| ... | ... |
@@ -599,755 +599,960 @@ |
| 599 | 599 |
_node_num = countNodes(_graph); |
| 600 | 600 |
_arc_num = countArcs(_graph); |
| 601 | 601 |
_res_node_num = _node_num + 1; |
| 602 | 602 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 603 | 603 |
_root = _node_num; |
| 604 | 604 |
|
| 605 | 605 |
_first_out.resize(_res_node_num + 1); |
| 606 | 606 |
_forward.resize(_res_arc_num); |
| 607 | 607 |
_source.resize(_res_arc_num); |
| 608 | 608 |
_target.resize(_res_arc_num); |
| 609 | 609 |
_reverse.resize(_res_arc_num); |
| 610 | 610 |
|
| 611 | 611 |
_lower.resize(_res_arc_num); |
| 612 | 612 |
_upper.resize(_res_arc_num); |
| 613 | 613 |
_scost.resize(_res_arc_num); |
| 614 | 614 |
_supply.resize(_res_node_num); |
| 615 | 615 |
|
| 616 | 616 |
_res_cap.resize(_res_arc_num); |
| 617 | 617 |
_cost.resize(_res_arc_num); |
| 618 | 618 |
_pi.resize(_res_node_num); |
| 619 | 619 |
_excess.resize(_res_node_num); |
| 620 | 620 |
_next_out.resize(_res_node_num); |
| 621 | 621 |
|
| 622 | 622 |
_arc_vec.reserve(_res_arc_num); |
| 623 | 623 |
_cost_vec.reserve(_res_arc_num); |
| 624 | 624 |
|
| 625 | 625 |
// Copy the graph |
| 626 | 626 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
| 627 | 627 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 628 | 628 |
_node_id[n] = i; |
| 629 | 629 |
} |
| 630 | 630 |
i = 0; |
| 631 | 631 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 632 | 632 |
_first_out[i] = j; |
| 633 | 633 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 634 | 634 |
_arc_idf[a] = j; |
| 635 | 635 |
_forward[j] = true; |
| 636 | 636 |
_source[j] = i; |
| 637 | 637 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 638 | 638 |
} |
| 639 | 639 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 640 | 640 |
_arc_idb[a] = j; |
| 641 | 641 |
_forward[j] = false; |
| 642 | 642 |
_source[j] = i; |
| 643 | 643 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 644 | 644 |
} |
| 645 | 645 |
_forward[j] = false; |
| 646 | 646 |
_source[j] = i; |
| 647 | 647 |
_target[j] = _root; |
| 648 | 648 |
_reverse[j] = k; |
| 649 | 649 |
_forward[k] = true; |
| 650 | 650 |
_source[k] = _root; |
| 651 | 651 |
_target[k] = i; |
| 652 | 652 |
_reverse[k] = j; |
| 653 | 653 |
++j; ++k; |
| 654 | 654 |
} |
| 655 | 655 |
_first_out[i] = j; |
| 656 | 656 |
_first_out[_res_node_num] = k; |
| 657 | 657 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 658 | 658 |
int fi = _arc_idf[a]; |
| 659 | 659 |
int bi = _arc_idb[a]; |
| 660 | 660 |
_reverse[fi] = bi; |
| 661 | 661 |
_reverse[bi] = fi; |
| 662 | 662 |
} |
| 663 | 663 |
|
| 664 | 664 |
// Reset parameters |
| 665 | 665 |
resetParams(); |
| 666 | 666 |
return *this; |
| 667 | 667 |
} |
| 668 | 668 |
|
| 669 | 669 |
/// @} |
| 670 | 670 |
|
| 671 | 671 |
/// \name Query Functions |
| 672 | 672 |
/// The results of the algorithm can be obtained using these |
| 673 | 673 |
/// functions.\n |
| 674 | 674 |
/// The \ref run() function must be called before using them. |
| 675 | 675 |
|
| 676 | 676 |
/// @{
|
| 677 | 677 |
|
| 678 | 678 |
/// \brief Return the total cost of the found flow. |
| 679 | 679 |
/// |
| 680 | 680 |
/// This function returns the total cost of the found flow. |
| 681 | 681 |
/// Its complexity is O(e). |
| 682 | 682 |
/// |
| 683 | 683 |
/// \note The return type of the function can be specified as a |
| 684 | 684 |
/// template parameter. For example, |
| 685 | 685 |
/// \code |
| 686 | 686 |
/// cs.totalCost<double>(); |
| 687 | 687 |
/// \endcode |
| 688 | 688 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 689 | 689 |
/// type of the algorithm, which is the default return type of the |
| 690 | 690 |
/// function. |
| 691 | 691 |
/// |
| 692 | 692 |
/// \pre \ref run() must be called before using this function. |
| 693 | 693 |
template <typename Number> |
| 694 | 694 |
Number totalCost() const {
|
| 695 | 695 |
Number c = 0; |
| 696 | 696 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 697 | 697 |
int i = _arc_idb[a]; |
| 698 | 698 |
c += static_cast<Number>(_res_cap[i]) * |
| 699 | 699 |
(-static_cast<Number>(_scost[i])); |
| 700 | 700 |
} |
| 701 | 701 |
return c; |
| 702 | 702 |
} |
| 703 | 703 |
|
| 704 | 704 |
#ifndef DOXYGEN |
| 705 | 705 |
Cost totalCost() const {
|
| 706 | 706 |
return totalCost<Cost>(); |
| 707 | 707 |
} |
| 708 | 708 |
#endif |
| 709 | 709 |
|
| 710 | 710 |
/// \brief Return the flow on the given arc. |
| 711 | 711 |
/// |
| 712 | 712 |
/// This function returns the flow on the given arc. |
| 713 | 713 |
/// |
| 714 | 714 |
/// \pre \ref run() must be called before using this function. |
| 715 | 715 |
Value flow(const Arc& a) const {
|
| 716 | 716 |
return _res_cap[_arc_idb[a]]; |
| 717 | 717 |
} |
| 718 | 718 |
|
| 719 | 719 |
