|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2010
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
|
|
20 |
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
|
|
21 |
|
|
22 |
/// \ingroup approx_algs
|
|
23 |
///
|
|
24 |
/// \file
|
|
25 |
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan
|
|
26 |
/// for the maximum clique problem
|
|
27 |
|
|
28 |
#include <vector>
|
|
29 |
#include <limits>
|
|
30 |
#include <lemon/core.h>
|
|
31 |
#include <lemon/random.h>
|
|
32 |
|
|
33 |
namespace lemon {
|
|
34 |
|
|
35 |
/// \addtogroup approx_algs
|
|
36 |
/// @{
|
|
37 |
|
|
38 |
/// \brief Implementation of the iterated local search algorithm of Grosso,
|
|
39 |
/// Locatelli, and Pullan for the maximum clique problem
|
|
40 |
///
|
|
41 |
/// \ref GrossoLocatelliPullanMc implements the iterated local search
|
|
42 |
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
|
|
43 |
/// \e clique \e problem \ref grosso08maxclique.
|
|
44 |
/// It is to find the largest complete subgraph (\e clique) in an
|
|
45 |
/// undirected graph, i.e., the largest set of nodes where each
|
|
46 |
/// pair of nodes is connected.
|
|
47 |
///
|
|
48 |
/// This class provides a simple but highly efficient and robust heuristic
|
|
49 |
/// method that quickly finds a large clique, but not necessarily the
|
|
50 |
/// largest one.
|
|
51 |
///
|
|
52 |
/// \tparam GR The undirected graph type the algorithm runs on.
|
|
53 |
///
|
|
54 |
/// \note %GrossoLocatelliPullanMc provides three different node selection
|
|
55 |
/// rules, from which the most powerful one is used by default.
|
|
56 |
/// For more information, see \ref SelectionRule.
|
|
57 |
template <typename GR>
|
|
58 |
class GrossoLocatelliPullanMc
|
|
59 |
{
|
|
60 |
public:
|
|
61 |
|
|
62 |
/// \brief Constants for specifying the node selection rule.
|
|
63 |
///
|
|
64 |
/// Enum type containing constants for specifying the node selection rule
|
|
65 |
/// for the \ref run() function.
|
|
66 |
///
|
|
67 |
/// During the algorithm, nodes are selected for addition to the current
|
|
68 |
/// clique according to the applied rule.
|
|
69 |
/// In general, the PENALTY_BASED rule turned out to be the most powerful
|
|
70 |
/// and the most robust, thus it is the default option.
|
|
71 |
/// However, another selection rule can be specified using the \ref run()
|
|
72 |
/// function with the proper parameter.
|
|
73 |
enum SelectionRule {
|
|
74 |
|
|
75 |
/// A node is selected randomly without any evaluation at each step.
|
|
76 |
RANDOM,
|
|
77 |
|
|
78 |
/// A node of maximum degree is selected randomly at each step.
|
|
79 |
DEGREE_BASED,
|
|
80 |
|
|
81 |
/// A node of minimum penalty is selected randomly at each step.
|
|
82 |
/// The node penalties are updated adaptively after each stage of the
|
|
83 |
/// search process.
|
|
84 |
PENALTY_BASED
|
|
85 |
};
|
|
86 |
|
|
87 |
private:
|
|
88 |
|
|
89 |
TEMPLATE_GRAPH_TYPEDEFS(GR);
|
|
90 |
|
|
91 |
typedef std::vector<int> IntVector;
|
|
92 |
typedef std::vector<char> BoolVector;
|
|
93 |
typedef std::vector<BoolVector> BoolMatrix;
|
|
94 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
|
|
95 |
|
|
96 |
const GR &_graph;
|
|
97 |
IntNodeMap _id;
|
|
98 |
|
|
99 |
// Internal matrix representation of the graph
|
|
100 |
BoolMatrix _gr;
|
|
101 |
int _n;
|
|
102 |
|
|
103 |
// The current clique
|
|
104 |
BoolVector _clique;
|
|
105 |
int _size;
|
|
106 |
|
|
107 |
// The best clique found so far
|
|
108 |
BoolVector _best_clique;
|
|
109 |
int _best_size;
|
|
110 |
|
|
111 |
// The "distances" of the nodes from the current clique.
