0
15
0
3
2
42
22
10
10
19
19
1
1
348
520
21
21
161
105
| ... | ... |
@@ -14,25 +14,21 @@ |
| 14 | 14 |
INCLUDE(FindDoxygen) |
| 15 | 15 |
INCLUDE(FindGhostscript) |
| 16 | 16 |
FIND_PACKAGE(GLPK 4.33) |
| 17 | 17 |
FIND_PACKAGE(CPLEX) |
| 18 | 18 |
FIND_PACKAGE(COIN) |
| 19 | 19 |
|
| 20 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
| 21 |
|
|
| 22 | 20 |
IF(MSVC) |
| 23 | 21 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996")
|
| 24 | 22 |
# Suppressed warnings: |
| 25 | 23 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
| 26 | 24 |
# C4355: 'this' : used in base member initializer list |
| 27 | 25 |
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
| 28 | 26 |
# C4996: 'function': was declared deprecated |
| 29 | 27 |
ENDIF(MSVC) |
| 30 | 28 |
|
| 31 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
|
| 32 |
|
|
| 33 | 29 |
INCLUDE(CheckTypeSize) |
| 34 | 30 |
CHECK_TYPE_SIZE("long long" LEMON_LONG_LONG)
|
| 35 | 31 |
|
| 36 | 32 |
ENABLE_TESTING() |
| 37 | 33 |
|
| 38 | 34 |
ADD_SUBDIRECTORY(lemon) |
| ... | ... |
@@ -8,17 +8,18 @@ |
| 8 | 8 |
EXTRA_DIST = \ |
| 9 | 9 |
AUTHORS \ |
| 10 | 10 |
LICENSE \ |
| 11 | 11 |
m4/lx_check_cplex.m4 \ |
| 12 | 12 |
m4/lx_check_glpk.m4 \ |
| 13 | 13 |
m4/lx_check_soplex.m4 \ |
| 14 |
m4/lx_check_clp.m4 \ |
|
| 15 |
m4/lx_check_cbc.m4 \ |
|
| 14 |
m4/lx_check_coin.m4 \ |
|
| 16 | 15 |
CMakeLists.txt \ |
| 17 | 16 |
cmake/FindGhostscript.cmake \ |
| 17 |
cmake/FindCPLEX.cmake \ |
|
| 18 | 18 |
cmake/FindGLPK.cmake \ |
| 19 |
cmake/FindCOIN.cmake \ |
|
| 19 | 20 |
cmake/version.cmake.in \ |
| 20 | 21 |
cmake/version.cmake \ |
| 21 | 22 |
cmake/nsis/lemon.ico \ |
| 22 | 23 |
cmake/nsis/uninstall.ico |
| 23 | 24 |
|
| 24 | 25 |
pkgconfigdir = $(libdir)/pkgconfig |
| 1 | 1 |
SET(COIN_ROOT_DIR "" CACHE PATH "COIN root directory") |
| 2 | 2 |
|
| 3 | 3 |
FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h |
| 4 |
PATHS ${COIN_ROOT_DIR}/include)
|
|
| 5 |
|
|
| 6 |
FIND_LIBRARY(COIN_CBC_LIBRARY libCbc |
|
| 7 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 8 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver |
|
| 9 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 10 |
FIND_LIBRARY(COIN_CGL_LIBRARY libCgl |
|
| 11 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 12 |
FIND_LIBRARY(COIN_CLP_LIBRARY libClp |
|
| 13 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 14 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils |
|
| 15 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 16 |
FIND_LIBRARY(COIN_OSI_LIBRARY libOsi |
|
| 17 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 18 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc |
|
| 19 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 20 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp |
|
| 21 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 22 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol |
|
| 23 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 24 |
FIND_LIBRARY(COIN_VOL_LIBRARY libVol |
|
| 25 |
PATHS ${COIN_ROOT_DIR}/lib)
|
|
| 4 |
HINTS ${COIN_ROOT_DIR}/include
|
|
| 5 |
) |
|
| 6 |
FIND_LIBRARY(COIN_CBC_LIBRARY |
|
| 7 |
NAMES Cbc libCbc |
|
| 8 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 9 |
) |
|