/// \brief Return the flow map (the primal solution). |
| 720 | 720 |
/// |
| 721 | 721 |
/// This function copies the flow value on each arc into the given |
| 722 | 722 |
/// map. The \c Value type of the algorithm must be convertible to |
| 723 | 723 |
/// the \c Value type of the map. |
| 724 | 724 |
/// |
| 725 | 725 |
/// \pre \ref run() must be called before using this function. |
| 726 | 726 |
template <typename FlowMap> |
| 727 | 727 |
void flowMap(FlowMap &map) const {
|
| 728 | 728 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 729 | 729 |
map.set(a, _res_cap[_arc_idb[a]]); |
| 730 | 730 |
} |
| 731 | 731 |
} |
| 732 | 732 |
|
| 733 | 733 |
/// \brief Return the potential (dual value) of the given node. |
| 734 | 734 |
/// |
| 735 | 735 |
/// This function returns the potential (dual value) of the |
| 736 | 736 |
/// given node. |
| 737 | 737 |
/// |
| 738 | 738 |
/// \pre \ref run() must be called before using this function. |
| 739 | 739 |
Cost potential(const Node& n) const {
|
| 740 | 740 |
return static_cast<Cost>(_pi[_node_id[n]]); |
| 741 | 741 |
} |
| 742 | 742 |
|
| 743 | 743 |
/// \brief Return the potential map (the dual solution). |
| 744 | 744 |
/// |
| 745 | 745 |
/// This function copies the potential (dual value) of each node |
| 746 | 746 |
/// into the given map. |
| 747 | 747 |
/// The \c Cost type of the algorithm must be convertible to the |
| 748 | 748 |
/// \c Value type of the map. |
| 749 | 749 |
/// |
| 750 | 750 |
/// \pre \ref run() must be called before using this function. |
| 751 | 751 |
template <typename PotentialMap> |
| 752 | 752 |
void potentialMap(PotentialMap &map) const {
|
| 753 | 753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 754 | 754 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
| 755 | 755 |
} |
| 756 | 756 |
} |
| 757 | 757 |
|
| 758 | 758 |
/// @} |
| 759 | 759 |
|
| 760 | 760 |
private: |
| 761 | 761 |
|
| 762 | 762 |
// Initialize the algorithm |
| 763 | 763 |
ProblemType init() {
|
| 764 | 764 |
if (_res_node_num <= 1) return INFEASIBLE; |
| 765 | 765 |
|
| 766 | 766 |
// Check the sum of supply values |
| 767 | 767 |
_sum_supply = 0; |
| 768 | 768 |
for (int i = 0; i != _root; ++i) {
|
| 769 | 769 |
_sum_supply += _supply[i]; |
| 770 | 770 |
} |
| 771 | 771 |
if (_sum_supply > 0) return INFEASIBLE; |
| 772 | 772 |
|
| 773 | 773 |
|
| 774 | 774 |
// Initialize vectors |
| 775 | 775 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 776 | 776 |
_pi[i] = 0; |
| 777 | 777 |
_excess[i] = _supply[i]; |
| 778 | 778 |
} |
| 779 | 779 |
|
| 780 | 780 |
// Remove infinite upper bounds and check negative arcs |
| 781 | 781 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 782 | 782 |
int last_out; |
| 783 | 783 |
if (_have_lower) {
|
| 784 | 784 |
for (int i = 0; i != _root; ++i) {
|
| 785 | 785 |
last_out = _first_out[i+1]; |
| 786 | 786 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 787 | 787 |
if (_forward[j]) {
|
| 788 | 788 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
| 789 | 789 |
if (c >= MAX) return UNBOUNDED; |
| 790 | 790 |
_excess[i] -= c; |
| 791 | 791 |
_excess[_target[j]] += c; |
| 792 | 792 |
} |
| 793 | 793 |
} |
| 794 | 794 |
} |
| 795 | 795 |
} else {
|
| 796 | 796 |
for (int i = 0; i != _root; ++i) {
|
| 797 | 797 |
last_out = _first_out[i+1]; |
| 798 | 798 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 799 | 799 |
if (_forward[j] && _scost[j] < 0) {
|
| 800 | 800 |
Value c = _upper[j]; |
| 801 | 801 |
if (c >= MAX) return UNBOUNDED; |
| 802 | 802 |
_excess[i] -= c; |
| 803 | 803 |
_excess[_target[j]] += c; |
| 804 | 804 |
} |
| 805 | 805 |
} |
| 806 | 806 |
} |
| 807 | 807 |
} |
| 808 | 808 |
Value ex, max_cap = 0; |
| 809 | 809 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 810 | 810 |
ex = _excess[i]; |
| 811 | 811 |
_excess[i] = 0; |
| 812 | 812 |
if (ex < 0) max_cap -= ex; |
| 813 | 813 |
} |
| 814 | 814 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 815 | 815 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
| 816 | 816 |
} |
| 817 | 817 |
|
| 818 | 818 |
// Initialize the large cost vector and the epsilon parameter |
| 819 | 819 |
_epsilon = 0; |
| 820 | 820 |
LargeCost lc; |
| 821 | 821 |
for (int i = 0; i != _root; ++i) {
|
| 822 | 822 |
last_out = _first_out[i+1]; |
| 823 | 823 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 824 | 824 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
| 825 | 825 |
_cost[j] = lc; |
| 826 | 826 |
if (lc > _epsilon) _epsilon = lc; |
| 827 | 827 |
} |
| 828 | 828 |
} |
| 829 | 829 |
_epsilon /= _alpha; |
| 830 | 830 |
|
| 831 | 831 |
// Initialize maps for Circulation and remove non-zero lower bounds |
| 832 | 832 |
ConstMap<Arc, Value> low(0); |