|
|
112 |
// _delta[u] is the number of nodes in the clique that are
|
|
113 |
// not connected with u.
|
|
114 |
IntVector _delta;
|
|
115 |
|
|
116 |
// The current tabu set
|
|
117 |
BoolVector _tabu;
|
|
118 |
|
|
119 |
// Random number generator
|
|
120 |
Random _rnd;
|
|
121 |
|
|
122 |
private:
|
|
123 |
|
|
124 |
// Implementation of the RANDOM node selection rule.
|
|
125 |
class RandomSelectionRule
|
|
126 |
{
|
|
127 |
private:
|
|
128 |
|
|
129 |
// References to the algorithm instance
|
|
130 |
const BoolVector &_clique;
|
|
131 |
const IntVector &_delta;
|
|
132 |
const BoolVector &_tabu;
|
|
133 |
Random &_rnd;
|
|
134 |
|
|
135 |
// Pivot rule data
|
|
136 |
int _n;
|
|
137 |
|
|
138 |
public:
|
|
139 |
|
|
140 |
// Constructor
|
|
141 |
RandomSelectionRule(GrossoLocatelliPullanMc &mc) :
|
|
142 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
|
|
143 |
_rnd(mc._rnd), _n(mc._n)
|
|
144 |
{}
|
|
145 |
|
|
146 |
// Return a node index for a feasible add move or -1 if no one exists
|
|
147 |
int nextFeasibleAddNode() const {
|
|
148 |
int start_node = _rnd[_n];
|
|
149 |
for (int i = start_node; i != _n; i++) {
|
|
150 |
if (_delta[i] == 0 && !_tabu[i]) return i;
|
|
151 |
}
|
|
152 |
for (int i = 0; i != start_node; i++) {
|
|
153 |
if (_delta[i] == 0 && !_tabu[i]) return i;
|
|
154 |
}
|
|
155 |
return -1;
|
|
156 |
}
|
|
157 |
|
|
158 |
// Return a node index for a feasible swap move or -1 if no one exists
|
|
159 |
int nextFeasibleSwapNode() const {
|
|
160 |
int start_node = _rnd[_n];
|
|
161 |
for (int i = start_node; i != _n; i++) {
|
|
162 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
|
|
163 |
}
|
|
164 |
for (int i = 0; i != start_node; i++) {
|
|
165 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
|
|
166 |
}
|
|
167 |
return -1;
|
|
168 |
}
|
|
169 |
|
|
170 |
// Return a node index for an add move or -1 if no one exists
|
|
171 |
int nextAddNode() const {
|
|
172 |
int start_node = _rnd[_n];
|
|
173 |
for (int i = start_node; i != _n; i++) {
|
|
174 |
if (_delta[i] == 0) return i;
|
|
175 |
}
|
|
176 |
for (int i = 0; i != start_node; i++) {
|
|
177 |
if (_delta[i] == 0) return i;
|
|
178 |
}
|
|
179 |
return -1;
|
|
180 |
}
|
|
181 |
|
|
182 |
// Update internal data structures between stages (if necessary)
|
|
183 |
void update() {}
|
|
184 |
|
|
185 |
}; //class RandomSelectionRule
|
|
186 |
|
|
187 |
|
|
188 |
// Implementation of the DEGREE_BASED node selection rule.
