| ... | ... |
@@ -982,26 +982,225 @@ |
| 982 | 982 |
|
| 983 |
// Early termination heuristic |
|
| 984 |
bool earlyTermination() {
|
|
| 985 |
|
|
| 983 |
// Price (potential) refinement heuristic |
|
| 984 |
bool priceRefinement() {
|
|
| 986 | 985 |
|
| 987 |
// Build a static residual graph |
|
| 988 |
_arc_vec.clear(); |
|
| 989 |
_cost_vec.clear(); |
|
| 990 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 991 |
if (_res_cap[j] > 0) {
|
|
| 992 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 993 |
|
|
| 986 |
// Stack for stroing the topological order |
|
| 987 |
IntVector stack(_res_node_num); |
|
| 988 |
int stack_top; |
|
| 989 |
|
|
| 990 |
// Perform phases |
|
| 991 |
while (topologicalSort(stack, stack_top)) {
|
|
| 992 |
|
|
| 993 |
// Compute node ranks in the acyclic admissible network and |
|
| 994 |
// store the nodes in buckets |
|
| 995 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 996 |
_rank[i] = 0; |
|
| 994 | 997 |
} |
| 998 |
const int bucket_end = _root + 1; |
|
| 999 |
for (int r = 0; r != _max_rank; ++r) {
|
|
| 1000 |
_buckets[r] = bucket_end; |
|
| 1001 |
} |
|
| 1002 |
int top_rank = 0; |
|
| 1003 |
for ( ; stack_top >= 0; --stack_top) {
|
|
| 1004 |
int u = stack[stack_top], v; |
|
| 1005 |
int rank_u = _rank[u]; |
|
| 1006 |
|
|
| 1007 |
LargeCost rc, pi_u = _pi[u]; |
|
| 1008 |
int last_out = _first_out[u+1]; |
|
| 1009 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1010 |
if (_res_cap[a] > 0) {
|
|
| 1011 |
v = _target[a]; |
|
| 1012 |
rc = _cost[a] + pi_u - _pi[v]; |
|
| 1013 |
if (rc < 0) {
|
|
| 1014 |
LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon); |
|
| 1015 |
if (nrc < LargeCost(_max_rank)) {
|
|
| 1016 |
int new_rank_v = rank_u + static_cast<int>(nrc); |
|
| 1017 |
if (new_rank_v > _rank[v]) {
|
|
| 1018 |
_rank[v] = new_rank_v; |
|
| 1019 |
} |
|
| 1020 |
} |
|
| 1021 |
} |
|
| 1022 |
} |
|
| 1023 |
} |
|
| 1024 |
|
|
| 1025 |
if (rank_u > 0) {
|
|
| 1026 |
top_rank = std::max(top_rank, rank_u); |
|
| 1027 |
int bfirst = _buckets[rank_u]; |
|
| 1028 |
_bucket_next[u] = bfirst; |
|
| 1029 |
_bucket_prev[bfirst] = u; |
|
| 1030 |
_buckets[rank_u] = u; |
|
| 1031 |
} |
|
| 1032 |
} |
|
| 1033 |
|
|
| 1034 |
// Check if the current flow is epsilon-optimal |
|
| 1035 |
if (top_rank == 0) {
|
|
| 1036 |
return true; |
|
| 1037 |
} |
|
| 1038 |
|
|
| 1039 |
// Process buckets in top-down order |
|
| 1040 |
for (int rank = top_rank; rank > 0; --rank) {
|
|
| 1041 |
while (_buckets[rank] != bucket_end) {
|
|
| 1042 |
// Remove the first node from the current bucket |
|
| 1043 |
int u = _buckets[rank]; |
|
| 1044 |
_buckets[rank] = _bucket_next[u]; |
|
| 1045 |
|
|
| 1046 |
// Search the outgoing arcs of u |
|
| 1047 |
LargeCost rc, pi_u = _pi[u]; |
|
| 1048 |
int last_out = _first_out[u+1]; |
|
| 1049 |
int v, old_rank_v, new_rank_v; |
|
| 1050 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1051 |
if (_res_cap[a] > 0) {
|
|
| 1052 |
v = _target[a]; |
|
| 1053 |
old_rank_v = _rank[v]; |
|
| 1054 |
|
|
| 1055 |
if (old_rank_v < rank) {
|
|
| 1056 |
|
|
| 1057 |
// Compute the new rank of node v |
|
| 1058 |
rc = _cost[a] + pi_u - _pi[v]; |
|
| 1059 |
if (rc < 0) {
|
|
| 1060 |
new_rank_v = rank; |
|
| 1061 |
} else {
|
|
| 1062 |
LargeCost nrc = rc / _epsilon; |
