0
6
0
39
17
22
22
24
17
36
11
36
11
... | ... |
@@ -594,52 +594,52 @@ |
594 | 594 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
595 | 595 |
///\code |
596 | 596 |
/// while ( !b.emptyQueue() ) { |
597 | 597 |
/// b.processNextNode(); |
598 | 598 |
/// } |
599 | 599 |
///\endcode |
600 | 600 |
void start() |
601 | 601 |
{ |
602 | 602 |
while ( !emptyQueue() ) processNextNode(); |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
///Executes the algorithm until the given target node is reached. |
606 | 606 |
|
607 | 607 |
///Executes the algorithm until the given target node is reached. |
608 | 608 |
/// |
609 | 609 |
///This method runs the %BFS algorithm from the root node(s) |
610 |
///in order to compute the shortest path to \c |
|
610 |
///in order to compute the shortest path to \c t. |
|
611 | 611 |
/// |
612 | 612 |
///The algorithm computes |
613 |
///- the shortest path to \c dest, |
|
614 |
///- the distance of \c dest from the root(s). |
|
613 |
///- the shortest path to \c t, |
|
614 |
///- the distance of \c t from the root(s). |
|
615 | 615 |
/// |
616 | 616 |
///\pre init() must be called and at least one root node should be |
617 | 617 |
///added with addSource() before using this function. |
618 | 618 |
/// |
619 | 619 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
620 | 620 |
///\code |
621 | 621 |
/// bool reach = false; |
622 | 622 |
/// while ( !b.emptyQueue() && !reach ) { |
623 | 623 |
/// b.processNextNode(t, reach); |
624 | 624 |
/// } |
625 | 625 |
///\endcode |
626 |
void start(Node |
|
626 |
void start(Node t) |
|
627 | 627 |
{ |
628 | 628 |
bool reach = false; |
629 |
while ( !emptyQueue() && !reach ) processNextNode( |
|
629 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
|
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
///Executes the algorithm until a condition is met. |
633 | 633 |
|
634 | 634 |
///Executes the algorithm until a condition is met. |
635 | 635 |
/// |
636 | 636 |
///This method runs the %BFS algorithm from the root node(s) in |
637 | 637 |
///order to compute the shortest path to a node \c v with |
638 | 638 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
639 | 639 |
/// |
640 | 640 |
///\param nm A \c bool (or convertible) node map. The algorithm |
641 | 641 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
642 | 642 |
/// |
643 | 643 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
644 | 644 |
///\c INVALID if no such node was found. |
645 | 645 |
/// |
... | ... |
@@ -651,73 +651,73 @@ |
651 | 651 |
/// Node rnode = INVALID; |
652 | 652 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
653 | 653 |
/// b.processNextNode(nm, rnode); |
654 | 654 |
/// } |
655 | 655 |
/// return rnode; |
656 | 656 |
///\endcode |
657 | 657 |
template<class NodeBoolMap> |
658 | 658 |
Node start(const NodeBoolMap &nm) |
659 | 659 |
{ |
660 | 660 |
Node rnode = INVALID; |
661 | 661 |
while ( !emptyQueue() && rnode == INVALID ) { |
662 | 662 |
processNextNode(nm, rnode); |
663 | 663 |
} |
664 | 664 |
return rnode; |
665 | 665 |
} |
666 | 666 |
|
667 |
///Runs the algorithm from the given node. |
|
667 |
///Runs the algorithm from the given source node. |
|
668 | 668 |
|
669 | 669 |
///This method runs the %BFS algorithm from node \c s |
670 | 670 |
///in order to compute the shortest path to each node. |
671 | 671 |
/// |
672 | 672 |
///The algorithm computes |
673 | 673 |
///- the shortest path tree, |
674 | 674 |
///- the distance of each node from the root. |
675 | 675 |
/// |
676 | 676 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
677 | 677 |
///\code |
678 | 678 |
/// b.init(); |
679 | 679 |
/// b.addSource(s); |
680 | 680 |
/// b.start(); |
681 | 681 |
///\endcode |
682 | 682 |
void run(Node s) { |
683 | 683 |
init(); |
684 | 684 |
addSource(s); |
685 | 685 |
start(); |
686 | 686 |
} |
687 | 687 |
|
688 | 688 |
///Finds the shortest path between \c s and \c t. |
689 | 689 |
|
690 | 690 |
///This method runs the %BFS algorithm from node \c s |
691 |
///in order to compute the shortest path to \c t |
|
691 |
///in order to compute the shortest path to node \c t |
|
692 |
///(it stops searching when \c t is processed). |
|
692 | 693 |
/// |
693 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
|
694 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
694 |
///\return \c true if \c t is reachable form \c s. |
|
695 | 695 |
/// |
696 | 696 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
697 | 697 |
///shortcut of the following code. |
698 | 698 |
///\code |
699 | 699 |
/// b.init(); |
700 | 700 |
/// b.addSource(s); |
701 | 701 |
/// b.start(t); |
702 | 702 |
///\endcode |
703 |
|
|
703 |
bool run(Node s,Node t) { |
