0
6
0
39
17
22
22
24
17
33
8
33
8
| ... | ... |
@@ -514,290 +514,290 @@ |
| 514 | 514 |
_queue[_queue_head++]=m; |
| 515 | 515 |
_reached->set(m,true); |
| 516 | 516 |
_pred->set(m,e); |
| 517 | 517 |
_dist->set(m,_curr_dist); |
| 518 | 518 |
reach = reach || (target == m); |
| 519 | 519 |
} |
| 520 | 520 |
return n; |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
///Processes the next node. |
| 524 | 524 |
|
| 525 | 525 |
///Processes the next node and checks if at least one of reached |
| 526 | 526 |
///nodes has \c true value in the \c nm node map. If one node |
| 527 | 527 |
///with \c true value is reachable from the processed node, then the |
| 528 | 528 |
///\c rnode parameter will be set to the first of such nodes. |
| 529 | 529 |
/// |
| 530 | 530 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 531 | 531 |
///possible targets. |
| 532 | 532 |
///\retval rnode The reached target node. |
| 533 | 533 |
///It should be initially \c INVALID. |
| 534 | 534 |
/// |
| 535 | 535 |
///\return The processed node. |
| 536 | 536 |
/// |
| 537 | 537 |
///\pre The queue must not be empty. |
| 538 | 538 |
template<class NM> |
| 539 | 539 |
Node processNextNode(const NM& nm, Node& rnode) |
| 540 | 540 |
{
|
| 541 | 541 |
if(_queue_tail==_queue_next_dist) {
|
| 542 | 542 |
_curr_dist++; |
| 543 | 543 |
_queue_next_dist=_queue_head; |
| 544 | 544 |
} |
| 545 | 545 |
Node n=_queue[_queue_tail++]; |
| 546 | 546 |
_processed->set(n,true); |
| 547 | 547 |
Node m; |
| 548 | 548 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 549 | 549 |
if(!(*_reached)[m=G->target(e)]) {
|
| 550 | 550 |
_queue[_queue_head++]=m; |
| 551 | 551 |
_reached->set(m,true); |
| 552 | 552 |
_pred->set(m,e); |
| 553 | 553 |
_dist->set(m,_curr_dist); |
| 554 | 554 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 555 | 555 |
} |
| 556 | 556 |
return n; |
| 557 | 557 |
} |
| 558 | 558 |
|
| 559 | 559 |
///The next node to be processed. |
| 560 | 560 |
|
| 561 | 561 |
///Returns the next node to be processed or \c INVALID if the queue |
| 562 | 562 |
///is empty. |
| 563 | 563 |
Node nextNode() const |
| 564 | 564 |
{
|
| 565 | 565 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 566 | 566 |
} |
| 567 | 567 |
|
| 568 | 568 |
///\brief Returns \c false if there are nodes |
| 569 | 569 |
///to be processed. |
| 570 | 570 |
/// |
| 571 | 571 |
///Returns \c false if there are nodes |
| 572 | 572 |
///to be processed in the queue. |
| 573 | 573 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 574 | 574 |
|
| 575 | 575 |
///Returns the number of the nodes to be processed. |
| 576 | 576 |
|
| 577 | 577 |
///Returns the number of the nodes to be processed in the queue. |
| 578 | 578 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 579 | 579 |
|
| 580 | 580 |
///Executes the algorithm. |
| 581 | 581 |
|
| 582 | 582 |
///Executes the algorithm. |
| 583 | 583 |
/// |
| 584 | 584 |
///This method runs the %BFS algorithm from the root node(s) |
| 585 | 585 |
///in order to compute the shortest path to each node. |
| 586 | 586 |
/// |
| 587 | 587 |
///The algorithm computes |
| 588 | 588 |
///- the shortest path tree (forest), |
| 589 | 589 |
///- the distance of each node from the root(s). |
| 590 | 590 |
/// |
| 591 | 591 |
///\pre init() must be called and at least one root node should be |
| 592 | 592 |
///added with addSource() before using this function. |
| 593 | 593 |
/// |
| 594 | 594 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 595 | 595 |
///\code |
| 596 | 596 |
/// while ( !b.emptyQueue() ) {
|
| 597 | 597 |
/// b.processNextNode(); |
| 598 | 598 |
/// } |
| 599 | 599 |
///\endcode |
| 600 | 600 |
void start() |
| 601 | 601 |
{
|
| 602 | 602 |
while ( !emptyQueue() ) processNextNode(); |
| 603 | 603 |
} |
| 604 | 604 |
|
| 605 | 605 |
///Executes the algorithm until the given target node is reached. |
| 606 | 606 |
|
| 607 | 607 |
///Executes the algorithm until the given target node is reached. |
| 608 | 608 |
/// |
| 609 | 609 |
///This method runs the %BFS algorithm from the root node(s) |
| 610 |
///in order to compute the shortest path to \c |
|
| 610 |
///in order to compute the shortest path to \c t. |
|
| 611 | 611 |
/// |
| 612 | 612 |
///The algorithm computes |
| 613 |
///- the shortest path to \c dest, |
|
| 614 |
///- the distance of \c dest from the root(s). |
|
| 613 |
///- the shortest path to \c t, |
|
| 614 |
///- the distance of \c t from the root(s). |
|
| 615 | 615 |
/// |
| 616 | 616 |
///\pre init() must be called and at least one root node should be |
| 617 | 617 |
///added with addSource() before using this function. |
| 618 | 618 |
/// |
| 619 | 619 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 620 | 620 |
///\code |
| 621 | 621 |
/// bool reach = false; |
| 622 | 622 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 623 | 623 |
/// b.processNextNode(t, reach); |
| 624 | 624 |
/// } |
| 625 | 625 |
///\endcode |
| 626 |
void start(Node |
|
| 626 |
void start(Node t) |
|
| 627 | 627 |
{
|
| 628 | 628 |
bool reach = false; |
| 629 |
while ( !emptyQueue() && !reach ) processNextNode( |
|
| 629 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
|
| 630 | 630 |
} |
| 631 | 631 |
|
| 632 | 632 |
///Executes the algorithm until a condition is met. |
| 633 | 633 |
|
| 634 | 634 |
///Executes the algorithm until a condition is met. |
| 635 | 635 |
/// |
| 636 | 636 |
///This method runs the %BFS algorithm from the root node(s) in |
| 637 | 637 |
///order to compute the shortest path to a node \c v with |
| 638 | 638 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 639 | 639 |
/// |
| 640 | 640 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 641 | 641 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 642 | 642 |
/// |
| 643 | 643 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 644 | 644 |
///\c INVALID if no such node was found. |
| 645 | 645 |
/// |
| 646 | 646 |
///\pre init() must be called and at least one root node should be |
| 647 | 647 |
///added with addSource() before using this function. |
| 648 | 648 |
/// |
| 649 | 649 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 650 | 650 |
///\code |
| 651 | 651 |
/// Node rnode = INVALID; |
| 652 | 652 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 653 | 653 |
/// b.processNextNode(nm, rnode); |
| 654 | 654 |
/// } |
| 655 | 655 |
/// return rnode; |
| 656 | 656 |
///\endcode |
| 657 | 657 |
template<class NodeBoolMap> |
| 658 | 658 |
Node start(const NodeBoolMap &nm) |
| 659 | 659 |
{
|
| 660 | 660 |
Node rnode = INVALID; |
| 661 | 661 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 662 | 662 |
processNextNode(nm, rnode); |
| 663 | 663 |
} |
| 664 | 664 |
return rnode; |
| 665 | 665 |
} |
| 666 | 666 |
|
| 667 |
///Runs the algorithm from the given node. |
|
| 667 |
///Runs the algorithm from the given source node. |
|
| 668 | 668 |
|
| 669 | 669 |
///This method runs the %BFS algorithm from node \c s |
| 670 | 670 |
///in order to compute the shortest path to each node. |
| 671 | 671 |
/// |
| 672 | 672 |
///The algorithm computes |
| 673 | 673 |
///- the shortest path tree, |
| 674 | 674 |
///- the distance of each node from the root. |
| 675 | 675 |
/// |
| 676 | 676 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 677 | 677 |
///\code |
| 678 | 678 |
/// b.init(); |
| 679 | 679 |
/// b.addSource(s); |
| 680 | 680 |
/// b.start(); |
| 681 | 681 |
///\endcode |
| 682 | 682 |
void run(Node s) {
|
| 683 | 683 |
init(); |
| 684 | 684 |
addSource(s); |
| 685 | 685 |
start(); |
| 686 | 686 |
} |
| 687 | 687 |
|
| 688 | 688 |
///Finds the shortest path between \c s and \c t. |
| 689 | 689 |
|
| 690 | 690 |
///This method runs the %BFS algorithm from node \c s |
| 691 |
///in order to compute the shortest path to \c t |
|
| 691 |
///in order to compute the shortest path to node \c t |
|
| 692 |
///(it stops searching when \c t is processed). |
|
| 692 | 693 |
/// |
| 693 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
|
| 694 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
| 694 |
///\return \c true if \c t is reachable form \c s. |
|
| 695 | 695 |
/// |
| 696 | 696 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 697 | 697 |
///shortcut of the following code. |
| 698 | 698 |
///\code |
| 699 | 699 |
/// b.init(); |
| 700 | 700 |
/// b.addSource(s); |
| 701 | 701 |
/// b.start(t); |
| 702 | 702 |
///\endcode |
| 703 |
|
|
| 703 |
bool run(Node s,Node t) {
|
|
| 704 | 704 |
init(); |
| 705 | 705 |
addSource(s); |
| 706 | 706 |
start(t); |
| 707 |
return reached(t) |
|
| 707 |
return reached(t); |
|
| 708 | 708 |
} |
| 709 | 709 |
|
| 710 | 710 |
///Runs the algorithm to visit all nodes in the digraph. |
| 711 | 711 |
|
| 712 | 712 |
///This method runs the %BFS algorithm in order to |
| 713 | 713 |
///compute the shortest path to each node. |
| 714 | 714 |
/// |
| 715 | 715 |
///The algorithm computes |
| 716 | 716 |
///- the shortest path tree (forest), |
| 717 | 717 |
///- the distance of each node from the root(s). |
| 718 | 718 |
/// |
| 719 | 719 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 720 | 720 |
///\code |
| 721 | 721 |
/// b.init(); |
| 722 | 722 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 723 | 723 |
/// if (!b.reached(n)) {
|
| 724 | 724 |
/// b.addSource(n); |
| 725 | 725 |
/// b.start(); |
| 726 | 726 |
/// } |
| 727 | 727 |
/// } |
| 728 | 728 |
///\endcode |
| 729 | 729 |
void run() {
|
| 730 | 730 |
init(); |
| 731 | 731 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 732 | 732 |
if (!reached(n)) {
|
| 733 | 733 |
addSource(n); |
| 734 | 734 |
start(); |
| 735 | 735 |
} |
| 736 | 736 |
} |
| 737 | 737 |
} |
| 738 | 738 |
|
| 739 | 739 |
///@} |
| 740 | 740 |
|
| 741 | 741 |
///\name Query Functions |
| 742 | 742 |
///The result of the %BFS algorithm can be obtained using these |
| 743 | 743 |
///functions.\n |
| 744 | 744 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
| 745 | 745 |
///"start()" must be called before using them. |
| 746 | 746 |
|
| 747 | 747 |
///@{
|
| 748 | 748 |
|
| 749 | 749 |
///The shortest path to a node. |
| 750 | 750 |
|
| 751 | 751 |
///Returns the shortest path to a node. |
| 752 | 752 |
/// |
| 753 | 753 |
///\warning \c t should be reachable from the root(s). |
| 754 | 754 |
/// |
| 755 | 755 |
///\pre Either \ref run() or \ref start() must be called before |
| 756 | 756 |
///using this function. |
| 757 | 757 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 758 | 758 |
|
| 759 | 759 |
///The distance of a node from the root(s). |
| 760 | 760 |
