0
5
2
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
|
| 20 |
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
|
| 21 |
|
|
| 22 |
/// \ingroup approx_algs |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan |
|
| 26 |
/// for the maximum clique problem |
|
| 27 |
|
|
| 28 |
#include <vector> |
|
| 29 |
#include <limits> |
|
| 30 |
#include <lemon/core.h> |
|
| 31 |
#include <lemon/random.h> |
|
| 32 |
|
|
| 33 |
namespace lemon {
|
|
| 34 |
|
|
| 35 |
/// \addtogroup approx_algs |
|
| 36 |
/// @{
|
|
| 37 |
|
|
| 38 |
/// \brief Implementation of the iterated local search algorithm of Grosso, |
|
| 39 |
/// Locatelli, and Pullan for the maximum clique problem |
|
| 40 |
/// |
|
| 41 |
/// \ref GrossoLocatelliPullanMc implements the iterated local search |
|
| 42 |
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum |
|
| 43 |
/// \e clique \e problem \ref grosso08maxclique. |
|
| 44 |
/// It is to find the largest complete subgraph (\e clique) in an |
|
| 45 |
/// undirected graph, i.e., the largest set of nodes where each |
|
| 46 |
/// pair of nodes is connected. |
|
| 47 |
/// |
|
| 48 |
/// This class provides a simple but highly efficient and robust heuristic |
|
| 49 |
/// method that quickly finds a large clique, but not necessarily the |
|
| 50 |
/// largest one. |
|
| 51 |
/// |
|
| 52 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
| 53 |
/// |
|
| 54 |
/// \note %GrossoLocatelliPullanMc provides three different node selection |
|
| 55 |
/// rules, from which the most powerful one is used by default. |
|
| 56 |
/// For more information, see \ref SelectionRule. |
|
| 57 |
template <typename GR> |
|
| 58 |
class GrossoLocatelliPullanMc |
|
| 59 |
{
|
|
| 60 |
public: |
|
| 61 |
|
|
| 62 |
/// \brief Constants for specifying the node selection rule. |
|
| 63 |
/// |
|
| 64 |
/// Enum type containing constants for specifying the node selection rule |
|
| 65 |
/// for the \ref run() function. |
|
| 66 |
/// |
|
| 67 |
/// During the algorithm, nodes are selected for addition to the current |
|
| 68 |
/// clique according to the applied rule. |
|
| 69 |
/// In general, the PENALTY_BASED rule turned out to be the most powerful |
|
| 70 |
/// and the most robust, thus it is the default option. |
|
| 71 |
/// However, another selection rule can be specified using the \ref run() |
|
| 72 |
/// function with the proper parameter. |
|
| 73 |
enum SelectionRule {
|
|
| 74 |
|
|
| 75 |
/// A node is selected randomly without any evaluation at each step. |
|
| 76 |
RANDOM, |
|
| 77 |
|
|
| 78 |
/// A node of maximum degree is selected randomly at each step. |
|
| 79 |
DEGREE_BASED, |
|
| 80 |
|
|
| 81 |
/// A node of minimum penalty is selected randomly at each step. |
|
| 82 |
/// The node penalties are updated adaptively after each stage of the |
|
| 83 |
/// search process. |
|
| 84 |
PENALTY_BASED |
|
| 85 |
}; |
|
| 86 |
|
|
| 87 |
private: |
|
| 88 |
|
|
| 89 |
TEMPLATE_GRAPH_TYPEDEFS(GR); |
|
| 90 |
|
|
| 91 |
typedef std::vector<int> IntVector; |
|
| 92 |
typedef std::vector<char> BoolVector; |
|
| 93 |
typedef std::vector<BoolVector> BoolMatrix; |
|
| 94 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 95 |
|
|
| 96 |
const GR &_graph; |
|
| 97 |
IntNodeMap _id; |
|
| 98 |
|
|
| 99 |
// Internal matrix representation of the graph |
|
| 100 |
BoolMatrix _gr; |
|
| 101 |
int _n; |
|
| 102 |
|
|
| 103 |
// The current clique |
|
| 104 |
BoolVector _clique; |
|
| 105 |
int _size; |
|
| 106 |
|
|
| 107 |
// The best clique found so far |
|
| 108 |
BoolVector _best_clique; |
|
| 109 |
int _best_size; |
|
| 110 |
|
|
| 111 |
// The "distances" of the nodes from the current clique. |
|
| 112 |
// _delta[u] is the number of nodes in the clique that are |
|
| 113 |
// not connected with u. |
|
| 114 |
IntVector _delta; |
|
| 115 |
|
|
| 116 |
// The current tabu set |
|
| 117 |
BoolVector _tabu; |
|
| 118 |
|
|
| 119 |
// Random number generator |
|
| 120 |
Random _rnd; |
|
| 121 |
|
|
| 122 |
private: |
|
| 123 |
|
|
| 124 |
// Implementation of the RANDOM node selection rule. |
|
| 125 |
class RandomSelectionRule |
|
| 126 |
{
|
|
| 127 |
private: |
|
| 128 |
|
|
| 129 |
// References to the algorithm instance |
|
| 130 |
const BoolVector &_clique; |
|
| 131 |
const IntVector &_delta; |
|
| 132 |
const BoolVector &_tabu; |
|
| 133 |
Random &_rnd; |
|
| 134 |
|
|
| 135 |
// Pivot rule data |
|
| 136 |
int _n; |
|
| 137 |
|
|
| 138 |
public: |
|
| 139 |
|
|
| 140 |
// Constructor |
|
| 141 |
RandomSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
| 142 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
| 143 |
_rnd(mc._rnd), _n(mc._n) |
|
| 144 |
{}
|
|
| 145 |
|
|
| 146 |
// Return a node index for a feasible add move or -1 if no one exists |
|
| 147 |
int nextFeasibleAddNode() const {
|
|
| 148 |
int start_node = _rnd[_n]; |
|
| 149 |
for (int i = start_node; i != _n; i++) {
|
|
| 150 |
if (_delta[i] == 0 && !_tabu[i]) return i; |
|
| 151 |
} |
|
| 152 |
for (int i = 0; i != start_node; i++) {
|
|
| 153 |
if (_delta[i] == 0 && !_tabu[i]) return i; |
|
| 154 |
} |
|
| 155 |
return -1; |
|
| 156 |
} |
|
| 157 |
|
|
| 158 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
| 159 |
int nextFeasibleSwapNode() const {
|
|
| 160 |
int start_node = _rnd[_n]; |
|
| 161 |
for (int i = start_node; i != _n; i++) {
|
|
| 162 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
|
| 163 |
} |
|
| 164 |
for (int i = 0; i != start_node; i++) {
|
|
| 165 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
|
| 166 |
} |
|
| 167 |
return -1; |
|
| 168 |
} |
|
| 169 |
|
|
| 170 |
// Return a node index for an add move or -1 if no one exists |
|
| 171 |
int nextAddNode() const {
|
|
| 172 |
int start_node = _rnd[_n]; |
|
| 173 |
for (int i = start_node; i != _n; i++) {
|
|
| 174 |
if (_delta[i] == 0) return i; |
|
