gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Move list and edge sets to the graph module (#290)
0 2 0
default
2 files changed with 5 insertions and 15 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -93,106 +93,96 @@
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
142
@ingroup graphs
143
\brief Graph types between real graphs and graph adaptors.
144

	
145
This group contains some graph types between real graphs and graph adaptors.
146
These classes wrap graphs to give new functionality as the adaptors do it.
147
On the other hand they are not light-weight structures as the adaptors.
148
*/
149

	
150
/**
151 141
@defgroup maps Maps
152 142
@ingroup datas
153 143
\brief Map structures implemented in LEMON.
154 144

	
155 145
This group contains the map structures implemented in LEMON.
156 146

	
157 147
LEMON provides several special purpose maps and map adaptors that e.g. combine
158 148
new maps from existing ones.
159 149

	
160 150
<b>See also:</b> \ref map_concepts "Map Concepts".
161 151
*/
162 152

	
163 153
/**
164 154
@defgroup graph_maps Graph Maps
165 155
@ingroup maps
166 156
\brief Special graph-related maps.
167 157

	
168 158
This group contains maps that are specifically designed to assign
169 159
values to the nodes and arcs/edges of graphs.
170 160

	
171 161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
172 162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
173 163
*/
174 164

	
175 165
/**
176 166
\defgroup map_adaptors Map Adaptors
177 167
\ingroup maps
178 168
\brief Tools to create new maps from existing ones
179 169

	
180 170
This group contains map adaptors that are used to create "implicit"
181 171
maps from other maps.
182 172

	
183 173
Most of them are \ref concepts::ReadMap "read-only maps".
184 174
They can make arithmetic and logical operations between one or two maps
185 175
(negation, shifting, addition, multiplication, logical 'and', 'or',
186 176
'not' etc.) or e.g. convert a map to another one of different Value type.
187 177

	
188 178
The typical usage of this classes is passing implicit maps to
189 179
algorithms.  If a function type algorithm is called then the function
190 180
type map adaptors can be used comfortable. For example let's see the
191 181
usage of map adaptors with the \c graphToEps() function.
192 182
\code
193 183
  Color nodeColor(int deg) {
194 184
    if (deg >= 2) {
195 185
      return Color(0.5, 0.0, 0.5);
196 186
    } else if (deg == 1) {
197 187
      return Color(1.0, 0.5, 1.0);
198 188
    } else {
Ignore white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_EDGE_SET_H
20 20
#define LEMON_EDGE_SET_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/bits/edge_set_extender.h>
24 24

	
25
/// \ingroup semi_adaptors
25
/// \ingroup graphs
26 26
/// \file
27 27
/// \brief ArcSet and EdgeSet classes.
28 28
///
29 29
/// Graphs which use another graph's node-set as own.
30 30
namespace lemon {
31 31

	
32 32
  template <typename GR>
33 33
  class ListArcSetBase {
34 34
  public:
35 35

	
36 36
    typedef typename GR::Node Node;
37 37
    typedef typename GR::NodeIt NodeIt;
38 38

	
39 39
  protected:
40 40

	
41 41
    struct NodeT {
42 42
      int first_out, first_in;
43 43
      NodeT() : first_out(-1), first_in(-1) {}
44 44
    };
45 45

	
46 46
    typedef typename ItemSetTraits<GR, Node>::
47 47
    template Map<NodeT>::Type NodesImplBase;
48 48

	
49 49
    NodesImplBase* _nodes;
50 50

	
51 51
    struct ArcT {
52 52
      Node source, target;
53 53
      int next_out, next_in;
54 54
      int prev_out, prev_in;
55 55
      ArcT() : prev_out(-1), prev_in(-1) {}
56 56
    };
57 57

	
58 58
    std::vector<ArcT> arcs;
59 59

	
60 60
    int first_arc;
61 61
    int first_free_arc;
62 62

	
63 63
    const GR* _graph;
64 64

	
65 65
    void initalize(const GR& graph, NodesImplBase& nodes) {
66 66
      _graph = &graph;
67 67
      _nodes = &nodes;
68 68
    }
69 69

	
70 70
  public:
71 71

	
72 72
    class Arc {
73 73
      friend class ListArcSetBase<GR>;
... ...
@@ -185,97 +185,97 @@
185 185