|
| 761 | 761 |
///Returns the distance of a node from the root(s). |
| 762 | 762 |
/// |
| 763 | 763 |
///\warning If node \c v is not reachable from the root(s), then |
| 764 | 764 |
///the return value of this function is undefined. |
| 765 | 765 |
/// |
| 766 | 766 |
///\pre Either \ref run() or \ref start() must be called before |
| 767 | 767 |
///using this function. |
| 768 | 768 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 769 | 769 |
|
| 770 | 770 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 771 | 771 |
|
| 772 | 772 |
///This function returns the 'previous arc' of the shortest path |
| 773 | 773 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 774 | 774 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
| 775 | 775 |
///is not reachable from the root(s) or if \c v is a root. |
| 776 | 776 |
/// |
| 777 | 777 |
///The shortest path tree used here is equal to the shortest path |
| 778 | 778 |
///tree used in \ref predNode(). |
| 779 | 779 |
/// |
| 780 | 780 |
///\pre Either \ref run() or \ref start() must be called before |
| 781 | 781 |
///using this function. |
| 782 | 782 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 783 | 783 |
|
| 784 | 784 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 785 | 785 |
|
| 786 | 786 |
///This function returns the 'previous node' of the shortest path |
| 787 | 787 |
///tree for the node \c v, i.e. it returns the last but one node |
| 788 | 788 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
| 789 | 789 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 790 | 790 |
/// |
| 791 | 791 |
///The shortest path tree used here is equal to the shortest path |
| 792 | 792 |
///tree used in \ref predArc(). |
| 793 | 793 |
/// |
| 794 | 794 |
///\pre Either \ref run() or \ref start() must be called before |
| 795 | 795 |
///using this function. |
| 796 | 796 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 797 | 797 |
G->source((*_pred)[v]); } |
| 798 | 798 |
|
| 799 | 799 |
///\brief Returns a const reference to the node map that stores the |
| 800 | 800 |
/// distances of the nodes. |
| 801 | 801 |
/// |
| 802 | 802 |
///Returns a const reference to the node map that stores the distances |
| 803 | 803 |
///of the nodes calculated by the algorithm. |
| ... | ... |
@@ -1528,226 +1528,248 @@ |
| 1528 | 1528 |
_visitor->discover(e); |
| 1529 | 1529 |
_visitor->reach(m); |
| 1530 | 1530 |
_reached->set(m, true); |
| 1531 | 1531 |
_list[++_list_back] = m; |
| 1532 | 1532 |
reach = reach || (target == m); |
| 1533 | 1533 |
} else {
|
| 1534 | 1534 |
_visitor->examine(e); |
| 1535 | 1535 |
} |
| 1536 | 1536 |
} |
| 1537 | 1537 |
return n; |
| 1538 | 1538 |
} |
| 1539 | 1539 |
|
| 1540 | 1540 |
/// \brief Processes the next node. |
| 1541 | 1541 |
/// |
| 1542 | 1542 |
/// Processes the next node and checks if at least one of reached |
| 1543 | 1543 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1544 | 1544 |
/// with \c true value is reachable from the processed node, then the |
| 1545 | 1545 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1546 | 1546 |
/// |
| 1547 | 1547 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1548 | 1548 |
/// possible targets. |
| 1549 | 1549 |
/// \retval rnode The reached target node. |
| 1550 | 1550 |
/// It should be initially \c INVALID. |
| 1551 | 1551 |
/// |
| 1552 | 1552 |
/// \return The processed node. |
| 1553 | 1553 |
/// |
| 1554 | 1554 |
/// \pre The queue must not be empty. |
| 1555 | 1555 |
template <typename NM> |
| 1556 | 1556 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1557 | 1557 |
Node n = _list[++_list_front]; |
| 1558 | 1558 |
_visitor->process(n); |
| 1559 | 1559 |
Arc e; |
| 1560 | 1560 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1561 | 1561 |
Node m = _digraph->target(e); |
| 1562 | 1562 |
if (!(*_reached)[m]) {
|
| 1563 | 1563 |
_visitor->discover(e); |
| 1564 | 1564 |
_visitor->reach(m); |
| 1565 | 1565 |
_reached->set(m, true); |
| 1566 | 1566 |
_list[++_list_back] = m; |
| 1567 | 1567 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1568 | 1568 |
} else {
|
| 1569 | 1569 |
_visitor->examine(e); |
| 1570 | 1570 |
} |
| 1571 | 1571 |
} |
| 1572 | 1572 |
return n; |
| 1573 | 1573 |
} |
| 1574 | 1574 |
|
| 1575 | 1575 |
/// \brief The next node to be processed. |
| 1576 | 1576 |
/// |
| 1577 | 1577 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1578 | 1578 |
/// is empty. |
| 1579 | 1579 |
Node nextNode() const {
|
| 1580 | 1580 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1581 | 1581 |
} |
| 1582 | 1582 |
|
| 1583 | 1583 |
/// \brief Returns \c false if there are nodes |
| 1584 | 1584 |
/// to be processed. |
| 1585 | 1585 |
/// |
| 1586 | 1586 |
/// Returns \c false if there are nodes |
| 1587 | 1587 |
/// to be processed in the queue. |
| 1588 | 1588 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1589 | 1589 |
|
| 1590 | 1590 |
/// \brief Returns the number of the nodes to be processed. |
| 1591 | 1591 |
/// |
| 1592 | 1592 |
/// Returns the number of the nodes to be processed in the queue. |
| 1593 | 1593 |
int queueSize() const { return _list_back - _list_front; }
|
| 1594 | 1594 |
|
| 1595 | 1595 |
/// \brief Executes the algorithm. |
| 1596 | 1596 |
/// |
| 1597 | 1597 |
/// Executes the algorithm. |
| 1598 | 1598 |
/// |
| 1599 | 1599 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1600 | 1600 |
/// in order to compute the shortest path to each node. |
| 1601 | 1601 |
/// |
| 1602 | 1602 |
/// The algorithm computes |
| 1603 | 1603 |
/// - the shortest path tree (forest), |
| 1604 | 1604 |
/// - the distance of each node from the root(s). |
| 1605 | 1605 |
/// |
| 1606 | 1606 |
/// \pre init() must be called and at least one root node should be added |
| 1607 | 1607 |
/// with addSource() before using this function. |
| 1608 | 1608 |
/// |
| 1609 | 1609 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1610 | 1610 |
/// \code |
| 1611 | 1611 |
/// while ( !b.emptyQueue() ) {
|
| 1612 | 1612 |
/// b.processNextNode(); |
| 1613 | 1613 |
/// } |
| 1614 | 1614 |
/// \endcode |
| 1615 | 1615 |
void start() {
|
| 1616 | 1616 |
while ( !emptyQueue() ) processNextNode(); |
| 1617 | 1617 |
} |
| 1618 | 1618 |
|
| 1619 | 1619 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1620 | 1620 |
/// |
| 1621 | 1621 |
/// Executes the algorithm until the given target node is reached. |
| 1622 | 1622 |
/// |
| 1623 | 1623 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1624 |
/// in order to compute the shortest path to \c |
|
| 1624 |
/// in order to compute the shortest path to \c t. |
|
| 1625 | 1625 |
/// |
| 1626 | 1626 |
/// The algorithm computes |
| 1627 |
/// - the shortest path to \c dest, |
|
| 1628 |
/// - the distance of \c dest from the root(s). |
|
| 1627 |
/// - the shortest path to \c t, |
|
| 1628 |
/// - the distance of \c t from the root(s). |
|
| 1629 | 1629 |
/// |
| 1630 | 1630 |
/// \pre init() must be called and at least one root node should be |
| 1631 | 1631 |
/// added with addSource() before using this function. |
| 1632 | 1632 |
/// |
| 1633 | 1633 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1634 | 1634 |
/// \code |
| 1635 | 1635 |
/// bool reach = false; |
| 1636 | 1636 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1637 | 1637 |
/// b.processNextNode(t, reach); |
| 1638 | 1638 |
/// } |
| 1639 | 1639 |
/// \endcode |
| 1640 |
void start(Node |
|
| 1640 |
void start(Node t) {
|
|
| 1641 | 1641 |
bool reach = false; |
| 1642 |
while ( !emptyQueue() && !reach ) processNextNode( |
|
| 1642 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
|
| 1643 | 1643 |
} |
| 1644 | 1644 |
|
| 1645 | 1645 |
/// \brief Executes the algorithm until a condition is met. |
| 1646 | 1646 |
/// |
| 1647 | 1647 |
/// Executes the algorithm until a condition is met. |
| 1648 | 1648 |
/// |
| 1649 | 1649 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1650 | 1650 |
/// order to compute the shortest path to a node \c v with |
| 1651 | 1651 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1652 | 1652 |
/// |
| 1653 | 1653 |
/// \param nm must be a bool (or convertible) node map. The |
| 1654 | 1654 |
/// algorithm will stop when it reaches a node \c v with |
| 1655 | 1655 |
/// <tt>nm[v]</tt> true. |
| 1656 | 1656 |
/// |
| 1657 | 1657 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1658 | 1658 |
/// \c INVALID if no such node was found. |
| 1659 | 1659 |
/// |
| 1660 | 1660 |
/// \pre init() must be called and at least one root node should be |
| 1661 | 1661 |
/// added with addSource() before using this function. |
| 1662 | 1662 |
/// |
| 1663 | 1663 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1664 | 1664 |
/// \code |
| 1665 | 1665 |
/// Node rnode = INVALID; |
| 1666 | 1666 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1667 | 1667 |
/// b.processNextNode(nm, rnode); |
| 1668 | 1668 |
/// } |
| 1669 | 1669 |
/// return rnode; |
| 1670 | 1670 |
/// \endcode |
| 1671 | 1671 |
template <typename NM> |
| 1672 | 1672 |
Node start(const NM &nm) {
|
| 1673 | 1673 |
Node rnode = INVALID; |
| 1674 | 1674 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1675 | 1675 |
processNextNode(nm, rnode); |
| 1676 | 1676 |
} |
| 1677 | 1677 |
return rnode; |
| 1678 | 1678 |
} |
| 1679 | 1679 |
|
| 1680 |
/// \brief Runs the algorithm from the given node. |
|
| 1680 |
/// \brief Runs the algorithm from the given source node. |
|
| 1681 | 1681 |
/// |
| 1682 | 1682 |
/// This method runs the %BFS algorithm from node \c s |
| 1683 | 1683 |
/// in order to compute the shortest path to each node. |
| 1684 | 1684 |
/// |
| 1685 | 1685 |
/// The algorithm computes |
| 1686 | 1686 |
/// - the shortest path tree, |
| 1687 | 1687 |
/// - the distance of each node from the root. |
| 1688 | 1688 |
/// |
| 1689 | 1689 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1690 | 1690 |
///\code |
| 1691 | 1691 |
/// b.init(); |
| 1692 | 1692 |
/// b.addSource(s); |
| 1693 | 1693 |
/// b.start(); |
| 1694 | 1694 |
///\endcode |
| 1695 | 1695 |
void run(Node s) {
|
| 1696 | 1696 |
init(); |
| 1697 | 1697 |
addSource(s); |
| 1698 | 1698 |
start(); |
| 1699 | 1699 |
} |
| 1700 | 1700 |
|
| 1701 |
/// \brief Finds the shortest path between \c s and \c t. |
|
| 1702 |
/// |
|
| 1703 |
/// This method runs the %BFS algorithm from node \c s |
|
| 1704 |
/// in order to compute the shortest path to node \c t |
|
| 1705 |
/// (it stops searching when \c t is processed). |
|
| 1706 |
/// |
|
| 1707 |
/// \return \c true if \c t is reachable form \c s. |