|
|
189 |
class DegreeBasedSelectionRule
|
|
190 |
{
|
|
191 |
private:
|
|
192 |
|
|
193 |
// References to the algorithm instance
|
|
194 |
const BoolVector &_clique;
|
|
195 |
const IntVector &_delta;
|
|
196 |
const BoolVector &_tabu;
|
|
197 |
Random &_rnd;
|
|
198 |
|
|
199 |
// Pivot rule data
|
|
200 |
int _n;
|
|
201 |
IntVector _deg;
|
|
202 |
|
|
203 |
public:
|
|
204 |
|
|
205 |
// Constructor
|
|
206 |
DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
|
|
207 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
|
|
208 |
_rnd(mc._rnd), _n(mc._n), _deg(_n)
|
|
209 |
{
|
|
210 |
for (int i = 0; i != _n; i++) {
|
|
211 |
int d = 0;
|
|
212 |
BoolVector &row = mc._gr[i];
|
|
213 |
for (int j = 0; j != _n; j++) {
|
|
214 |
if (row[j]) d++;
|
|
215 |
}
|
|
216 |
_deg[i] = d;
|
|
217 |
}
|
|
218 |
}
|
|
219 |
|
|
220 |
// Return a node index for a feasible add move or -1 if no one exists
|
|
221 |
int nextFeasibleAddNode() const {
|
|
222 |
int start_node = _rnd[_n];
|
|
223 |
int node = -1, max_deg = -1;
|
|
224 |
for (int i = start_node; i != _n; i++) {
|
|
225 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
|
|
226 |
node = i;
|
|
227 |
max_deg = _deg[i];
|
|
228 |
}
|
|
229 |
}
|
|
230 |
for (int i = 0; i != start_node; i++) {
|
|
231 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
|
|
232 |
node = i;
|
|
233 |
max_deg = _deg[i];
|
|
234 |
}
|
|
235 |
}
|
|
236 |
return node;
|
|
237 |
}
|
|
238 |
|
|
239 |
// Return a node index for a feasible swap move or -1 if no one exists
|
|
240 |
int nextFeasibleSwapNode() const {
|
|
241 |
int start_node = _rnd[_n];
|
|
242 |
int node = -1, max_deg = -1;
|
|
243 |
for (int i = start_node; i != _n; i++) {
|
|
244 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
|
|
245 |
_deg[i] > max_deg) {
|
|
246 |
node = i;
|
|
247 |
max_deg = _deg[i];
|
|
248 |
}
|
|
249 |
}
|
|
250 |
for (int i = 0; i != start_node; i++) {
|
|
251 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
|
|
252 |
_deg[i] > max_deg) {
|
|
253 |
node = i;
|
|
254 |
max_deg = _deg[i];
|
|
255 |
}
|
|
256 |
}
|
|
257 |
return node;
|
|
258 |
}
|
|
259 |
|
|
260 |
// Return a node index for an add move or -1 if no one exists
|
|
261 |
int nextAddNode() const {
|
|
262 |
int start_node = _rnd[_n];
|
|
263 |
int node = -1, max_deg = -1;
|
|
264 |
for (int i = start_node; i != _n; i++) {
|
|
265 |
if (_delta[i] == 0 && _deg[i] > max_deg) {
|
|
266 |
node = i;
|
|
267 |
max_deg = _deg[i];
|
|
268 |
}
|
|
269 |
}
|
|
270 |
for (int i = 0; i != start_node; i++) {
|
|
271 |
if (_delta[i] == 0 && _deg[i] > max_deg) {
|
|
272 |
node = i;
|
|
273 |
max_deg = _deg[i];
|
|
274 |
}
|
|
275 |
}
|
|
276 |
return node;
|
|
277 |
}
|
|
278 |
|
|
279 |
// Update internal data structures between stages (if necessary)
|
|
280 |
void update() {}
|
|
281 |
|
|
282 |
}; //class DegreeBasedSelectionRule
|
|
283 |
|
|
284 |
|
|
285 |
// Implementation of the PENALTY_BASED node selection rule.
