| ... | ... |
@@ -335,110 +335,109 @@ |
| 335 | 335 |
///to the top level. |
| 336 | 336 |
void liftActiveToTop(int level) |
| 337 | 337 |
{
|
| 338 | 338 |
const Item ai = *_last_active[level]; |
| 339 | 339 |
|
| 340 | 340 |
copy(--_first[level+1],_last_active[level]--); |
| 341 | 341 |
for(int l=level+1;l<_max_level;l++) |
| 342 | 342 |
{
|
| 343 | 343 |
copy(_last_active[l],_first[l]); |
| 344 | 344 |
copy(--_first[l+1], _last_active[l]--); |
| 345 | 345 |
} |
| 346 | 346 |
copy(ai,_first[_max_level]); |
| 347 | 347 |
--_last_active[_max_level]; |
| 348 | 348 |
_level[ai]=_max_level; |
| 349 | 349 |
|
| 350 | 350 |
if (_highest_active==level) {
|
| 351 | 351 |
while(_highest_active>=0 && |
| 352 | 352 |
_last_active[_highest_active]<_first[_highest_active]) |
| 353 | 353 |
_highest_active--; |
| 354 | 354 |
} |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
///@} |
| 358 | 358 |
|
| 359 | 359 |
///Lift an active item to a higher level. |
| 360 | 360 |
|
| 361 | 361 |
///Lift an active item to a higher level. |
| 362 | 362 |
///\param i The item to be lifted. It must be active. |
| 363 | 363 |
///\param new_level The new level of \c i. It must be strictly higher |
| 364 | 364 |
///than the current level. |
| 365 | 365 |
/// |
| 366 | 366 |
void lift(Item i, int new_level) |
| 367 | 367 |
{
|
| 368 | 368 |
const int lo = _level[i]; |
| 369 | 369 |
const Vit w = _where[i]; |
| 370 | 370 |
|
| 371 | 371 |
copy(_last_active[lo],w); |
| 372 | 372 |
copy(--_first[lo+1],_last_active[lo]--); |
| 373 | 373 |
for(int l=lo+1;l<new_level;l++) |
| 374 | 374 |
{
|
| 375 | 375 |
copy(_last_active[l],_first[l]); |
| 376 | 376 |
copy(--_first[l+1],_last_active[l]--); |
| 377 | 377 |
} |
| 378 | 378 |
copy(i,_first[new_level]); |
| 379 | 379 |
_level[i]=new_level; |
| 380 | 380 |
if(new_level>_highest_active) _highest_active=new_level; |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 |
/// |
|
| 383 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 384 | 384 |
|
| 385 |
///Mark the node as it did not reach the max level. It sets the |
|
| 386 |
///level to the under the max level value. The node will be never |
|
| 387 |
///more activated because the push operation from the maximum |
|
| 388 |
///level is forbidden in the push-relabel algorithms. The node |
|
| 389 |
///should be lifted previously to the top level. |
|
| 390 |
void markToBottom(Item i) {
|
|
| 385 |
///This function moves an inactive item to the top but one level. |
|
| 386 |
///It makes the underlying datastructure corrupt, so use is only if |
|
| 387 |
///you really know what it is for. |
|
| 388 |
///\pre The item is on the top level. |
|
| 389 |
void dirtyTopButOne(Item i) {
|
|
| 391 | 390 |
_level[i] = _max_level - 1; |
| 392 | 391 |
} |
| 393 | 392 |
|
| 394 |
///Lift all |
|
| 393 |
///Lift all items on and above a level to the top (and deactivate them). |
|
| 395 | 394 |
|
| 396 |
///This function lifts all |
|
| 395 |
///This function lifts all items on and above level \c l to \c |
|
| 397 | 396 |
///maxLevel(), and also deactivates them. |
| 398 | 397 |
void liftToTop(int l) |
| 399 | 398 |
{
|
| 400 | 399 |
const Vit f=_first[l]; |
| 401 | 400 |
const Vit tl=_first[_max_level]; |
| 402 | 401 |
for(Vit i=f;i!=tl;++i) |
| 403 | 402 |
_level[*i]=_max_level; |
| 404 | 403 |
for(int i=l;i<=_max_level;i++) |
| 405 | 404 |
{
|
| 406 | 405 |
_first[i]=f; |
| 407 | 406 |
_last_active[i]=f-1; |