| 175 |
} |
|
| 176 |
for (int i = 0; i != start_node; i++) {
|
|
| 177 |
if (_delta[i] == 0) return i; |
|
| 178 |
} |
|
| 179 |
return -1; |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
// Update internal data structures between stages (if necessary) |
|
| 183 |
void update() {}
|
|
| 184 |
|
|
| 185 |
}; //class RandomSelectionRule |
|
| 186 |
|
|
| 187 |
|
|
| 188 |
// Implementation of the DEGREE_BASED node selection rule. |
|
| 189 |
class DegreeBasedSelectionRule |
|
| 190 |
{
|
|
| 191 |
private: |
|
| 192 |
|
|
| 193 |
// References to the algorithm instance |
|
| 194 |
const BoolVector &_clique; |
|
| 195 |
const IntVector &_delta; |
|
| 196 |
const BoolVector &_tabu; |
|
| 197 |
Random &_rnd; |
|
| 198 |
|
|
| 199 |
// Pivot rule data |
|
| 200 |
int _n; |
|
| 201 |
IntVector _deg; |
|
| 202 |
|
|
| 203 |
public: |
|
| 204 |
|
|
| 205 |
// Constructor |
|
| 206 |
DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
| 207 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
| 208 |
_rnd(mc._rnd), _n(mc._n), _deg(_n) |
|
| 209 |
{
|
|
| 210 |
for (int i = 0; i != _n; i++) {
|
|
| 211 |
int d = 0; |
|
| 212 |
BoolVector &row = mc._gr[i]; |
|
| 213 |
for (int j = 0; j != _n; j++) {
|
|
| 214 |
if (row[j]) d++; |
|
| 215 |
} |
|
| 216 |
_deg[i] = d; |
|
| 217 |
} |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
// Return a node index for a feasible add move or -1 if no one exists |
|
| 221 |
int nextFeasibleAddNode() const {
|
|
| 222 |
int start_node = _rnd[_n]; |
|
| 223 |
int node = -1, max_deg = -1; |
|
| 224 |
for (int i = start_node; i != _n; i++) {
|
|
| 225 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
|
|
| 226 |
node = i; |
|
| 227 |
max_deg = _deg[i]; |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
for (int i = 0; i != start_node; i++) {
|
|
| 231 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
|
|
| 232 |
node = i; |
|
| 233 |
max_deg = _deg[i]; |
|
| 234 |
} |
|
| 235 |
} |
|
| 236 |
return node; |
|
| 237 |
} |
|
| 238 |
|
|
| 239 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
| 240 |
int nextFeasibleSwapNode() const {
|
|
| 241 |
int start_node = _rnd[_n]; |
|
| 242 |
int node = -1, max_deg = -1; |
|
| 243 |
for (int i = start_node; i != _n; i++) {
|
|
| 244 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
| 245 |
_deg[i] > max_deg) {
|
|
| 246 |
node = i; |
|
| 247 |
max_deg = _deg[i]; |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
for (int i = 0; i != start_node; i++) {
|
|
| 251 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
| 252 |
_deg[i] > max_deg) {
|
|
| 253 |
node = i; |
|
| 254 |
max_deg = _deg[i]; |
|
| 255 |
} |
|
| 256 |
} |
|
| 257 |
return node; |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
// Return a node index for an add move or -1 if no one exists |
|
| 261 |
int nextAddNode() const {
|
|
| 262 |
int start_node = _rnd[_n]; |
|
| 263 |
int node = -1, max_deg = -1; |
|
| 264 |
for (int i = start_node; i != _n; i++) {
|
|
| 265 |
if (_delta[i] == 0 && _deg[i] > max_deg) {
|
|
| 266 |
node = i; |
|
| 267 |
max_deg = _deg[i]; |
|
| 268 |
} |
|
| 269 |
} |
|
| 270 |
for (int i = 0; i != start_node; i++) {
|
|
| 271 |
if (_delta[i] == 0 && _deg[i] > max_deg) {
|
|
| 272 |
node = i; |
|
| 273 |
max_deg = _deg[i]; |
|
| 274 |
} |
|
| 275 |
} |
|
| 276 |
return node; |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
// Update internal data structures between stages (if necessary) |
|
| 280 |
void update() {}
|
|
| 281 |
|
|
| 282 |
}; //class DegreeBasedSelectionRule |
|
| 283 |
|
|
| 284 |
|
|
| 285 |
// Implementation of the PENALTY_BASED node selection rule. |
|
| 286 |
class PenaltyBasedSelectionRule |
|
| 287 |
{
|
|
| 288 |
private: |
|
| 289 |
|
|
| 290 |
// References to the algorithm instance |
|
| 291 |
const BoolVector &_clique; |
|
| 292 |
const IntVector &_delta; |
|
| 293 |
const BoolVector &_tabu; |
|
| 294 |
Random &_rnd; |
|
| 295 |
|
|
| 296 |
// Pivot rule data |
|
| 297 |
int _n; |
|
| 298 |
IntVector _penalty; |
|
| 299 |
|
|
| 300 |
public: |
|
| 301 |
|
|
| 302 |
// Constructor |
|
| 303 |
PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
| 304 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
| 305 |
_rnd(mc._rnd), _n(mc._n), _penalty(_n, 0) |
|
| 306 |
{}
|
|
| 307 |
|
|
| 308 |
// Return a node index for a feasible add move or -1 if no one exists |
|
| 309 |
int nextFeasibleAddNode() const {
|
|
| 310 |
int start_node = _rnd[_n]; |
|
| 311 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
| 312 |
for (int i = start_node; i != _n; i++) {
|
|
| 313 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
|
|
| 314 |
node = i; |
|
| 315 |
min_p = _penalty[i]; |
|
| 316 |
} |
|
| 317 |
} |
|
| 318 |
for (int i = 0; i != start_node; i++) {
|
|
| 319 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
|
|
| 320 |
node = i; |
|
| 321 |
min_p = _penalty[i]; |
|
| 322 |
} |
|
| 323 |
} |
|
| 324 |
return node; |
|
| 325 |
} |
|
| 326 |
|
|
| 327 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
| 328 |
int nextFeasibleSwapNode() const {
|
|
| 329 |
int start_node = _rnd[_n]; |
|
| 330 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
| 331 |
for (int i = start_node; i != _n; i++) {
|
|
| 332 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
| 333 |
_penalty[i] < min_p) {
|
|
| 334 |
node = i; |
|
| 335 |
min_p = _penalty[i]; |
|
| 336 |
} |
|
| 337 |
} |
|
| 338 |
for (int i = 0; i != start_node; i++) {
|
|
| 339 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
| 340 |
_penalty[i] < min_p) {
|
|
| 341 |
node = i; |
|
| 342 |
min_p = _penalty[i]; |
|
| 343 |
} |
|
| 344 |
} |
|
| 345 |
return node; |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
// Return a node index for an add move or -1 if no one exists |
|
| 349 |
int nextAddNode() const {
|
|
| 350 |
int start_node = _rnd[_n]; |