| 833 | 833 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
| 834 | 834 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
| 835 | 835 |
ValueArcMap cap(_graph), flow(_graph); |
| 836 | 836 |
ValueNodeMap sup(_graph); |
| 837 | 837 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 838 | 838 |
sup[n] = _supply[_node_id[n]]; |
| 839 | 839 |
} |
| 840 | 840 |
if (_have_lower) {
|
| 841 | 841 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 842 | 842 |
int j = _arc_idf[a]; |
| 843 | 843 |
Value c = _lower[j]; |
| 844 | 844 |
cap[a] = _upper[j] - c; |
| 845 | 845 |
sup[_graph.source(a)] -= c; |
| 846 | 846 |
sup[_graph.target(a)] += c; |
| 847 | 847 |
} |
| 848 | 848 |
} else {
|
| 849 | 849 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 850 | 850 |
cap[a] = _upper[_arc_idf[a]]; |
| 851 | 851 |
} |
| 852 | 852 |
} |
| 853 | 853 |
|
| 854 | 854 |
_sup_node_num = 0; |
| 855 | 855 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 856 | 856 |
if (sup[n] > 0) ++_sup_node_num; |
| 857 | 857 |
} |
| 858 | 858 |
|
| 859 | 859 |
// Find a feasible flow using Circulation |
| 860 | 860 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
| 861 | 861 |
circ(_graph, low, cap, sup); |
| 862 | 862 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
| 863 | 863 |
|
| 864 | 864 |
// Set residual capacities and handle GEQ supply type |
| 865 | 865 |
if (_sum_supply < 0) {
|
| 866 | 866 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 867 | 867 |
Value fa = flow[a]; |
| 868 | 868 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 869 | 869 |
_res_cap[_arc_idb[a]] = fa; |
| 870 | 870 |
sup[_graph.source(a)] -= fa; |
| 871 | 871 |
sup[_graph.target(a)] += fa; |
| 872 | 872 |
} |
| 873 | 873 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 874 | 874 |
_excess[_node_id[n]] = sup[n]; |
| 875 | 875 |
} |
| 876 | 876 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 877 | 877 |
int u = _target[a]; |
| 878 | 878 |
int ra = _reverse[a]; |
| 879 | 879 |
_res_cap[a] = -_sum_supply + 1; |
| 880 | 880 |
_res_cap[ra] = -_excess[u]; |
| 881 | 881 |
_cost[a] = 0; |
| 882 | 882 |
_cost[ra] = 0; |
| 883 | 883 |
_excess[u] = 0; |
| 884 | 884 |
} |
| 885 | 885 |
} else {
|
| 886 | 886 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 887 | 887 |
Value fa = flow[a]; |
| 888 | 888 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 889 | 889 |
_res_cap[_arc_idb[a]] = fa; |
| 890 | 890 |
} |
| 891 | 891 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 892 | 892 |
int ra = _reverse[a]; |
| 893 | 893 |
_res_cap[a] = 0; |
| 894 | 894 |
_res_cap[ra] = 0; |
| 895 | 895 |
_cost[a] = 0; |
| 896 | 896 |
_cost[ra] = 0; |
| 897 | 897 |
} |
| 898 | 898 |
} |
| 899 | 899 |
|
| 900 | 900 |
// Initialize data structures for buckets |
| 901 | 901 |
_max_rank = _alpha * _res_node_num; |
| 902 | 902 |
_buckets.resize(_max_rank); |
| 903 | 903 |
_bucket_next.resize(_res_node_num + 1); |
| 904 | 904 |
_bucket_prev.resize(_res_node_num + 1); |
| 905 | 905 |
_rank.resize(_res_node_num + 1); |
| 906 | 906 |
|
| 907 | 907 |
return OPTIMAL; |
| 908 | 908 |
} |
| 909 | 909 |
|
| 910 | 910 |
// Execute the algorithm and transform the results |
| 911 | 911 |
void start(Method method) {
|
| 912 | 912 |
const int MAX_PARTIAL_PATH_LENGTH = 4; |
| 913 | 913 |
|
| 914 | 914 |
switch (method) {
|
| 915 | 915 |
case PUSH: |
| 916 | 916 |
startPush(); |
| 917 | 917 |
break; |
| 918 | 918 |
case AUGMENT: |
| 919 | 919 |
startAugment(_res_node_num - 1); |
| 920 | 920 |
break; |
| 921 | 921 |
case PARTIAL_AUGMENT: |
| 922 | 922 |
startAugment(MAX_PARTIAL_PATH_LENGTH); |
| 923 | 923 |
break; |
| 924 | 924 |
} |
| 925 | 925 |
|
| 926 | 926 |
// Compute node potentials for the original costs |
| 927 | 927 |
_arc_vec.clear(); |
| 928 | 928 |
_cost_vec.clear(); |
| 929 | 929 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 930 | 930 |
if (_res_cap[j] > 0) {
|
| 931 | 931 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 932 | 932 |
_cost_vec.push_back(_scost[j]); |
| 933 | 933 |
} |
| 934 | 934 |
} |
| 935 | 935 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 936 | 936 |
|
| 937 | 937 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
| 938 | 938 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
| 939 | 939 |
bf.distMap(_pi_map); |
| 940 | 940 |
bf.init(0); |
| 941 | 941 |
bf.start(); |
| 942 | 942 |
|
| 943 | 943 |
// Handle non-zero lower bounds |
| 944 | 944 |
if (_have_lower) {
|
| 945 | 945 |
int limit = _first_out[_root]; |
| 946 | 946 |
for (int j = 0; j != limit; ++j) {
|
| 947 | 947 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 948 | 948 |
} |
| 949 | 949 |
} |
| 950 | 950 |
} |
| 951 | 951 |
|
| 952 | 952 |
// Initialize a cost scaling phase |
| 953 | 953 |