|
| 1708 |
/// |
|
| 1709 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
|
| 1710 |
/// shortcut of the following code. |
|
| 1711 |
///\code |
|
| 1712 |
/// b.init(); |
|
| 1713 |
/// b.addSource(s); |
|
| 1714 |
/// b.start(t); |
|
| 1715 |
///\endcode |
|
| 1716 |
bool run(Node s,Node t) {
|
|
| 1717 |
init(); |
|
| 1718 |
addSource(s); |
|
| 1719 |
start(t); |
|
| 1720 |
return reached(t); |
|
| 1721 |
} |
|
| 1722 |
|
|
| 1701 | 1723 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1702 | 1724 |
/// |
| 1703 | 1725 |
/// This method runs the %BFS algorithm in order to |
| 1704 | 1726 |
/// compute the shortest path to each node. |
| 1705 | 1727 |
/// |
| 1706 | 1728 |
/// The algorithm computes |
| 1707 | 1729 |
/// - the shortest path tree (forest), |
| 1708 | 1730 |
/// - the distance of each node from the root(s). |
| 1709 | 1731 |
/// |
| 1710 | 1732 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1711 | 1733 |
///\code |
| 1712 | 1734 |
/// b.init(); |
| 1713 | 1735 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1714 | 1736 |
/// if (!b.reached(n)) {
|
| 1715 | 1737 |
/// b.addSource(n); |
| 1716 | 1738 |
/// b.start(); |
| 1717 | 1739 |
/// } |
| 1718 | 1740 |
/// } |
| 1719 | 1741 |
///\endcode |
| 1720 | 1742 |
void run() {
|
| 1721 | 1743 |
init(); |
| 1722 | 1744 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1723 | 1745 |
if (!reached(it)) {
|
| 1724 | 1746 |
addSource(it); |
| 1725 | 1747 |
start(); |
| 1726 | 1748 |
} |
| 1727 | 1749 |
} |
| 1728 | 1750 |
} |
| 1729 | 1751 |
|
| 1730 | 1752 |
///@} |
| 1731 | 1753 |
|
| 1732 | 1754 |
/// \name Query Functions |
| 1733 | 1755 |
/// The result of the %BFS algorithm can be obtained using these |
| 1734 | 1756 |
/// functions.\n |
| 1735 | 1757 |
/// Either \ref lemon::BfsVisit::run() "run()" or |
| 1736 | 1758 |
/// \ref lemon::BfsVisit::start() "start()" must be called before |
| 1737 | 1759 |
/// using them. |
| 1738 | 1760 |
///@{
|
| 1739 | 1761 |
|
| 1740 | 1762 |
/// \brief Checks if a node is reachable from the root(s). |
| 1741 | 1763 |
/// |
| 1742 | 1764 |
/// Returns \c true if \c v is reachable from the root(s). |
| 1743 | 1765 |
/// \pre Either \ref run() or \ref start() |
| 1744 | 1766 |
/// must be called before using this function. |
| 1745 | 1767 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 1746 | 1768 |
|
| 1747 | 1769 |
///@} |
| 1748 | 1770 |
|
| 1749 | 1771 |
}; |
| 1750 | 1772 |
|
| 1751 | 1773 |
} //END OF NAMESPACE LEMON |
| 1752 | 1774 |
|
| 1753 | 1775 |
#endif |
| ... | ... |
@@ -465,273 +465,273 @@ |
| 465 | 465 |
_stack[++_stack_head]=e; |
| 466 | 466 |
_dist->set(s,_stack_head); |
| 467 | 467 |
} |
| 468 | 468 |
else {
|
| 469 | 469 |
_processed->set(s,true); |
| 470 | 470 |
_dist->set(s,0); |
| 471 | 471 |
} |
| 472 | 472 |
} |
| 473 | 473 |
} |
| 474 | 474 |
|
| 475 | 475 |
///Processes the next arc. |
| 476 | 476 |
|
| 477 | 477 |
///Processes the next arc. |
| 478 | 478 |
/// |
| 479 | 479 |
///\return The processed arc. |
| 480 | 480 |
/// |
| 481 | 481 |
///\pre The stack must not be empty. |
| 482 | 482 |
Arc processNextArc() |
| 483 | 483 |
{
|
| 484 | 484 |
Node m; |
| 485 | 485 |
Arc e=_stack[_stack_head]; |
| 486 | 486 |
if(!(*_reached)[m=G->target(e)]) {
|
| 487 | 487 |
_pred->set(m,e); |
| 488 | 488 |
_reached->set(m,true); |
| 489 | 489 |
++_stack_head; |
| 490 | 490 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 491 | 491 |
_dist->set(m,_stack_head); |
| 492 | 492 |
} |
| 493 | 493 |
else {
|
| 494 | 494 |
m=G->source(e); |
| 495 | 495 |
++_stack[_stack_head]; |
| 496 | 496 |
} |
| 497 | 497 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 498 | 498 |
_processed->set(m,true); |
| 499 | 499 |
--_stack_head; |
| 500 | 500 |
if(_stack_head>=0) {
|
| 501 | 501 |
m=G->source(_stack[_stack_head]); |
| 502 | 502 |
++_stack[_stack_head]; |
| 503 | 503 |
} |
| 504 | 504 |
} |
| 505 | 505 |
return e; |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
///Next arc to be processed. |
| 509 | 509 |
|
| 510 | 510 |
///Next arc to be processed. |
| 511 | 511 |
/// |
| 512 | 512 |
///\return The next arc to be processed or \c INVALID if the stack |
| 513 | 513 |
///is empty. |
| 514 | 514 |
OutArcIt nextArc() const |
| 515 | 515 |
{
|
| 516 | 516 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 517 | 517 |
} |
| 518 | 518 |
|
| 519 | 519 |
///\brief Returns \c false if there are nodes |
| 520 | 520 |
///to be processed. |
| 521 | 521 |
/// |
| 522 | 522 |
///Returns \c false if there are nodes |
| 523 | 523 |
///to be processed in the queue (stack). |
| 524 | 524 |
bool emptyQueue() const { return _stack_head<0; }
|
| 525 | 525 |
|
| 526 | 526 |
///Returns the number of the nodes to be processed. |
| 527 | 527 |
|
| 528 | 528 |
///Returns the number of the nodes to be processed in the queue (stack). |
| 529 | 529 |
int queueSize() const { return _stack_head+1; }
|
| 530 | 530 |
|
| 531 | 531 |
///Executes the algorithm. |
| 532 | 532 |
|
| 533 | 533 |
///Executes the algorithm. |
| 534 | 534 |
/// |
| 535 | 535 |
///This method runs the %DFS algorithm from the root node |
| 536 | 536 |
///in order to compute the DFS path to each node. |
| 537 | 537 |
/// |
| 538 | 538 |
/// The algorithm computes |
| 539 | 539 |
///- the %DFS tree, |
| 540 | 540 |
///- the distance of each node from the root in the %DFS tree. |
| 541 | 541 |
/// |
| 542 | 542 |
///\pre init() must be called and a root node should be |
| 543 | 543 |
///added with addSource() before using this function. |
| 544 | 544 |
/// |
| 545 | 545 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 546 | 546 |
///\code |
| 547 | 547 |
/// while ( !d.emptyQueue() ) {
|
| 548 | 548 |
/// d.processNextArc(); |
| 549 | 549 |
/// } |
| 550 | 550 |
///\endcode |
| 551 | 551 |
void start() |
| 552 | 552 |
{
|
| 553 | 553 |
while ( !emptyQueue() ) processNextArc(); |
| 554 | 554 |
} |
| 555 | 555 |
|
| 556 | 556 |
///Executes the algorithm until the given target node is reached. |
| 557 | 557 |
|
| 558 | 558 |
///Executes the algorithm until the given target node is reached. |
| 559 | 559 |
/// |
| 560 | 560 |
///This method runs the %DFS algorithm from the root node |
| 561 |
///in order to compute the DFS path to \c |
|
| 561 |
///in order to compute the DFS path to \c t. |
|
| 562 | 562 |
/// |
| 563 | 563 |
///The algorithm computes |
| 564 |
///- the %DFS path to \c dest, |
|
| 565 |
///- the distance of \c dest from the root in the %DFS tree. |
|
| 564 |
///- the %DFS path to \c t, |
|
| 565 |
///- the distance of \c t from the root in the %DFS tree. |
|
| 566 | 566 |
/// |
| 567 | 567 |
///\pre init() must be called and a root node should be |
| 568 | 568 |
///added with addSource() before using this function. |
| 569 |
void start(Node |
|
| 569 |
void start(Node t) |
|
| 570 | 570 |
{
|
| 571 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!= |
|
| 571 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
|
| 572 | 572 |
processNextArc(); |
| 573 | 573 |
} |
| 574 | 574 |
|
| 575 | 575 |
///Executes the algorithm until a condition is met. |
| 576 | 576 |
|
| 577 | 577 |
///Executes the algorithm until a condition is met. |
| 578 | 578 |
/// |
| 579 | 579 |
///This method runs the %DFS algorithm from the root node |
| 580 | 580 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 581 | 581 |
/// |
| 582 | 582 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 583 | 583 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 584 | 584 |
/// |
| 585 | 585 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 586 | 586 |
///\c INVALID if no such arc was found. |
| 587 | 587 |
/// |
| 588 | 588 |
///\pre init() must be called and a root node should be |
| 589 | 589 |
///added with addSource() before using this function. |
| 590 | 590 |
/// |
| 591 | 591 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 592 | 592 |
///not a node map. |
| 593 | 593 |
template<class ArcBoolMap> |
| 594 | 594 |
Arc start(const ArcBoolMap &am) |
| 595 | 595 |
{
|
| 596 | 596 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 597 | 597 |
processNextArc(); |
| 598 | 598 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 599 | 599 |
} |
| 600 | 600 |
|
| 601 |
///Runs the algorithm from the given node. |
|
| 601 |
///Runs the algorithm from the given source node. |
|
| 602 | 602 |
|
| 603 | 603 |
///This method runs the %DFS algorithm from node \c s |
| 604 | 604 |
///in order to compute the DFS path to each node. |
| 605 | 605 |
/// |
| 606 | 606 |
///The algorithm computes |
| 607 | 607 |
///- the %DFS tree, |
| 608 | 608 |
///- the distance of each node from the root in the %DFS tree. |
| 609 | 609 |
/// |
| 610 | 610 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 611 | 611 |
///\code |
| 612 | 612 |
/// d.init(); |
| 613 | 613 |
/// d.addSource(s); |
| 614 | 614 |
/// d.start(); |
| 615 | 615 |
///\endcode |
| 616 | 616 |
void run(Node s) {
|
| 617 | 617 |
init(); |
| 618 | 618 |
addSource(s); |
| 619 | 619 |
start(); |
| 620 | 620 |
} |
| 621 | 621 |
|
| 622 | 622 |
///Finds the %DFS path between \c s and \c t. |
| 623 | 623 |
|
| 624 | 624 |
///This method runs the %DFS algorithm from node \c s |
| 625 |
///in order to compute the DFS path to \c t |
|
| 625 |
///in order to compute the DFS path to node \c t |
|
| 626 |
///(it stops searching when \c t is processed) |
|
| 626 | 627 |
/// |
| 627 |
///\return The length of the <tt>s</tt>--<tt>t</tt> DFS path, |
|
| 628 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
| 628 |
///\return \c true if \c t is reachable form \c s. |
|
| 629 | 629 |
/// |
| 630 | 630 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 631 | 631 |
///just a shortcut of the following code. |
| 632 | 632 |
///\code |
| 633 | 633 |
/// d.init(); |
| 634 | 634 |
/// d.addSource(s); |
| 635 | 635 |
/// d.start(t); |
| 636 | 636 |
///\endcode |
| 637 |
|
|
| 637 |
bool run(Node s,Node t) {
|
|
| 638 | 638 |
init(); |
| 639 | 639 |
addSource(s); |
| 640 | 640 |
start(t); |
| 641 |
return reached(t) |
|
| 641 |
return reached(t); |
|
| 642 | 642 |
} |
| 643 | 643 |
|
| 644 | 644 |
///Runs the algorithm to visit all nodes in the digraph. |
| 645 | 645 |
|
| 646 | 646 |
///This method runs the %DFS algorithm in order to compute the |
| 647 | 647 |
///%DFS path to each node. |
| 648 | 648 |
/// |
| 649 | 649 |
///The algorithm computes |
| 650 | 650 |
///- the %DFS tree, |
| 651 | 651 |
///- the distance of each node from the root in the %DFS tree. |
| 652 | 652 |
/// |
| 653 | 653 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 654 | 654 |