|
| 351 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
| 352 |
for (int i = start_node; i != _n; i++) {
|
|
| 353 |
if (_delta[i] == 0 && _penalty[i] < min_p) {
|
|
| 354 |
node = i; |
|
| 355 |
min_p = _penalty[i]; |
|
| 356 |
} |
|
| 357 |
} |
|
| 358 |
for (int i = 0; i != start_node; i++) {
|
|
| 359 |
if (_delta[i] == 0 && _penalty[i] < min_p) {
|
|
| 360 |
node = i; |
|
| 361 |
min_p = _penalty[i]; |
|
| 362 |
} |
|
| 363 |
} |
|
| 364 |
return node; |
|
| 365 |
} |
|
| 366 |
|
|
| 367 |
// Update internal data structures between stages (if necessary) |
|
| 368 |
void update() {}
|
|
| 369 |
|
|
| 370 |
}; //class PenaltyBasedSelectionRule |
|
| 371 |
|
|
| 372 |
public: |
|
| 373 |
|
|
| 374 |
/// \brief Constructor. |
|
| 375 |
/// |
|
| 376 |
/// Constructor. |
|
| 377 |
/// The global \ref rnd "random number generator instance" is used |
|
| 378 |
/// during the algorithm. |
|
| 379 |
/// |
|
| 380 |
/// \param graph The undirected graph the algorithm runs on. |
|
| 381 |
GrossoLocatelliPullanMc(const GR& graph) : |
|
| 382 |
_graph(graph), _id(_graph), _rnd(rnd) |
|
| 383 |
{}
|
|
| 384 |
|
|
| 385 |
/// \brief Constructor with random seed. |
|
| 386 |
/// |
|
| 387 |
/// Constructor with random seed. |
|
| 388 |
/// |
|
| 389 |
/// \param graph The undirected graph the algorithm runs on. |
|
| 390 |
/// \param seed Seed value for the internal random number generator |
|
| 391 |
/// that is used during the algorithm. |
|
| 392 |
GrossoLocatelliPullanMc(const GR& graph, int seed) : |
|
| 393 |
_graph(graph), _id(_graph), _rnd(seed) |
|
| 394 |
{}
|
|
| 395 |
|
|
| 396 |
/// \brief Constructor with random number generator. |
|
| 397 |
/// |
|
| 398 |
/// Constructor with random number generator. |
|
| 399 |
/// |
|
| 400 |
/// \param graph The undirected graph the algorithm runs on. |
|
| 401 |
/// \param random A random number generator that is used during the |
|
| 402 |
/// algorithm. |
|
| 403 |
GrossoLocatelliPullanMc(const GR& graph, const Random& random) : |
|
| 404 |
_graph(graph), _id(_graph), _rnd(random) |
|
| 405 |
{}
|
|
| 406 |
|
|
| 407 |
/// \name Execution Control |
|
| 408 |
/// @{
|
|
| 409 |
|
|
| 410 |
/// \brief Runs the algorithm. |
|
| 411 |
/// |
|
| 412 |
/// This function runs the algorithm. |
|
| 413 |
/// |
|
| 414 |
/// \param step_num The maximum number of node selections (steps) |
|
| 415 |
/// during the search process. |
|
| 416 |
/// This parameter controls the running time and the success of the |
|
| 417 |
/// algorithm. For larger values, the algorithm runs slower but it more |
|
| 418 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
| 419 |
/// faster but probably gives worse results. |
|
| 420 |
/// \param rule The node selection rule. For more information, see |
|
| 421 |
/// \ref SelectionRule. |
|
| 422 |
/// |
|
| 423 |
/// \return The size of the found clique. |
|
| 424 |
int run(int step_num = 100000, |
|
| 425 |
SelectionRule rule = PENALTY_BASED) |
|
| 426 |
{
|
|
| 427 |
init(); |
|
| 428 |
switch (rule) {
|
|
| 429 |
case RANDOM: |
|
| 430 |
return start<RandomSelectionRule>(step_num); |
|
| 431 |
case DEGREE_BASED: |
|
| 432 |
return start<DegreeBasedSelectionRule>(step_num); |
|
| 433 |
case PENALTY_BASED: |
|
| 434 |
return start<PenaltyBasedSelectionRule>(step_num); |
|
| 435 |
} |
|
| 436 |
return 0; // avoid warning |
|
| 437 |
} |
|
| 438 |
|
|
| 439 |
/// @} |
|
| 440 |
|
|
| 441 |
/// \name Query Functions |
|
| 442 |
/// @{
|
|
| 443 |
|
|
| 444 |
/// \brief The size of the found clique |
|
| 445 |
/// |
|
| 446 |
/// This function returns the size of the found clique. |
|
| 447 |
/// |
|
| 448 |
/// \pre run() must be called before using this function. |
|
| 449 |
int cliqueSize() const {
|
|
| 450 |
return _best_size; |
|
| 451 |
} |
|
| 452 |
|
|
| 453 |
/// \brief Gives back the found clique in a \c bool node map |
|
| 454 |
/// |
|
| 455 |
/// This function gives back the characteristic vector of the found |
|
| 456 |
/// clique in the given node map. |
|
| 457 |
/// It must be a \ref concepts::WriteMap "writable" node map with |
|
| 458 |
/// \c bool (or convertible) value type. |
|
| 459 |
/// |
|
| 460 |
/// \pre run() must be called before using this function. |
|
| 461 |
template <typename CliqueMap> |
|
| 462 |
void cliqueMap(CliqueMap &map) const {
|
|
| 463 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 464 |
map[n] = static_cast<bool>(_best_clique[_id[n]]); |
|
| 465 |
} |
|
| 466 |
} |
|
| 467 |
|
|
| 468 |
/// \brief Iterator to list the nodes of the found clique |
|
| 469 |
/// |
|
| 470 |
/// This iterator class lists the nodes of the found clique. |
|
| 471 |
/// Before using it, you must allocate a GrossoLocatelliPullanMc instance |
|
| 472 |
/// and call its \ref GrossoLocatelliPullanMc::run() "run()" method. |
|
| 473 |
/// |
|
| 474 |
/// The following example prints out the IDs of the nodes in the found |
|
| 475 |
/// clique. |
|
| 476 |
/// \code |
|
| 477 |
/// GrossoLocatelliPullanMc<Graph> mc(g); |
|
| 478 |
/// mc.run(); |
|
| 479 |
/// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc); |
|
| 480 |
/// n != INVALID; ++n) |
|
| 481 |
/// {
|
|
| 482 |
/// std::cout << g.id(n) << std::endl; |
|
| 483 |
/// } |
|
| 484 |
/// \endcode |
|
| 485 |
class CliqueNodeIt |
|
| 486 |
{
|
|
| 487 |
private: |
|
| 488 |
NodeIt _it; |
|
| 489 |
BoolNodeMap _map; |
|
| 490 |
|
|
| 491 |
public: |
|
| 492 |
|
|
| 493 |
/// Constructor |
|
| 494 |
|
|
| 495 |
/// Constructor. |
|
| 496 |
/// \param mc The algorithm instance. |
|
| 497 |
CliqueNodeIt(const GrossoLocatelliPullanMc &mc) |
|
| 498 |
: _map(mc._graph) |
|
| 499 |
{
|
|
| 500 |
mc.cliqueMap(_map); |
|
| 501 |
for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ; |
|
| 502 |
} |
|
| 503 |
|
|
| 504 |
/// Conversion to \c Node |
|
| 505 |
operator Node() const { return _it; }