|
704 | 704 |
init(); |
705 | 705 |
addSource(s); |
706 | 706 |
start(t); |
707 |
return reached(t) |
|
707 |
return reached(t); |
|
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
///Runs the algorithm to visit all nodes in the digraph. |
711 | 711 |
|
712 | 712 |
///This method runs the %BFS algorithm in order to |
713 | 713 |
///compute the shortest path to each node. |
714 | 714 |
/// |
715 | 715 |
///The algorithm computes |
716 | 716 |
///- the shortest path tree (forest), |
717 | 717 |
///- the distance of each node from the root(s). |
718 | 718 |
/// |
719 | 719 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
720 | 720 |
///\code |
721 | 721 |
/// b.init(); |
722 | 722 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
723 | 723 |
/// if (!b.reached(n)) { |
... | ... |
@@ -1608,51 +1608,51 @@ |
1608 | 1608 |
/// |
1609 | 1609 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1610 | 1610 |
/// \code |
1611 | 1611 |
/// while ( !b.emptyQueue() ) { |
1612 | 1612 |
/// b.processNextNode(); |
1613 | 1613 |
/// } |
1614 | 1614 |
/// \endcode |
1615 | 1615 |
void start() { |
1616 | 1616 |
while ( !emptyQueue() ) processNextNode(); |
1617 | 1617 |
} |
1618 | 1618 |
|
1619 | 1619 |
/// \brief Executes the algorithm until the given target node is reached. |
1620 | 1620 |
/// |
1621 | 1621 |
/// Executes the algorithm until the given target node is reached. |
1622 | 1622 |
/// |
1623 | 1623 |
/// This method runs the %BFS algorithm from the root node(s) |
1624 |
/// in order to compute the shortest path to \c |
|
1624 |
/// in order to compute the shortest path to \c t. |
|
1625 | 1625 |
/// |
1626 | 1626 |
/// The algorithm computes |
1627 |
/// - the shortest path to \c dest, |
|
1628 |
/// - the distance of \c dest from the root(s). |
|
1627 |
/// - the shortest path to \c t, |
|
1628 |
/// - the distance of \c t from the root(s). |
|
1629 | 1629 |
/// |
1630 | 1630 |
/// \pre init() must be called and at least one root node should be |
1631 | 1631 |
/// added with addSource() before using this function. |
1632 | 1632 |
/// |
1633 | 1633 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1634 | 1634 |
/// \code |
1635 | 1635 |
/// bool reach = false; |
1636 | 1636 |
/// while ( !b.emptyQueue() && !reach ) { |
1637 | 1637 |
/// b.processNextNode(t, reach); |
1638 | 1638 |
/// } |
1639 | 1639 |
/// \endcode |
1640 |
void start(Node |
|
1640 |
void start(Node t) { |
|
1641 | 1641 |
bool reach = false; |
1642 |
while ( !emptyQueue() && !reach ) processNextNode( |
|
1642 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
|
1643 | 1643 |
} |
1644 | 1644 |
|
1645 | 1645 |
/// \brief Executes the algorithm until a condition is met. |
1646 | 1646 |
/// |
1647 | 1647 |
/// Executes the algorithm until a condition is met. |
1648 | 1648 |
/// |
1649 | 1649 |
/// This method runs the %BFS algorithm from the root node(s) in |
1650 | 1650 |
/// order to compute the shortest path to a node \c v with |
1651 | 1651 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1652 | 1652 |
/// |
1653 | 1653 |
/// \param nm must be a bool (or convertible) node map. The |
1654 | 1654 |
/// algorithm will stop when it reaches a node \c v with |
1655 | 1655 |
/// <tt>nm[v]</tt> true. |
1656 | 1656 |
/// |
1657 | 1657 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1658 | 1658 |
/// \c INVALID if no such node was found. |
... | ... |
@@ -1664,53 +1664,75 @@ |
1664 | 1664 |
/// \code |
1665 | 1665 |
/// Node rnode = INVALID; |
1666 | 1666 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1667 | 1667 |
/// b.processNextNode(nm, rnode); |
1668 | 1668 |
/// } |
1669 | 1669 |
/// return rnode; |
1670 | 1670 |
/// \endcode |
1671 | 1671 |
template <typename NM> |
1672 | 1672 |
Node start(const NM &nm) { |
1673 | 1673 |
Node rnode = INVALID; |
1674 | 1674 |
while ( !emptyQueue() && rnode == INVALID ) { |
1675 | 1675 |
processNextNode(nm, rnode); |
1676 | 1676 |
} |
1677 | 1677 |
return rnode; |
1678 | 1678 |
} |
1679 | 1679 |
|
1680 |
/// \brief Runs the algorithm from the given node. |
|
1680 |
/// \brief Runs the algorithm from the given source node. |
|
1681 | 1681 |
/// |
1682 | 1682 |
/// This method runs the %BFS algorithm from node \c s |
1683 | 1683 |
/// in order to compute the shortest path to each node. |
1684 | 1684 |
/// |
1685 | 1685 |
/// The algorithm computes |
1686 | 1686 |
/// - the shortest path tree, |
1687 | 1687 |
/// - the distance of each node from the root. |
1688 | 1688 |
/// |
1689 | 1689 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1690 | 1690 |
///\code |
1691 | 1691 |
/// b.init(); |
1692 | 1692 |
/// b.addSource(s); |
1693 | 1693 |
/// b.start(); |
1694 | 1694 |