|
|
286 |
class PenaltyBasedSelectionRule
|
|
287 |
{
|
|
288 |
private:
|
|
289 |
|
|
290 |
// References to the algorithm instance
|
|
291 |
const BoolVector &_clique;
|
|
292 |
const IntVector &_delta;
|
|
293 |
const BoolVector &_tabu;
|
|
294 |
Random &_rnd;
|
|
295 |
|
|
296 |
// Pivot rule data
|
|
297 |
int _n;
|
|
298 |
IntVector _penalty;
|
|
299 |
|
|
300 |
public:
|
|
301 |
|
|
302 |
// Constructor
|
|
303 |
PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
|
|
304 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
|
|
305 |
_rnd(mc._rnd), _n(mc._n), _penalty(_n, 0)
|
|
306 |
{}
|
|
307 |
|
|
308 |
// Return a node index for a feasible add move or -1 if no one exists
|
|
309 |
int nextFeasibleAddNode() const {
|
|
310 |
int start_node = _rnd[_n];
|
|
311 |
int node = -1, min_p = std::numeric_limits<int>::max();
|
|
312 |
for (int i = start_node; i != _n; i++) {
|
|
313 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
|
|
314 |
node = i;
|
|
315 |
min_p = _penalty[i];
|
|
316 |
}
|
|
317 |
}
|
|
318 |
for (int i = 0; i != start_node; i++) {
|
|
319 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
|
|
320 |
node = i;
|
|
321 |
min_p = _penalty[i];
|
|
322 |
}
|
|
323 |
}
|
|
324 |
return node;
|
|
325 |
}
|
|
326 |
|
|
327 |
// Return a node index for a feasible swap move or -1 if no one exists
|
|
328 |
int nextFeasibleSwapNode() const {
|
|
329 |
int start_node = _rnd[_n];
|
|
330 |
int node = -1, min_p = std::numeric_limits<int>::max();
|
|
331 |
for (int i = start_node; i != _n; i++) {
|
|
332 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
|
|
333 |
_penalty[i] < min_p) {
|
|
334 |
node = i;
|
|
335 |
min_p = _penalty[i];
|
|
336 |
}
|
|
337 |
}
|
|
338 |
for (int i = 0; i != start_node; i++) {
|
|
339 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
|
|
340 |
_penalty[i] < min_p) {
|
|
341 |
node = i;
|
|
342 |
min_p = _penalty[i];
|
|
343 |
}
|
|
344 |
}
|
|
345 |
return node;
|
|
346 |
}
|
|
347 |
|
|
348 |
// Return a node index for an add move or -1 if no one exists
|
|
349 |
int nextAddNode() const {
|
|
350 |
int start_node = _rnd[_n];
|
|
351 |
int node = -1, min_p = std::numeric_limits<int>::max();
|
|
352 |
for (int i = start_node; i != _n; i++) {
|
|
353 |
if (_delta[i] == 0 && _penalty[i] < min_p) {
|
|
354 |
node = i;
|
|
355 |
min_p = _penalty[i];
|
|
356 |
}
|
|
357 |
}
|
|
358 |
for (int i = 0; i != start_node; i++) {
|
|
359 |
if (_delta[i] == 0 && _penalty[i] < min_p) {
|
|
360 |
node = i;
|
|
361 |
min_p = _penalty[i];
|
|
362 |
}
|
|
363 |
}
|
|
364 |
return node;
|
|
365 |
}
|
|
366 |
|
|
367 |
// Update internal data structures between stages (if necessary)
|
|
368 |
void update() {}
|
|
369 |
|
|
370 |
}; //class PenaltyBasedSelectionRule
|
|
371 |
|
|
372 |
public:
|
|
373 |
|
|
374 |
/// \brief Constructor.
|
|
375 |
///
|
|
376 |
/// Constructor.
|
|
377 |
/// The global \ref rnd "random number generator instance" is used
|
|
378 |
/// during the algorithm.
|
|
379 |
///
|
|
380 |
/// \param graph The undirected graph the algorithm runs on.
|
|
381 |
GrossoLocatelliPullanMc(const GR& graph) :
|
|
382 |
_graph(graph), _id(_graph), _rnd(rnd)
|
|
383 |
{}
|
|
384 |
|
|
385 |
/// \brief Constructor with random seed.
|
|
386 |
///
|
|
387 |
/// Constructor with random seed.
|
|
388 |
///
|
|
389 |
/// \param graph The undirected graph the algorithm runs on.
|
|
390 |
/// \param seed Seed value for the internal random number generator
|
|
391 |
/// that is used during the algorithm.
|
|
392 |
GrossoLocatelliPullanMc(const GR& graph, int seed) :
|
|
393 |
_graph(graph), _id(_graph), _rnd(seed)
|
|
394 |
{}
|
|
395 |
|
|
396 |
/// \brief Constructor with random number generator.