|
|
| 506 |
|
|
| 507 |
bool operator==(Invalid) const { return _it == INVALID; }
|
|
| 508 |
bool operator!=(Invalid) const { return _it != INVALID; }
|
|
| 509 |
|
|
| 510 |
/// Next node |
|
| 511 |
CliqueNodeIt &operator++() {
|
|
| 512 |
for (++_it; _it != INVALID && !_map[_it]; ++_it) ; |
|
| 513 |
return *this; |
|
| 514 |
} |
|
| 515 |
|
|
| 516 |
/// Postfix incrementation |
|
| 517 |
|
|
| 518 |
/// Postfix incrementation. |
|
| 519 |
/// |
|
| 520 |
/// \warning This incrementation returns a \c Node, not a |
|
| 521 |
/// \c CliqueNodeIt as one may expect. |
|
| 522 |
typename GR::Node operator++(int) {
|
|
| 523 |
Node n=*this; |
|
| 524 |
++(*this); |
|
| 525 |
return n; |
|
| 526 |
} |
|
| 527 |
|
|
| 528 |
}; |
|
| 529 |
|
|
| 530 |
/// @} |
|
| 531 |
|
|
| 532 |
private: |
|
| 533 |
|
|
| 534 |
// Adds a node to the current clique |
|
| 535 |
void addCliqueNode(int u) {
|
|
| 536 |
if (_clique[u]) return; |
|
| 537 |
_clique[u] = true; |
|
| 538 |
_size++; |
|
| 539 |
BoolVector &row = _gr[u]; |
|
| 540 |
for (int i = 0; i != _n; i++) {
|
|
| 541 |
if (!row[i]) _delta[i]++; |
|
| 542 |
} |
|
| 543 |
} |
|
| 544 |
|
|
| 545 |
// Removes a node from the current clique |
|
| 546 |
void delCliqueNode(int u) {
|
|
| 547 |
if (!_clique[u]) return; |
|
| 548 |
_clique[u] = false; |
|
| 549 |
_size--; |
|
| 550 |
BoolVector &row = _gr[u]; |
|
| 551 |
for (int i = 0; i != _n; i++) {
|
|
| 552 |
if (!row[i]) _delta[i]--; |
|
| 553 |
} |
|
| 554 |
} |
|
| 555 |
|
|
| 556 |
// Initialize data structures |
|
| 557 |
void init() {
|
|
| 558 |
_n = countNodes(_graph); |
|
| 559 |
int ui = 0; |
|
| 560 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
| 561 |
_id[u] = ui++; |
|
| 562 |
} |
|
| 563 |
_gr.clear(); |
|
| 564 |
_gr.resize(_n, BoolVector(_n, false)); |
|
| 565 |
ui = 0; |
|
| 566 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
| 567 |
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
|
|
| 568 |
int vi = _id[_graph.runningNode(e)]; |
|
| 569 |
_gr[ui][vi] = true; |
|
| 570 |
_gr[vi][ui] = true; |
|
| 571 |
} |
|
| 572 |
++ui; |
|
| 573 |
} |
|
| 574 |
|
|
| 575 |
_clique.clear(); |
|
| 576 |
_clique.resize(_n, false); |
|
| 577 |
_size = 0; |
|
| 578 |
_best_clique.clear(); |
|
| 579 |
_best_clique.resize(_n, false); |
|
| 580 |
_best_size = 0; |
|
| 581 |
_delta.clear(); |
|
| 582 |
_delta.resize(_n, 0); |
|
| 583 |
_tabu.clear(); |
|
| 584 |
_tabu.resize(_n, false); |
|
| 585 |
} |
|
| 586 |
|
|
| 587 |
// Executes the algorithm |
|
| 588 |
template <typename SelectionRuleImpl> |
|
| 589 |
int start(int max_select) {
|
|
| 590 |
// Options for the restart rule |
|
| 591 |
const bool delta_based_restart = true; |
|
| 592 |
const int restart_delta_limit = 4; |
|
| 593 |
|
|
| 594 |
if (_n == 0) return 0; |
|
| 595 |
if (_n == 1) {
|
|
| 596 |
_best_clique[0] = true; |
|
| 597 |
_best_size = 1; |
|
| 598 |
return _best_size; |
|
| 599 |
} |
|
| 600 |
|
|
| 601 |
// Iterated local search |
|
| 602 |
SelectionRuleImpl sel_method(*this); |
|
| 603 |
int select = 0; |
|
| 604 |
IntVector restart_nodes; |
|
| 605 |
|
|
| 606 |
while (select < max_select) {
|
|
| 607 |
|
|
| 608 |
// Perturbation/restart |
|
| 609 |
if (delta_based_restart) {
|
|
| 610 |
restart_nodes.clear(); |
|
| 611 |
for (int i = 0; i != _n; i++) {
|
|
| 612 |
if (_delta[i] >= restart_delta_limit) |
|
| 613 |
restart_nodes.push_back(i); |
|
| 614 |
} |
|
| 615 |
} |
|
| 616 |
int rs_node = -1; |
|
| 617 |
if (restart_nodes.size() > 0) {
|
|
| 618 |
rs_node = restart_nodes[_rnd[restart_nodes.size()]]; |
|
| 619 |
} else {
|
|
| 620 |
rs_node = _rnd[_n]; |
|
| 621 |
} |
|
| 622 |
BoolVector &row = _gr[rs_node]; |
|
| 623 |
for (int i = 0; i != _n; i++) {
|
|
| 624 |
if (_clique[i] && !row[i]) delCliqueNode(i); |
|
| 625 |
} |
|
| 626 |
addCliqueNode(rs_node); |
|
| 627 |
|
|
| 628 |
// Local search |
|
| 629 |
_tabu.clear(); |
|
| 630 |
_tabu.resize(_n, false); |
|
| 631 |
bool tabu_empty = true; |
|
| 632 |
int max_swap = _size; |
|
| 633 |
while (select < max_select) {
|
|
| 634 |
select++; |
|
| 635 |
int u; |
|
| 636 |
if ((u = sel_method.nextFeasibleAddNode()) != -1) {
|
|
| 637 |
// Feasible add move |
|
| 638 |
addCliqueNode(u); |
|
| 639 |
if (tabu_empty) max_swap = _size; |
|
| 640 |
} |
|
| 641 |
else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
|
|
| 642 |
// Feasible swap move |
|
| 643 |
int v = -1; |
|
| 644 |
BoolVector &row = _gr[u]; |
|
| 645 |
for (int i = 0; i != _n; i++) {
|
|
| 646 |
if (_clique[i] && !row[i]) {
|
|
| 647 |
v = i; |
|
| 648 |
break; |
|
| 649 |
} |
|
| 650 |
} |
|
| 651 |
addCliqueNode(u); |
|
| 652 |
delCliqueNode(v); |
|
| 653 |
_tabu[v] = true; |
|
| 654 |
tabu_empty = false; |
|
| 655 |
if (--max_swap <= 0) break; |
|
| 656 |
} |
|
| 657 |
else if ((u = sel_method.nextAddNode()) != -1) {
|
|
| 658 |
// Non-feasible add move |
|
| 659 |
addCliqueNode(u); |
|
| 660 |
} |
|
| 661 |
else break; |
|
| 662 |
} |
|
| 663 |
if (_size > _best_size) {
|
|
| 664 |
_best_clique = _clique; |
|
| 665 |
_best_size = _size; |
|
| 666 |
if (_best_size == _n) return _best_size; |
|
| 667 |
} |
|
| 668 |
sel_method.update(); |
|
| 669 |
} |
|
| 670 |
|
|
| 671 |
return _best_size; |
|
| 672 |
} |
|
| 673 |
|
|
| 674 |
}; //class GrossoLocatelliPullanMc |
|
| 675 |
|
|
| 676 |
///@} |
|
| 677 |
|
|
| 678 |
} //namespace lemon |
|
| 679 |
|
|
| 680 |
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2010 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <sstream> |
|
| 20 |
#include <lemon/list_graph.h> |
|
| 21 |
#include <lemon/full_graph.h> |
|
| 22 |
#include <lemon/grid_graph.h> |
|
| 23 |
#include <lemon/lgf_reader.h> |
|
| 24 |
#include <lemon/grosso_locatelli_pullan_mc.h> |
|
| 25 |
|
|
| 26 |
#include "test_tools.h" |
|
| 27 |
|
|
| 28 |
using namespace lemon; |
|
| 29 |
|
|
| 30 |