void initPhase() {
|
| 954 | 954 |
// Saturate arcs not satisfying the optimality condition |
| 955 | 955 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 956 | 956 |
int last_out = _first_out[u+1]; |
| 957 | 957 |
LargeCost pi_u = _pi[u]; |
| 958 | 958 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 959 | 959 |
Value delta = _res_cap[a]; |
| 960 | 960 |
if (delta > 0) {
|
| 961 | 961 |
int v = _target[a]; |
| 962 | 962 |
if (_cost[a] + pi_u - _pi[v] < 0) {
|
| 963 | 963 |
_excess[u] -= delta; |
| 964 | 964 |
_excess[v] += delta; |
| 965 | 965 |
_res_cap[a] = 0; |
| 966 | 966 |
_res_cap[_reverse[a]] += delta; |
| 967 | 967 |
} |
| 968 | 968 |
} |
| 969 | 969 |
} |
| 970 | 970 |
} |
| 971 | 971 |
|
| 972 | 972 |
// Find active nodes (i.e. nodes with positive excess) |
| 973 | 973 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 974 | 974 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
// Initialize the next arcs |
| 978 | 978 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 979 | 979 |
_next_out[u] = _first_out[u]; |
| 980 | 980 |
} |
| 981 | 981 |
} |
| 982 | 982 |
|
| 983 |
// Early termination heuristic |
|
| 984 |
bool earlyTermination() {
|
|
| 985 |
|
|
| 983 |
// Price (potential) refinement heuristic |
|
| 984 |
bool priceRefinement() {
|
|
| 986 | 985 |
|
| 987 |
// Build a static residual graph |
|
| 988 |
_arc_vec.clear(); |
|
| 989 |
_cost_vec.clear(); |
|
| 990 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 991 |
if (_res_cap[j] > 0) {
|
|
| 992 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 993 |
|
|
| 986 |
// Stack for stroing the topological order |
|
| 987 |
IntVector stack(_res_node_num); |
|
| 988 |
int stack_top; |
|
| 989 |
|
|
| 990 |
// Perform phases |
|
| 991 |
while (topologicalSort(stack, stack_top)) {
|
|
| 992 |
|
|
| 993 |
// Compute node ranks in the acyclic admissible network and |
|
| 994 |
// store the nodes in buckets |
|
| 995 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 996 |
_rank[i] = 0; |
|
| 994 | 997 |
} |
| 998 |
const int bucket_end = _root + 1; |
|
| 999 |
for (int r = 0; r != _max_rank; ++r) {
|
|
| 1000 |
_buckets[r] = bucket_end; |
|
| 1001 |
} |
|
| 1002 |
int top_rank = 0; |
|
| 1003 |
for ( ; stack_top >= 0; --stack_top) {
|
|
| 1004 |
int u = stack[stack_top], v; |
|
| 1005 |
int rank_u = _rank[u]; |
|
| 1006 |
|
|
| 1007 |
LargeCost rc, pi_u = _pi[u]; |
|
| 1008 |
int last_out = _first_out[u+1]; |
|
| 1009 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1010 |
if (_res_cap[a] > 0) {
|
|
| 1011 |
v = _target[a]; |
|
| 1012 |
rc = _cost[a] + pi_u - _pi[v]; |
|
| 1013 |
if (rc < 0) {
|
|
| 1014 |
LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon); |
|
| 1015 |
if (nrc < LargeCost(_max_rank)) {
|
|
| 1016 |
int new_rank_v = rank_u + static_cast<int>(nrc); |
|
| 1017 |
if (new_rank_v > _rank[v]) {
|
|
| 1018 |
_rank[v] = new_rank_v; |
|
| 1019 |
} |
|
| 1020 |
} |
|
| 1021 |
} |
|
| 1022 |
} |
|
| 1023 |
} |
|
| 1024 |
|
|
| 1025 |
if (rank_u > 0) {
|
|
| 1026 |
top_rank = std::max(top_rank, rank_u); |
|
| 1027 |
int bfirst = _buckets[rank_u]; |
|
| 1028 |
_bucket_next[u] = bfirst; |
|
| 1029 |
_bucket_prev[bfirst] = u; |
|
| 1030 |
_buckets[rank_u] = u; |
|
| 1031 |
} |
|
| 1032 |
} |
|
| 1033 |
|
|
| 1034 |
// Check if the current flow is epsilon-optimal |
|
| 1035 |
if (top_rank == 0) {
|
|
| 1036 |
return true; |
|
| 1037 |
} |
|
| 1038 |
|
|
| 1039 |
// Process buckets in top-down order |
|
| 1040 |
for (int rank = top_rank; rank > 0; --rank) {
|
|
| 1041 |
while (_buckets[rank] != bucket_end) {
|
|
| 1042 |
// Remove the first node from the current bucket |
|
| 1043 |
int u = _buckets[rank]; |
|
| 1044 |
_buckets[rank] = _bucket_next[u]; |
|
| 1045 |
|
|
| 1046 |
// Search the outgoing arcs of u |
|
| 1047 |
LargeCost rc, pi_u = _pi[u]; |
|
| 1048 |
int last_out = _first_out[u+1]; |
|
| 1049 |
int v, old_rank_v, new_rank_v; |
|
| 1050 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1051 |
if (_res_cap[a] > 0) {
|
|
| 1052 |
v = _target[a]; |
|
| 1053 |
old_rank_v = _rank[v]; |
|
| 1054 |
|
|
| 1055 |
if (old_rank_v < rank) {
|
|
| 1056 |
|
|
| 1057 |
// Compute the new rank of node v |
|
| 1058 |
rc = _cost[a] + pi_u - _pi[v]; |
|
| 1059 |
if (rc < 0) {
|
|
| 1060 |
new_rank_v = rank; |
|
| 1061 |
} else {
|
|
| 1062 |
LargeCost nrc = rc / _epsilon; |
|
| 1063 |
new_rank_v = 0; |
|
| 1064 |
if (nrc < LargeCost(_max_rank)) {
|
|
| 1065 |
new_rank_v = rank - 1 - static_cast<int>(nrc); |
|
| 1066 |
} |
|
| 1067 |
} |
|
| 1068 |
|
|
| 1069 |
// Change the rank of node v |
|
| 1070 |
if (new_rank_v > old_rank_v) {
|
|
| 1071 |
_rank[v] = new_rank_v; |
|
| 1072 |
|
|
| 1073 |
// Remove v from its old bucket |
|
| 1074 |
if (old_rank_v > 0) {
|
|