|
|
397 |
///
|
|
398 |
/// Constructor with random number generator.
|
|
399 |
///
|
|
400 |
/// \param graph The undirected graph the algorithm runs on.
|
|
401 |
/// \param random A random number generator that is used during the
|
|
402 |
/// algorithm.
|
|
403 |
GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
|
|
404 |
_graph(graph), _id(_graph), _rnd(random)
|
|
405 |
{}
|
|
406 |
|
|
407 |
/// \name Execution Control
|
|
408 |
/// @{
|
|
409 |
|
|
410 |
/// \brief Runs the algorithm.
|
|
411 |
///
|
|
412 |
/// This function runs the algorithm.
|
|
413 |
///
|
|
414 |
/// \param step_num The maximum number of node selections (steps)
|
|
415 |
/// during the search process.
|
|
416 |
/// This parameter controls the running time and the success of the
|
|
417 |
/// algorithm. For larger values, the algorithm runs slower but it more
|
|
418 |
/// likely finds larger cliques. For smaller values, the algorithm is
|
|
419 |
/// faster but probably gives worse results.
|
|
420 |
/// \param rule The node selection rule. For more information, see
|
|
421 |
/// \ref SelectionRule.
|
|
422 |
///
|
|
423 |
/// \return The size of the found clique.
|
|
424 |
int run(int step_num = 100000,
|
|
425 |
SelectionRule rule = PENALTY_BASED)
|
|
426 |
{
|
|
427 |
init();
|
|
428 |
switch (rule) {
|
|
429 |
case RANDOM:
|
|
430 |
return start<RandomSelectionRule>(step_num);
|
|
431 |
case DEGREE_BASED:
|
|
432 |
return start<DegreeBasedSelectionRule>(step_num);
|
|
433 |
case PENALTY_BASED:
|
|
434 |
return start<PenaltyBasedSelectionRule>(step_num);
|
|
435 |
}
|
|
436 |
return 0; // avoid warning
|
|
437 |
}
|
|
438 |
|
|
439 |
/// @}
|
|
440 |
|
|
441 |
/// \name Query Functions
|
|
442 |
/// @{
|
|
443 |
|
|
444 |
/// \brief The size of the found clique
|
|
445 |
///
|
|
446 |
/// This function returns the size of the found clique.
|
|
447 |
///
|
|
448 |
/// \pre run() must be called before using this function.
|
|
449 |
int cliqueSize() const {
|
|
450 |
return _best_size;
|
|
451 |
}
|
|
452 |
|
|
453 |
/// \brief Gives back the found clique in a \c bool node map
|
|
454 |
///
|
|
455 |
/// This function gives back the characteristic vector of the found
|
|
456 |
/// clique in the given node map.
|
|
457 |
/// It must be a \ref concepts::WriteMap "writable" node map with
|
|
458 |
/// \c bool (or convertible) value type.
|
|
459 |
///
|
|
460 |
/// \pre run() must be called before using this function.
|
|
461 |
template <typename CliqueMap>
|
|
462 |
void cliqueMap(CliqueMap &map) const {
|
|
463 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
464 |
map[n] = static_cast<bool>(_best_clique[_id[n]]);
|
|
465 |
}
|
|
466 |
}
|
|
467 |
|
|
468 |
/// \brief Iterator to list the nodes of the found clique
|
|
469 |
///
|
|
470 |
/// This iterator class lists the nodes of the found clique.
|
|
471 |
/// Before using it, you must allocate a GrossoLocatelliPullanMc instance
|
|
472 |
/// and call its \ref GrossoLocatelliPullanMc::run() "run()" method.
|
|
473 |
///
|
|
474 |
/// The following example prints out the IDs of the nodes in the found
|
|
475 |
/// clique.
|
|
476 |
/// \code
|
|
477 |
/// GrossoLocatelliPullanMc<Graph> mc(g);
|
|
478 |
/// mc.run();
|
|
479 |
/// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc);
|
|
480 |
/// n != INVALID; ++n)
|
|
481 |
/// {
|
|
482 |
/// std::cout << g.id(n) << std::endl;
|
|
483 |
/// }
|
|
484 |
/// \endcode
|
|
485 |
class CliqueNodeIt
|
|
486 |
{
|
|
487 |
private:
|
|
488 |
NodeIt _it;
|
|
489 |
BoolNodeMap _map;
|
|
490 |
|
|
491 |
public:
|
|
492 |
|
|
493 |
/// Constructor
|
|
494 |
|
|
495 |
/// Constructor.