char test_lgf[] = |
|
| 31 |
"@nodes\n" |
|
| 32 |
"label max_clique\n" |
|
| 33 |
"1 0\n" |
|
| 34 |
"2 0\n" |
|
| 35 |
"3 0\n" |
|
| 36 |
"4 1\n" |
|
| 37 |
"5 1\n" |
|
| 38 |
"6 1\n" |
|
| 39 |
"7 1\n" |
|
| 40 |
"@edges\n" |
|
| 41 |
" label\n" |
|
| 42 |
"1 2 1\n" |
|
| 43 |
"1 3 2\n" |
|
| 44 |
"1 4 3\n" |
|
| 45 |
"1 6 4\n" |
|
| 46 |
"2 3 5\n" |
|
| 47 |
"2 5 6\n" |
|
| 48 |
"2 7 7\n" |
|
| 49 |
"3 4 8\n" |
|
| 50 |
"3 5 9\n" |
|
| 51 |
"4 5 10\n" |
|
| 52 |
"4 6 11\n" |
|
| 53 |
"4 7 12\n" |
|
| 54 |
"5 6 13\n" |
|
| 55 |
"5 7 14\n" |
|
| 56 |
"6 7 15\n"; |
|
| 57 |
|
|
| 58 |
|
|
| 59 |
// Check with general graphs |
|
| 60 |
template <typename Param> |
|
| 61 |
void checkMaxCliqueGeneral(int max_sel, Param rule) {
|
|
| 62 |
typedef ListGraph GR; |
|
| 63 |
typedef GrossoLocatelliPullanMc<GR> McAlg; |
|
| 64 |
typedef McAlg::CliqueNodeIt CliqueIt; |
|
| 65 |
|
|
| 66 |
// Basic tests |
|
| 67 |
{
|
|
| 68 |
GR g; |
|
| 69 |
GR::NodeMap<bool> map(g); |
|
| 70 |
McAlg mc(g); |
|
| 71 |
check(mc.run(max_sel, rule) == 0, "Wrong clique size"); |
|
| 72 |
check(mc.cliqueSize() == 0, "Wrong clique size"); |
|
| 73 |
check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt"); |
|
| 74 |
|
|
| 75 |
GR::Node u = g.addNode(); |
|
| 76 |
check(mc.run(max_sel, rule) == 1, "Wrong clique size"); |
|
| 77 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
|
| 78 |
mc.cliqueMap(map); |
|
| 79 |
check(map[u], "Wrong clique map"); |
|
| 80 |
CliqueIt it1(mc); |
|
| 81 |
check(static_cast<GR::Node>(it1) == u && ++it1 == INVALID, |
|
| 82 |
"Wrong CliqueNodeIt"); |
|
| 83 |
|
|
| 84 |
GR::Node v = g.addNode(); |
|
| 85 |
check(mc.run(max_sel, rule) == 1, "Wrong clique size"); |
|
| 86 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
|
| 87 |
mc.cliqueMap(map); |
|
| 88 |
check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map"); |
|
| 89 |
CliqueIt it2(mc); |
|
| 90 |
check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt"); |
|
| 91 |
|
|
| 92 |
g.addEdge(u, v); |
|
| 93 |
check(mc.run(max_sel, rule) == 2, "Wrong clique size"); |
|
| 94 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
| 95 |
mc.cliqueMap(map); |
|
| 96 |
check(map[u] && map[v], "Wrong clique map"); |
|
| 97 |
CliqueIt it3(mc); |
|
| 98 |
check(it3 != INVALID && ++it3 != INVALID && ++it3 == INVALID, |
|
| 99 |
"Wrong CliqueNodeIt"); |
|
| 100 |
} |
|
| 101 |
|
|
| 102 |
// Test graph |
|
| 103 |
{
|
|
| 104 |
GR g; |
|
| 105 |
GR::NodeMap<bool> max_clique(g); |
|
| 106 |
GR::NodeMap<bool> map(g); |
|
| 107 |
std::istringstream input(test_lgf); |
|
| 108 |
graphReader(g, input) |
|
| 109 |
.nodeMap("max_clique", max_clique)
|
|
| 110 |
.run(); |
|
| 111 |
|
|
| 112 |
McAlg mc(g); |
|
| 113 |
check(mc.run(max_sel, rule) == 4, "Wrong clique size"); |
|
| 114 |
check(mc.cliqueSize() == 4, "Wrong clique size"); |
|
| 115 |
mc.cliqueMap(map); |
|
| 116 |
for (GR::NodeIt n(g); n != INVALID; ++n) {
|
|
| 117 |
check(map[n] == max_clique[n], "Wrong clique map"); |
|
| 118 |
} |
|
| 119 |
int cnt = 0; |
|
| 120 |
for (CliqueIt n(mc); n != INVALID; ++n) {
|
|
| 121 |
cnt++; |
|
| 122 |
check(map[n] && max_clique[n], "Wrong CliqueNodeIt"); |
|
| 123 |
} |
|
| 124 |
check(cnt == 4, "Wrong CliqueNodeIt"); |
|
| 125 |
} |
|
| 126 |
} |
|
| 127 |
|
|
| 128 |
// Check with full graphs |
|
| 129 |
template <typename Param> |
|
| 130 |
void checkMaxCliqueFullGraph(int max_sel, Param rule) {
|
|
| 131 |
typedef FullGraph GR; |
|
| 132 |
typedef GrossoLocatelliPullanMc<FullGraph> McAlg; |
|
| 133 |
typedef McAlg::CliqueNodeIt CliqueIt; |
|
| 134 |
|
|
| 135 |
for (int size = 0; size <= 40; size = size * 3 + 1) {
|
|
| 136 |
GR g(size); |
|
| 137 |
GR::NodeMap<bool> map(g); |
|
| 138 |
McAlg mc(g); |
|
| 139 |
check(mc.run(max_sel, rule) == size, "Wrong clique size"); |
|
| 140 |
check(mc.cliqueSize() == size, "Wrong clique size"); |
|
| 141 |
mc.cliqueMap(map); |
|
| 142 |
for (GR::NodeIt n(g); n != INVALID; ++n) {
|
|
| 143 |
check(map[n], "Wrong clique map"); |
|
| 144 |
} |
|
| 145 |
int cnt = 0; |
|
| 146 |
for (CliqueIt n(mc); n != INVALID; ++n) cnt++; |
|
| 147 |
check(cnt == size, "Wrong CliqueNodeIt"); |
|
| 148 |
} |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
// Check with grid graphs |
|
| 152 |
template <typename Param> |
|
| 153 |
void checkMaxCliqueGridGraph(int max_sel, Param rule) {
|
|
| 154 |
GridGraph g(5, 7); |
|
| 155 |
GridGraph::NodeMap<char> map(g); |
|
| 156 |
GrossoLocatelliPullanMc<GridGraph> mc(g); |
|
| 157 |
check(mc.run(max_sel, rule) == 2, "Wrong clique size"); |
|
| 158 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
| 159 |
} |
|
| 160 |
|
|
| 161 |
|
|
| 162 |
int main() {
|
|
| 163 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
| 164 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
| 165 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED); |
|
| 166 |
|
|
| 167 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
| 168 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
| 169 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED); |
|
| 170 |
|
|
| 171 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
| 172 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
| 173 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED); |
|
| 174 |
|
|
| 175 |
return 0; |
|
| 176 |
} |
| ... | ... |
@@ -506,102 +506,106 @@ |
| 506 | 506 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 507 | 507 |
- \ref MinCostMaxBipartiteMatching |
| 508 | 508 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 509 | 509 |
matching in bipartite graphs. |
| 510 | 510 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 511 | 511 |
maximum cardinality matching in general graphs. |
| 512 | 512 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 513 | 513 |
maximum weighted matching in general graphs. |
| 514 | 514 |