///\code |
| 655 | 655 |
/// d.init(); |
| 656 | 656 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 657 | 657 |
/// if (!d.reached(n)) {
|
| 658 | 658 |
/// d.addSource(n); |
| 659 | 659 |
/// d.start(); |
| 660 | 660 |
/// } |
| 661 | 661 |
/// } |
| 662 | 662 |
///\endcode |
| 663 | 663 |
void run() {
|
| 664 | 664 |
init(); |
| 665 | 665 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 666 | 666 |
if (!reached(it)) {
|
| 667 | 667 |
addSource(it); |
| 668 | 668 |
start(); |
| 669 | 669 |
} |
| 670 | 670 |
} |
| 671 | 671 |
} |
| 672 | 672 |
|
| 673 | 673 |
///@} |
| 674 | 674 |
|
| 675 | 675 |
///\name Query Functions |
| 676 | 676 |
///The result of the %DFS algorithm can be obtained using these |
| 677 | 677 |
///functions.\n |
| 678 | 678 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
| 679 | 679 |
///"start()" must be called before using them. |
| 680 | 680 |
|
| 681 | 681 |
///@{
|
| 682 | 682 |
|
| 683 | 683 |
///The DFS path to a node. |
| 684 | 684 |
|
| 685 | 685 |
///Returns the DFS path to a node. |
| 686 | 686 |
/// |
| 687 | 687 |
///\warning \c t should be reachable from the root. |
| 688 | 688 |
/// |
| 689 | 689 |
///\pre Either \ref run() or \ref start() must be called before |
| 690 | 690 |
///using this function. |
| 691 | 691 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 692 | 692 |
|
| 693 | 693 |
///The distance of a node from the root. |
| 694 | 694 |
|
| 695 | 695 |
///Returns the distance of a node from the root. |
| 696 | 696 |
/// |
| 697 | 697 |
///\warning If node \c v is not reachable from the root, then |
| 698 | 698 |
///the return value of this function is undefined. |
| 699 | 699 |
/// |
| 700 | 700 |
///\pre Either \ref run() or \ref start() must be called before |
| 701 | 701 |
///using this function. |
| 702 | 702 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 703 | 703 |
|
| 704 | 704 |
///Returns the 'previous arc' of the %DFS tree for a node. |
| 705 | 705 |
|
| 706 | 706 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 707 | 707 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
| 708 | 708 |
///root to \c v. It is \c INVALID |
| 709 | 709 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 710 | 710 |
/// |
| 711 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 712 | 712 |
///\ref predNode(). |
| 713 | 713 |
/// |
| 714 | 714 |
///\pre Either \ref run() or \ref start() must be called before using |
| 715 | 715 |
///this function. |
| 716 | 716 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 717 | 717 |
|
| 718 | 718 |
///Returns the 'previous node' of the %DFS tree. |
| 719 | 719 |
|
| 720 | 720 |
///This function returns the 'previous node' of the %DFS |
| 721 | 721 |
///tree for the node \c v, i.e. it returns the last but one node |
| 722 | 722 |
///from a %DFS path from the root to \c v. It is \c INVALID |
| 723 | 723 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 724 | 724 |
/// |
| 725 | 725 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 726 | 726 |
///\ref predArc(). |
| 727 | 727 |
/// |
| 728 | 728 |
///\pre Either \ref run() or \ref start() must be called before |
| 729 | 729 |
///using this function. |
| 730 | 730 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 731 | 731 |
G->source((*_pred)[v]); } |
| 732 | 732 |
|
| 733 | 733 |
///\brief Returns a const reference to the node map that stores the |
| 734 | 734 |
///distances of the nodes. |
| 735 | 735 |
/// |
| 736 | 736 |
///Returns a const reference to the node map that stores the |
| 737 | 737 |
///distances of the nodes calculated by the algorithm. |
| ... | ... |
@@ -1433,230 +1433,230 @@ |
| 1433 | 1433 |
_visitor->reach(s); |
| 1434 | 1434 |
Arc e; |
| 1435 | 1435 |
_digraph->firstOut(e, s); |
| 1436 | 1436 |
if (e != INVALID) {
|
| 1437 | 1437 |
_stack[++_stack_head] = e; |
| 1438 | 1438 |
} else {
|
| 1439 | 1439 |
_visitor->leave(s); |
| 1440 | 1440 |
} |
| 1441 | 1441 |
} |
| 1442 | 1442 |
} |
| 1443 | 1443 |
|
| 1444 | 1444 |
/// \brief Processes the next arc. |
| 1445 | 1445 |
/// |
| 1446 | 1446 |
/// Processes the next arc. |
| 1447 | 1447 |
/// |
| 1448 | 1448 |
/// \return The processed arc. |
| 1449 | 1449 |
/// |
| 1450 | 1450 |
/// \pre The stack must not be empty. |
| 1451 | 1451 |
Arc processNextArc() {
|
| 1452 | 1452 |
Arc e = _stack[_stack_head]; |
| 1453 | 1453 |
Node m = _digraph->target(e); |
| 1454 | 1454 |
if(!(*_reached)[m]) {
|
| 1455 | 1455 |
_visitor->discover(e); |
| 1456 | 1456 |
_visitor->reach(m); |
| 1457 | 1457 |
_reached->set(m, true); |
| 1458 | 1458 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1459 | 1459 |
} else {
|
| 1460 | 1460 |
_visitor->examine(e); |
| 1461 | 1461 |
m = _digraph->source(e); |
| 1462 | 1462 |
_digraph->nextOut(_stack[_stack_head]); |
| 1463 | 1463 |
} |
| 1464 | 1464 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1465 | 1465 |
_visitor->leave(m); |
| 1466 | 1466 |
--_stack_head; |
| 1467 | 1467 |
if (_stack_head >= 0) {
|
| 1468 | 1468 |
_visitor->backtrack(_stack[_stack_head]); |
| 1469 | 1469 |
m = _digraph->source(_stack[_stack_head]); |
| 1470 | 1470 |
_digraph->nextOut(_stack[_stack_head]); |
| 1471 | 1471 |
} else {
|
| 1472 | 1472 |
_visitor->stop(m); |
| 1473 | 1473 |
} |
| 1474 | 1474 |
} |
| 1475 | 1475 |
return e; |
| 1476 | 1476 |
} |
| 1477 | 1477 |
|
| 1478 | 1478 |
/// \brief Next arc to be processed. |
| 1479 | 1479 |
/// |
| 1480 | 1480 |
/// Next arc to be processed. |
| 1481 | 1481 |
/// |
| 1482 | 1482 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1483 | 1483 |
/// empty. |
| 1484 | 1484 |
Arc nextArc() const {
|
| 1485 | 1485 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1486 | 1486 |
} |
| 1487 | 1487 |
|
| 1488 | 1488 |
/// \brief Returns \c false if there are nodes |
| 1489 | 1489 |
/// to be processed. |
| 1490 | 1490 |
/// |
| 1491 | 1491 |
/// Returns \c false if there are nodes |
| 1492 | 1492 |
/// to be processed in the queue (stack). |
| 1493 | 1493 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1494 | 1494 |
|
| 1495 | 1495 |
/// \brief Returns the number of the nodes to be processed. |
| 1496 | 1496 |
/// |
| 1497 | 1497 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1498 | 1498 |
int queueSize() const { return _stack_head + 1; }
|
| 1499 | 1499 |
|
| 1500 | 1500 |
/// \brief Executes the algorithm. |
| 1501 | 1501 |
/// |
| 1502 | 1502 |
/// Executes the algorithm. |
| 1503 | 1503 |
/// |
| 1504 | 1504 |
/// This method runs the %DFS algorithm from the root node |
| 1505 | 1505 |
/// in order to compute the %DFS path to each node. |
| 1506 | 1506 |
/// |
| 1507 | 1507 |
/// The algorithm computes |
| 1508 | 1508 |
/// - the %DFS tree, |
| 1509 | 1509 |
/// - the distance of each node from the root in the %DFS tree. |
| 1510 | 1510 |
/// |
| 1511 | 1511 |
/// \pre init() must be called and a root node should be |
| 1512 | 1512 |
/// added with addSource() before using this function. |
| 1513 | 1513 |
/// |
| 1514 | 1514 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1515 | 1515 |
/// \code |
| 1516 | 1516 |
/// while ( !d.emptyQueue() ) {
|
| 1517 | 1517 |
/// d.processNextArc(); |
| 1518 | 1518 |
/// } |
| 1519 | 1519 |
/// \endcode |
| 1520 | 1520 |
void start() {
|
| 1521 | 1521 |
while ( !emptyQueue() ) processNextArc(); |
| 1522 | 1522 |
} |
| 1523 | 1523 |
|
| 1524 | 1524 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1525 | 1525 |
/// |
| 1526 | 1526 |
/// Executes the algorithm until the given target node is reached. |
| 1527 | 1527 |
/// |
| 1528 | 1528 |
/// This method runs the %DFS algorithm from the root node |
| 1529 |
/// in order to compute the DFS path to \c |
|
| 1529 |
/// in order to compute the DFS path to \c t. |
|
| 1530 | 1530 |
/// |
| 1531 | 1531 |
/// The algorithm computes |
| 1532 |
/// - the %DFS path to \c dest, |
|
| 1533 |
/// - the distance of \c dest from the root in the %DFS tree. |
|
| 1532 |
/// - the %DFS path to \c t, |
|
| 1533 |
/// - the distance of \c t from the root in the %DFS tree. |
|
| 1534 | 1534 |
/// |
| 1535 | 1535 |
/// \pre init() must be called and a root node should be added |
| 1536 | 1536 |
/// with addSource() before using this function. |
| 1537 |
void start(Node dest) {
|
|
| 1538 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) |
|
| 1537 |
void start(Node t) {
|
|
| 1538 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
|
| 1539 | 1539 |
processNextArc(); |
| 1540 | 1540 |
} |
| 1541 | 1541 |
|
| 1542 | 1542 |
/// \brief Executes the algorithm until a condition is met. |
| 1543 | 1543 |
/// |
| 1544 | 1544 |
/// Executes the algorithm until a condition is met. |
| 1545 | 1545 |
/// |
| 1546 | 1546 |
/// This method runs the %DFS algorithm from the root node |
| 1547 | 1547 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1548 | 1548 |
/// |
| 1549 | 1549 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1550 | 1550 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1551 | 1551 |
/// |
| 1552 | 1552 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1553 | 1553 |
/// \c INVALID if no such arc was found. |
| 1554 | 1554 |
/// |
| 1555 | 1555 |
/// \pre init() must be called and a root node should be added |
| 1556 | 1556 |
/// with addSource() before using this function. |
| 1557 | 1557 |
/// |
| 1558 | 1558 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1559 | 1559 |
/// not a node map. |
| 1560 | 1560 |
template <typename AM> |
| 1561 | 1561 |
Arc start(const AM &am) {
|
| 1562 | 1562 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1563 | 1563 |
processNextArc(); |
| 1564 | 1564 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1565 | 1565 |
} |
| 1566 | 1566 |
|
| 1567 |
/// \brief Runs the algorithm from the given node. |
|
| 1567 |
/// \brief Runs the algorithm from the given source node. |
|
| 1568 | 1568 |
/// |
| 1569 | 1569 |
/// This method runs the %DFS algorithm from node \c s. |
| 1570 | 1570 |
/// in order to compute the DFS path to each node. |
| 1571 | 1571 |
/// |
| 1572 | 1572 |
/// The algorithm computes |
| 1573 | 1573 |
/// - the %DFS tree, |
| 1574 | 1574 |
/// - the distance of each node from the root in the %DFS tree. |
| 1575 | 1575 |
/// |
| 1576 | 1576 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1577 | 1577 |
///\code |
| 1578 | 1578 |
/// d.init(); |
| 1579 | 1579 |
/// d.addSource(s); |
| 1580 | 1580 |
/// d.start(); |
| 1581 | 1581 |
///\endcode |
| 1582 | 1582 |
void run(Node s) {
|
| 1583 | 1583 |
init(); |
| 1584 | 1584 |
addSource(s); |
| 1585 | 1585 |
start(); |
| 1586 | 1586 |
} |
| 1587 | 1587 |