|
|
496 |
/// \param mc The algorithm instance.
|
|
497 |
CliqueNodeIt(const GrossoLocatelliPullanMc &mc)
|
|
498 |
: _map(mc._graph)
|
|
499 |
{
|
|
500 |
mc.cliqueMap(_map);
|
|
501 |
for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ;
|
|
502 |
}
|
|
503 |
|
|
504 |
/// Conversion to \c Node
|
|
505 |
operator Node() const { return _it; }
|
|
506 |
|
|
507 |
bool operator==(Invalid) const { return _it == INVALID; }
|
|
508 |
bool operator!=(Invalid) const { return _it != INVALID; }
|
|
509 |
|
|
510 |
/// Next node
|
|
511 |
CliqueNodeIt &operator++() {
|
|
512 |
for (++_it; _it != INVALID && !_map[_it]; ++_it) ;
|
|
513 |
return *this;
|
|
514 |
}
|
|
515 |
|
|
516 |
/// Postfix incrementation
|
|
517 |
|
|
518 |
/// Postfix incrementation.
|
|
519 |
///
|
|
520 |
/// \warning This incrementation returns a \c Node, not a
|
|
521 |
/// \c CliqueNodeIt as one may expect.
|
|
522 |
typename GR::Node operator++(int) {
|
|
523 |
Node n=*this;
|
|
524 |
++(*this);
|
|
525 |
return n;
|
|
526 |
}
|
|
527 |
|
|
528 |
};
|
|
529 |
|
|
530 |
/// @}
|
|
531 |
|
|
532 |
private:
|
|
533 |
|
|
534 |
// Adds a node to the current clique
|
|
535 |
void addCliqueNode(int u) {
|
|
536 |
if (_clique[u]) return;
|
|
537 |
_clique[u] = true;
|
|
538 |
_size++;
|
|
539 |
BoolVector &row = _gr[u];
|
|
540 |
for (int i = 0; i != _n; i++) {
|
|
541 |
if (!row[i]) _delta[i]++;
|
|
542 |
}
|
|
543 |
}
|
|
544 |
|
|
545 |
// Removes a node from the current clique
|
|
546 |
void delCliqueNode(int u) {
|
|
547 |
if (!_clique[u]) return;
|
|
548 |
_clique[u] = false;
|
|
549 |
_size--;
|
|
550 |
BoolVector &row = _gr[u];
|
|
551 |
for (int i = 0; i != _n; i++) {
|
|
552 |
if (!row[i]) _delta[i]--;
|
|
553 |
}
|
|
554 |
}
|
|
555 |
|
|
556 |
// Initialize data structures
|
|
557 |
void init() {
|
|
558 |
_n = countNodes(_graph);
|
|
559 |
int ui = 0;
|
|
560 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
561 |
_id[u] = ui++;
|
|
562 |
}
|
|
563 |
_gr.clear();
|
|
564 |
_gr.resize(_n, BoolVector(_n, false));
|
|
565 |
ui = 0;
|
|
566 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
567 |
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
|
|
568 |
int vi = _id[_graph.runningNode(e)];
|
|
569 |
_gr[ui][vi] = true;
|
|
570 |
_gr[vi][ui] = true;
|
|
571 |
}
|
|
572 |
++ui;
|
|
573 |
}
|
|
574 |
|
|
575 |
_clique.clear();
|
|
576 |
_clique.resize(_n, false);
|
|
577 |
_size = 0;
|
|
578 |
_best_clique.clear();
|
|
579 |
_best_clique.resize(_n, false);
|
|
580 |
_best_size = 0;
|
|
581 |
_delta.clear();
|
|
582 |
_delta.resize(_n, 0);
|
|
583 |
_tabu.clear();
|
|
584 |
_tabu.resize(_n, false);
|
|
585 |
}
|
|
586 |
|
|
587 |
// Executes the algorithm
|
|
588 |