| 10 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY |
|
| 11 |
NAMES CbcSolver libCbcSolver |
|
| 12 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 13 |
) |
|
| 14 |
FIND_LIBRARY(COIN_CGL_LIBRARY |
|
| 15 |
NAMES Cgl libCgl |
|
| 16 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 17 |
) |
|
| 18 |
FIND_LIBRARY(COIN_CLP_LIBRARY |
|
| 19 |
NAMES Clp libClp |
|
| 20 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 21 |
) |
|
| 22 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY |
|
| 23 |
NAMES CoinUtils libCoinUtils |
|
| 24 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 25 |
) |
|
| 26 |
FIND_LIBRARY(COIN_OSI_LIBRARY |
|
| 27 |
NAMES Osi libOsi |
|
| 28 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 29 |
) |
|
| 30 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY |
|
| 31 |
NAMES OsiCbc libOsiCbc |
|
| 32 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 33 |
) |
|
| 34 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY |
|
| 35 |
NAMES OsiClp libOsiClp |
|
| 36 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 37 |
) |
|
| 38 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY |
|
| 39 |
NAMES OsiVol libOsiVol |
|
| 40 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 41 |
) |
|
| 42 |
FIND_LIBRARY(COIN_VOL_LIBRARY |
|
| 43 |
NAMES Vol libVol |
|
| 44 |
HINTS ${COIN_ROOT_DIR}/lib
|
|
| 45 |
) |
|
| 26 | 46 |
|
| 27 | 47 |
INCLUDE(FindPackageHandleStandardArgs) |
| 28 | 48 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(COIN DEFAULT_MSG |
| 29 | 49 |
COIN_INCLUDE_DIR |
| 30 | 50 |
COIN_CBC_LIBRARY |
| 31 | 51 |
COIN_CBC_SOLVER_LIBRARY |
| 1 |
SET(CPLEX_ROOT_DIR "" CACHE PATH "CPLEX root directory") |
|
| 2 |
|
|
| 1 | 3 |
FIND_PATH(CPLEX_INCLUDE_DIR |
| 2 | 4 |
ilcplex/cplex.h |
| 3 |
PATHS "C:/ILOG/CPLEX91/include") |
|
| 4 |
|
|
| 5 |
PATHS "C:/ILOG/CPLEX91/include" |
|
| 6 |
PATHS "/opt/ilog/cplex91/include" |
|
| 7 |
HINTS ${CPLEX_ROOT_DIR}/include
|
|
| 8 |
) |
|
| 5 | 9 |
FIND_LIBRARY(CPLEX_LIBRARY |
| 6 |
NAMES cplex91 |
|
| 7 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda") |
|
| 10 |
cplex91 |
|
| 11 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda" |
|
| 12 |
PATHS "/opt/ilog/cplex91/bin" |
|
| 13 |
HINTS ${CPLEX_ROOT_DIR}/bin
|
|
| 14 |
) |
|
| 8 | 15 |
|
| 9 | 16 |
INCLUDE(FindPackageHandleStandardArgs) |
| 10 | 17 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(CPLEX DEFAULT_MSG CPLEX_LIBRARY CPLEX_INCLUDE_DIR) |
| 11 | 18 |
|
| 12 | 19 |
FIND_PATH(CPLEX_BIN_DIR |
| 13 | 20 |
cplex91.dll |
| 14 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
| 21 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32" |
|
| 22 |
) |
|
| 15 | 23 |
|
| 16 | 24 |
IF(CPLEX_FOUND) |
| 17 | 25 |
SET(CPLEX_INCLUDE_DIRS ${CPLEX_INCLUDE_DIR})
|
| 18 | 26 |
SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY})
|
| 27 |
IF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
| 28 |
SET(CPLEX_LIBRARIES "${CPLEX_LIBRARIES};m;pthread")
|
|
| 29 |
ENDIF(CMAKE_SYSTEM_NAME STREQUAL "Linux") |
|
| 19 | 30 |
ENDIF(CPLEX_FOUND) |
| 20 | 31 |
|
| 21 | 32 |
MARK_AS_ADVANCED(CPLEX_LIBRARY CPLEX_INCLUDE_DIR CPLEX_BIN_DIR) |
| 22 | 33 |
|
| 23 | 34 |
IF(CPLEX_FOUND) |
| 24 | 35 |
SET(LEMON_HAVE_LP TRUE) |
| 1 |