|
| 1588 | 1588 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1589 | 1589 |
|
| 1590 | 1590 |
/// This method runs the %DFS algorithm from node \c s |
| 1591 |
/// in order to compute the DFS path to \c t |
|
| 1591 |
/// in order to compute the DFS path to node \c t |
|
| 1592 |
/// (it stops searching when \c t is processed). |
|
| 1592 | 1593 |
/// |
| 1593 |
/// \return The length of the <tt>s</tt>--<tt>t</tt> DFS path, |
|
| 1594 |
/// if \c t is reachable form \c s, \c 0 otherwise. |
|
| 1594 |
/// \return \c true if \c t is reachable form \c s. |
|
| 1595 | 1595 |
/// |
| 1596 | 1596 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1597 | 1597 |
/// just a shortcut of the following code. |
| 1598 | 1598 |
///\code |
| 1599 | 1599 |
/// d.init(); |
| 1600 | 1600 |
/// d.addSource(s); |
| 1601 | 1601 |
/// d.start(t); |
| 1602 | 1602 |
///\endcode |
| 1603 |
|
|
| 1603 |
bool run(Node s,Node t) {
|
|
| 1604 | 1604 |
init(); |
| 1605 | 1605 |
addSource(s); |
| 1606 | 1606 |
start(t); |
| 1607 |
return reached(t) |
|
| 1607 |
return reached(t); |
|
| 1608 | 1608 |
} |
| 1609 | 1609 |
|
| 1610 | 1610 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1611 | 1611 |
|
| 1612 | 1612 |
/// This method runs the %DFS algorithm in order to |
| 1613 | 1613 |
/// compute the %DFS path to each node. |
| 1614 | 1614 |
/// |
| 1615 | 1615 |
/// The algorithm computes |
| 1616 | 1616 |
/// - the %DFS tree, |
| 1617 | 1617 |
/// - the distance of each node from the root in the %DFS tree. |
| 1618 | 1618 |
/// |
| 1619 | 1619 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1620 | 1620 |
///\code |
| 1621 | 1621 |
/// d.init(); |
| 1622 | 1622 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1623 | 1623 |
/// if (!d.reached(n)) {
|
| 1624 | 1624 |
/// d.addSource(n); |
| 1625 | 1625 |
/// d.start(); |
| 1626 | 1626 |
/// } |
| 1627 | 1627 |
/// } |
| 1628 | 1628 |
///\endcode |
| 1629 | 1629 |
void run() {
|
| 1630 | 1630 |
init(); |
| 1631 | 1631 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1632 | 1632 |
if (!reached(it)) {
|
| 1633 | 1633 |
addSource(it); |
| 1634 | 1634 |
start(); |
| 1635 | 1635 |
} |
| 1636 | 1636 |
} |
| 1637 | 1637 |
} |
| 1638 | 1638 |
|
| 1639 | 1639 |
///@} |
| 1640 | 1640 |
|
| 1641 | 1641 |
/// \name Query Functions |
| 1642 | 1642 |
/// The result of the %DFS algorithm can be obtained using these |
| 1643 | 1643 |
/// functions.\n |
| 1644 | 1644 |
/// Either \ref lemon::DfsVisit::run() "run()" or |
| 1645 | 1645 |
/// \ref lemon::DfsVisit::start() "start()" must be called before |
| 1646 | 1646 |
/// using them. |
| 1647 | 1647 |
///@{
|
| 1648 | 1648 |
|
| 1649 | 1649 |
/// \brief Checks if a node is reachable from the root(s). |
| 1650 | 1650 |
/// |
| 1651 | 1651 |
/// Returns \c true if \c v is reachable from the root(s). |
| 1652 | 1652 |
/// \pre Either \ref run() or \ref start() |
| 1653 | 1653 |
/// must be called before using this function. |
| 1654 | 1654 |
bool reached(Node v) { return (*_reached)[v]; }
|
| 1655 | 1655 |
|
| 1656 | 1656 |
///@} |
| 1657 | 1657 |
|
| 1658 | 1658 |
}; |
| 1659 | 1659 |
|
| 1660 | 1660 |
} //END OF NAMESPACE LEMON |
| 1661 | 1661 |
|
| 1662 | 1662 |
#endif |
| ... | ... |
@@ -635,383 +635,390 @@ |
| 635 | 635 |
///it is pushed to the heap only if either it was not in the heap |
| 636 | 636 |
///or the shortest path found till then is shorter than \c dst. |
| 637 | 637 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
| 638 | 638 |
{
|
| 639 | 639 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
| 640 | 640 |
_heap->push(s,dst); |
| 641 | 641 |
} else if(OperationTraits::less((*_heap)[s], dst)) {
|
| 642 | 642 |
_heap->set(s,dst); |
| 643 | 643 |
_pred->set(s,INVALID); |
| 644 | 644 |
} |
| 645 | 645 |
} |
| 646 | 646 |
|
| 647 | 647 |
///Processes the next node in the priority heap |
| 648 | 648 |
|
| 649 | 649 |
///Processes the next node in the priority heap. |
| 650 | 650 |
/// |
| 651 | 651 |
///\return The processed node. |
| 652 | 652 |
/// |
| 653 | 653 |
///\warning The priority heap must not be empty. |
| 654 | 654 |
Node processNextNode() |
| 655 | 655 |
{
|
| 656 | 656 |
Node v=_heap->top(); |
| 657 | 657 |
Value oldvalue=_heap->prio(); |
| 658 | 658 |
_heap->pop(); |
| 659 | 659 |
finalizeNodeData(v,oldvalue); |
| 660 | 660 |
|
| 661 | 661 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) {
|
| 662 | 662 |
Node w=G->target(e); |
| 663 | 663 |
switch(_heap->state(w)) {
|
| 664 | 664 |
case Heap::PRE_HEAP: |
| 665 | 665 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
| 666 | 666 |
_pred->set(w,e); |
| 667 | 667 |
break; |
| 668 | 668 |
case Heap::IN_HEAP: |
| 669 | 669 |
{
|
| 670 | 670 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
| 671 | 671 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
|
| 672 | 672 |
_heap->decrease(w, newvalue); |
| 673 | 673 |
_pred->set(w,e); |
| 674 | 674 |
} |
| 675 | 675 |
} |
| 676 | 676 |
break; |
| 677 | 677 |
case Heap::POST_HEAP: |
| 678 | 678 |
break; |
| 679 | 679 |
} |
| 680 | 680 |
} |
| 681 | 681 |
return v; |
| 682 | 682 |
} |
| 683 | 683 |
|
| 684 | 684 |
///The next node to be processed. |
| 685 | 685 |
|
| 686 | 686 |
///Returns the next node to be processed or \c INVALID if the |
| 687 | 687 |
///priority heap is empty. |
| 688 | 688 |
Node nextNode() const |
| 689 | 689 |
{
|
| 690 | 690 |
return !_heap->empty()?_heap->top():INVALID; |
| 691 | 691 |
} |
| 692 | 692 |
|
| 693 | 693 |
///\brief Returns \c false if there are nodes |
| 694 | 694 |
///to be processed. |
| 695 | 695 |
/// |
| 696 | 696 |
///Returns \c false if there are nodes |
| 697 | 697 |
///to be processed in the priority heap. |
| 698 | 698 |
bool emptyQueue() const { return _heap->empty(); }
|
| 699 | 699 |
|
| 700 | 700 |
///Returns the number of the nodes to be processed in the priority heap |
| 701 | 701 |
|
| 702 | 702 |
///Returns the number of the nodes to be processed in the priority heap. |
| 703 | 703 |
/// |
| 704 | 704 |
int queueSize() const { return _heap->size(); }
|
| 705 | 705 |
|
| 706 | 706 |
///Executes the algorithm. |
| 707 | 707 |
|
| 708 | 708 |
///Executes the algorithm. |
| 709 | 709 |
/// |
| 710 | 710 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 711 | 711 |
///in order to compute the shortest path to each node. |
| 712 | 712 |
/// |
| 713 | 713 |
///The algorithm computes |
| 714 | 714 |
///- the shortest path tree (forest), |
| 715 | 715 |
///- the distance of each node from the root(s). |
| 716 | 716 |
/// |
| 717 | 717 |
///\pre init() must be called and at least one root node should be |
| 718 | 718 |
///added with addSource() before using this function. |
| 719 | 719 |
/// |
| 720 | 720 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 721 | 721 |
///\code |
| 722 | 722 |
/// while ( !d.emptyQueue() ) {
|
| 723 | 723 |
/// d.processNextNode(); |
| 724 | 724 |
/// } |
| 725 | 725 |
///\endcode |
| 726 | 726 |
void start() |
| 727 | 727 |
{
|
| 728 | 728 |
while ( !emptyQueue() ) processNextNode(); |
| 729 | 729 |
} |
| 730 | 730 |
|
| 731 |
///Executes the algorithm until the given target node is |
|
| 731 |
///Executes the algorithm until the given target node is processed. |
|
| 732 | 732 |
|
| 733 |
///Executes the algorithm until the given target node is |
|
| 733 |
///Executes the algorithm until the given target node is processed. |
|
| 734 | 734 |
/// |
| 735 | 735 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 736 |
///in order to compute the shortest path to \c |
|
| 736 |
///in order to compute the shortest path to \c t. |
|
| 737 | 737 |
/// |
| 738 | 738 |
///The algorithm computes |
| 739 |
///- the shortest path to \c dest, |
|
| 740 |
///- the distance of \c dest from the root(s). |
|
| 739 |
///- the shortest path to \c t, |
|
| 740 |
///- the distance of \c t from the root(s). |
|
| 741 | 741 |
/// |
| 742 | 742 |
///\pre init() must be called and at least one root node should be |
| 743 | 743 |
///added with addSource() before using this function. |
| 744 |
void start(Node |
|
| 744 |
void start(Node t) |
|
| 745 | 745 |
{
|
| 746 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
|
| 747 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
|
| 746 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
|
| 747 |
if ( !_heap->empty() ) {
|
|
| 748 |
finalizeNodeData(_heap->top(),_heap->prio()); |
|
| 749 |
_heap->pop(); |
|
| 750 |
} |
|
| 748 | 751 |
} |
| 749 | 752 |
|
| 750 | 753 |
///Executes the algorithm until a condition is met. |
| 751 | 754 |
|
| 752 | 755 |
///Executes the algorithm until a condition is met. |
| 753 | 756 |
/// |
| 754 | 757 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
| 755 | 758 |
///order to compute the shortest path to a node \c v with |
| 756 | 759 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 757 | 760 |
/// |
| 758 | 761 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 759 | 762 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 760 | 763 |
/// |
| 761 | 764 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 762 | 765 |
///\c INVALID if no such node was found. |
| 763 | 766 |
/// |
| 764 | 767 |
///\pre init() must be called and at least one root node should be |
| 765 | 768 |
///added with addSource() before using this function. |
| 766 | 769 |
template<class NodeBoolMap> |
| 767 | 770 |
Node start(const NodeBoolMap &nm) |
| 768 | 771 |
{
|
| 769 | 772 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
| 770 | 773 |
if ( _heap->empty() ) return INVALID; |
| 771 | 774 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 772 | 775 |
return _heap->top(); |
| 773 | 776 |
} |
| 774 | 777 |
|
| 775 |
///Runs the algorithm from the given node. |
|
| 778 |
///Runs the algorithm from the given source node. |
|
| 776 | 779 |
|
| 777 | 780 |
///This method runs the %Dijkstra algorithm from node \c s |
| 778 | 781 |
///in order to compute the shortest path to each node. |
| 779 | 782 |
/// |
| 780 | 783 |
///The algorithm computes |
| 781 | 784 |
///- the shortest path tree, |
| 782 | 785 |
///- the distance of each node from the root. |
| 783 | 786 |
/// |
| 784 | 787 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 785 | 788 |
///\code |
| 786 | 789 |
/// d.init(); |
| 787 | 790 |
/// d.addSource(s); |
| 788 | 791 |
/// d.start(); |
| 789 | 792 |
///\endcode |
| 790 | 793 |
void run(Node s) {
|
| 791 | 794 |
init(); |
| 792 | 795 |
addSource(s); |
| 793 | 796 |
start(); |
| 794 | 797 |
} |
| 795 | 798 |
|
| 796 | 799 |
///Finds the shortest path between \c s and \c t. |
| 797 | 800 |
|