| 408 | 407 |
} |
| 409 | 408 |
for(_highest_active=l-1; |
| 410 | 409 |
_highest_active>=0 && |
| 411 | 410 |
_last_active[_highest_active]<_first[_highest_active]; |
| 412 | 411 |
_highest_active--) ; |
| 413 | 412 |
} |
| 414 | 413 |
|
| 415 | 414 |
private: |
| 416 | 415 |
int _init_lev; |
| 417 | 416 |
Vit _init_num; |
| 418 | 417 |
|
| 419 | 418 |
public: |
| 420 | 419 |
|
| 421 | 420 |
///\name Initialization |
| 422 | 421 |
///Using this function you can initialize the levels of the item. |
| 423 | 422 |
///\n |
| 424 | 423 |
///This initializatios is started with calling \c initStart(). |
| 425 | 424 |
///Then the |
| 426 | 425 |
///items should be listed levels by levels statring with the lowest one |
| 427 | 426 |
///(with level 0). This is done by using \c initAddItem() |
| 428 | 427 |
///and \c initNewLevel(). Finally \c initFinish() must be called. |
| 429 | 428 |
///The items not listed will be put on the highest level. |
| 430 | 429 |
///@{
|
| 431 | 430 |
|
| 432 | 431 |
///Start the initialization process. |
| 433 | 432 |
|
| 434 | 433 |
void initStart() |
| 435 | 434 |
{
|
| 436 | 435 |
_init_lev=0; |
| 437 | 436 |
_init_num=_items.begin(); |
| 438 | 437 |
_first[0]=_items.begin(); |
| 439 | 438 |
_last_active[0]=_items.begin()-1; |
| 440 | 439 |
Vit n=_items.begin(); |
| 441 | 440 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
| 442 | 441 |
{
|
| 443 | 442 |
*n=i; |
| 444 | 443 |
_where[i]=n; |
| ... | ... |
@@ -704,97 +703,97 @@ |
| 704 | 703 |
} else {
|
| 705 | 704 |
_first[_highest_active] = INVALID; |
| 706 | 705 |
_last[_highest_active] = INVALID; |
| 707 | 706 |
} |
| 708 | 707 |
_level.set(i, ++_highest_active); |
| 709 | 708 |
if (_first[_highest_active] == INVALID) {
|
| 710 | 709 |
_first[_highest_active] = i; |
| 711 | 710 |
_last[_highest_active] = i; |
| 712 | 711 |
_prev.set(i, INVALID); |
| 713 | 712 |
_next.set(i, INVALID); |
| 714 | 713 |
} else {
|
| 715 | 714 |
_prev.set(_first[_highest_active], i); |
| 716 | 715 |
_next.set(i, _first[_highest_active]); |
| 717 | 716 |
_first[_highest_active] = i; |
| 718 | 717 |
} |
| 719 | 718 |
} |
| 720 | 719 |
|
| 721 | 720 |
///Lift the highest active item. |
| 722 | 721 |
|
| 723 | 722 |
///Lift the item returned by highestActive() to level \c new_level. |
| 724 | 723 |
/// |
| 725 | 724 |
///\warning \c new_level must be strictly higher |
| 726 | 725 |
///than the current level. |
| 727 | 726 |
/// |
| 728 | 727 |
void liftHighestActive(int new_level) {
|
| 729 | 728 |
Item i = _first[_highest_active]; |
| 730 | 729 |
if (_next[i] != INVALID) {
|
| 731 | 730 |
_prev.set(_next[i], INVALID); |
| 732 | 731 |
_first[_highest_active] = _next[i]; |
| 733 | 732 |
} else {
|
| 734 | 733 |
_first[_highest_active] = INVALID; |
| 735 | 734 |
_last[_highest_active] = INVALID; |
| 736 | 735 |
} |
| 737 | 736 |
_level.set(i, _highest_active = new_level); |
| 738 | 737 |
if (_first[_highest_active] == INVALID) {
|
| 739 | 738 |
_first[_highest_active] = _last[_highest_active] = i; |
| 740 | 739 |
_prev.set(i, INVALID); |
| 741 | 740 |
_next.set(i, INVALID); |
| 742 | 741 |
} else {
|
| 743 | 742 |
_prev.set(_first[_highest_active], i); |
| 744 | 743 |
_next.set(i, _first[_highest_active]); |
| 745 | 744 |
_first[_highest_active] = i; |
| 746 | 745 |
} |
| 747 | 746 |
} |
| 748 | 747 |
|
| 749 | 748 |
///Lift the highest active to top. |
| 750 | 749 |
|
| 751 | 750 |