SET(GLPK_ROOT_DIR "" CACHE PATH "GLPK root directory") |
|
| 2 |
|
|
| 1 | 3 |
SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]") |
| 2 | 4 |
GET_FILENAME_COMPONENT(GLPK_ROOT_PATH ${GLPK_REGKEY} ABSOLUTE)
|
| 3 | 5 |
|
| 4 | 6 |
FIND_PATH(GLPK_INCLUDE_DIR |
| 5 | 7 |
glpk.h |
| 6 |
PATHS ${GLPK_REGKEY}/include
|
|
| 8 |
PATHS ${GLPK_REGKEY}/include
|
|
| 9 |
HINTS ${GLPK_ROOT_DIR}/include
|
|
| 10 |
) |
|
| 11 |
FIND_LIBRARY(GLPK_LIBRARY |
|
| 12 |
glpk |
|
| 13 |
PATHS ${GLPK_REGKEY}/lib
|
|
| 14 |
HINTS ${GLPK_ROOT_DIR}/lib
|
|
| 15 |
) |
|
| 7 | 16 |
|
| 8 |
FIND_LIBRARY(GLPK_LIBRARY |
|
| 9 |
NAMES glpk |
|
| 10 |
|
|
| 17 |
IF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
| 18 |
FILE(READ ${GLPK_INCLUDE_DIR}/glpk.h GLPK_GLPK_H)
|
|
| 19 |
|
|
| 20 |
STRING(REGEX MATCH "define[ ]+GLP_MAJOR_VERSION[ ]+[0-9]+" GLPK_MAJOR_VERSION_LINE "${GLPK_GLPK_H}")
|
|
| 21 |
STRING(REGEX REPLACE "define[ ]+GLP_MAJOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MAJOR "${GLPK_MAJOR_VERSION_LINE}")
|
|
| 22 |
|
|
| 23 |
STRING(REGEX MATCH "define[ ]+GLP_MINOR_VERSION[ ]+[0-9]+" GLPK_MINOR_VERSION_LINE "${GLPK_GLPK_H}")
|
|
| 24 |
STRING(REGEX REPLACE "define[ ]+GLP_MINOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MINOR "${GLPK_MINOR_VERSION_LINE}")
|
|
| 25 |
|
|
| 26 |
SET(GLPK_VERSION_STRING "${GLPK_VERSION_MAJOR}.${GLPK_VERSION_MINOR}")
|
|
| 27 |
|
|
| 28 |
IF(GLPK_FIND_VERSION) |
|
| 29 |
IF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
| 30 |
MESSAGE(SEND_ERROR "unexpected version string") |
|
| 31 |
ENDIF(GLPK_FIND_VERSION_COUNT GREATER 2) |
|
| 32 |
|
|
| 33 |
MATH(EXPR GLPK_REQUESTED_VERSION "${GLPK_FIND_VERSION_MAJOR}*100 + ${GLPK_FIND_VERSION_MINOR}")
|
|
| 34 |
MATH(EXPR GLPK_FOUND_VERSION "${GLPK_VERSION_MAJOR}*100 + ${GLPK_VERSION_MINOR}")
|
|
| 35 |
|
|
| 36 |
IF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 37 |
SET(GLPK_PROPER_VERSION_FOUND FALSE) |
|
| 38 |
ELSE(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 39 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
| 40 |
ENDIF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION) |
|
| 41 |
ELSE(GLPK_FIND_VERSION) |
|
| 42 |
SET(GLPK_PROPER_VERSION_FOUND TRUE) |
|
| 43 |
ENDIF(GLPK_FIND_VERSION) |
|
| 44 |
ENDIF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY) |
|
| 11 | 45 |
|
| 12 | 46 |
INCLUDE(FindPackageHandleStandardArgs) |
| 13 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR) |
|
| 47 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_PROPER_VERSION_FOUND) |
|
| 14 | 48 |
|
| 15 | 49 |
IF(GLPK_FOUND) |
| 16 | 50 |
SET(GLPK_INCLUDE_DIRS ${GLPK_INCLUDE_DIR})
|
| 17 | 51 |
SET(GLPK_LIBRARIES ${GLPK_LIBRARY})
|
| 18 | 52 |
SET(GLPK_BIN_DIR ${GLPK_ROOT_PATH}/bin)
|
| 19 | 53 |
ENDIF(GLPK_FOUND) |
| ... | ... |
@@ -349,23 +349,23 @@ |
| 349 | 349 |
circulations. |
| 350 | 350 |
|
| 351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 | 353 |
in a network with capacity constraints (lower and upper bounds) |
| 354 | 354 |
and arc costs. |
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
| 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
|
| 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
|
|
| 356 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
|
|
| 357 | 357 |