| 798 | 801 |
///This method runs the %Dijkstra algorithm from node \c s |
| 799 |
///in order to compute the shortest path to \c t |
|
| 802 |
///in order to compute the shortest path to node \c t |
|
| 803 |
///(it stops searching when \c t is processed). |
|
| 800 | 804 |
/// |
| 801 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
|
| 802 |
///if \c t is reachable form \c s, \c 0 otherwise. |
|
| 805 |
///\return \c true if \c t is reachable form \c s. |
|
| 803 | 806 |
/// |
| 804 | 807 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 805 | 808 |
///shortcut of the following code. |
| 806 | 809 |
///\code |
| 807 | 810 |
/// d.init(); |
| 808 | 811 |
/// d.addSource(s); |
| 809 | 812 |
/// d.start(t); |
| 810 | 813 |
///\endcode |
| 811 |
|
|
| 814 |
bool run(Node s,Node t) {
|
|
| 812 | 815 |
init(); |
| 813 | 816 |
addSource(s); |
| 814 | 817 |
start(t); |
| 815 |
return (* |
|
| 818 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
|
| 816 | 819 |
} |
| 817 | 820 |
|
| 818 | 821 |
///@} |
| 819 | 822 |
|
| 820 | 823 |
///\name Query Functions |
| 821 | 824 |
///The result of the %Dijkstra algorithm can be obtained using these |
| 822 | 825 |
///functions.\n |
| 823 | 826 |
///Either \ref lemon::Dijkstra::run() "run()" or |
| 824 | 827 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
| 825 | 828 |
///using them. |
| 826 | 829 |
|
| 827 | 830 |
///@{
|
| 828 | 831 |
|
| 829 | 832 |
///The shortest path to a node. |
| 830 | 833 |
|
| 831 | 834 |
///Returns the shortest path to a node. |
| 832 | 835 |
/// |
| 833 | 836 |
///\warning \c t should be reachable from the root(s). |
| 834 | 837 |
/// |
| 835 | 838 |
///\pre Either \ref run() or \ref start() must be called before |
| 836 | 839 |
///using this function. |
| 837 | 840 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 838 | 841 |
|
| 839 | 842 |
///The distance of a node from the root(s). |
| 840 | 843 |
|
| 841 | 844 |
///Returns the distance of a node from the root(s). |
| 842 | 845 |
/// |
| 843 | 846 |
///\warning If node \c v is not reachable from the root(s), then |
| 844 | 847 |
///the return value of this function is undefined. |
| 845 | 848 |
/// |
| 846 | 849 |
///\pre Either \ref run() or \ref start() must be called before |
| 847 | 850 |
///using this function. |
| 848 | 851 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 849 | 852 |
|
| 850 | 853 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 851 | 854 |
|
| 852 | 855 |
///This function returns the 'previous arc' of the shortest path |
| 853 | 856 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 854 | 857 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
| 855 | 858 |
///is not reachable from the root(s) or if \c v is a root. |
| 856 | 859 |
/// |
| 857 | 860 |
///The shortest path tree used here is equal to the shortest path |
| 858 | 861 |
///tree used in \ref predNode(). |
| 859 | 862 |
/// |
| 860 | 863 |
///\pre Either \ref run() or \ref start() must be called before |
| 861 | 864 |
///using this function. |
| 862 | 865 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 863 | 866 |
|
| 864 | 867 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 865 | 868 |
|
| 866 | 869 |
///This function returns the 'previous node' of the shortest path |
| 867 | 870 |
///tree for the node \c v, i.e. it returns the last but one node |
| 868 | 871 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
| 869 | 872 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 870 | 873 |
/// |
| 871 | 874 |
///The shortest path tree used here is equal to the shortest path |
| 872 | 875 |
///tree used in \ref predArc(). |
| 873 | 876 |
/// |
| 874 | 877 |
///\pre Either \ref run() or \ref start() must be called before |
| 875 | 878 |
///using this function. |
| 876 | 879 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 877 | 880 |
G->source((*_pred)[v]); } |
| 878 | 881 |
|
| 879 | 882 |
///\brief Returns a const reference to the node map that stores the |
| 880 | 883 |
///distances of the nodes. |
| 881 | 884 |
/// |
| 882 | 885 |
///Returns a const reference to the node map that stores the distances |
| 883 | 886 |
///of the nodes calculated by the algorithm. |
| 884 | 887 |
/// |
| 885 | 888 |
///\pre Either \ref run() or \ref init() |
| 886 | 889 |
///must be called before using this function. |
| 887 | 890 |
const DistMap &distMap() const { return *_dist;}
|
| 888 | 891 |
|
| 889 | 892 |
///\brief Returns a const reference to the node map that stores the |
| 890 | 893 |
///predecessor arcs. |
| 891 | 894 |
/// |
| 892 | 895 |
///Returns a const reference to the node map that stores the predecessor |
| 893 | 896 |
///arcs, which form the shortest path tree. |
| 894 | 897 |
/// |
| 895 | 898 |
///\pre Either \ref run() or \ref init() |
| 896 | 899 |
///must be called before using this function. |
| 897 | 900 |
const PredMap &predMap() const { return *_pred;}
|
| 898 | 901 |
|
| 899 | 902 |
///Checks if a node is reachable from the root(s). |
| 900 | 903 |
|
| 901 | 904 |
///Returns \c true if \c v is reachable from the root(s). |
| 902 | 905 |
///\pre Either \ref run() or \ref start() |
| 903 | 906 |
///must be called before using this function. |
| 904 | 907 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 905 | 908 |
Heap::PRE_HEAP; } |
| 906 | 909 |
|
| 907 | 910 |
///Checks if a node is processed. |
| 908 | 911 |
|
| 909 | 912 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 910 | 913 |
///path to \c v has already found. |
| 911 |
///\pre Either \ref run() or \ref |
|
| 914 |
///\pre Either \ref run() or \ref init() |
|
| 912 | 915 |
///must be called before using this function. |
| 913 | 916 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 914 | 917 |
Heap::POST_HEAP; } |
| 915 | 918 |
|
| 916 | 919 |
///The current distance of a node from the root(s). |
| 917 | 920 |
|
| 918 | 921 |
///Returns the current distance of a node from the root(s). |
| 919 | 922 |
///It may be decreased in the following processes. |
| 920 |
///\pre \c v should be reached but not processed. |
|
| 921 |
Value currentDist(Node v) const { return (*_heap)[v]; }
|
|
| 923 |
///\pre Either \ref run() or \ref init() |
|
| 924 |
///must be called before using this function and |
|
| 925 |
///node \c v must be reached but not necessarily processed. |
|
| 926 |
Value currentDist(Node v) const {
|
|
| 927 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
|
| 928 |
} |
|
| 922 | 929 |
|
| 923 | 930 |
///@} |
| 924 | 931 |
}; |
| 925 | 932 |
|
| 926 | 933 |
|
| 927 | 934 |
///Default traits class of dijkstra() function. |
| 928 | 935 |
|
| 929 | 936 |
///Default traits class of dijkstra() function. |
| 930 | 937 |
///\tparam GR The type of the digraph. |
| 931 | 938 |
///\tparam LM The type of the length map. |
| 932 | 939 |
template<class GR, class LM> |
| 933 | 940 |
struct DijkstraWizardDefaultTraits |
| 934 | 941 |
{
|
| 935 | 942 |
///The type of the digraph the algorithm runs on. |
| 936 | 943 |
typedef GR Digraph; |
| 937 | 944 |
///The type of the map that stores the arc lengths. |
| 938 | 945 |
|
| 939 | 946 |
///The type of the map that stores the arc lengths. |
| 940 | 947 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 941 | 948 |
typedef LM LengthMap; |
| 942 | 949 |
///The type of the length of the arcs. |
| 943 | 950 |
typedef typename LM::Value Value; |
| 944 | 951 |
|
| 945 | 952 |
/// Operation traits for Dijkstra algorithm. |
| 946 | 953 |
|
| 947 | 954 |
/// This class defines the operations that are used in the algorithm. |
| 948 | 955 |
/// \see DijkstraDefaultOperationTraits |
| 949 | 956 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 950 | 957 |
|
| 951 | 958 |
/// The cross reference type used by the heap. |
| 952 | 959 |
|
| 953 | 960 |
/// The cross reference type used by the heap. |
| 954 | 961 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 955 | 962 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 956 | 963 |
///Instantiates a \ref HeapCrossRef. |
| 957 | 964 |
|
| 958 | 965 |
///This function instantiates a \ref HeapCrossRef. |
| 959 | 966 |
/// \param g is the digraph, to which we would like to define the |
| 960 | 967 |
/// HeapCrossRef. |
| 961 | 968 |
/// \todo The digraph alone may be insufficient for the initialization |
| 962 | 969 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 963 | 970 |
{
|
| 964 | 971 |
return new HeapCrossRef(g); |
| 965 | 972 |
} |
| 966 | 973 |
|
| 967 | 974 |
///The heap type used by the Dijkstra algorithm. |
| 968 | 975 |
|
| 969 | 976 |
///The heap type used by the Dijkstra algorithm. |
| 970 | 977 |
/// |
| 971 | 978 |
///\sa BinHeap |
| 972 | 979 |
///\sa Dijkstra |
| 973 | 980 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 974 | 981 |
std::less<Value> > Heap; |
| 975 | 982 |
|
| 976 | 983 |
///Instantiates a \ref Heap. |
| 977 | 984 |
|
| 978 | 985 |
///This function instantiates a \ref Heap. |
| 979 | 986 |
/// \param r is the HeapCrossRef which is used. |
| 980 | 987 |
static Heap *createHeap(HeapCrossRef& r) |
| 981 | 988 |
{
|
| 982 | 989 |
return new Heap(r); |
| 983 | 990 |
} |
| 984 | 991 |
|
| 985 | 992 |
///\brief The type of the map that stores the predecessor |
| 986 | 993 |
///arcs of the shortest paths. |
| 987 | 994 |
/// |
| 988 | 995 |
///The type of the map that stores the predecessor |
| 989 | 996 |
///arcs of the shortest paths. |
| 990 | 997 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 991 | 998 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 992 | 999 |
///Instantiates a \ref PredMap. |
| 993 | 1000 |
|
| 994 | 1001 |
///This function instantiates a \ref PredMap. |
| 995 | 1002 |
///\param g is the digraph, to which we would like to define the |
| 996 | 1003 |
///\ref PredMap. |
| 997 | 1004 |
///\todo The digraph alone may be insufficient to initialize |
| 998 | 1005 |
static PredMap *createPredMap(const Digraph &g) |
| 999 | 1006 |
{
|
| 1000 | 1007 |
return new PredMap(g); |
| 1001 | 1008 |
} |
| 1002 | 1009 |
|
| 1003 | 1010 |
///The type of the map that indicates which nodes are processed. |
| 1004 | 1011 |
|
| 1005 | 1012 |
///The type of the map that indicates which nodes are processed. |
| 1006 | 1013 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1007 | 1014 |
///By default it is a NullMap. |
| 1008 | 1015 |
///\todo If it is set to a real map, |
| 1009 | 1016 |
///Dijkstra::processed() should read this. |
| 1010 | 1017 |
///\todo named parameter to set this type, function to read and write. |
| 1011 | 1018 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 1012 | 1019 |