	
186 186
    void nextIn(Arc& arc) const {
187 187
      arc.id = arcs[arc.id].next_in;
188 188
    }
189 189

	
190 190
    int id(const Node& node) const { return _graph->id(node); }
191 191
    int id(const Arc& arc) const { return arc.id; }
192 192

	
193 193
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
194 194
    Arc arcFromId(int ix) const { return Arc(ix); }
195 195

	
196 196
    int maxNodeId() const { return _graph->maxNodeId(); };
197 197
    int maxArcId() const { return arcs.size() - 1; }
198 198

	
199 199
    Node source(const Arc& arc) const { return arcs[arc.id].source;}
200 200
    Node target(const Arc& arc) const { return arcs[arc.id].target;}
201 201

	
202 202
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
203 203

	
204 204
    NodeNotifier& notifier(Node) const {
205 205
      return _graph->notifier(Node());
206 206
    }
207 207

	
208 208
    template <typename V>
209 209
    class NodeMap : public GR::template NodeMap<V> {
210 210
      typedef typename GR::template NodeMap<V> Parent;
211 211

	
212 212
    public:
213 213

	
214 214
      explicit NodeMap(const ListArcSetBase<GR>& arcset)
215 215
        : Parent(*arcset._graph) {}
216 216

	
217 217
      NodeMap(const ListArcSetBase<GR>& arcset, const V& value)
218 218
        : Parent(*arcset._graph, value) {}
219 219

	
220 220
      NodeMap& operator=(const NodeMap& cmap) {
221 221
        return operator=<NodeMap>(cmap);
222 222
      }
223 223

	
224 224
      template <typename CMap>
225 225
      NodeMap& operator=(const CMap& cmap) {
226 226
        Parent::operator=(cmap);
227 227
        return *this;
228 228
      }
229 229
    };
230 230

	
231 231
  };
232 232

	
233
  /// \ingroup semi_adaptors
233
  /// \ingroup graphs
234 234
  ///
235 235
  /// \brief Digraph using a node set of another digraph or graph and
236 236
  /// an own arc set.
237 237
  ///
238 238
  /// This structure can be used to establish another directed graph
239 239
  /// over a node set of an existing one. This class uses the same
240 240
  /// Node type as the underlying graph, and each valid node of the
241 241
  /// original graph is valid in this arc set, therefore the node
242 242
  /// objects of the original graph can be used directly with this
243 243
  /// class. The node handling functions (id handling, observing, and
244 244
  /// iterators) works equivalently as in the original graph.
245 245
  ///
246 246
  /// This implementation is based on doubly-linked lists, from each
247 247
  /// node the outgoing and the incoming arcs make up lists, therefore
248 248
  /// one arc can be erased in constant time. It also makes possible,
249 249
  /// that node can be removed from the underlying graph, in this case
250 250
  /// all arcs incident to the given node is erased from the arc set.
251 251
  ///
252 252
  /// \param GR The type of the graph which shares its node set with
253 253
  /// this class. Its interface must conform to the
254 254
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
255 255
  /// concept.
256 256
  ///
257 257
  /// This class fully conforms to the \ref concepts::Digraph
258 258
  /// "Digraph" concept.
259 259
  template <typename GR>
260 260
  class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
261 261
    typedef ArcSetExtender<ListArcSetBase<GR> > Parent;
262 262

	
263 263
  public:
264 264

	
265 265
    typedef typename Parent::Node Node;
266 266
    typedef typename Parent::Arc Arc;
267 267

	
268 268
    typedef typename Parent::NodesImplBase NodesImplBase;
269 269

	
270 270
    void eraseNode(const Node& node) {
271 271
      Arc arc;
272 272
      Parent::firstOut(arc, node);
273 273
      while (arc != INVALID ) {
274 274
        erase(arc);
275 275
        Parent::firstOut(arc, node);
276 276
      }
277 277

	
278 278
      Parent::firstIn(arc, node);
279 279
      while (arc != INVALID ) {
280 280
        erase(arc);
281 281
        Parent::firstIn(arc, node);
... ...
@@ -609,97 +609,97 @@
609 609
    static int id(Arc e) { return e.id; }
610 610
    static int id(Edge e) { return e.id; }
611 611