upper bounds for the flow values on the arcs, for which |
| 358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
|
| 360 |
|
|
| 358 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
| 359 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
|
|
| 360 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
|
|
| 361 | 361 |
signed supply values of the nodes. |
| 362 | 362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 363 | 363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 364 | 364 |
\f$-sup(u)\f$ demand. |
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}
|
|
| 365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
|
|
| 366 | 366 |
of the following optimization problem. |
| 367 | 367 |
|
| 368 | 368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 369 | 369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 370 | 370 |
sup(u) \quad \forall u\in V \f] |
| 371 | 371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| ... | ... |
@@ -401,30 +401,30 @@ |
| 401 | 401 |
However if the sum of the supply values is zero, then these two problems |
| 402 | 402 |
are equivalent. So if you need the equality form, you have to ensure this |
| 403 | 403 |
additional contraint for the algorithms. |
| 404 | 404 |
|
| 405 | 405 |
The dual solution of the minimum cost flow problem is represented by node |
| 406 | 406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}
|
|
| 407 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
|
|
| 408 | 408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
|
| 409 | 409 |
node potentials the following \e complementary \e slackness optimality |
| 410 | 410 |
conditions hold. |
| 411 | 411 |
|
| 412 | 412 |
- For all \f$uv\in A\f$ arcs: |
| 413 | 413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 414 | 414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 415 | 415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 416 |
- For all \f$u\in V\f$: |
|
| 416 |
- For all \f$u\in V\f$ nodes: |
|
| 417 | 417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 418 | 418 |
then \f$\pi(u)=0\f$. |
| 419 | 419 |
|
| 420 | 420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 421 |
\f$uv\in A\f$ with respect to the |
|
| 421 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
| 422 | 422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 423 | 423 |
|
| 424 |
All algorithms provide dual solution (node potentials) as well |
|
| 424 |
All algorithms provide dual solution (node potentials) as well, |
|
| 425 | 425 |
if an optimal flow is found. |
| 426 | 426 |
|
| 427 | 427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
| 428 | 428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 429 | 429 |
pivot strategies. |
| 430 | 430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| ... | ... |
@@ -12,13 +12,14 @@ |
| 12 | 12 |
lemon/color.cc \ |
| 13 | 13 |
lemon/lp_base.cc \ |
| 14 | 14 |
lemon/lp_skeleton.cc \ |
| 15 | 15 |
lemon/random.cc \ |
| 16 | 16 |
lemon/bits/windows.cc |
| 17 | 17 |
|
| 18 |
|
|
| 18 |
nodist_lemon_HEADERS = lemon/config.h |
|
| 19 |
|
|
| 19 | 20 |
lemon_libemon_la_CXXFLAGS = \ |
| 20 | 21 |
$(AM_CXXFLAGS) \ |
| 21 | 22 |
$(GLPK_CFLAGS) \ |
| 22 | 23 |
$(CPLEX_CFLAGS) \ |
| 23 | 24 |
$(SOPLEX_CXXFLAGS) \ |