///\endcode |
1695 | 1695 |
void run(Node s) { |
1696 | 1696 |
init(); |
1697 | 1697 |
addSource(s); |
1698 | 1698 |
start(); |
1699 | 1699 |
} |
1700 | 1700 |
|
1701 |
/// \brief Finds the shortest path between \c s and \c t. |
|
1702 |
/// |
|
1703 |
/// This method runs the %BFS algorithm from node \c s |
|
1704 |
/// in order to compute the shortest path to node \c t |
|
1705 |
/// (it stops searching when \c t is processed). |
|
1706 |
/// |
|
1707 |
/// \return \c true if \c t is reachable form \c s. |
|
1708 |
/// |
|
1709 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
|
1710 |
/// shortcut of the following code. |
|
1711 |
///\code |
|
1712 |
/// b.init(); |
|
1713 |
/// b.addSource(s); |
|
1714 |
/// b.start(t); |
|
1715 |
///\endcode |
|
1716 |
bool run(Node s,Node t) { |
|
1717 |
init(); |
|
1718 |
addSource(s); |
|
1719 |
start(t); |
|
1720 |
return reached(t); |
|
1721 |
} |
|
1722 |
|
|
1701 | 1723 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1702 | 1724 |
/// |
1703 | 1725 |
/// This method runs the %BFS algorithm in order to |
1704 | 1726 |
/// compute the shortest path to each node. |
1705 | 1727 |
/// |
1706 | 1728 |
/// The algorithm computes |
1707 | 1729 |
/// - the shortest path tree (forest), |
1708 | 1730 |
/// - the distance of each node from the root(s). |
1709 | 1731 |
/// |
1710 | 1732 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1711 | 1733 |
///\code |
1712 | 1734 |
/// b.init(); |
1713 | 1735 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1714 | 1736 |
/// if (!b.reached(n)) { |
1715 | 1737 |
/// b.addSource(n); |
1716 | 1738 |
/// b.start(); |
... | ... |
@@ -545,113 +545,113 @@ |
545 | 545 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
546 | 546 |
///\code |
547 | 547 |
/// while ( !d.emptyQueue() ) { |
548 | 548 |
/// d.processNextArc(); |
549 | 549 |
/// } |
550 | 550 |
///\endcode |
551 | 551 |
void start() |
552 | 552 |
{ |
553 | 553 |
while ( !emptyQueue() ) processNextArc(); |
554 | 554 |
} |
555 | 555 |
|
556 | 556 |
///Executes the algorithm until the given target node is reached. |
557 | 557 |
|
558 | 558 |
///Executes the algorithm until the given target node is reached. |
559 | 559 |
/// |
560 | 560 |
///This method runs the %DFS algorithm from the root node |
561 |
///in order to compute the DFS path to \c |
|
561 |
///in order to compute the DFS path to \c t. |
|
562 | 562 |
/// |
563 | 563 |
///The algorithm computes |
564 |
///- the %DFS path to \c dest, |
|
565 |
///- the distance of \c dest from the root in the %DFS tree. |
|
564 |
///- the %DFS path to \c t, |
|
565 |
///- the distance of \c t from the root in the %DFS tree. |
|
566 | 566 |
/// |
567 | 567 |
///\pre init() must be called and a root node should be |
568 | 568 |
///added with addSource() before using this function. |
569 |
void start(Node |
|
569 |
void start(Node t) |
|
570 | 570 |
{ |
571 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!= |
|
571 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
|
572 | 572 |
processNextArc(); |
573 | 573 |
} |
574 | 574 |
|
575 | 575 |
///Executes the algorithm until a condition is met. |
576 | 576 |
|
577 | 577 |
///Executes the algorithm until a condition is met. |
578 | 578 |
/// |
579 | 579 |
///This method runs the %DFS algorithm from the root node |
580 | 580 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
581 | 581 |
/// |
582 | 582 |
///\param am A \c bool (or convertible) arc map. The algorithm |
583 | 583 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
584 | 584 |
/// |
585 | 585 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
586 | 586 |
///\c INVALID if no such arc was found. |
587 | 587 |
/// |
588 | 588 |
///\pre init() must be called and a root node should be |
589 | 589 |
///added with addSource() before using this function. |
590 | 590 |
/// |
591 | 591 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
592 | 592 |
///not a node map. |
593 | 593 |
template<class ArcBoolMap> |
594 | 594 |
Arc start(const ArcBoolMap &am) |
595 | 595 |
{ |
596 | 596 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
597 | 597 |
processNextArc(); |
598 | 598 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
599 | 599 |
} |
600 | 600 |
|
601 |
///Runs the algorithm from the given node. |
|
601 |
///Runs the algorithm from the given source node. |
|
602 | 602 |
|
603 | 603 |
///This method runs the %DFS algorithm from node \c s |
604 | 604 |
///in order to compute the DFS path to each node. |
605 | 605 |
/// |
606 | 606 |
///The algorithm computes |
607 | 607 |
///- the %DFS tree, |
608 | 608 |
///- the distance of each node from the root in the %DFS tree. |
609 | 609 |
/// |