|
| 1063 |
new_rank_v = 0; |
|
| 1064 |
if (nrc < LargeCost(_max_rank)) {
|
|
| 1065 |
new_rank_v = rank - 1 - static_cast<int>(nrc); |
|
| 1066 |
} |
|
| 1067 |
} |
|
| 1068 |
|
|
| 1069 |
// Change the rank of node v |
|
| 1070 |
if (new_rank_v > old_rank_v) {
|
|
| 1071 |
_rank[v] = new_rank_v; |
|
| 1072 |
|
|
| 1073 |
// Remove v from its old bucket |
|
| 1074 |
if (old_rank_v > 0) {
|
|
| 1075 |
if (_buckets[old_rank_v] == v) {
|
|
| 1076 |
_buckets[old_rank_v] = _bucket_next[v]; |
|
| 1077 |
} else {
|
|
| 1078 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
|
| 1079 |
_bucket_next[pv] = nv; |
|
| 1080 |
_bucket_prev[nv] = pv; |
|
| 1081 |
} |
|
| 1082 |
} |
|
| 1083 |
|
|
| 1084 |
// Insert v into its new bucket |
|
| 1085 |
int nv = _buckets[new_rank_v]; |
|
| 1086 |
_bucket_next[v] = nv; |
|
| 1087 |
_bucket_prev[nv] = v; |
|
| 1088 |
_buckets[new_rank_v] = v; |
|
| 1089 |
} |
|
| 1090 |
} |
|
| 1091 |
} |
|
| 1092 |
} |
|
| 1093 |
|
|
| 1094 |
// Refine potential of node u |
|
| 1095 |
_pi[u] -= rank * _epsilon; |
|
| 1096 |
} |
|
| 1097 |
} |
|
| 1098 |
|
|
| 995 | 1099 |
} |
| 996 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 997 | 1100 |
|
| 998 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
|
| 999 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 1000 |
bf.init(0); |
|
| 1001 |
bool done = false; |
|
| 1002 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 1003 |
for (int i = 0; i < K && !done; ++i) {
|
|
| 1004 |
|
|
| 1101 |
return false; |
|
| 1102 |
} |
|
| 1103 |
|
|
| 1104 |
// Find and cancel cycles in the admissible network and |
|
| 1105 |
// determine topological order using DFS |
|
| 1106 |
bool topologicalSort(IntVector &stack, int &stack_top) {
|
|
| 1107 |
const int MAX_CYCLE_CANCEL = 1; |
|
| 1108 |
|
|
| 1109 |
BoolVector reached(_res_node_num, false); |
|
| 1110 |
BoolVector processed(_res_node_num, false); |
|
| 1111 |
IntVector pred(_res_node_num); |
|
| 1112 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 1113 |
_next_out[i] = _first_out[i]; |
|
| 1005 | 1114 |
} |
| 1006 |
|
|
| 1115 |
stack_top = -1; |
|
| 1116 |
|
|
| 1117 |
int cycle_cnt = 0; |
|
| 1118 |
for (int start = 0; start != _res_node_num; ++start) {
|
|
| 1119 |
if (reached[start]) continue; |
|
| 1120 |
|
|
| 1121 |
// Start DFS search from this start node |
|
| 1122 |
pred[start] = -1; |
|
| 1123 |
int tip = start, v; |
|
| 1124 |
while (true) {
|
|
| 1125 |
// Check the outgoing arcs of the current tip node |
|
| 1126 |
reached[tip] = true; |
|
| 1127 |
LargeCost pi_tip = _pi[tip]; |
|
| 1128 |
int a, last_out = _first_out[tip+1]; |
|
| 1129 |
for (a = _next_out[tip]; a != last_out; ++a) {
|
|
| 1130 |
if (_res_cap[a] > 0) {
|
|
| 1131 |
v = _target[a]; |
|
| 1132 |
if (_cost[a] + pi_tip - _pi[v] < 0) {
|
|
| 1133 |
if (!reached[v]) {
|
|
| 1134 |
// A new node is reached |
|
| 1135 |
reached[v] = true; |
|
| 1136 |
pred[v] = tip; |
|
| 1137 |
_next_out[tip] = a; |
|
| 1138 |
tip = v; |
|
| 1139 |
a = _next_out[tip]; |
|
| 1140 |
last_out = _first_out[tip+1]; |
|
| 1141 |
break; |
|
| 1142 |
} |
|
| 1143 |
else if (!processed[v]) {
|
|
| 1144 |
// A cycle is found |
|
| 1145 |
++cycle_cnt; |
|
| 1146 |
_next_out[tip] = a; |
|
| 1147 |
|
|
| 1148 |
// Find the minimum residual capacity along the cycle |
