else {
|
| 891 | 890 |
_prev.set(_first[new_level], i); |
| 892 | 891 |
_next.set(i, _first[new_level]); |
| 893 | 892 |
_first[new_level] = i; |
| 894 | 893 |
} |
| 895 | 894 |
if (_highest_active < new_level) {
|
| 896 | 895 |
_highest_active = new_level; |
| 897 | 896 |
} |
| 898 | 897 |
} |
| 899 | 898 |
|
| 900 |
/// |
|
| 899 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 901 | 900 |
|
| 902 |
///Mark the node as it did not reach the max level. It sets the |
|
| 903 |
///level to the under the max level value. The node will be never |
|
| 904 |
///more activated because the push operation from the maximum |
|
| 905 |
///level is forbidden in the push-relabel algorithms. The node |
|
| 906 |
///should be lifted previously to the top level. |
|
| 907 |
void markToBottom(Item i) {
|
|
| 901 |
///This function moves an inactive item to the top but one level. |
|
| 902 |
///It makes the underlying datastructure corrupt, so use is only if |
|
| 903 |
///you really know what it is for. |
|
| 904 |
///\pre The item is on the top level. |
|
| 905 |
void dirtyTopButOne(Item i) {
|
|
| 908 | 906 |
_level.set(i, _max_level - 1); |
| 909 | 907 |
} |
| 910 | 908 |
|
| 911 |
///Lift all |
|
| 909 |
///Lift all items on and above a level to the top (and deactivate them). |
|
| 912 | 910 |
|
| 913 |
///This function lifts all |
|
| 911 |
///This function lifts all items on and above level \c l to \c |
|
| 914 | 912 |
///maxLevel(), and also deactivates them. |
| 915 | 913 |
void liftToTop(int l) {
|
| 916 | 914 |
for (int i = l + 1; _first[i] != INVALID; ++i) {
|
| 917 | 915 |
Item n = _first[i]; |
| 918 | 916 |
while (n != INVALID) {
|
| 919 | 917 |
_level.set(n, _max_level); |
| 920 | 918 |
n = _next[n]; |
| 921 | 919 |
} |
| 922 | 920 |
_first[i] = INVALID; |
| 923 | 921 |
_last[i] = INVALID; |
| 924 | 922 |
} |
| 925 | 923 |
if (_highest_active > l - 1) {
|
0 comments (0 inline)