610 | 610 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
611 | 611 |
///\code |
612 | 612 |
/// d.init(); |
613 | 613 |
/// d.addSource(s); |
614 | 614 |
/// d.start(); |
615 | 615 |
///\endcode |
616 | 616 |
void run(Node s) { |
617 | 617 |
init(); |
618 | 618 |
addSource(s); |
619 | 619 |
start(); |
620 | 620 |
} |
621 | 621 |
|
622 | 622 |
///Finds the %DFS path between \c s and \c t. |
623 | 623 |
|
624 | 624 |
///This method runs the %DFS algorithm from node \c s |
625 |
///in order to compute the DFS path to \c t |
|
625 |
///in order to compute the DFS path to node \c t |
|
626 |
///(it stops searching when \c t is processed) |
|
626 | 627 |
/// |
627 |
///\return The length of the <tt>s</tt>--<tt>t</tt> DFS path, |
|
628 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
628 |
///\return \c true if \c t is reachable form \c s. |
|
629 | 629 |
/// |
630 | 630 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
631 | 631 |
///just a shortcut of the following code. |
632 | 632 |
///\code |
633 | 633 |
/// d.init(); |
634 | 634 |
/// d.addSource(s); |
635 | 635 |
/// d.start(t); |
636 | 636 |
///\endcode |
637 |
|
|
637 |
bool run(Node s,Node t) { |
|
638 | 638 |
init(); |
639 | 639 |
addSource(s); |
640 | 640 |
start(t); |
641 |
return reached(t) |
|
641 |
return reached(t); |
|
642 | 642 |
} |
643 | 643 |
|
644 | 644 |
///Runs the algorithm to visit all nodes in the digraph. |
645 | 645 |
|
646 | 646 |
///This method runs the %DFS algorithm in order to compute the |
647 | 647 |
///%DFS path to each node. |
648 | 648 |
/// |
649 | 649 |
///The algorithm computes |
650 | 650 |
///- the %DFS tree, |
651 | 651 |
///- the distance of each node from the root in the %DFS tree. |
652 | 652 |
/// |
653 | 653 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
654 | 654 |
///\code |
655 | 655 |
/// d.init(); |
656 | 656 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
657 | 657 |
/// if (!d.reached(n)) { |
... | ... |
@@ -1513,111 +1513,111 @@ |
1513 | 1513 |
/// |
1514 | 1514 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1515 | 1515 |
/// \code |
1516 | 1516 |
/// while ( !d.emptyQueue() ) { |
1517 | 1517 |
/// d.processNextArc(); |
1518 | 1518 |
/// } |
1519 | 1519 |
/// \endcode |
1520 | 1520 |
void start() { |
1521 | 1521 |
while ( !emptyQueue() ) processNextArc(); |
1522 | 1522 |
} |
1523 | 1523 |
|
1524 | 1524 |
/// \brief Executes the algorithm until the given target node is reached. |
1525 | 1525 |
/// |
1526 | 1526 |
/// Executes the algorithm until the given target node is reached. |
1527 | 1527 |
/// |
1528 | 1528 |
/// This method runs the %DFS algorithm from the root node |
1529 |
/// in order to compute the DFS path to \c |
|
1529 |
/// in order to compute the DFS path to \c t. |
|
1530 | 1530 |
/// |
1531 | 1531 |
/// The algorithm computes |
1532 |
/// - the %DFS path to \c dest, |
|
1533 |
/// - the distance of \c dest from the root in the %DFS tree. |
|
1532 |
/// - the %DFS path to \c t, |
|
1533 |
/// - the distance of \c t from the root in the %DFS tree. |
|
1534 | 1534 |
/// |
1535 | 1535 |
/// \pre init() must be called and a root node should be added |
1536 | 1536 |
/// with addSource() before using this function. |
1537 |
void start(Node dest) { |
|
1538 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) |
|
1537 |
void start(Node t) { |
|
1538 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
|
1539 | 1539 |
processNextArc(); |
1540 | 1540 |
} |
1541 | 1541 |
|
1542 | 1542 |
/// \brief Executes the algorithm until a condition is met. |
1543 | 1543 |
/// |
1544 | 1544 |
/// Executes the algorithm until a condition is met. |
1545 | 1545 |
/// |
1546 | 1546 |
/// This method runs the %DFS algorithm from the root node |
1547 | 1547 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1548 | 1548 |
/// |
1549 | 1549 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1550 | 1550 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1551 | 1551 |
/// |
1552 | 1552 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1553 | 1553 |
/// \c INVALID if no such arc was found. |
1554 | 1554 |
/// |
1555 | 1555 |
/// \pre init() must be called and a root node should be added |
1556 | 1556 |
/// with addSource() before using this function. |
1557 | 1557 |
/// |
1558 | 1558 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1559 | 1559 |
/// not a node map. |
1560 | 1560 |
template <typename AM> |
1561 | 1561 |
Arc start(const AM &am) { |
1562 | 1562 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1563 | 1563 |
processNextArc(); |
1564 | 1564 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1565 | 1565 |
} |
1566 | 1566 |
|
1567 |
/// \brief Runs the algorithm from the given node. |