| 1075 |
if (_buckets[old_rank_v] == v) {
|
|
| 1076 |
_buckets[old_rank_v] = _bucket_next[v]; |
|
| 1077 |
} else {
|
|
| 1078 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
|
| 1079 |
_bucket_next[pv] = nv; |
|
| 1080 |
_bucket_prev[nv] = pv; |
|
| 1081 |
} |
|
| 1082 |
} |
|
| 1083 |
|
|
| 1084 |
// Insert v into its new bucket |
|
| 1085 |
int nv = _buckets[new_rank_v]; |
|
| 1086 |
_bucket_next[v] = nv; |
|
| 1087 |
_bucket_prev[nv] = v; |
|
| 1088 |
_buckets[new_rank_v] = v; |
|
| 1089 |
} |
|
| 1090 |
} |
|
| 1091 |
} |
|
| 1092 |
} |
|
| 1093 |
|
|
| 1094 |
// Refine potential of node u |
|
| 1095 |
_pi[u] -= rank * _epsilon; |
|
| 1096 |
} |
|
| 1097 |
} |
|
| 1098 |
|
|
| 995 | 1099 |
} |
| 996 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 997 | 1100 |
|
| 998 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
|
| 999 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 1000 |
bf.init(0); |
|
| 1001 |
bool done = false; |
|
| 1002 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 1003 |
for (int i = 0; i < K && !done; ++i) {
|
|
| 1004 |
|
|
| 1101 |
return false; |
|
| 1102 |
} |
|
| 1103 |
|
|
| 1104 |
// Find and cancel cycles in the admissible network and |
|
| 1105 |
// determine topological order using DFS |
|
| 1106 |
bool topologicalSort(IntVector &stack, int &stack_top) {
|
|
| 1107 |
const int MAX_CYCLE_CANCEL = 1; |
|
| 1108 |
|
|
| 1109 |
BoolVector reached(_res_node_num, false); |
|
| 1110 |
BoolVector processed(_res_node_num, false); |
|
| 1111 |
IntVector pred(_res_node_num); |
|
| 1112 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 1113 |
_next_out[i] = _first_out[i]; |
|
| 1005 | 1114 |
} |
| 1006 |
|
|
| 1115 |
stack_top = -1; |
|
| 1116 |
|
|
| 1117 |
int cycle_cnt = 0; |
|
| 1118 |
for (int start = 0; start != _res_node_num; ++start) {
|
|
| 1119 |
if (reached[start]) continue; |
|
| 1120 |
|
|
| 1121 |
// Start DFS search from this start node |
|
| 1122 |
pred[start] = -1; |
|
| 1123 |
int tip = start, v; |
|
| 1124 |
while (true) {
|
|
| 1125 |
// Check the outgoing arcs of the current tip node |
|
| 1126 |
reached[tip] = true; |
|
| 1127 |
LargeCost pi_tip = _pi[tip]; |
|
| 1128 |
int a, last_out = _first_out[tip+1]; |
|
| 1129 |
for (a = _next_out[tip]; a != last_out; ++a) {
|
|
| 1130 |
if (_res_cap[a] > 0) {
|
|
| 1131 |
v = _target[a]; |
|
| 1132 |
if (_cost[a] + pi_tip - _pi[v] < 0) {
|
|
| 1133 |
if (!reached[v]) {
|
|
| 1134 |
// A new node is reached |
|
| 1135 |
reached[v] = true; |
|
| 1136 |
pred[v] = tip; |
|
| 1137 |
_next_out[tip] = a; |
|
| 1138 |
tip = v; |
|
| 1139 |
a = _next_out[tip]; |
|
| 1140 |
last_out = _first_out[tip+1]; |
|
| 1141 |
break; |
|
| 1142 |
} |
|
| 1143 |
else if (!processed[v]) {
|
|
| 1144 |
// A cycle is found |
|
| 1145 |
++cycle_cnt; |
|
| 1146 |
_next_out[tip] = a; |
|
| 1147 |
|
|
| 1148 |
// Find the minimum residual capacity along the cycle |
|
| 1149 |
Value d, delta = _res_cap[a]; |
|
| 1150 |
int u, delta_node = tip; |
|
| 1151 |
for (u = tip; u != v; ) {
|
|
| 1152 |
u = pred[u]; |
|
| 1153 |
d = _res_cap[_next_out[u]]; |
|
| 1154 |
if (d <= delta) {
|
|
| 1155 |
delta = d; |
|
| 1156 |
delta_node = u; |
|
| 1157 |
} |
|
| 1158 |
} |
|
| 1159 |
|
|
| 1160 |
// Augment along the cycle |
|
| 1161 |
_res_cap[a] -= delta; |
|
| 1162 |
_res_cap[_reverse[a]] += delta; |
|
| 1163 |
for (u = tip; u != v; ) {
|
|
| 1164 |
u = pred[u]; |
|
| 1165 |
int ca = _next_out[u]; |
|
| 1166 |
_res_cap[ca] -= delta; |
|
| 1167 |
_res_cap[_reverse[ca]] += delta; |
|
| 1168 |
} |
|
| 1169 |
|
|
| 1170 |
// Check the maximum number of cycle canceling |
|
| 1171 |
if (cycle_cnt >= MAX_CYCLE_CANCEL) {
|
|
| 1172 |
return false; |
|
| 1173 |
} |
|
| 1174 |
|
|
| 1175 |
// Roll back search to delta_node |
|
| 1176 |
if (delta_node != tip) {
|
|
| 1177 |
for (u = tip; u != delta_node; u = pred[u]) {
|
|
| 1178 |
reached[u] = false; |
|
| 1179 |
} |
|
| 1180 |
tip = delta_node; |
|
| 1181 |
a = _next_out[tip] + 1; |
|
| 1182 |
last_out = _first_out[tip+1]; |
|
| 1183 |
break; |
|
| 1184 |
} |
|
| 1185 |
} |
|
| 1186 |
} |
|
| 1187 |
} |
|
| 1188 |
} |
|
| 1189 |
|
|
| 1190 |
// Step back to the previous node |
|
| 1191 |
if (a == last_out) {
|
|
| 1192 |
processed[tip] = true; |
|
| 1193 |
stack[++stack_top] = tip; |
|
| 1194 |
tip = pred[tip]; |
|
| 1195 |
if (tip < 0) {
|
|
| 1196 |
// Finish DFS from the current start node |
|
| 1197 |
break; |
|
| 1198 |
} |
|
| 1199 |
++_next_out[tip]; |
|
| 1200 |
} |
|
| 1201 |
} |
|
| 1202 |
|
|
| 1203 |
} |
|
| 1204 |
|
|
| 1205 |
return (cycle_cnt == 0); |
|
| 1007 | 1206 |
} |
| 1008 | 1207 |
|
| 1009 | 1208 |
// Global potential update heuristic |
| 1010 | 1209 |
void globalUpdate() {
|
| 1011 | 1210 |
const int bucket_end = _root + 1; |