|
| 1149 |
Value d, delta = _res_cap[a]; |
|
| 1150 |
int u, delta_node = tip; |
|
| 1151 |
for (u = tip; u != v; ) {
|
|
| 1152 |
u = pred[u]; |
|
| 1153 |
d = _res_cap[_next_out[u]]; |
|
| 1154 |
if (d <= delta) {
|
|
| 1155 |
delta = d; |
|
| 1156 |
delta_node = u; |
|
| 1157 |
} |
|
| 1158 |
} |
|
| 1159 |
|
|
| 1160 |
// Augment along the cycle |
|
| 1161 |
_res_cap[a] -= delta; |
|
| 1162 |
_res_cap[_reverse[a]] += delta; |
|
| 1163 |
for (u = tip; u != v; ) {
|
|
| 1164 |
u = pred[u]; |
|
| 1165 |
int ca = _next_out[u]; |
|
| 1166 |
_res_cap[ca] -= delta; |
|
| 1167 |
_res_cap[_reverse[ca]] += delta; |
|
| 1168 |
} |
|
| 1169 |
|
|
| 1170 |
// Check the maximum number of cycle canceling |
|
| 1171 |
if (cycle_cnt >= MAX_CYCLE_CANCEL) {
|
|
| 1172 |
return false; |
|
| 1173 |
} |
|
| 1174 |
|
|
| 1175 |
// Roll back search to delta_node |
|
| 1176 |
if (delta_node != tip) {
|
|
| 1177 |
for (u = tip; u != delta_node; u = pred[u]) {
|
|
| 1178 |
reached[u] = false; |
|
| 1179 |
} |
|
| 1180 |
tip = delta_node; |
|
| 1181 |
a = _next_out[tip] + 1; |
|
| 1182 |
last_out = _first_out[tip+1]; |
|
| 1183 |
break; |
|
| 1184 |
} |
|
| 1185 |
} |
|
| 1186 |
} |
|
| 1187 |
} |
|
| 1188 |
} |
|
| 1189 |
|
|
| 1190 |
// Step back to the previous node |
|
| 1191 |
if (a == last_out) {
|
|
| 1192 |
processed[tip] = true; |
|
| 1193 |
stack[++stack_top] = tip; |
|
| 1194 |
tip = pred[tip]; |
|
| 1195 |
if (tip < 0) {
|
|
| 1196 |
// Finish DFS from the current start node |
|
| 1197 |
break; |
|
| 1198 |
} |
|
| 1199 |
++_next_out[tip]; |
|
| 1200 |
} |
|
| 1201 |
} |
|
| 1202 |
|
|
| 1203 |
} |
|
| 1204 |
|
|
| 1205 |
return (cycle_cnt == 0); |
|
| 1007 | 1206 |
} |
| ... | ... |
@@ -1104,3 +1303,3 @@ |
| 1104 | 1303 |
// Paramters for heuristics |
| 1105 |
const int |
|
| 1304 |
const int PRICE_REFINEMENT_LIMIT = 2; |
|
| 1106 | 1305 |
const double GLOBAL_UPDATE_FACTOR = 1.0; |
| ... | ... |
@@ -1114,2 +1313,3 @@ |
| 1114 | 1313 |
int relabel_cnt = 0; |
| 1314 |
int eps_phase_cnt = 0; |
|
| 1115 | 1315 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| ... | ... |
@@ -1117,5 +1317,7 @@ |
| 1117 | 1317 |
{
|
| 1118 |
// Early termination heuristic |
|
| 1119 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1120 |
|
|
| 1318 |
++eps_phase_cnt; |
|
| 1319 |
|
|
| 1320 |
// Price refinement heuristic |
|
| 1321 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
|
| 1322 |
if (priceRefinement()) continue; |
|
| 1121 | 1323 |
} |
| ... | ... |
@@ -1226,3 +1428,3 @@ |
| 1226 | 1428 |
// Paramters for heuristics |
| 1227 |
const int |
|
| 1429 |
const int PRICE_REFINEMENT_LIMIT = 2; |
|
| 1228 | 1430 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
| ... | ... |
@@ -1237,2 +1439,3 @@ |
| 1237 | 1439 |
int relabel_cnt = 0; |
| 1440 |
int eps_phase_cnt = 0; |
|
| 1238 | 1441 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| ... | ... |
@@ -1240,5 +1443,7 @@ |
| 1240 | 1443 |
{
|
| 1241 |
// Early termination heuristic |
|
| 1242 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1243 |
|
|
| 1444 |
++eps_phase_cnt; |
|
| 1445 |
|
|
| 1446 |
// Price refinement heuristic |
|
| 1447 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
|
| 1448 |
if (priceRefinement()) continue; |
|
| 1244 | 1449 |
} |
0 comments (0 inline)