|
1567 |
/// \brief Runs the algorithm from the given source node. |
|
1568 | 1568 |
/// |
1569 | 1569 |
/// This method runs the %DFS algorithm from node \c s. |
1570 | 1570 |
/// in order to compute the DFS path to each node. |
1571 | 1571 |
/// |
1572 | 1572 |
/// The algorithm computes |
1573 | 1573 |
/// - the %DFS tree, |
1574 | 1574 |
/// - the distance of each node from the root in the %DFS tree. |
1575 | 1575 |
/// |
1576 | 1576 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1577 | 1577 |
///\code |
1578 | 1578 |
/// d.init(); |
1579 | 1579 |
/// d.addSource(s); |
1580 | 1580 |
/// d.start(); |
1581 | 1581 |
///\endcode |
1582 | 1582 |
void run(Node s) { |
1583 | 1583 |
init(); |
1584 | 1584 |
addSource(s); |
1585 | 1585 |
start(); |
1586 | 1586 |
} |
1587 | 1587 |
|
1588 | 1588 |
/// \brief Finds the %DFS path between \c s and \c t. |
1589 | 1589 |
|
1590 | 1590 |
/// This method runs the %DFS algorithm from node \c s |
1591 |
/// in order to compute the DFS path to \c t |
|
1591 |
/// in order to compute the DFS path to node \c t |
|
1592 |
/// (it stops searching when \c t is processed). |
|
1592 | 1593 |
/// |
1593 |
/// \return The length of the <tt>s</tt>--<tt>t</tt> DFS path, |
|
1594 |
/// if \c t is reachable form \c s, \c 0 otherwise. |
|
1594 |
/// \return \c true if \c t is reachable form \c s. |
|
1595 | 1595 |
/// |
1596 | 1596 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1597 | 1597 |
/// just a shortcut of the following code. |
1598 | 1598 |
///\code |
1599 | 1599 |
/// d.init(); |
1600 | 1600 |
/// d.addSource(s); |
1601 | 1601 |
/// d.start(t); |
1602 | 1602 |
///\endcode |
1603 |
|
|
1603 |
bool run(Node s,Node t) { |
|
1604 | 1604 |
init(); |
1605 | 1605 |
addSource(s); |
1606 | 1606 |
start(t); |
1607 |
return reached(t) |
|
1607 |
return reached(t); |
|
1608 | 1608 |
} |
1609 | 1609 |
|
1610 | 1610 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1611 | 1611 |
|
1612 | 1612 |
/// This method runs the %DFS algorithm in order to |
1613 | 1613 |
/// compute the %DFS path to each node. |
1614 | 1614 |
/// |
1615 | 1615 |
/// The algorithm computes |
1616 | 1616 |
/// - the %DFS tree, |
1617 | 1617 |
/// - the distance of each node from the root in the %DFS tree. |
1618 | 1618 |
/// |
1619 | 1619 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1620 | 1620 |
///\code |
1621 | 1621 |
/// d.init(); |
1622 | 1622 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1623 | 1623 |
/// if (!d.reached(n)) { |
... | ... |
@@ -715,117 +715,120 @@ |
715 | 715 |
///- the distance of each node from the root(s). |
716 | 716 |
/// |
717 | 717 |
///\pre init() must be called and at least one root node should be |
718 | 718 |
///added with addSource() before using this function. |
719 | 719 |
/// |
720 | 720 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
721 | 721 |
///\code |
722 | 722 |
/// while ( !d.emptyQueue() ) { |
723 | 723 |
/// d.processNextNode(); |
724 | 724 |
/// } |
725 | 725 |
///\endcode |
726 | 726 |
void start() |
727 | 727 |
{ |
728 | 728 |
while ( !emptyQueue() ) processNextNode(); |
729 | 729 |
} |
730 | 730 |
|
731 |
///Executes the algorithm until the given target node is |
|
731 |
///Executes the algorithm until the given target node is processed. |
|
732 | 732 |
|
733 |
///Executes the algorithm until the given target node is |
|
733 |
///Executes the algorithm until the given target node is processed. |
|
734 | 734 |
/// |
735 | 735 |
///This method runs the %Dijkstra algorithm from the root node(s) |
736 |
///in order to compute the shortest path to \c |
|
736 |
///in order to compute the shortest path to \c t. |
|
737 | 737 |
/// |
738 | 738 |
///The algorithm computes |
739 |
///- the shortest path to \c dest, |
|
740 |
///- the distance of \c dest from the root(s). |
|
739 |
///- the shortest path to \c t, |
|
740 |
///- the distance of \c t from the root(s). |
|
741 | 741 |
/// |
742 | 742 |
///\pre init() must be called and at least one root node should be |
743 | 743 |
///added with addSource() before using this function. |
744 |
void start(Node |
|
744 |
void start(Node t) |
|
745 | 745 |
{ |
746 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
|
747 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
|
746 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
|
747 |
if ( !_heap->empty() ) { |
|
748 |
finalizeNodeData(_heap->top(),_heap->prio()); |
|
749 |
_heap->pop(); |
|
750 |
} |
|
748 | 751 |
} |
749 | 752 |
|
750 | 753 |
///Executes the algorithm until a condition is met. |
751 | 754 |
|
752 | 755 |
///Executes the algorithm until a condition is met. |
753 | 756 |
/// |