- \ref MaxWeightedPerfectMatching |
| 515 | 515 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 516 | 516 |
perfect matching in general graphs. |
| 517 | 517 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
| 518 | 518 |
maximum cardinality fractional matching in general graphs. |
| 519 | 519 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
| 520 | 520 |
maximum weighted fractional matching in general graphs. |
| 521 | 521 |
- \ref MaxWeightedPerfectFractionalMatching |
| 522 | 522 |
Augmenting path algorithm for calculating maximum weighted |
| 523 | 523 |
perfect fractional matching in general graphs. |
| 524 | 524 |
|
| 525 | 525 |
\image html matching.png |
| 526 | 526 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
| 527 | 527 |
*/ |
| 528 | 528 |
|
| 529 | 529 |
/** |
| 530 | 530 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 531 | 531 |
@ingroup algs |
| 532 | 532 |
\brief Algorithms for discovering the graph properties |
| 533 | 533 |
|
| 534 | 534 |
This group contains the algorithms for discovering the graph properties |
| 535 | 535 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 536 | 536 |
|
| 537 | 537 |
\image html connected_components.png |
| 538 | 538 |
\image latex connected_components.eps "Connected components" width=\textwidth |
| 539 | 539 |
*/ |
| 540 | 540 |
|
| 541 | 541 |
/** |
| 542 | 542 |
@defgroup planar Planarity Embedding and Drawing |
| 543 | 543 |
@ingroup algs |
| 544 | 544 |
\brief Algorithms for planarity checking, embedding and drawing |
| 545 | 545 |
|
| 546 | 546 |
This group contains the algorithms for planarity checking, |
| 547 | 547 |
embedding and drawing. |
| 548 | 548 |
|
| 549 | 549 |
\image html planar.png |
| 550 | 550 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 551 | 551 |
*/ |
| 552 | 552 |
|
| 553 | 553 |
/** |
| 554 |
@defgroup |
|
| 554 |
@defgroup approx_algs Approximation Algorithms |
|
| 555 | 555 |
@ingroup algs |
| 556 | 556 |
\brief Approximation algorithms. |
| 557 | 557 |
|
| 558 | 558 |
This group contains the approximation and heuristic algorithms |
| 559 | 559 |
implemented in LEMON. |
| 560 |
|
|
| 561 |
<b>Maximum Clique Problem</b> |
|
| 562 |
- \ref GrossoLocatelliPullanMc An efficient heuristic algorithm of |
|
| 563 |
Grosso, Locatelli, and Pullan. |
|
| 560 | 564 |
*/ |
| 561 | 565 |
|
| 562 | 566 |
/** |
| 563 | 567 |
@defgroup auxalg Auxiliary Algorithms |
| 564 | 568 |
@ingroup algs |
| 565 | 569 |
\brief Auxiliary algorithms implemented in LEMON. |
| 566 | 570 |
|
| 567 | 571 |
This group contains some algorithms implemented in LEMON |
| 568 | 572 |
in order to make it easier to implement complex algorithms. |
| 569 | 573 |
*/ |
| 570 | 574 |
|
| 571 | 575 |
/** |
| 572 | 576 |
@defgroup gen_opt_group General Optimization Tools |
| 573 | 577 |
\brief This group contains some general optimization frameworks |
| 574 | 578 |
implemented in LEMON. |
| 575 | 579 |
|
| 576 | 580 |
This group contains some general optimization frameworks |
| 577 | 581 |
implemented in LEMON. |
| 578 | 582 |
*/ |
| 579 | 583 |
|
| 580 | 584 |
/** |
| 581 | 585 |
@defgroup lp_group LP and MIP Solvers |
| 582 | 586 |
@ingroup gen_opt_group |
| 583 | 587 |
\brief LP and MIP solver interfaces for LEMON. |
| 584 | 588 |
|
| 585 | 589 |
This group contains LP and MIP solver interfaces for LEMON. |
| 586 | 590 |
Various LP solvers could be used in the same manner with this |
| 587 | 591 |
high-level interface. |
| 588 | 592 |
|
| 589 | 593 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
| 590 | 594 |
\ref cplex, \ref soplex. |
| 591 | 595 |
*/ |
| 592 | 596 |
|
| 593 | 597 |
/** |
| 594 | 598 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 595 | 599 |
@ingroup lp_group |
| 596 | 600 |
\brief Helper tools to the Lp and Mip solvers. |
| 597 | 601 |
|
| 598 | 602 |
This group adds some helper tools to general optimization framework |
| 599 | 603 |
implemented in LEMON. |
| 600 | 604 |
*/ |
| 601 | 605 |
|
| 602 | 606 |
/** |
| 603 | 607 |
@defgroup metah Metaheuristics |
| 604 | 608 |
@ingroup gen_opt_group |
| 605 | 609 |
\brief Metaheuristics for LEMON library. |
| 606 | 610 |
|
| 607 | 611 |
This group contains some metaheuristic optimization tools. |
| ... | ... |
@@ -252,50 +252,63 @@ |
| 252 | 252 |
|
| 253 | 253 |
@article{goldberg90approximation,
|
| 254 | 254 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
| 255 | 255 |
title = {Finding Minimum-Cost Circulations by Successive
|
| 256 | 256 |
Approximation}, |
| 257 | 257 |
journal = {Mathematics of Operations Research},
|
| 258 | 258 |
year = 1990, |
| 259 | 259 |
volume = 15, |
| 260 | 260 |
number = 3, |
| 261 | 261 |
pages = {430-466}
|
| 262 | 262 |
} |
| 263 | 263 |
|
| 264 | 264 |
@article{goldberg97efficient,
|
| 265 | 265 |
author = {Andrew V. Goldberg},
|
| 266 | 266 |
title = {An Efficient Implementation of a Scaling
|
| 267 | 267 |
Minimum-Cost Flow Algorithm}, |
| 268 | 268 |
journal = {Journal of Algorithms},
|
| 269 | 269 |
year = 1997, |
| 270 | 270 |
volume = 22, |
| 271 | 271 |
number = 1, |
| 272 | 272 |
pages = {1-29}
|
| 273 | 273 |
} |
| 274 | 274 |
|
| 275 | 275 |
@article{bunnagel98efficient,
|
| 276 | 276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens
|
| 277 | 277 |
Vygen}, |
| 278 | 278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan
|
| 279 | 279 |
minimum-cost flow algorithm}, |
| 280 | 280 |
journal = {Optimization Methods and Software},
|
| 281 | 281 |
year = 1998, |
| 282 | 282 |
volume = 10, |
| 283 | 283 |
pages = {157-174}
|
| 284 | 284 |
} |
| 285 | 285 |
|
| 286 | 286 |
@book{dantzig63linearprog,
|
| 287 | 287 |
author = {George B. Dantzig},
|
| 288 | 288 |
title = {Linear Programming and Extensions},
|
| 289 | 289 |
publisher = {Princeton University Press},
|
| 290 | 290 |
year = 1963 |
| 291 | 291 |
} |
| 292 | 292 |
|
| 293 | 293 |