| 1012 | 1211 |
|
| 1013 | 1212 |
// Initialize buckets |
| 1014 | 1213 |
for (int r = 0; r != _max_rank; ++r) {
|
| 1015 | 1214 |
_buckets[r] = bucket_end; |
| 1016 | 1215 |
} |
| 1017 | 1216 |
Value total_excess = 0; |
| 1018 | 1217 |
int b0 = bucket_end; |
| 1019 | 1218 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 1020 | 1219 |
if (_excess[i] < 0) {
|
| 1021 | 1220 |
_rank[i] = 0; |
| 1022 | 1221 |
_bucket_next[i] = b0; |
| 1023 | 1222 |
_bucket_prev[b0] = i; |
| 1024 | 1223 |
b0 = i; |
| 1025 | 1224 |
} else {
|
| 1026 | 1225 |
total_excess += _excess[i]; |
| 1027 | 1226 |
_rank[i] = _max_rank; |
| 1028 | 1227 |
} |
| 1029 | 1228 |
} |
| 1030 | 1229 |
if (total_excess == 0) return; |
| 1031 | 1230 |
_buckets[0] = b0; |
| 1032 | 1231 |
|
| 1033 | 1232 |
// Search the buckets |
| 1034 | 1233 |
int r = 0; |
| 1035 | 1234 |
for ( ; r != _max_rank; ++r) {
|
| 1036 | 1235 |
while (_buckets[r] != bucket_end) {
|
| 1037 | 1236 |
// Remove the first node from the current bucket |
| 1038 | 1237 |
int u = _buckets[r]; |
| 1039 | 1238 |
_buckets[r] = _bucket_next[u]; |
| 1040 | 1239 |
|
| 1041 | 1240 |
// Search the incomming arcs of u |
| 1042 | 1241 |
LargeCost pi_u = _pi[u]; |
| 1043 | 1242 |
int last_out = _first_out[u+1]; |
| 1044 | 1243 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 1045 | 1244 |
int ra = _reverse[a]; |
| 1046 | 1245 |
if (_res_cap[ra] > 0) {
|
| 1047 | 1246 |
int v = _source[ra]; |
| 1048 | 1247 |
int old_rank_v = _rank[v]; |
| 1049 | 1248 |
if (r < old_rank_v) {
|
| 1050 | 1249 |
// Compute the new rank of v |
| 1051 | 1250 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
| 1052 | 1251 |
int new_rank_v = old_rank_v; |
| 1053 | 1252 |
if (nrc < LargeCost(_max_rank)) {
|
| 1054 | 1253 |
new_rank_v = r + 1 + static_cast<int>(nrc); |
| 1055 | 1254 |
} |
| 1056 | 1255 |
|
| 1057 | 1256 |
// Change the rank of v |
| 1058 | 1257 |
if (new_rank_v < old_rank_v) {
|
| 1059 | 1258 |
_rank[v] = new_rank_v; |
| 1060 | 1259 |
_next_out[v] = _first_out[v]; |
| 1061 | 1260 |
|
| 1062 | 1261 |
// Remove v from its old bucket |
| 1063 | 1262 |
if (old_rank_v < _max_rank) {
|
| 1064 | 1263 |
if (_buckets[old_rank_v] == v) {
|
| 1065 | 1264 |
_buckets[old_rank_v] = _bucket_next[v]; |
| 1066 | 1265 |
} else {
|
| 1067 | 1266 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
| 1068 | 1267 |
_bucket_next[pv] = nv; |
| 1069 | 1268 |
_bucket_prev[nv] = pv; |
| 1070 | 1269 |
} |
| 1071 | 1270 |
} |
| 1072 | 1271 |
|
| 1073 | 1272 |
// Insert v into its new bucket |
| 1074 | 1273 |
int nv = _buckets[new_rank_v]; |
| 1075 | 1274 |
_bucket_next[v] = nv; |
| 1076 | 1275 |
_bucket_prev[nv] = v; |
| 1077 | 1276 |
_buckets[new_rank_v] = v; |
| 1078 | 1277 |
} |
| 1079 | 1278 |
} |
| 1080 | 1279 |
} |
| 1081 | 1280 |
} |
| 1082 | 1281 |
|
| 1083 | 1282 |
// Finish search if there are no more active nodes |
| 1084 | 1283 |
if (_excess[u] > 0) {
|
| 1085 | 1284 |
total_excess -= _excess[u]; |
| 1086 | 1285 |
if (total_excess <= 0) break; |
| 1087 | 1286 |
} |
| 1088 | 1287 |
} |
| 1089 | 1288 |
if (total_excess <= 0) break; |
| 1090 | 1289 |
} |
| 1091 | 1290 |
|
| 1092 | 1291 |
// Relabel nodes |
| 1093 | 1292 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 1094 | 1293 |
int k = std::min(_rank[u], r); |
| 1095 | 1294 |
if (k > 0) {
|
| 1096 | 1295 |
_pi[u] -= _epsilon * k; |
| 1097 | 1296 |
_next_out[u] = _first_out[u]; |
| 1098 | 1297 |
} |
| 1099 | 1298 |
} |
| 1100 | 1299 |
} |
| 1101 | 1300 |
|
| 1102 | 1301 |
/// Execute the algorithm performing augment and relabel operations |
| 1103 | 1302 |
void startAugment(int max_length) {
|
| 1104 | 1303 |
// Paramters for heuristics |
| 1105 |
const int |
|
| 1304 |
const int PRICE_REFINEMENT_LIMIT = 2; |
|
| 1106 | 1305 |
const double GLOBAL_UPDATE_FACTOR = 1.0; |
| 1107 | 1306 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR * |
| 1108 | 1307 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
| 1109 | 1308 |
int next_global_update_limit = global_update_skip; |
| 1110 | 1309 |
|
| 1111 | 1310 |
// Perform cost scaling phases |
| 1112 | 1311 |
IntVector path; |
| 1113 | 1312 |
BoolVector path_arc(_res_arc_num, false); |
| 1114 | 1313 |
int relabel_cnt = 0; |
| 1314 |
int eps_phase_cnt = 0; |
|
| 1115 | 1315 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1116 | 1316 |
1 : _epsilon / _alpha ) |
| 1117 | 1317 |
{
|
| 1118 |
// Early termination heuristic |
|
| 1119 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1120 |
|
|
| 1318 |
++eps_phase_cnt; |
|
| 1319 |
|
|
| 1320 |
// Price refinement heuristic |
|
| 1321 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
|
| 1322 |
if (priceRefinement()) continue; |
|
| 1121 | 1323 |
} |
| 1122 | 1324 |
|
| 1123 | 1325 |