template <typename SelectionRuleImpl>
|
|
589 |
int start(int max_select) {
|
|
590 |
// Options for the restart rule
|
|
591 |
const bool delta_based_restart = true;
|
|
592 |
const int restart_delta_limit = 4;
|
|
593 |
|
|
594 |
if (_n == 0) return 0;
|
|
595 |
if (_n == 1) {
|
|
596 |
_best_clique[0] = true;
|
|
597 |
_best_size = 1;
|
|
598 |
return _best_size;
|
|
599 |
}
|
|
600 |
|
|
601 |
// Iterated local search
|
|
602 |
SelectionRuleImpl sel_method(*this);
|
|
603 |
int select = 0;
|
|
604 |
IntVector restart_nodes;
|
|
605 |
|
|
606 |
while (select < max_select) {
|
|
607 |
|
|
608 |
// Perturbation/restart
|
|
609 |
if (delta_based_restart) {
|
|
610 |
restart_nodes.clear();
|
|
611 |
for (int i = 0; i != _n; i++) {
|
|
612 |
if (_delta[i] >= restart_delta_limit)
|
|
613 |
restart_nodes.push_back(i);
|
|
614 |
}
|
|
615 |
}
|
|
616 |
int rs_node = -1;
|
|
617 |
if (restart_nodes.size() > 0) {
|
|
618 |
rs_node = restart_nodes[_rnd[restart_nodes.size()]];
|
|
619 |
} else {
|
|
620 |
rs_node = _rnd[_n];
|
|
621 |
}
|
|
622 |
BoolVector &row = _gr[rs_node];
|
|
623 |
for (int i = 0; i != _n; i++) {
|
|
624 |
if (_clique[i] && !row[i]) delCliqueNode(i);
|
|
625 |
}
|
|
626 |
addCliqueNode(rs_node);
|
|
627 |
|
|
628 |
// Local search
|
|
629 |
_tabu.clear();
|
|
630 |
_tabu.resize(_n, false);
|
|
631 |
bool tabu_empty = true;
|
|
632 |
int max_swap = _size;
|
|
633 |
while (select < max_select) {
|
|
634 |
select++;
|
|
635 |
int u;
|
|
636 |
if ((u = sel_method.nextFeasibleAddNode()) != -1) {
|
|
637 |
// Feasible add move
|
|
638 |
addCliqueNode(u);
|
|
639 |
if (tabu_empty) max_swap = _size;
|
|
640 |
}
|
|
641 |
else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
|
|
642 |
// Feasible swap move
|
|
643 |
int v = -1;
|
|
644 |
BoolVector &row = _gr[u];
|
|
645 |
for (int i = 0; i != _n; i++) {
|
|
646 |
if (_clique[i] && !row[i]) {
|
|
647 |
v = i;
|
|
648 |
break;
|
|
649 |
}
|
|
650 |
}
|
|
651 |
addCliqueNode(u);
|
|
652 |
delCliqueNode(v);
|
|
653 |
_tabu[v] = true;
|
|
654 |
tabu_empty = false;
|
|
655 |
if (--max_swap <= 0) break;
|
|
656 |
}
|
|
657 |
else if ((u = sel_method.nextAddNode()) != -1) {
|
|
658 |
// Non-feasible add move
|
|
659 |
addCliqueNode(u);
|
|
660 |
}
|
|
661 |
else break;
|
|
662 |
}
|
|
663 |
if (_size > _best_size) {
|
|
664 |
_best_clique = _clique;
|
|
665 |
_best_size = _size;
|
|
666 |
if (_best_size == _n) return _best_size;
|
|
667 |
}
|
|
668 |
sel_method.update();
|
|
669 |
}
|
|
670 |
|
|
671 |
return _best_size;
|
|
672 |
}
|
|
673 |
|
|
674 |
}; //class GrossoLocatelliPullanMc
|
|
675 |
|
|
676 |
///@}
|
|
677 |
|
|
678 |
} //namespace lemon
|
|
679 |
|
|
680 |
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
|