@mastersthesis{kellyoneill91netsimplex,
|
| 294 | 294 |
author = {Damian J. Kelly and Garrett M. O'Neill},
|
| 295 | 295 |
title = {The Minimum Cost Flow Problem and The Network
|
| 296 | 296 |
Simplex Method}, |
| 297 | 297 |
school = {University College},
|
| 298 | 298 |
address = {Dublin, Ireland},
|
| 299 | 299 |
year = 1991, |
| 300 |
month = sep |
|
| 300 |
month = sep |
|
| 301 | 301 |
} |
| 302 |
|
|
| 303 |
%%%%% Other algorithms %%%%% |
|
| 304 |
|
|
| 305 |
@article{grosso08maxclique,
|
|
| 306 |
author = {Andrea Grosso and Marco Locatelli and Wayne Pullan},
|
|
| 307 |
title = {Simple ingredients leading to very efficient
|
|
| 308 |
heuristics for the maximum clique problem}, |
|
| 309 |
journal = {Journal of Heuristics},
|
|
| 310 |
year = 2008, |
|
| 311 |
volume = 14, |
|
| 312 |
number = 6, |
|
| 313 |
pages = {587--612}
|
|
| 314 |
} |
| ... | ... |
@@ -45,96 +45,97 @@ |
| 45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
| 46 | 46 |
endif |
| 47 | 47 |
|
| 48 | 48 |
if HAVE_CLP |
| 49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
| 50 | 50 |
endif |
| 51 | 51 |
|
| 52 | 52 |
if HAVE_CBC |
| 53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
| 54 | 54 |
endif |
| 55 | 55 |
|
| 56 | 56 |
lemon_HEADERS += \ |
| 57 | 57 |
lemon/adaptors.h \ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 | 60 |
lemon/bellman_ford.h \ |
| 61 | 61 |
lemon/bfs.h \ |
| 62 | 62 |
lemon/bin_heap.h \ |
| 63 | 63 |
lemon/binomial_heap.h \ |
| 64 | 64 |
lemon/bucket_heap.h \ |
| 65 | 65 |
lemon/capacity_scaling.h \ |
| 66 | 66 |
lemon/cbc.h \ |
| 67 | 67 |
lemon/circulation.h \ |
| 68 | 68 |
lemon/clp.h \ |
| 69 | 69 |
lemon/color.h \ |
| 70 | 70 |
lemon/concept_check.h \ |
| 71 | 71 |
lemon/connectivity.h \ |
| 72 | 72 |
lemon/core.h \ |
| 73 | 73 |
lemon/cost_scaling.h \ |
| 74 | 74 |
lemon/counter.h \ |
| 75 | 75 |
lemon/cplex.h \ |
| 76 | 76 |
lemon/cycle_canceling.h \ |
| 77 | 77 |
lemon/dfs.h \ |
| 78 | 78 |
lemon/dheap.h \ |
| 79 | 79 |
lemon/dijkstra.h \ |
| 80 | 80 |
lemon/dim2.h \ |
| 81 | 81 |
lemon/dimacs.h \ |
| 82 | 82 |
lemon/edge_set.h \ |
| 83 | 83 |
lemon/elevator.h \ |
| 84 | 84 |
lemon/error.h \ |
| 85 | 85 |
lemon/euler.h \ |
| 86 | 86 |
lemon/fib_heap.h \ |
| 87 | 87 |
lemon/fractional_matching.h \ |
| 88 | 88 |
lemon/full_graph.h \ |
| 89 | 89 |
lemon/glpk.h \ |
| 90 | 90 |
lemon/gomory_hu.h \ |
| 91 | 91 |
lemon/graph_to_eps.h \ |
| 92 | 92 |
lemon/grid_graph.h \ |
| 93 |
lemon/grosso_locatelli_pullan_mc.h \ |
|
| 93 | 94 |
lemon/hartmann_orlin_mmc.h \ |
| 94 | 95 |
lemon/howard_mmc.h \ |
| 95 | 96 |
lemon/hypercube_graph.h \ |
| 96 | 97 |
lemon/karp_mmc.h \ |
| 97 | 98 |
lemon/kruskal.h \ |
| 98 | 99 |
lemon/hao_orlin.h \ |
| 99 | 100 |
lemon/lgf_reader.h \ |
| 100 | 101 |
lemon/lgf_writer.h \ |
| 101 | 102 |
lemon/list_graph.h \ |
| 102 | 103 |
lemon/lp.h \ |
| 103 | 104 |
lemon/lp_base.h \ |
| 104 | 105 |
lemon/lp_skeleton.h \ |
| 105 | 106 |
lemon/maps.h \ |
| 106 | 107 |
lemon/matching.h \ |
| 107 | 108 |
lemon/math.h \ |
| 108 | 109 |
lemon/min_cost_arborescence.h \ |
| 109 | 110 |
lemon/nauty_reader.h \ |
| 110 | 111 |
lemon/network_simplex.h \ |
| 111 | 112 |
lemon/pairing_heap.h \ |
| 112 | 113 |
lemon/path.h \ |
| 113 | 114 |
lemon/planarity.h \ |
| 114 | 115 |
lemon/preflow.h \ |
| 115 | 116 |
lemon/quad_heap.h \ |
| 116 | 117 |
lemon/radix_heap.h \ |
| 117 | 118 |
lemon/radix_sort.h \ |
| 118 | 119 |
lemon/random.h \ |
| 119 | 120 |
lemon/smart_graph.h \ |
| 120 | 121 |
lemon/soplex.h \ |
| 121 | 122 |
lemon/static_graph.h \ |
| 122 | 123 |
lemon/suurballe.h \ |
| 123 | 124 |
lemon/time_measure.h \ |
| 124 | 125 |
lemon/tolerance.h \ |
| 125 | 126 |
lemon/unionfind.h \ |
| 126 | 127 |
lemon/bits/windows.h |
| 127 | 128 |
|
| 128 | 129 |
bits_HEADERS += \ |
| 129 | 130 |
lemon/bits/alteration_notifier.h \ |
| 130 | 131 |
lemon/bits/array_map.h \ |
| 131 | 132 |
lemon/bits/bezier.h \ |
| 132 | 133 |
lemon/bits/default_map.h \ |
| 133 | 134 |
lemon/bits/edge_set_extender.h \ |
| 134 | 135 |
lemon/bits/enable_if.h \ |
| 135 | 136 |
lemon/bits/graph_adaptor_extender.h \ |
| 136 | 137 |
lemon/bits/graph_extender.h \ |
| 137 | 138 |
lemon/bits/map_extender.h \ |
| 138 | 139 |
lemon/bits/path_dump.h \ |
| 139 | 140 |
lemon/bits/solver_bits.h \ |
| 140 | 141 |
lemon/bits/traits.h \ |
| 1 | 1 |
INCLUDE_DIRECTORIES( |
| 2 | 2 |
${PROJECT_SOURCE_DIR}
|
| 3 | 3 |
${PROJECT_BINARY_DIR}
|
| 4 | 4 |
) |
| 5 | 5 |
|
| 6 | 6 |
LINK_DIRECTORIES( |
| 7 | 7 |
${PROJECT_BINARY_DIR}/lemon
|
| 8 | 8 |
) |
| 9 | 9 |
|
| 10 | 10 |
SET(TESTS |
| 11 | 11 |
adaptors_test |
| 12 | 12 |
bellman_ford_test |
| 13 | 13 |
bfs_test |
| 14 | 14 |
circulation_test |
| 15 | 15 |
connectivity_test |
| 16 | 16 |
counter_test |
| 17 | 17 |
dfs_test |
| 18 | 18 |
digraph_test |
| 19 | 19 |
dijkstra_test |
| 20 | 20 |
dim_test |
| 21 | 21 |
edge_set_test |
| 22 | 22 |
error_test |
| 23 | 23 |
euler_test |
| 24 | 24 |
fractional_matching_test |
| 25 | 25 |
gomory_hu_test |
| 26 | 26 |
graph_copy_test |
| 27 | 27 |
graph_test |
| 28 | 28 |
graph_utils_test |
| 29 | 29 |
hao_orlin_test |
| 30 | 30 |
heap_test |
| 31 | 31 |
kruskal_test |
| 32 | 32 |
maps_test |
| 33 | 33 |
matching_test |
| 34 |
max_clique_test |
|
| 34 | 35 |
min_cost_arborescence_test |
| 35 | 36 |
min_cost_flow_test |
| 36 | 37 |
min_mean_cycle_test |
| 37 | 38 |
path_test |
| 38 | 39 |
planarity_test |
| 39 | 40 |
preflow_test |
| 40 | 41 |
radix_sort_test |
| 41 | 42 |
random_test |
| 42 | 43 |
suurballe_test |
| 43 | 44 |
time_measure_test |
| 44 | 45 |
unionfind_test |
| 45 | 46 |
) |
| 46 | 47 |
|
| 47 | 48 |
IF(LEMON_HAVE_LP) |
| 48 | 49 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
| 49 | 50 |
SET(LP_TEST_LIBS lemon) |
| 50 | 51 |
|
| 51 | 52 |
IF(LEMON_HAVE_GLPK) |
| 52 | 53 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES})
|
| 53 | 54 |