	
612 612
    Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
613 613
    static Arc arcFromId(int id) { return Arc(id);}
614 614
    static Edge edgeFromId(int id) { return Edge(id);}
615 615

	
616 616
    int maxNodeId() const { return _graph->maxNodeId(); };
617 617
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
618 618
    int maxArcId() const { return arcs.size()-1; }
619 619

	
620 620
    Node source(Arc e) const { return arcs[e.id ^ 1].target; }
621 621
    Node target(Arc e) const { return arcs[e.id].target; }
622 622

	
623 623
    Node u(Edge e) const { return arcs[2 * e.id].target; }
624 624
    Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
625 625

	
626 626
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
627 627

	
628 628
    NodeNotifier& notifier(Node) const {
629 629
      return _graph->notifier(Node());
630 630
    }
631 631

	
632 632
    template <typename V>
633 633
    class NodeMap : public GR::template NodeMap<V> {
634 634
      typedef typename GR::template NodeMap<V> Parent;
635 635

	
636 636
    public:
637 637

	
638 638
      explicit NodeMap(const ListEdgeSetBase<GR>& arcset)
639 639
        : Parent(*arcset._graph) {}
640 640

	
641 641
      NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value)
642 642
        : Parent(*arcset._graph, value) {}
643 643

	
644 644
      NodeMap& operator=(const NodeMap& cmap) {
645 645
        return operator=<NodeMap>(cmap);
646 646
      }
647 647

	
648 648
      template <typename CMap>
649 649
      NodeMap& operator=(const CMap& cmap) {
650 650
        Parent::operator=(cmap);
651 651
        return *this;
652 652
      }
653 653
    };
654 654

	
655 655
  };
656 656

	
657
  /// \ingroup semi_adaptors
657
  /// \ingroup graphs
658 658
  ///
659 659
  /// \brief Graph using a node set of another digraph or graph and an
660 660
  /// own edge set.
661 661
  ///
662 662
  /// This structure can be used to establish another graph over a
663 663
  /// node set of an existing one. This class uses the same Node type
664 664
  /// as the underlying graph, and each valid node of the original
665 665
  /// graph is valid in this arc set, therefore the node objects of
666 666
  /// the original graph can be used directly with this class. The
667 667
  /// node handling functions (id handling, observing, and iterators)
668 668
  /// works equivalently as in the original graph.
669 669
  ///
670 670
  /// This implementation is based on doubly-linked lists, from each
671 671
  /// node the incident edges make up lists, therefore one edge can be
672 672
  /// erased in constant time. It also makes possible, that node can
673 673
  /// be removed from the underlying graph, in this case all edges
674 674
  /// incident to the given node is erased from the arc set.
675 675
  ///
676 676
  /// \param GR The type of the graph which shares its node set
677 677
  /// with this class. Its interface must conform to the
678 678
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
679 679
  /// concept.
680 680
  ///
681 681
  /// This class fully conforms to the \ref concepts::Graph "Graph"
682 682
  /// concept.
683 683
  template <typename GR>
684 684
  class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
685 685
    typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent;
686 686

	
687 687
  public:
688 688

	
689 689
    typedef typename Parent::Node Node;
690 690
    typedef typename Parent::Arc Arc;
691 691
    typedef typename Parent::Edge Edge;
692 692

	
693 693
    typedef typename Parent::NodesImplBase NodesImplBase;
694 694

	
695 695
    void eraseNode(const Node& node) {
696 696
      Arc arc;
697 697
      Parent::firstOut(arc, node);
698 698
      while (arc != INVALID ) {
699 699
        erase(arc);
700 700
        Parent::firstOut(arc, node);
701 701
      }
702 702

	
703 703
    }
704 704

	
705 705
    void clearNodes() {
... ...
@@ -868,97 +868,97 @@
868 868
    void nextIn(Arc& arc) const {
869 869
      arc.id = arcs[arc.id].next_in;
870 870
    }
871 871

	
872 872
    int id(const Node& node) const { return _graph->id(node); }
873 873
    int id(const Arc& arc) const { return arc.id; }
874 874

	
875 875
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
876 876
    Arc arcFromId(int ix) const { return Arc(ix); }
877 877