// Initialize current phase |
| 1124 | 1326 |
initPhase(); |
| 1125 | 1327 |
|
| 1126 | 1328 |
// Perform partial augment and relabel operations |
| 1127 | 1329 |
while (true) {
|
| 1128 | 1330 |
// Select an active node (FIFO selection) |
| 1129 | 1331 |
while (_active_nodes.size() > 0 && |
| 1130 | 1332 |
_excess[_active_nodes.front()] <= 0) {
|
| 1131 | 1333 |
_active_nodes.pop_front(); |
| 1132 | 1334 |
} |
| 1133 | 1335 |
if (_active_nodes.size() == 0) break; |
| 1134 | 1336 |
int start = _active_nodes.front(); |
| 1135 | 1337 |
|
| 1136 | 1338 |
// Find an augmenting path from the start node |
| 1137 | 1339 |
int tip = start; |
| 1138 | 1340 |
while (int(path.size()) < max_length && _excess[tip] >= 0) {
|
| 1139 | 1341 |
int u; |
| 1140 | 1342 |
LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max(); |
| 1141 | 1343 |
LargeCost pi_tip = _pi[tip]; |
| 1142 | 1344 |
int last_out = _first_out[tip+1]; |
| 1143 | 1345 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
| 1144 | 1346 |
if (_res_cap[a] > 0) {
|
| 1145 | 1347 |
u = _target[a]; |
| 1146 | 1348 |
rc = _cost[a] + pi_tip - _pi[u]; |
| 1147 | 1349 |
if (rc < 0) {
|
| 1148 | 1350 |
path.push_back(a); |
| 1149 | 1351 |
_next_out[tip] = a; |
| 1150 | 1352 |
if (path_arc[a]) {
|
| 1151 | 1353 |
goto augment; // a cycle is found, stop path search |
| 1152 | 1354 |
} |
| 1153 | 1355 |
tip = u; |
| 1154 | 1356 |
path_arc[a] = true; |
| 1155 | 1357 |
goto next_step; |
| 1156 | 1358 |
} |
| 1157 | 1359 |
else if (rc < min_red_cost) {
|
| 1158 | 1360 |
min_red_cost = rc; |
| 1159 | 1361 |
} |
| 1160 | 1362 |
} |
| 1161 | 1363 |
} |
| 1162 | 1364 |
|
| 1163 | 1365 |
// Relabel tip node |
| 1164 | 1366 |
if (tip != start) {
|
| 1165 | 1367 |
int ra = _reverse[path.back()]; |
| 1166 | 1368 |
min_red_cost = |
| 1167 | 1369 |
std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]); |
| 1168 | 1370 |
} |
| 1169 | 1371 |
last_out = _next_out[tip]; |
| 1170 | 1372 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
| 1171 | 1373 |
if (_res_cap[a] > 0) {
|
| 1172 | 1374 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
| 1173 | 1375 |
if (rc < min_red_cost) {
|
| 1174 | 1376 |
min_red_cost = rc; |
| 1175 | 1377 |
} |
| 1176 | 1378 |
} |
| 1177 | 1379 |
} |
| 1178 | 1380 |
_pi[tip] -= min_red_cost + _epsilon; |
| 1179 | 1381 |
_next_out[tip] = _first_out[tip]; |
| 1180 | 1382 |
++relabel_cnt; |
| 1181 | 1383 |
|
| 1182 | 1384 |
// Step back |
| 1183 | 1385 |
if (tip != start) {
|
| 1184 | 1386 |
int pa = path.back(); |
| 1185 | 1387 |
path_arc[pa] = false; |
| 1186 | 1388 |
tip = _source[pa]; |
| 1187 | 1389 |
path.pop_back(); |
| 1188 | 1390 |
} |
| 1189 | 1391 |
|
| 1190 | 1392 |
next_step: ; |
| 1191 | 1393 |
} |
| 1192 | 1394 |
|
| 1193 | 1395 |
// Augment along the found path (as much flow as possible) |
| 1194 | 1396 |
augment: |
| 1195 | 1397 |
Value delta; |
| 1196 | 1398 |
int pa, u, v = start; |
| 1197 | 1399 |
for (int i = 0; i != int(path.size()); ++i) {
|
| 1198 | 1400 |
pa = path[i]; |
| 1199 | 1401 |
u = v; |
| 1200 | 1402 |
v = _target[pa]; |
| 1201 | 1403 |
path_arc[pa] = false; |
| 1202 | 1404 |
delta = std::min(_res_cap[pa], _excess[u]); |
| 1203 | 1405 |
_res_cap[pa] -= delta; |
| 1204 | 1406 |
_res_cap[_reverse[pa]] += delta; |
| 1205 | 1407 |
_excess[u] -= delta; |
| 1206 | 1408 |
_excess[v] += delta; |
| 1207 | 1409 |
if (_excess[v] > 0 && _excess[v] <= delta) {
|
| 1208 | 1410 |
_active_nodes.push_back(v); |
| 1209 | 1411 |
} |
| 1210 | 1412 |
} |
| 1211 | 1413 |
path.clear(); |
| 1212 | 1414 |
|
| 1213 | 1415 |
// Global update heuristic |
| 1214 | 1416 |
if (relabel_cnt >= next_global_update_limit) {
|
| 1215 | 1417 |
globalUpdate(); |
| 1216 | 1418 |
next_global_update_limit += global_update_skip; |
| 1217 | 1419 |
} |
| 1218 | 1420 |
} |
| 1219 | 1421 |
|
| 1220 | 1422 |
} |
| 1221 | 1423 |
|
| 1222 | 1424 |
} |
| 1223 | 1425 |
|
| 1224 | 1426 |
/// Execute the algorithm performing push and relabel operations |
| 1225 | 1427 |
void startPush() {
|
| 1226 | 1428 |
// Paramters for heuristics |
| 1227 |
const int |
|
| 1429 |
const int PRICE_REFINEMENT_LIMIT = 2; |
|
| 1228 | 1430 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
| 1229 | 1431 |
|
| 1230 | 1432 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR * |
| 1231 | 1433 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
| 1232 | 1434 |
int next_global_update_limit = global_update_skip; |
| 1233 | 1435 |
|
| 1234 | 1436 |
// Perform cost scaling phases |
| 1235 | 1437 |
BoolVector hyper(_res_node_num, false); |
| 1236 | 1438 |
LargeCostVector hyper_cost(_res_node_num); |
| 1237 | 1439 |
int relabel_cnt = 0; |
| 1440 |
int eps_phase_cnt = 0; |
|
| 1238 | 1441 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1239 | 1442 |