///Instantiates a \ref ProcessedMap. |
| 1013 | 1020 |
|
| 1014 | 1021 |
///This function instantiates a \ref ProcessedMap. |
| 1015 | 1022 |
///\param g is the digraph, to which |
| 1016 | 1023 |
///we would like to define the \ref ProcessedMap. |
| 1017 | 1024 |
#ifdef DOXYGEN |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/smart_graph.h> |
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/bfs.h> |
| 24 | 24 |
#include <lemon/path.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "graph_test.h" |
| 27 | 27 |
#include "test_tools.h" |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"5\n" |
| 40 | 40 |
"@arcs\n" |
| 41 | 41 |
" label\n" |
| 42 | 42 |
"0 1 0\n" |
| 43 | 43 |
"1 2 1\n" |
| 44 | 44 |
"2 3 2\n" |
| 45 | 45 |
"3 4 3\n" |
| 46 | 46 |
"0 3 4\n" |
| 47 | 47 |
"0 3 5\n" |
| 48 | 48 |
"5 2 6\n" |
| 49 | 49 |
"@attributes\n" |
| 50 | 50 |
"source 0\n" |
| 51 | 51 |
"target 4\n"; |
| 52 | 52 |
|
| 53 | 53 |
void checkBfsCompile() |
| 54 | 54 |
{
|
| 55 | 55 |
typedef concepts::Digraph Digraph; |
| 56 | 56 |
typedef Bfs<Digraph> BType; |
| 57 |
typedef Digraph::Node Node; |
|
| 58 |
typedef Digraph::Arc Arc; |
|
| 57 | 59 |
|
| 58 | 60 |
Digraph G; |
| 59 |
Digraph::Node n; |
|
| 60 |
Digraph::Arc e; |
|
| 61 |
Node s, t; |
|
| 62 |
Arc e; |
|
| 61 | 63 |
int l; |
| 62 | 64 |
bool b; |
| 63 | 65 |
BType::DistMap d(G); |
| 64 | 66 |
BType::PredMap p(G); |
| 67 |
Path<Digraph> pp; |
|
| 65 | 68 |
|
| 69 |
{
|
|
| 66 | 70 |
BType bfs_test(G); |
| 67 | 71 |
|
| 68 |
bfs_test.run( |
|
| 72 |
bfs_test.run(s); |
|
| 73 |
bfs_test.run(s,t); |
|
| 74 |
bfs_test.run(); |
|
| 69 | 75 |
|
| 70 |
l = bfs_test.dist(n); |
|
| 71 |
e = bfs_test.predArc(n); |
|
| 72 |
|
|
| 76 |
l = bfs_test.dist(t); |
|
| 77 |
e = bfs_test.predArc(t); |
|
| 78 |
s = bfs_test.predNode(t); |
|
| 79 |
b = bfs_test.reached(t); |
|
| 73 | 80 |
d = bfs_test.distMap(); |
| 74 | 81 |
p = bfs_test.predMap(); |
| 75 |
|
|
| 82 |
pp = bfs_test.path(t); |
|
| 83 |
} |
|
| 84 |
{
|
|
| 85 |
BType |
|
| 86 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 87 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
|
| 88 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
|
| 89 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
| 90 |
::SetStandardProcessedMap |
|
| 91 |
::Create bfs_test(G); |
|
| 76 | 92 |
|
| 77 |
|
|
| 93 |
bfs_test.run(s); |
|
| 94 |
bfs_test.run(s,t); |
|
| 95 |
bfs_test.run(); |
|
| 96 |
|
|
| 97 |
l = bfs_test.dist(t); |
|
| 98 |
e = bfs_test.predArc(t); |
|
| 99 |
s = bfs_test.predNode(t); |
|
| 100 |
b = bfs_test.reached(t); |
|
| 101 |
pp = bfs_test.path(t); |
|
| 102 |
} |
|
| 78 | 103 |
} |
| 79 | 104 |
|
| 80 | 105 |
void checkBfsFunctionCompile() |
| 81 | 106 |
{
|
| 82 | 107 |
typedef int VType; |
| 83 | 108 |
typedef concepts::Digraph Digraph; |
| 84 | 109 |
typedef Digraph::Arc Arc; |
| 85 | 110 |
typedef Digraph::Node Node; |
| 86 | 111 |
|
| 87 | 112 |
Digraph g; |
| 88 | 113 |
bool b; |
| 89 | 114 |
bfs(g).run(Node()); |
| 90 | 115 |
b=bfs(g).run(Node(),Node()); |
| 91 | 116 |
bfs(g).run(); |
| 92 | 117 |
bfs(g) |
| 93 | 118 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 94 | 119 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 95 | 120 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 96 | 121 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 97 | 122 |
.run(Node()); |
| 98 | 123 |
b=bfs(g) |
| 99 | 124 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 100 | 125 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 101 | 126 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 102 | 127 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 103 | 128 |
.path(concepts::Path<Digraph>()) |
| 104 | 129 |
.dist(VType()) |
| 105 | 130 |
.run(Node(),Node()); |
| 106 | 131 |
bfs(g) |
| 107 | 132 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 108 | 133 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 109 | 134 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 110 | 135 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 111 | 136 |
.run(); |
| 112 | 137 |
} |
| 113 | 138 |
|
| 114 | 139 |
template <class Digraph> |
| 115 | 140 |
void checkBfs() {
|
| 116 | 141 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 117 | 142 |
|
| 118 | 143 |
Digraph G; |
| 119 | 144 |
Node s, t; |
| 120 | 145 |
|
| 121 | 146 |
std::istringstream input(test_lgf); |
| 122 | 147 |
digraphReader(input, G). |
| 123 | 148 |
node("source", s).
|
| 124 | 149 |
node("target", t).
|
| 125 | 150 |
run(); |
| 126 | 151 |
|
| 127 | 152 |
Bfs<Digraph> bfs_test(G); |
| 128 | 153 |
bfs_test.run(s); |
| 129 | 154 |
|
| 130 | 155 |
check(bfs_test.dist(t)==2,"Bfs found a wrong path."); |
| 131 | 156 |
|
| 132 | 157 |
Path<Digraph> p = bfs_test.path(t); |
| 133 | 158 |
check(p.length()==2,"path() found a wrong path."); |
| 134 | 159 |
check(checkPath(G, p),"path() found a wrong path."); |
| 135 | 160 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
| 136 | 161 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
| 137 | 162 |
|
| 138 | 163 |
|
| 139 | 164 |
for(ArcIt a(G); a!=INVALID; ++a) {
|
| 140 | 165 |
Node u=G.source(a); |
| 141 | 166 |
Node v=G.target(a); |
| 142 | 167 |
check( !bfs_test.reached(u) || |
| 143 | 168 |
(bfs_test.dist(v) <= bfs_test.dist(u)+1), |
| 144 | 169 |
"Wrong output. " << G.id(u) << "->" << G.id(v)); |
| 145 | 170 |
} |
| 146 | 171 |
|
| 147 | 172 |
for(NodeIt v(G); v!=INVALID; ++v) {
|
| 148 | 173 |
if (bfs_test.reached(v)) {
|
| 149 | 174 |
check(v==s || bfs_test.predArc(v)!=INVALID, "Wrong tree."); |
| 150 | 175 |
if (bfs_test.predArc(v)!=INVALID ) {
|
| 151 | 176 |
Arc a=bfs_test.predArc(v); |
| 152 | 177 |
Node u=G.source(a); |
| 153 | 178 |
check(u==bfs_test.predNode(v),"Wrong tree."); |
| 154 | 179 |
check(bfs_test.dist(v) - bfs_test.dist(u) == 1, |
| 155 | 180 |
"Wrong distance. Difference: " |
| 156 | 181 |
<< std::abs(bfs_test.dist(v) - bfs_test.dist(u) - 1)); |
| 157 | 182 |
} |
| 158 | 183 |
} |
| 159 | 184 |
} |
| 160 | 185 |
|
| 161 | 186 |
{
|
| 162 | 187 |
NullMap<Node,Arc> myPredMap; |
| 163 | 188 |
bfs(G).predMap(myPredMap).run(s); |
| 164 | 189 |
} |
| 165 | 190 |
} |
| 166 | 191 |
|
| 167 | 192 |
int main() |
| 168 | 193 |
{
|
| 169 | 194 |
checkBfs<ListDigraph>(); |
| 170 | 195 |
checkBfs<SmartDigraph>(); |
| 171 | 196 |
return 0; |
| 172 | 197 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/smart_graph.h> |
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/dfs.h> |
| 24 | 24 |
#include <lemon/path.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "graph_test.h" |
| 27 | 27 |
#include "test_tools.h" |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"5\n" |
| 40 | 40 |
"6\n" |
| 41 | 41 |
"@arcs\n" |
| 42 | 42 |
" label\n" |
| 43 | 43 |
"0 1 0\n" |
| 44 | 44 |
"1 2 1\n" |
| 45 | 45 |
"2 3 2\n" |
| 46 | 46 |
"1 4 3\n" |
| 47 | 47 |
"4 2 4\n" |
| 48 | 48 |
"4 5 5\n" |
| 49 | 49 |
"5 0 6\n" |
| 50 | 50 |
"6 3 7\n" |
| 51 | 51 |
"@attributes\n" |
| 52 | 52 |
"source 0\n" |
| 53 | 53 |
"target 5\n"; |
| 54 | 54 |
|
| 55 | 55 |
void checkDfsCompile() |
| 56 | 56 |
{
|
| 57 | 57 |
typedef concepts::Digraph Digraph; |
| 58 | 58 |
typedef Dfs<Digraph> DType; |
| 59 |
typedef Digraph::Node Node; |
|
| 60 |
typedef Digraph::Arc Arc; |
|
| 59 | 61 |
|
| 60 | 62 |
Digraph G; |
| 61 |
Digraph::Node n; |
|
| 62 |
Digraph::Arc e; |
|
| 63 |
Node s, t; |
|
| 64 |
Arc e; |
|
| 63 | 65 |
int l; |
| 64 | 66 |
bool b; |
| 65 | 67 |
DType::DistMap d(G); |
| 66 | 68 |
DType::PredMap p(G); |
| 69 |
Path<Digraph> pp; |
|
| 67 | 70 |
|
| 71 |
{
|
|
| 68 | 72 |
DType dfs_test(G); |
| 69 | 73 |
|
| 70 |
dfs_test.run( |
|
| 74 |
dfs_test.run(s); |
|
| 75 |
dfs_test.run(s,t); |
|
| 76 |
dfs_test.run(); |
|
| 71 | 77 |
|
| 72 |
l = dfs_test.dist(n); |
|
| 73 |
e = dfs_test.predArc(n); |
|
| 74 |
|
|
| 78 |
l = dfs_test.dist(t); |
|
| 79 |
e = dfs_test.predArc(t); |
|
| 80 |
s = dfs_test.predNode(t); |
|
| 81 |
b = dfs_test.reached(t); |
|
| 75 | 82 |
d = dfs_test.distMap(); |
| 76 | 83 |
p = dfs_test.predMap(); |
| 77 |
|
|
| 84 |
pp = dfs_test.path(t); |
|
| 85 |
} |
|
| 86 |
{
|
|
| 87 |
DType |
|
| 88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 89 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
|
| 90 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
|
| 91 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
| 92 |
::SetStandardProcessedMap |
|
| 93 |
::Create dfs_test(G); |
|
| 78 | 94 |
|
| 79 |
|
|
| 95 |
dfs_test.run(s); |
|
| 96 |
dfs_test.run(s,t); |
|
| 97 |
dfs_test.run(); |
|
| 98 |
|
|
| 99 |
l = dfs_test.dist(t); |
|
| 100 |
e = dfs_test.predArc(t); |
|
| 101 |
s = dfs_test.predNode(t); |
|
| 102 |
b = dfs_test.reached(t); |
|
| 103 |
pp = dfs_test.path(t); |
|
| 104 |
} |
|
| 80 | 105 |
} |
| 81 | 106 |
|
| 82 | 107 |
void checkDfsFunctionCompile() |
| 83 | 108 |
{
|
| 84 | 109 |
typedef int VType; |
| 85 | 110 |
typedef concepts::Digraph Digraph; |
| 86 | 111 |
typedef Digraph::Arc Arc; |
| 87 | 112 |
typedef Digraph::Node Node; |
| 88 | 113 |
|
| 89 | 114 |
Digraph g; |
| 90 | 115 |
bool b; |
| 91 | 116 |
dfs(g).run(Node()); |
| 92 | 117 |
b=dfs(g).run(Node(),Node()); |
| 93 | 118 |
dfs(g).run(); |
| 94 | 119 |
dfs(g) |
| 95 | 120 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 96 | 121 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 97 | 122 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 98 | 123 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 99 | 124 |
.run(Node()); |
| 100 | 125 |
b=dfs(g) |
| 101 | 126 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 102 | 127 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 103 | 128 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 104 | 129 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 105 | 130 |
.path(concepts::Path<Digraph>()) |
| 106 | 131 |
.dist(VType()) |
| 107 | 132 |
.run(Node(),Node()); |
| 108 | 133 |
dfs(g) |
| 109 | 134 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 110 | 135 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 111 | 136 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
| 112 | 137 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 113 | 138 |
.run(); |
| 114 | 139 |
} |
| 115 | 140 |
|
| 116 | 141 |
template <class Digraph> |
| 117 | 142 |
void checkDfs() {
|
| 118 | 143 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 119 | 144 |
|
| 120 | 145 |
Digraph G; |
| 121 | 146 |
Node s, t; |
| 122 | 147 |
|
| 123 | 148 |
std::istringstream input(test_lgf); |
| 124 | 149 |
digraphReader(input, G). |
| 125 | 150 |
node("source", s).