| 24 | 25 |
$(CLP_CXXFLAGS) \ |
| ... | ... |
@@ -54,17 +55,17 @@ |
| 54 | 55 |
lemon_HEADERS += \ |
| 55 | 56 |
lemon/adaptors.h \ |
| 56 | 57 |
lemon/arg_parser.h \ |
| 57 | 58 |
lemon/assert.h \ |
| 58 | 59 |
lemon/bfs.h \ |
| 59 | 60 |
lemon/bin_heap.h \ |
| 61 |
lemon/cbc.h \ |
|
| 60 | 62 |
lemon/circulation.h \ |
| 61 | 63 |
lemon/clp.h \ |
| 62 | 64 |
lemon/color.h \ |
| 63 | 65 |
lemon/concept_check.h \ |
| 64 |
lemon/config.h \ |
|
| 65 | 66 |
lemon/connectivity.h \ |
| 66 | 67 |
lemon/counter.h \ |
| 67 | 68 |
lemon/core.h \ |
| 68 | 69 |
lemon/cplex.h \ |
| 69 | 70 |
lemon/dfs.h \ |
| 70 | 71 |
lemon/dijkstra.h \ |
| ... | ... |
@@ -61,21 +61,21 @@ |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 |
/// \brief The type of the flow values. |
|
| 68 |
typedef typename SupplyMap::Value Flow; |
|
| 67 |
/// \brief The type of the flow and supply values. |
|
| 68 |
typedef typename SupplyMap::Value Value; |
|
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
typedef typename Digraph::template ArcMap< |
|
| 75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 76 | 76 |
|
| 77 | 77 |
/// \brief Instantiates a FlowMap. |
| 78 | 78 |
/// |
| 79 | 79 |
/// This function instantiates a \ref FlowMap. |
| 80 | 80 |
/// \param digraph The digraph for which we would like to define |
| 81 | 81 |
/// the flow map. |
| ... | ... |
@@ -101,13 +101,13 @@ |
| 101 | 101 |
return new Elevator(digraph, max_level); |
| 102 | 102 |
} |
| 103 | 103 |
|
| 104 | 104 |
/// \brief The tolerance used by the algorithm |
| 105 | 105 |
/// |
| 106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 |
typedef lemon::Tolerance< |
|
| 107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 108 | 108 |
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
/** |
| 112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 113 |
|
| ... | ... |
@@ -184,14 +184,14 @@ |
| 184 | 184 |
public: |
| 185 | 185 |
|
| 186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 187 | 187 |
typedef TR Traits; |
| 188 | 188 |
///The type of the digraph the algorithm runs on. |
| 189 | 189 |
typedef typename Traits::Digraph Digraph; |
| 190 |
///The type of the flow values. |
|
| 191 |
typedef typename Traits::Flow Flow; |
|
| 190 |
///The type of the flow and supply values. |
|
| 191 |
typedef typename Traits::Value Value; |
|
| 192 | 192 |
|
| 193 | 193 |
///The type of the lower bound map. |
| 194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
| 195 | 195 |
///The type of the upper bound (capacity) map. |
| 196 | 196 |
typedef typename Traits::UpperMap UpperMap; |
| 197 | 197 |
///The type of the supply map. |
| ... | ... |
@@ -218,13 +218,13 @@ |
| 218 | 218 |
FlowMap *_flow; |
| 219 | 219 |
bool _local_flow; |
| 220 | 220 |
|
| 221 | 221 |
Elevator* _level; |
| 222 | 222 |
bool _local_level; |
| 223 | 223 |
|
| 224 |
typedef typename Digraph::template NodeMap< |
|
| 224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 225 | 225 |
ExcessMap* _excess; |
| 226 | 226 |
|
| 227 | 227 |
Tolerance _tol; |
| 228 | 228 |
int _el; |
| 229 | 229 |
|
| 230 | 230 |
public: |
| ... | ... |
@@ -527,13 +527,13 @@ |
| 527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 529 | 529 |
_flow->set(e, (*_lo)[e]); |