754 | 757 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
755 | 758 |
///order to compute the shortest path to a node \c v with |
756 | 759 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
757 | 760 |
/// |
758 | 761 |
///\param nm A \c bool (or convertible) node map. The algorithm |
759 | 762 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
760 | 763 |
/// |
761 | 764 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
762 | 765 |
///\c INVALID if no such node was found. |
763 | 766 |
/// |
764 | 767 |
///\pre init() must be called and at least one root node should be |
765 | 768 |
///added with addSource() before using this function. |
766 | 769 |
template<class NodeBoolMap> |
767 | 770 |
Node start(const NodeBoolMap &nm) |
768 | 771 |
{ |
769 | 772 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
770 | 773 |
if ( _heap->empty() ) return INVALID; |
771 | 774 |
finalizeNodeData(_heap->top(),_heap->prio()); |
772 | 775 |
return _heap->top(); |
773 | 776 |
} |
774 | 777 |
|
775 |
///Runs the algorithm from the given node. |
|
778 |
///Runs the algorithm from the given source node. |
|
776 | 779 |
|
777 | 780 |
///This method runs the %Dijkstra algorithm from node \c s |
778 | 781 |
///in order to compute the shortest path to each node. |
779 | 782 |
/// |
780 | 783 |
///The algorithm computes |
781 | 784 |
///- the shortest path tree, |
782 | 785 |
///- the distance of each node from the root. |
783 | 786 |
/// |
784 | 787 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
785 | 788 |
///\code |
786 | 789 |
/// d.init(); |
787 | 790 |
/// d.addSource(s); |
788 | 791 |
/// d.start(); |
789 | 792 |
///\endcode |
790 | 793 |
void run(Node s) { |
791 | 794 |
init(); |
792 | 795 |
addSource(s); |
793 | 796 |
start(); |
794 | 797 |
} |
795 | 798 |
|
796 | 799 |
///Finds the shortest path between \c s and \c t. |
797 | 800 |
|
798 | 801 |
///This method runs the %Dijkstra algorithm from node \c s |
799 |
///in order to compute the shortest path to \c t |
|
802 |
///in order to compute the shortest path to node \c t |
|
803 |
///(it stops searching when \c t is processed). |
|
800 | 804 |
/// |
801 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
|
802 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
805 |
///\return \c true if \c t is reachable form \c s. |
|
803 | 806 |
/// |
804 | 807 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
805 | 808 |
///shortcut of the following code. |
806 | 809 |
///\code |
807 | 810 |
/// d.init(); |
808 | 811 |
/// d.addSource(s); |
809 | 812 |
/// d.start(t); |
810 | 813 |
///\endcode |
811 |
|
|
814 |
bool run(Node s,Node t) { |
|
812 | 815 |
init(); |
813 | 816 |
addSource(s); |
814 | 817 |
start(t); |
815 |
return (* |
|
818 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
|
816 | 819 |
} |
817 | 820 |
|
818 | 821 |
///@} |
819 | 822 |
|
820 | 823 |
///\name Query Functions |
821 | 824 |
///The result of the %Dijkstra algorithm can be obtained using these |
822 | 825 |
///functions.\n |
823 | 826 |
///Either \ref lemon::Dijkstra::run() "run()" or |
824 | 827 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
825 | 828 |
///using them. |
826 | 829 |
|
827 | 830 |
///@{ |
828 | 831 |
|
829 | 832 |
///The shortest path to a node. |
830 | 833 |
|
831 | 834 |
///Returns the shortest path to a node. |
... | ... |
@@ -895,43 +898,47 @@ |
895 | 898 |
///\pre Either \ref run() or \ref init() |
896 | 899 |
///must be called before using this function. |
897 | 900 |
const PredMap &predMap() const { return *_pred;} |
898 | 901 |
|
899 | 902 |
///Checks if a node is reachable from the root(s). |
900 | 903 |
|
901 | 904 |
///Returns \c true if \c v is reachable from the root(s). |
902 | 905 |
///\pre Either \ref run() or \ref start() |
903 | 906 |
///must be called before using this function. |
904 | 907 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
905 | 908 |
Heap::PRE_HEAP; } |
906 | 909 |
|
907 | 910 |
///Checks if a node is processed. |
908 | 911 |
|
909 | 912 |
///Returns \c true if \c v is processed, i.e. the shortest |
910 | 913 |
///path to \c v has already found. |
911 |
///\pre Either \ref run() or \ref |
|
914 |
///\pre Either \ref run() or \ref init() |
|
912 | 915 |
///must be called before using this function. |
913 | 916 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
914 | 917 |
Heap::POST_HEAP; } |
915 | 918 |
|
916 | 919 |
///The current distance of a node from the root(s). |
917 | 920 |
|
918 | 921 |
///Returns the current distance of a node from the root(s). |
919 | 922 |
///It may be decreased in the following processes. |
920 |
///\pre \c v should be reached but not processed. |
|
921 |
Value currentDist(Node v) const { return (*_heap)[v]; } |