|
| 126 | 151 |
node("target", t).
|
| 127 | 152 |
run(); |
| 128 | 153 |
|
| 129 | 154 |
Dfs<Digraph> dfs_test(G); |
| 130 | 155 |
dfs_test.run(s); |
| 131 | 156 |
|
| 132 | 157 |
Path<Digraph> p = dfs_test.path(t); |
| 133 | 158 |
check(p.length() == dfs_test.dist(t),"path() found a wrong path."); |
| 134 | 159 |
check(checkPath(G, p),"path() found a wrong path."); |
| 135 | 160 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
| 136 | 161 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
| 137 | 162 |
|
| 138 | 163 |
for(NodeIt v(G); v!=INVALID; ++v) {
|
| 139 | 164 |
if (dfs_test.reached(v)) {
|
| 140 | 165 |
check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree."); |
| 141 | 166 |
if (dfs_test.predArc(v)!=INVALID ) {
|
| 142 | 167 |
Arc e=dfs_test.predArc(v); |
| 143 | 168 |
Node u=G.source(e); |
| 144 | 169 |
check(u==dfs_test.predNode(v),"Wrong tree."); |
| 145 | 170 |
check(dfs_test.dist(v) - dfs_test.dist(u) == 1, |
| 146 | 171 |
"Wrong distance. (" << dfs_test.dist(u) << "->"
|
| 147 | 172 |
<< dfs_test.dist(v) << ")"); |
| 148 | 173 |
} |
| 149 | 174 |
} |
| 150 | 175 |
} |
| 151 | 176 |
|
| 152 | 177 |
{
|
| 153 | 178 |
NullMap<Node,Arc> myPredMap; |
| 154 | 179 |
dfs(G).predMap(myPredMap).run(s); |
| 155 | 180 |
} |
| 156 | 181 |
} |
| 157 | 182 |
|
| 158 | 183 |
int main() |
| 159 | 184 |
{
|
| 160 | 185 |
checkDfs<ListDigraph>(); |
| 161 | 186 |
checkDfs<SmartDigraph>(); |
| 162 | 187 |
return 0; |
| 163 | 188 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/smart_graph.h> |
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/dijkstra.h> |
| 24 | 24 |
#include <lemon/path.h> |
| 25 |
#include <lemon/bin_heap.h> |
|
| 25 | 26 |
|
| 26 | 27 |
#include "graph_test.h" |
| 27 | 28 |
#include "test_tools.h" |
| 28 | 29 |
|
| 29 | 30 |
using namespace lemon; |
| 30 | 31 |
|
| 31 | 32 |
char test_lgf[] = |
| 32 | 33 |
"@nodes\n" |
| 33 | 34 |
"label\n" |
| 34 | 35 |
"0\n" |
| 35 | 36 |
"1\n" |
| 36 | 37 |
"2\n" |
| 37 | 38 |
"3\n" |
| 38 | 39 |
"4\n" |
| 39 | 40 |
"@arcs\n" |
| 40 | 41 |
" label length\n" |
| 41 | 42 |
"0 1 0 1\n" |
| 42 | 43 |
"1 2 1 1\n" |
| 43 | 44 |
"2 3 2 1\n" |
| 44 | 45 |
"0 3 4 5\n" |
| 45 | 46 |
"0 3 5 10\n" |
| 46 | 47 |
"0 3 6 7\n" |
| 47 | 48 |
"4 2 7 1\n" |
| 48 | 49 |
"@attributes\n" |
| 49 | 50 |
"source 0\n" |
| 50 | 51 |
"target 3\n"; |
| 51 | 52 |
|
| 52 | 53 |
void checkDijkstraCompile() |
| 53 | 54 |
{
|
| 54 | 55 |
typedef int VType; |
| 55 | 56 |
typedef concepts::Digraph Digraph; |
| 56 | 57 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
| 57 | 58 |
typedef Dijkstra<Digraph, LengthMap> DType; |
| 59 |
typedef Digraph::Node Node; |
|
| 60 |
typedef Digraph::Arc Arc; |
|
| 58 | 61 |
|
| 59 | 62 |
Digraph G; |
| 60 |
Digraph::Node n; |
|
| 61 |
Digraph::Arc e; |
|
| 63 |
Node s, t; |
|
| 64 |
Arc e; |
|
| 62 | 65 |
VType l; |
| 63 | 66 |
bool b; |
| 64 | 67 |
DType::DistMap d(G); |
| 65 | 68 |
DType::PredMap p(G); |
| 66 | 69 |
LengthMap length; |
| 70 |
Path<Digraph> pp; |
|
| 67 | 71 |
|
| 72 |
{
|
|
| 68 | 73 |
DType dijkstra_test(G,length); |
| 69 | 74 |
|
| 70 |
dijkstra_test.run( |
|
| 75 |
dijkstra_test.run(s); |
|
| 76 |
dijkstra_test.run(s,t); |
|
| 71 | 77 |
|
| 72 |
l = dijkstra_test.dist(n); |
|
| 73 |
e = dijkstra_test.predArc(n); |
|
| 74 |
|
|
| 78 |
l = dijkstra_test.dist(t); |
|
| 79 |
e = dijkstra_test.predArc(t); |
|
| 80 |
s = dijkstra_test.predNode(t); |
|
| 81 |
b = dijkstra_test.reached(t); |
|
| 75 | 82 |
d = dijkstra_test.distMap(); |
| 76 | 83 |
p = dijkstra_test.predMap(); |
| 77 |
|
|
| 84 |
pp = dijkstra_test.path(t); |
|
| 85 |
} |
|
| 86 |
{
|
|
| 87 |
DType |
|
| 88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 89 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
|
| 90 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
|
| 91 |
::SetStandardProcessedMap |
|
| 92 |
::SetOperationTraits<DijkstraWidestPathOperationTraits<VType> > |
|
| 93 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
|
| 94 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
|
| 95 |
::Create dijkstra_test(G,length); |
|
| 78 | 96 |
|
| 79 |
|
|
| 97 |
dijkstra_test.run(s); |
|
| 98 |
dijkstra_test.run(s,t); |
|
| 99 |
|
|
| 100 |
l = dijkstra_test.dist(t); |
|
| 101 |
e = dijkstra_test.predArc(t); |
|
| 102 |
s = dijkstra_test.predNode(t); |
|
| 103 |
b = dijkstra_test.reached(t); |
|
| 104 |
pp = dijkstra_test.path(t); |
|
| 105 |
} |
|
| 106 |
|
|
| 80 | 107 |
} |
| 81 | 108 |
|
| 82 | 109 |
void checkDijkstraFunctionCompile() |
| 83 | 110 |
{
|
| 84 | 111 |
typedef int VType; |
| 85 | 112 |
typedef concepts::Digraph Digraph; |
| 86 | 113 |
typedef Digraph::Arc Arc; |
| 87 | 114 |
typedef Digraph::Node Node; |
| 88 | 115 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
| 89 | 116 |
|
| 90 | 117 |
Digraph g; |
| 91 | 118 |
bool b; |
| 92 | 119 |
dijkstra(g,LengthMap()).run(Node()); |
| 93 | 120 |
b=dijkstra(g,LengthMap()).run(Node(),Node()); |
| 94 | 121 |
dijkstra(g,LengthMap()) |
| 95 | 122 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 96 | 123 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 97 | 124 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 98 | 125 |
.run(Node()); |
| 99 | 126 |
b=dijkstra(g,LengthMap()) |
| 100 | 127 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 101 | 128 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
| 102 | 129 |
.processedMap(concepts::WriteMap<Node,bool>()) |
| 103 | 130 |
.path(concepts::Path<Digraph>()) |
| 104 | 131 |
.dist(VType()) |
| 105 | 132 |
.run(Node(),Node()); |
| 106 | 133 |
} |
| 107 | 134 |
|
| 108 | 135 |
template <class Digraph> |
| 109 | 136 |
void checkDijkstra() {
|
| 110 | 137 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 111 | 138 |
typedef typename Digraph::template ArcMap<int> LengthMap; |
| 112 | 139 |
|
| 113 | 140 |
Digraph G; |
| 114 | 141 |
Node s, t; |
| 115 | 142 |
LengthMap length(G); |
| 116 | 143 |
|
| 117 | 144 |
std::istringstream input(test_lgf); |
| 118 | 145 |
digraphReader(input, G). |
| 119 | 146 |
arcMap("length", length).
|
| 120 | 147 |
node("source", s).
|
| 121 | 148 |
node("target", t).
|
| 122 | 149 |
run(); |
| 123 | 150 |
|
| 124 | 151 |
Dijkstra<Digraph, LengthMap> |
| 125 | 152 |
dijkstra_test(G, length); |
| 126 | 153 |
dijkstra_test.run(s); |
| 127 | 154 |
|
| 128 | 155 |
check(dijkstra_test.dist(t)==3,"Dijkstra found a wrong path."); |
| 129 | 156 |
|
| 130 | 157 |
Path<Digraph> p = dijkstra_test.path(t); |
| 131 | 158 |
check(p.length()==3,"path() found a wrong path."); |
| 132 | 159 |
check(checkPath(G, p),"path() found a wrong path."); |
| 133 | 160 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
| 134 | 161 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
| 135 | 162 |
|
| 136 | 163 |
for(ArcIt e(G); e!=INVALID; ++e) {
|
| 137 | 164 |
Node u=G.source(e); |
| 138 | 165 |
Node v=G.target(e); |
| 139 | 166 |
check( !dijkstra_test.reached(u) || |
| 140 | 167 |
(dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]), |
| 141 | 168 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
| 142 | 169 |
dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]); |
| 143 | 170 |
} |
| 144 | 171 |
|
| 145 | 172 |
for(NodeIt v(G); v!=INVALID; ++v) {
|
| 146 | 173 |
if (dijkstra_test.reached(v)) {
|
| 147 | 174 |
check(v==s || dijkstra_test.predArc(v)!=INVALID, "Wrong tree."); |
| 148 | 175 |
if (dijkstra_test.predArc(v)!=INVALID ) {
|
| 149 | 176 |
Arc e=dijkstra_test.predArc(v); |
| 150 | 177 |
Node u=G.source(e); |
| 151 | 178 |
check(u==dijkstra_test.predNode(v),"Wrong tree."); |
| 152 | 179 |
check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e], |
| 153 | 180 |
"Wrong distance! Difference: " << |
| 154 | 181 |
std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e])); |
| 155 | 182 |
} |
| 156 | 183 |
} |
| 157 | 184 |
} |
| 158 | 185 |
|
| 159 | 186 |
{
|
| 160 | 187 |
NullMap<Node,Arc> myPredMap; |
| 161 | 188 |
dijkstra(G,length).predMap(myPredMap).run(s); |
| 162 | 189 |
} |
| 163 | 190 |
} |
| 164 | 191 |
|
| 165 | 192 |
int main() {
|
| 166 | 193 |
checkDijkstra<ListDigraph>(); |
| 167 | 194 |
checkDijkstra<SmartDigraph>(); |
| 168 | 195 |
return 0; |
| 169 | 196 |
} |
0 comments (0 inline)