ENDIF() |
| 54 | 55 |
IF(LEMON_HAVE_CPLEX) |
| 55 | 56 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES})
|
| 56 | 57 |
ENDIF() |
| 57 | 58 |
IF(LEMON_HAVE_CLP) |
| 58 | 59 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES})
|
| 59 | 60 |
ENDIF() |
| 60 | 61 |
|
| 61 | 62 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS})
|
| 62 | 63 |
ADD_TEST(lp_test lp_test) |
| 63 | 64 |
|
| 64 | 65 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
| 65 | 66 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
| 66 | 67 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 67 | 68 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
| 68 | 69 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH}
|
| 69 | 70 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH}
|
| 70 | 71 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH}
|
| 71 | 72 |
) |
| 72 | 73 |
ENDIF() |
| 73 | 74 |
|
| 74 | 75 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
| 75 | 76 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
| 76 | 77 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
|
| 77 | 78 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
| 78 | 79 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH}
|
| 79 | 80 |
) |
| 80 | 81 |
ENDIF() |
| 81 | 82 |
ENDIF() |
| 1 | 1 |
if USE_VALGRIND |
| 2 | 2 |
TESTS_ENVIRONMENT=$(top_srcdir)/scripts/valgrind-wrapper.sh |
| 3 | 3 |
endif |
| 4 | 4 |
|
| 5 | 5 |
EXTRA_DIST += \ |
| 6 | 6 |
test/CMakeLists.txt |
| 7 | 7 |
|
| 8 | 8 |
noinst_HEADERS += \ |
| 9 | 9 |
test/graph_test.h \ |
| 10 | 10 |
test/test_tools.h |
| 11 | 11 |
|
| 12 | 12 |
check_PROGRAMS += \ |
| 13 | 13 |
test/adaptors_test \ |
| 14 | 14 |
test/bellman_ford_test \ |
| 15 | 15 |
test/bfs_test \ |
| 16 | 16 |
test/circulation_test \ |
| 17 | 17 |
test/connectivity_test \ |
| 18 | 18 |
test/counter_test \ |
| 19 | 19 |
test/dfs_test \ |
| 20 | 20 |
test/digraph_test \ |
| 21 | 21 |
test/dijkstra_test \ |
| 22 | 22 |
test/dim_test \ |
| 23 | 23 |
test/edge_set_test \ |
| 24 | 24 |
test/error_test \ |
| 25 | 25 |
test/euler_test \ |
| 26 | 26 |
test/fractional_matching_test \ |
| 27 | 27 |
test/gomory_hu_test \ |
| 28 | 28 |
test/graph_copy_test \ |
| 29 | 29 |
test/graph_test \ |
| 30 | 30 |
test/graph_utils_test \ |
| 31 | 31 |
test/hao_orlin_test \ |
| 32 | 32 |
test/heap_test \ |
| 33 | 33 |
test/kruskal_test \ |
| 34 | 34 |
test/maps_test \ |
| 35 | 35 |
test/matching_test \ |
| 36 |
test/max_clique_test \ |
|
| 36 | 37 |
test/min_cost_arborescence_test \ |
| 37 | 38 |
test/min_cost_flow_test \ |
| 38 | 39 |
test/min_mean_cycle_test \ |
| 39 | 40 |
test/path_test \ |
| 40 | 41 |
test/planarity_test \ |
| 41 | 42 |
test/preflow_test \ |
| 42 | 43 |
test/radix_sort_test \ |
| 43 | 44 |
test/random_test \ |
| 44 | 45 |
test/suurballe_test \ |
| 45 | 46 |
test/test_tools_fail \ |
| 46 | 47 |
test/test_tools_pass \ |
| 47 | 48 |
test/time_measure_test \ |
| 48 | 49 |
test/unionfind_test |
| 49 | 50 |
|
| 50 | 51 |
test_test_tools_pass_DEPENDENCIES = demo |
| 51 | 52 |
|
| 52 | 53 |
if HAVE_LP |
| 53 | 54 |
check_PROGRAMS += test/lp_test |
| 54 | 55 |
endif HAVE_LP |
| 55 | 56 |
if HAVE_MIP |
| 56 | 57 |
check_PROGRAMS += test/mip_test |
| 57 | 58 |
endif HAVE_MIP |
| 58 | 59 |
|
| 59 | 60 |
TESTS += $(check_PROGRAMS) |
| 60 | 61 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
| 61 | 62 |
|
| 62 | 63 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 63 | 64 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
| 64 | 65 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 65 | 66 |
test_circulation_test_SOURCES = test/circulation_test.cc |
| 66 | 67 |
test_counter_test_SOURCES = test/counter_test.cc |
| 67 | 68 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
| 68 | 69 |
test_dfs_test_SOURCES = test/dfs_test.cc |
| 69 | 70 |
test_digraph_test_SOURCES = test/digraph_test.cc |
| 70 | 71 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
| 71 | 72 |
test_dim_test_SOURCES = test/dim_test.cc |
| 72 | 73 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
| 73 | 74 |
test_error_test_SOURCES = test/error_test.cc |
| 74 | 75 |
test_euler_test_SOURCES = test/euler_test.cc |
| 75 | 76 |
test_fractional_matching_test_SOURCES = test/fractional_matching_test.cc |
| 76 | 77 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
| 77 | 78 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
| 78 | 79 |
test_graph_test_SOURCES = test/graph_test.cc |
| 79 | 80 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
| 80 | 81 |
test_heap_test_SOURCES = test/heap_test.cc |
| 81 | 82 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
| 82 | 83 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
| 83 | 84 |
test_lp_test_SOURCES = test/lp_test.cc |
| 84 | 85 |
test_maps_test_SOURCES = test/maps_test.cc |
| 85 | 86 |
test_mip_test_SOURCES = test/mip_test.cc |
| 86 | 87 |
test_matching_test_SOURCES = test/matching_test.cc |
| 88 |
test_max_clique_test_SOURCES = test/max_clique_test.cc |
|
| 87 | 89 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
| 88 | 90 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
| 89 | 91 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
| 90 | 92 |
test_path_test_SOURCES = test/path_test.cc |
| 91 | 93 |
test_planarity_test_SOURCES = test/planarity_test.cc |
| 92 | 94 |
test_preflow_test_SOURCES = test/preflow_test.cc |
| 93 | 95 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
| 94 | 96 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
| 95 | 97 |
test_random_test_SOURCES = test/random_test.cc |
| 96 | 98 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
| 97 | 99 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
| 98 | 100 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
| 99 | 101 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
0 comments (0 inline)