///Lift the item returned by highestActive() to the top level and |
| 752 |
///deactivates the |
|
| 751 |
///deactivates the item. |
|
| 753 | 752 |
/// |
| 754 | 753 |
void liftHighestActiveToTop() {
|
| 755 | 754 |
Item i = _first[_highest_active]; |
| 756 | 755 |
_level.set(i, _max_level); |
| 757 | 756 |
if (_next[i] != INVALID) {
|
| 758 | 757 |
_prev.set(_next[i], INVALID); |
| 759 | 758 |
_first[_highest_active] = _next[i]; |
| 760 | 759 |
} else {
|
| 761 | 760 |
_first[_highest_active] = INVALID; |
| 762 | 761 |
_last[_highest_active] = INVALID; |
| 763 | 762 |
} |
| 764 | 763 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 765 | 764 |
--_highest_active; |
| 766 | 765 |
} |
| 767 | 766 |
|
| 768 | 767 |
///@} |
| 769 | 768 |
|
| 770 | 769 |
///\name Active Item on Certain Level |
| 771 | 770 |
///Functions for working with the active items. |
| 772 | 771 |
|
| 773 | 772 |
///@{
|
| 774 | 773 |
|
| 775 | 774 |
///Returns an active item on level \c l. |
| 776 | 775 |
|
| 777 | 776 |
///Returns an active item on level \c l. |
| 778 | 777 |
/// |
| 779 | 778 |
///Returns an active item on level \c l or \ref INVALID if there is no such |
| 780 | 779 |
///an item. (\c l must be from the range [0...\c max_level]. |
| 781 | 780 |
Item activeOn(int l) const |
| 782 | 781 |
{
|
| 783 | 782 |
return _active[_first[l]] ? _first[l] : INVALID; |
| 784 | 783 |
} |
| 785 | 784 |
|
| 786 | 785 |
///Lifts the active item returned by \c activeOn() member function. |
| 787 | 786 |
|
| 788 | 787 |
///Lifts the active item returned by \c activeOn() member function |
| 789 | 788 |
///by one. |
| 790 | 789 |
Item liftActiveOn(int l) |
| 791 | 790 |
{
|
| 792 | 791 |
Item i = _first[l]; |
| 793 | 792 |
if (_next[i] != INVALID) {
|
| 794 | 793 |
_prev.set(_next[i], INVALID); |
| 795 | 794 |
_first[l] = _next[i]; |
| 796 | 795 |
} else {
|
| 797 | 796 |
_first[l] = INVALID; |
| 798 | 797 |
_last[l] = INVALID; |
| 799 | 798 |
} |
| 800 | 799 |
_level.set(i, ++l); |
| ... | ... |
@@ -852,110 +851,109 @@ |
| 852 | 851 |
_prev.set(_next[i], INVALID); |
| 853 | 852 |
_first[l] = _next[i]; |
| 854 | 853 |
} else {
|
| 855 | 854 |
_first[l] = INVALID; |
| 856 | 855 |
_last[l] = INVALID; |
| 857 | 856 |
} |
| 858 | 857 |
_level.set(i, _max_level); |
| 859 | 858 |
if (l == _highest_active) {
|
| 860 | 859 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 861 | 860 |
--_highest_active; |
| 862 | 861 |
} |
| 863 | 862 |
} |
| 864 | 863 |
|
| 865 | 864 |
///@} |
| 866 | 865 |
|
| 867 | 866 |
/// \brief Lift an active item to a higher level. |
| 868 | 867 |
/// |
| 869 | 868 |
/// Lift an active item to a higher level. |
| 870 | 869 |
/// \param i The item to be lifted. It must be active. |
| 871 | 870 |
/// \param new_level The new level of \c i. It must be strictly higher |
| 872 | 871 |
/// than the current level. |
| 873 | 872 |
/// |
| 874 | 873 |
void lift(Item i, int new_level) {
|
| 875 | 874 |
if (_next[i] != INVALID) {
|
| 876 | 875 |
_prev.set(_next[i], _prev[i]); |
| 877 | 876 |
} else {
|
| 878 | 877 |
_last[new_level] = _prev[i]; |
| 879 | 878 |
} |
| 880 | 879 |
if (_prev[i] != INVALID) {
|
| 881 | 880 |
_next.set(_prev[i], _next[i]); |
| 882 | 881 |
} else {
|
| 883 | 882 |
_first[new_level] = _next[i]; |
| 884 | 883 |
} |
| 885 | 884 |
_level.set(i, new_level); |
| 886 | 885 |
if (_first[new_level] == INVALID) {
|
| 887 | 886 |
_first[new_level] = _last[new_level] = i; |