|
923 |
///\pre Either \ref run() or \ref init() |
|
924 |
///must be called before using this function and |
|
925 |
///node \c v must be reached but not necessarily processed. |
|
926 |
Value currentDist(Node v) const { |
|
927 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
|
928 |
} |
|
922 | 929 |
|
923 | 930 |
///@} |
924 | 931 |
}; |
925 | 932 |
|
926 | 933 |
|
927 | 934 |
///Default traits class of dijkstra() function. |
928 | 935 |
|
929 | 936 |
///Default traits class of dijkstra() function. |
930 | 937 |
///\tparam GR The type of the digraph. |
931 | 938 |
///\tparam LM The type of the length map. |
932 | 939 |
template<class GR, class LM> |
933 | 940 |
struct DijkstraWizardDefaultTraits |
934 | 941 |
{ |
935 | 942 |
///The type of the digraph the algorithm runs on. |
936 | 943 |
typedef GR Digraph; |
937 | 944 |
///The type of the map that stores the arc lengths. |
... | ... |
@@ -41,53 +41,78 @@ |
41 | 41 |
" label\n" |
42 | 42 |
"0 1 0\n" |
43 | 43 |
"1 2 1\n" |
44 | 44 |
"2 3 2\n" |
45 | 45 |
"3 4 3\n" |
46 | 46 |
"0 3 4\n" |
47 | 47 |
"0 3 5\n" |
48 | 48 |
"5 2 6\n" |
49 | 49 |
"@attributes\n" |
50 | 50 |
"source 0\n" |
51 | 51 |
"target 4\n"; |
52 | 52 |
|
53 | 53 |
void checkBfsCompile() |
54 | 54 |
{ |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
typedef Bfs<Digraph> BType; |
57 |
typedef Digraph::Node Node; |
|
58 |
typedef Digraph::Arc Arc; |
|
57 | 59 |
|
58 | 60 |
Digraph G; |
59 |
Digraph::Node n; |
|
60 |
Digraph::Arc e; |
|
61 |
Node s, t; |
|
62 |
Arc e; |
|
61 | 63 |
int l; |
62 | 64 |
bool b; |
63 | 65 |
BType::DistMap d(G); |
64 | 66 |
BType::PredMap p(G); |
67 |
Path<Digraph> pp; |
|
65 | 68 |
|
66 |
|
|
69 |
{ |
|
70 |
BType bfs_test(G); |
|
67 | 71 |
|
68 |
bfs_test.run( |
|
72 |
bfs_test.run(s); |
|
73 |
bfs_test.run(s,t); |
|
74 |
bfs_test.run(); |
|
69 | 75 |
|
70 |
l = bfs_test.dist(n); |
|
71 |
e = bfs_test.predArc(n); |
|
72 |
n = bfs_test.predNode(n); |
|
73 |
d = bfs_test.distMap(); |
|
74 |
p = bfs_test.predMap(); |
|
75 |
b = bfs_test.reached(n); |
|
76 |
l = bfs_test.dist(t); |
|
77 |
e = bfs_test.predArc(t); |
|
78 |
s = bfs_test.predNode(t); |
|
79 |
b = bfs_test.reached(t); |
|
80 |
d = bfs_test.distMap(); |
|
81 |
p = bfs_test.predMap(); |
|
82 |
pp = bfs_test.path(t); |
|
83 |
} |
|
84 |
{ |
|
85 |
BType |
|
86 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
87 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
|
88 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
|
89 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
90 |
::SetStandardProcessedMap |
|
91 |
::Create bfs_test(G); |
|
76 | 92 |
|
77 |
|
|
93 |
bfs_test.run(s); |
|
94 |
bfs_test.run(s,t); |
|
95 |
bfs_test.run(); |
|
96 |
|
|
97 |
l = bfs_test.dist(t); |
|
98 |
e = bfs_test.predArc(t); |
|
99 |
s = bfs_test.predNode(t); |
|
100 |
b = bfs_test.reached(t); |
|
101 |
pp = bfs_test.path(t); |
|
102 |
} |
|
78 | 103 |
} |
79 | 104 |
|
80 | 105 |
void checkBfsFunctionCompile() |
81 | 106 |
{ |
82 | 107 |
typedef int VType; |
83 | 108 |
typedef concepts::Digraph Digraph; |
84 | 109 |
typedef Digraph::Arc Arc; |
85 | 110 |
typedef Digraph::Node Node; |
86 | 111 |
|
87 | 112 |
Digraph g; |
88 | 113 |
bool b; |
89 | 114 |
bfs(g).run(Node()); |
90 | 115 |
b=bfs(g).run(Node(),Node()); |
91 | 116 |
bfs(g).run(); |
92 | 117 |
bfs(g) |
93 | 118 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
... | ... |
@@ -43,53 +43,78 @@ |
43 | 43 |
"0 1 0\n" |
44 | 44 |
"1 2 1\n" |
45 | 45 |
"2 3 2\n" |
46 | 46 |
"1 4 3\n" |
47 | 47 |
"4 2 4\n" |
48 | 48 |
"4 5 5\n" |
49 | 49 |
"5 0 6\n" |
50 | 50 |
"6 3 7\n" |
51 | 51 |
"@attributes\n" |
52 | 52 |
"source 0\n" |
53 | 53 |
"target 5\n"; |
54 | 54 |
|
55 | 55 |
void checkDfsCompile() |
56 | 56 |
{ |
57 | 57 |
typedef concepts::Digraph Digraph; |
58 | 58 |
typedef Dfs<Digraph> DType; |
59 |
typedef Digraph::Node Node; |
|
60 |
typedef Digraph::Arc Arc; |
|
59 | 61 |
|
60 | 62 |
Digraph G; |
61 |
Digraph::Node n; |
|
62 |
Digraph::Arc e; |
|
63 |
Node s, t; |
|
64 |
Arc e; |
|
63 | 65 |
int l; |
64 | 66 |
bool b; |
65 | 67 |
DType::DistMap d(G); |
66 | 68 |
DType::PredMap p(G); |
69 |
Path<Digraph> pp; |
|
67 | 70 |
|
68 |
|
|
71 |
{ |
|
72 |
DType dfs_test(G); |
|
69 | 73 |
|
70 |
dfs_test.run( |
|
74 |
dfs_test.run(s); |
|
75 |
dfs_test.run(s,t); |
|
76 |
dfs_test.run(); |
|
71 | 77 |
|
72 |
l = dfs_test.dist(n); |
|
73 |
e = dfs_test.predArc(n); |
|
74 |
n = dfs_test.predNode(n); |
|
75 |
d = dfs_test.distMap(); |
|
76 |
p = dfs_test.predMap(); |
|
77 |
b = dfs_test.reached(n); |
|
78 |
l = dfs_test.dist(t); |
|
79 |
e = dfs_test.predArc(t); |
|
80 |
s = dfs_test.predNode(t); |
|
81 |
b = dfs_test.reached(t); |
|
82 |