	
878 878
    int maxNodeId() const { return _graph->maxNodeId(); };
879 879
    int maxArcId() const { return arcs.size() - 1; }
880 880

	
881 881
    Node source(const Arc& arc) const { return arcs[arc.id].source;}
882 882
    Node target(const Arc& arc) const { return arcs[arc.id].target;}
883 883

	
884 884
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
885 885

	
886 886
    NodeNotifier& notifier(Node) const {
887 887
      return _graph->notifier(Node());
888 888
    }
889 889

	
890 890
    template <typename V>
891 891
    class NodeMap : public GR::template NodeMap<V> {
892 892
      typedef typename GR::template NodeMap<V> Parent;
893 893

	
894 894
    public:
895 895

	
896 896
      explicit NodeMap(const SmartArcSetBase<GR>& arcset)
897 897
        : Parent(*arcset._graph) { }
898 898

	
899 899
      NodeMap(const SmartArcSetBase<GR>& arcset, const V& value)
900 900
        : Parent(*arcset._graph, value) { }
901 901

	
902 902
      NodeMap& operator=(const NodeMap& cmap) {
903 903
        return operator=<NodeMap>(cmap);
904 904
      }
905 905

	
906 906
      template <typename CMap>
907 907
      NodeMap& operator=(const CMap& cmap) {
908 908
        Parent::operator=(cmap);
909 909
        return *this;
910 910
      }
911 911
    };
912 912

	
913 913
  };
914 914

	
915 915

	
916
  /// \ingroup semi_adaptors
916
  /// \ingroup graphs
917 917
  ///
918 918
  /// \brief Digraph using a node set of another digraph or graph and
919 919
  /// an own arc set.
920 920
  ///
921 921
  /// This structure can be used to establish another directed graph
922 922
  /// over a node set of an existing one. This class uses the same
923 923
  /// Node type as the underlying graph, and each valid node of the
924 924
  /// original graph is valid in this arc set, therefore the node
925 925
  /// objects of the original graph can be used directly with this
926 926
  /// class. The node handling functions (id handling, observing, and
927 927
  /// iterators) works equivalently as in the original graph.
928 928
  ///
929 929
  /// \param GR The type of the graph which shares its node set with
930 930
  /// this class. Its interface must conform to the
931 931
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
932 932
  /// concept.
933 933
  ///
934 934
  /// This implementation is slightly faster than the \c ListArcSet,
935 935
  /// because it uses continuous storage for arcs and it uses just
936 936
  /// single-linked lists for enumerate outgoing and incoming
937 937
  /// arcs. Therefore the arcs cannot be erased from the arc sets.
938 938
  ///
939 939
  /// \warning If a node is erased from the underlying graph and this
940 940
  /// node is the source or target of one arc in the arc set, then
941 941
  /// the arc set is invalidated, and it cannot be used anymore. The
942 942
  /// validity can be checked with the \c valid() member function.
943 943
  ///
944 944
  /// This class fully conforms to the \ref concepts::Digraph
945 945
  /// "Digraph" concept.
946 946
  template <typename GR>
947 947
  class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
948 948
    typedef ArcSetExtender<SmartArcSetBase<GR> > Parent;
949 949

	
950 950
  public:
951 951

	
952 952
    typedef typename Parent::Node Node;
953 953
    typedef typename Parent::Arc Arc;
954 954

	
955 955
  protected:
956 956

	
957 957
    typedef typename Parent::NodesImplBase NodesImplBase;
958 958

	
959 959
    void eraseNode(const Node& node) {
960 960
      if (typename Parent::InArcIt(*this, node) == INVALID &&
961 961
          typename Parent::OutArcIt(*this, node) == INVALID) {
962 962
        return;
963 963
      }
964 964
      throw typename NodesImplBase::Notifier::ImmediateDetach();
... ...
@@ -1212,97 +1212,97 @@
1212 1212
    static int id(Arc arc) { return arc.id; }
1213 1213
    static int id(Edge arc) { return arc.id; }
1214 1214

	
1215 1215
    Node nodeFromId(int id) const { return _graph->nodeFromId(id); }
1216 1216
    static Arc arcFromId(int id) { return Arc(id); }
1217 1217
    static Edge edgeFromId(int id) { return Edge(id);}
1218 1218