| 888 | 887 |
_prev.set(i, INVALID); |
| 889 | 888 |
_next.set(i, INVALID); |
| 890 | 889 |
} else {
|
| 891 | 890 |
_prev.set(_first[new_level], i); |
| 892 | 891 |
_next.set(i, _first[new_level]); |
| 893 | 892 |
_first[new_level] = i; |
| 894 | 893 |
} |
| 895 | 894 |
if (_highest_active < new_level) {
|
| 896 | 895 |
_highest_active = new_level; |
| 897 | 896 |
} |
| 898 | 897 |
} |
| 899 | 898 |
|
| 900 |
/// |
|
| 899 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 901 | 900 |
|
| 902 |
///Mark the node as it did not reach the max level. It sets the |
|
| 903 |
///level to the under the max level value. The node will be never |
|
| 904 |
///more activated because the push operation from the maximum |
|
| 905 |
///level is forbidden in the push-relabel algorithms. The node |
|
| 906 |
///should be lifted previously to the top level. |
|
| 907 |
void markToBottom(Item i) {
|
|
| 901 |
///This function moves an inactive item to the top but one level. |
|
| 902 |
///It makes the underlying datastructure corrupt, so use is only if |
|
| 903 |
///you really know what it is for. |
|
| 904 |
///\pre The item is on the top level. |
|
| 905 |
void dirtyTopButOne(Item i) {
|
|
| 908 | 906 |
_level.set(i, _max_level - 1); |
| 909 | 907 |
} |
| 910 | 908 |
|
| 911 |
///Lift all |
|
| 909 |
///Lift all items on and above a level to the top (and deactivate them). |
|
| 912 | 910 |
|
| 913 |
///This function lifts all |
|
| 911 |
///This function lifts all items on and above level \c l to \c |
|
| 914 | 912 |
///maxLevel(), and also deactivates them. |
| 915 | 913 |
void liftToTop(int l) {
|
| 916 | 914 |
for (int i = l + 1; _first[i] != INVALID; ++i) {
|
| 917 | 915 |
Item n = _first[i]; |
| 918 | 916 |
while (n != INVALID) {
|
| 919 | 917 |
_level.set(n, _max_level); |
| 920 | 918 |
n = _next[n]; |
| 921 | 919 |
} |
| 922 | 920 |
_first[i] = INVALID; |
| 923 | 921 |
_last[i] = INVALID; |
| 924 | 922 |
} |
| 925 | 923 |
if (_highest_active > l - 1) {
|
| 926 | 924 |
_highest_active = l - 1; |
| 927 | 925 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
| 928 | 926 |
--_highest_active; |
| 929 | 927 |
} |
| 930 | 928 |
} |
| 931 | 929 |
|
| 932 | 930 |
private: |
| 933 | 931 |
|
| 934 | 932 |
int _init_level; |
| 935 | 933 |
|
| 936 | 934 |
public: |
| 937 | 935 |
|
| 938 | 936 |
///\name Initialization |
| 939 | 937 |
///Using this function you can initialize the levels of the item. |
| 940 | 938 |
///\n |
| 941 | 939 |
///This initializatios is started with calling \c initStart(). |
| 942 | 940 |
///Then the |
| 943 | 941 |
///items should be listed levels by levels statring with the lowest one |
| 944 | 942 |
///(with level 0). This is done by using \c initAddItem() |
| 945 | 943 |
///and \c initNewLevel(). Finally \c initFinish() must be called. |
| 946 | 944 |
///The items not listed will be put on the highest level. |
| 947 | 945 |
///@{
|
| 948 | 946 |
|
| 949 | 947 |
///Start the initialization process. |
| 950 | 948 |
|
| 951 | 949 |
void initStart() {
|
| 952 | 950 |
|
| 953 | 951 |
for (int i = 0; i <= _max_level; ++i) {
|
| 954 | 952 |
_first[i] = _last[i] = INVALID; |
| 955 | 953 |
} |
| 956 | 954 |
_init_level = 0; |
| 957 | 955 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
| 958 | 956 |
i != INVALID; ++i) {
|
| 959 | 957 |
_level.set(i, _max_level); |
| 960 | 958 |
_active.set(i, false); |
| 961 | 959 |
} |
0 comments (0 inline)