1 : _epsilon / _alpha ) |
| 1240 | 1443 |
{
|
| 1241 |
// Early termination heuristic |
|
| 1242 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1243 |
|
|
| 1444 |
++eps_phase_cnt; |
|
| 1445 |
|
|
| 1446 |
// Price refinement heuristic |
|
| 1447 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
|
| 1448 |
if (priceRefinement()) continue; |
|
| 1244 | 1449 |
} |
| 1245 | 1450 |
|
| 1246 | 1451 |
// Initialize current phase |
| 1247 | 1452 |
initPhase(); |
| 1248 | 1453 |
|
| 1249 | 1454 |
// Perform push and relabel operations |
| 1250 | 1455 |
while (_active_nodes.size() > 0) {
|
| 1251 | 1456 |
LargeCost min_red_cost, rc, pi_n; |
| 1252 | 1457 |
Value delta; |
| 1253 | 1458 |
int n, t, a, last_out = _res_arc_num; |
| 1254 | 1459 |
|
| 1255 | 1460 |
next_node: |
| 1256 | 1461 |
// Select an active node (FIFO selection) |
| 1257 | 1462 |
n = _active_nodes.front(); |
| 1258 | 1463 |
last_out = _first_out[n+1]; |
| 1259 | 1464 |
pi_n = _pi[n]; |
| 1260 | 1465 |
|
| 1261 | 1466 |
// Perform push operations if there are admissible arcs |
| 1262 | 1467 |
if (_excess[n] > 0) {
|
| 1263 | 1468 |
for (a = _next_out[n]; a != last_out; ++a) {
|
| 1264 | 1469 |
if (_res_cap[a] > 0 && |
| 1265 | 1470 |
_cost[a] + pi_n - _pi[_target[a]] < 0) {
|
| 1266 | 1471 |
delta = std::min(_res_cap[a], _excess[n]); |
| 1267 | 1472 |
t = _target[a]; |
| 1268 | 1473 |
|
| 1269 | 1474 |
// Push-look-ahead heuristic |
| 1270 | 1475 |
Value ahead = -_excess[t]; |
| 1271 | 1476 |
int last_out_t = _first_out[t+1]; |
| 1272 | 1477 |
LargeCost pi_t = _pi[t]; |
| 1273 | 1478 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
| 1274 | 1479 |
if (_res_cap[ta] > 0 && |
| 1275 | 1480 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
| 1276 | 1481 |
ahead += _res_cap[ta]; |
| 1277 | 1482 |
if (ahead >= delta) break; |
| 1278 | 1483 |
} |
| 1279 | 1484 |
if (ahead < 0) ahead = 0; |
| 1280 | 1485 |
|
| 1281 | 1486 |
// Push flow along the arc |
| 1282 | 1487 |
if (ahead < delta && !hyper[t]) {
|
| 1283 | 1488 |
_res_cap[a] -= ahead; |
| 1284 | 1489 |
_res_cap[_reverse[a]] += ahead; |
| 1285 | 1490 |
_excess[n] -= ahead; |
| 1286 | 1491 |
_excess[t] += ahead; |
| 1287 | 1492 |
_active_nodes.push_front(t); |
| 1288 | 1493 |
hyper[t] = true; |
| 1289 | 1494 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
| 1290 | 1495 |
_next_out[n] = a; |
| 1291 | 1496 |
goto next_node; |
| 1292 | 1497 |
} else {
|
| 1293 | 1498 |
_res_cap[a] -= delta; |
| 1294 | 1499 |
_res_cap[_reverse[a]] += delta; |
| 1295 | 1500 |
_excess[n] -= delta; |
| 1296 | 1501 |
_excess[t] += delta; |
| 1297 | 1502 |
if (_excess[t] > 0 && _excess[t] <= delta) |
| 1298 | 1503 |
_active_nodes.push_back(t); |
| 1299 | 1504 |
} |
| 1300 | 1505 |
|
| 1301 | 1506 |
if (_excess[n] == 0) {
|
| 1302 | 1507 |
_next_out[n] = a; |
| 1303 | 1508 |
goto remove_nodes; |
| 1304 | 1509 |
} |
| 1305 | 1510 |
} |
| 1306 | 1511 |
} |
| 1307 | 1512 |
_next_out[n] = a; |
| 1308 | 1513 |
} |
| 1309 | 1514 |
|
| 1310 | 1515 |
// Relabel the node if it is still active (or hyper) |
| 1311 | 1516 |
if (_excess[n] > 0 || hyper[n]) {
|
| 1312 | 1517 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
| 1313 | 1518 |
std::numeric_limits<LargeCost>::max(); |
| 1314 | 1519 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
| 1315 | 1520 |
if (_res_cap[a] > 0) {
|
| 1316 | 1521 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
| 1317 | 1522 |
if (rc < min_red_cost) {
|
| 1318 | 1523 |
min_red_cost = rc; |
| 1319 | 1524 |
} |
| 1320 | 1525 |
} |
| 1321 | 1526 |
} |
| 1322 | 1527 |
_pi[n] -= min_red_cost + _epsilon; |
| 1323 | 1528 |
_next_out[n] = _first_out[n]; |
| 1324 | 1529 |
hyper[n] = false; |
| 1325 | 1530 |
++relabel_cnt; |
| 1326 | 1531 |
} |
| 1327 | 1532 |
|
| 1328 | 1533 |
// Remove nodes that are not active nor hyper |
| 1329 | 1534 |
remove_nodes: |
| 1330 | 1535 |
while ( _active_nodes.size() > 0 && |
| 1331 | 1536 |
_excess[_active_nodes.front()] <= 0 && |
| 1332 | 1537 |
!hyper[_active_nodes.front()] ) {
|
| 1333 | 1538 |
_active_nodes.pop_front(); |
| 1334 | 1539 |
} |
| 1335 | 1540 |
|
| 1336 | 1541 |
// Global update heuristic |
| 1337 | 1542 |
if (relabel_cnt >= next_global_update_limit) {
|
| 1338 | 1543 |
globalUpdate(); |
| 1339 | 1544 |
for (int u = 0; u != _res_node_num; ++u) |
| 1340 | 1545 |
hyper[u] = false; |
| 1341 | 1546 |
next_global_update_limit += global_update_skip; |
| 1342 | 1547 |
} |
| 1343 | 1548 |
} |
| 1344 | 1549 |
} |
| 1345 | 1550 |
} |
| 1346 | 1551 |
|
| 1347 | 1552 |
}; //class CostScaling |
| 1348 | 1553 |
|
| 1349 | 1554 |
///@} |
| 1350 | 1555 |
|
| 1351 | 1556 |
} //namespace lemon |
| 1352 | 1557 |
|
| 1353 | 1558 |
#endif //LEMON_COST_SCALING_H |
0 comments (0 inline)