d = dfs_test.distMap(); |
|
83 |
p = dfs_test.predMap(); |
|
84 |
pp = dfs_test.path(t); |
|
85 |
} |
|
86 |
{ |
|
87 |
DType |
|
88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
89 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
|
90 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
|
91 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
92 |
::SetStandardProcessedMap |
|
93 |
::Create dfs_test(G); |
|
78 | 94 |
|
79 |
|
|
95 |
dfs_test.run(s); |
|
96 |
dfs_test.run(s,t); |
|
97 |
dfs_test.run(); |
|
98 |
|
|
99 |
l = dfs_test.dist(t); |
|
100 |
e = dfs_test.predArc(t); |
|
101 |
s = dfs_test.predNode(t); |
|
102 |
b = dfs_test.reached(t); |
|
103 |
pp = dfs_test.path(t); |
|
104 |
} |
|
80 | 105 |
} |
81 | 106 |
|
82 | 107 |
void checkDfsFunctionCompile() |
83 | 108 |
{ |
84 | 109 |
typedef int VType; |
85 | 110 |
typedef concepts::Digraph Digraph; |
86 | 111 |
typedef Digraph::Arc Arc; |
87 | 112 |
typedef Digraph::Node Node; |
88 | 113 |
|
89 | 114 |
Digraph g; |
90 | 115 |
bool b; |
91 | 116 |
dfs(g).run(Node()); |
92 | 117 |
b=dfs(g).run(Node(),Node()); |
93 | 118 |
dfs(g).run(); |
94 | 119 |
dfs(g) |
95 | 120 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
... | ... |
@@ -9,32 +9,33 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dijkstra.h> |
24 | 24 |
#include <lemon/path.h> |
25 |
#include <lemon/bin_heap.h> |
|
25 | 26 |
|
26 | 27 |
#include "graph_test.h" |
27 | 28 |
#include "test_tools.h" |
28 | 29 |
|
29 | 30 |
using namespace lemon; |
30 | 31 |
|
31 | 32 |
char test_lgf[] = |
32 | 33 |
"@nodes\n" |
33 | 34 |
"label\n" |
34 | 35 |
"0\n" |
35 | 36 |
"1\n" |
36 | 37 |
"2\n" |
37 | 38 |
"3\n" |
38 | 39 |
"4\n" |
39 | 40 |
"@arcs\n" |
40 | 41 |
" label length\n" |
... | ... |
@@ -42,54 +43,80 @@ |
42 | 43 |
"1 2 1 1\n" |
43 | 44 |
"2 3 2 1\n" |
44 | 45 |
"0 3 4 5\n" |
45 | 46 |
"0 3 5 10\n" |
46 | 47 |
"0 3 6 7\n" |
47 | 48 |
"4 2 7 1\n" |
48 | 49 |
"@attributes\n" |
49 | 50 |
"source 0\n" |
50 | 51 |
"target 3\n"; |
51 | 52 |
|
52 | 53 |
void checkDijkstraCompile() |
53 | 54 |
{ |
54 | 55 |
typedef int VType; |
55 | 56 |
typedef concepts::Digraph Digraph; |
56 | 57 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
57 | 58 |
typedef Dijkstra<Digraph, LengthMap> DType; |
59 |
typedef Digraph::Node Node; |
|
60 |
typedef Digraph::Arc Arc; |
|
58 | 61 |
|
59 | 62 |
Digraph G; |
60 |
Digraph::Node n; |
|
61 |
Digraph::Arc e; |
|
63 |
Node s, t; |
|
64 |
Arc e; |
|
62 | 65 |
VType l; |
63 | 66 |
bool b; |
64 | 67 |
DType::DistMap d(G); |
65 | 68 |
DType::PredMap p(G); |
66 | 69 |
LengthMap length; |
70 |
Path<Digraph> pp; |
|
67 | 71 |
|
68 |
|
|
72 |
{ |
|
73 |
DType dijkstra_test(G,length); |
|
69 | 74 |
|
70 |
dijkstra_test.run( |
|
75 |
dijkstra_test.run(s); |
|
76 |
dijkstra_test.run(s,t); |
|
71 | 77 |
|
72 |
l = dijkstra_test.dist(n); |
|
73 |
e = dijkstra_test.predArc(n); |
|
74 |
n = dijkstra_test.predNode(n); |
|
75 |
d = dijkstra_test.distMap(); |
|
76 |
p = dijkstra_test.predMap(); |
|
77 |
b = dijkstra_test.reached(n); |
|
78 |
l = dijkstra_test.dist(t); |
|
79 |
e = dijkstra_test.predArc(t); |
|
80 |
s = dijkstra_test.predNode(t); |
|
81 |
b = dijkstra_test.reached(t); |
|
82 |
d = dijkstra_test.distMap(); |
|
83 |
p = dijkstra_test.predMap(); |
|
84 |
pp = dijkstra_test.path(t); |
|
85 |
} |
|
86 |
{ |
|
87 |
DType |
|
88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
89 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
|
90 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
91 |
::SetStandardProcessedMap |
|
92 |
::SetOperationTraits<DijkstraWidestPathOperationTraits<VType> > |
|
93 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
|
94 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
|
95 |
::Create dijkstra_test(G,length); |
|
78 | 96 |
|
79 |
|
|
97 |
dijkstra_test.run(s); |
|
98 |
dijkstra_test.run(s,t); |
|
99 |
|
|
100 |
l = dijkstra_test.dist(t); |
|
101 |
e = dijkstra_test.predArc(t); |
|
102 |
s = dijkstra_test.predNode(t); |
|
103 |
b = dijkstra_test.reached(t); |
|
104 |
pp = dijkstra_test.path(t); |
|
105 |
} |
|
106 |
|
|
80 | 107 |
} |
81 | 108 |
|
82 | 109 |
void checkDijkstraFunctionCompile() |
83 | 110 |
{ |
84 | 111 |
typedef int VType; |
85 | 112 |
typedef concepts::Digraph Digraph; |
86 | 113 |
typedef Digraph::Arc Arc; |
87 | 114 |
typedef Digraph::Node Node; |
88 | 115 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
89 | 116 |
|
90 | 117 |
Digraph g; |
91 | 118 |
bool b; |
92 | 119 |
dijkstra(g,LengthMap()).run(Node()); |
93 | 120 |
b=dijkstra(g,LengthMap()).run(Node(),Node()); |
94 | 121 |
dijkstra(g,LengthMap()) |
95 | 122 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
0 comments (0 inline)