	
1219 1219
    int maxNodeId() const { return _graph->maxNodeId(); };
1220 1220
    int maxArcId() const { return arcs.size() - 1; }
1221 1221
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
1222 1222

	
1223 1223
    Node source(Arc e) const { return arcs[e.id ^ 1].target; }
1224 1224
    Node target(Arc e) const { return arcs[e.id].target; }
1225 1225

	
1226 1226
    Node u(Edge e) const { return arcs[2 * e.id].target; }
1227 1227
    Node v(Edge e) const { return arcs[2 * e.id + 1].target; }
1228 1228

	
1229 1229
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
1230 1230

	
1231 1231
    NodeNotifier& notifier(Node) const {
1232 1232
      return _graph->notifier(Node());
1233 1233
    }
1234 1234

	
1235 1235
    template <typename V>
1236 1236
    class NodeMap : public GR::template NodeMap<V> {
1237 1237
      typedef typename GR::template NodeMap<V> Parent;
1238 1238

	
1239 1239
    public:
1240 1240

	
1241 1241
      explicit NodeMap(const SmartEdgeSetBase<GR>& arcset)
1242 1242
        : Parent(*arcset._graph) { }
1243 1243

	
1244 1244
      NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value)
1245 1245
        : Parent(*arcset._graph, value) { }
1246 1246

	
1247 1247
      NodeMap& operator=(const NodeMap& cmap) {
1248 1248
        return operator=<NodeMap>(cmap);
1249 1249
      }
1250 1250

	
1251 1251
      template <typename CMap>
1252 1252
      NodeMap& operator=(const CMap& cmap) {
1253 1253
        Parent::operator=(cmap);
1254 1254
        return *this;
1255 1255
      }
1256 1256
    };
1257 1257

	
1258 1258
  };
1259 1259

	
1260
  /// \ingroup semi_adaptors
1260
  /// \ingroup graphs
1261 1261
  ///
1262 1262
  /// \brief Graph using a node set of another digraph or graph and an
1263 1263
  /// own edge set.
1264 1264
  ///
1265 1265
  /// This structure can be used to establish another graph over a
1266 1266
  /// node set of an existing one. This class uses the same Node type
1267 1267
  /// as the underlying graph, and each valid node of the original
1268 1268
  /// graph is valid in this arc set, therefore the node objects of
1269 1269
  /// the original graph can be used directly with this class. The
1270 1270
  /// node handling functions (id handling, observing, and iterators)
1271 1271
  /// works equivalently as in the original graph.
1272 1272
  ///
1273 1273
  /// \param GR The type of the graph which shares its node set
1274 1274
  /// with this class. Its interface must conform to the
1275 1275
  /// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph"
1276 1276
  ///  concept.
1277 1277
  ///
1278 1278
  /// This implementation is slightly faster than the \c ListEdgeSet,
1279 1279
  /// because it uses continuous storage for edges and it uses just
1280 1280
  /// single-linked lists for enumerate incident edges. Therefore the
1281 1281
  /// edges cannot be erased from the edge sets.
1282 1282
  ///
1283 1283
  /// \warning If a node is erased from the underlying graph and this
1284 1284
  /// node is incident to one edge in the edge set, then the edge set
1285 1285
  /// is invalidated, and it cannot be used anymore. The validity can
1286 1286
  /// be checked with the \c valid() member function.
1287 1287
  ///
1288 1288
  /// This class fully conforms to the \ref concepts::Graph
1289 1289
  /// "Graph" concept.
1290 1290
  template <typename GR>
1291 1291
  class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
1292 1292
    typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent;
1293 1293

	
1294 1294
  public:
1295 1295

	
1296 1296
    typedef typename Parent::Node Node;
1297 1297
    typedef typename Parent::Arc Arc;
1298 1298
    typedef typename Parent::Edge Edge;
1299 1299

	
1300 1300
  protected:
1301 1301

	
1302 1302
    typedef typename Parent::NodesImplBase NodesImplBase;
1303 1303

	
1304 1304
    void eraseNode(const Node& node) {
1305 1305
      if (typename Parent::IncEdgeIt(*this, node) == INVALID) {
1306 1306
        return;
1307 1307
      }
1308 1308
      throw typename NodesImplBase::Notifier::ImmediateDetach();
0 comments (0 inline)