| 530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 532 | 532 |
} else {
|
| 533 |
|
|
| 533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
| 534 | 534 |
_flow->set(e, fc); |
| 535 | 535 |
(*_excess)[_g.target(e)] = 0; |
| 536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
| 537 | 537 |
} |
| 538 | 538 |
} |
| 539 | 539 |
|
| ... | ... |
@@ -560,17 +560,17 @@ |
| 560 | 560 |
Node act; |
| 561 | 561 |
Node bact=INVALID; |
| 562 | 562 |
Node last_activated=INVALID; |
| 563 | 563 |
while((act=_level->highestActive())!=INVALID) {
|
| 564 | 564 |
int actlevel=(*_level)[act]; |
| 565 | 565 |
int mlevel=_node_num; |
| 566 |
|
|
| 566 |
Value exc=(*_excess)[act]; |
|
| 567 | 567 |
|
| 568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 569 | 569 |
Node v = _g.target(e); |
| 570 |
|
|
| 570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
| 571 | 571 |
if(!_tol.positive(fc)) continue; |
| 572 | 572 |
if((*_level)[v]<actlevel) {
|
| 573 | 573 |
if(!_tol.less(fc, exc)) {
|
| 574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
| 575 | 575 |
(*_excess)[v] += exc; |
| 576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| ... | ... |
@@ -588,13 +588,13 @@ |
| 588 | 588 |
} |
| 589 | 589 |
} |
| 590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 591 | 591 |
} |
| 592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 593 | 593 |
Node v = _g.source(e); |
| 594 |
|
|
| 594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
| 595 | 595 |
if(!_tol.positive(fc)) continue; |
| 596 | 596 |
if((*_level)[v]<actlevel) {
|
| 597 | 597 |
if(!_tol.less(fc, exc)) {
|
| 598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
| 599 | 599 |
(*_excess)[v] += exc; |
| 600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| ... | ... |
@@ -658,19 +658,19 @@ |
| 658 | 658 |
/// these functions.\n |
| 659 | 659 |
/// Either \ref run() or \ref start() should be called before |
| 660 | 660 |
/// using them. |
| 661 | 661 |
|
| 662 | 662 |
///@{
|
| 663 | 663 |
|
| 664 |
/// \brief Returns the flow on the given arc. |
|
| 664 |
/// \brief Returns the flow value on the given arc. |
|
| 665 | 665 |
/// |
| 666 |
/// Returns the flow on the given arc. |
|
| 666 |
/// Returns the flow value on the given arc. |
|
| 667 | 667 |
/// |
| 668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
| 669 | 669 |
/// using this function. |
| 670 |
|
|
| 670 |
Value flow(const Arc& arc) const {
|
|
| 671 | 671 |
return (*_flow)[arc]; |
| 672 | 672 |
} |
| 673 | 673 |
|
| 674 | 674 |
/// \brief Returns a const reference to the flow map. |
| 675 | 675 |
/// |
| 676 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
| ... | ... |
@@ -747,13 +747,13 @@ |
| 747 | 747 |
/// |
| 748 | 748 |
bool checkFlow() const {
|
| 749 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 752 | 752 |
{
|
| 753 |
|
|
| 753 |
Value dif=-(*_supply)[n]; |
|
| 754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 756 | 756 |
if(_tol.negative(dif)) return false; |
| 757 | 757 |
} |
| 758 | 758 |
return true; |
| 759 | 759 |
} |
| ... | ... |
@@ -762,16 +762,16 @@ |
| 762 | 762 |
|
| 763 | 763 |
///Check whether or not the last execution provides a barrier. |
| 764 | 764 |
///\sa barrier() |
| 765 | 765 |
///\sa barrierMap() |
| 766 | 766 |
bool checkBarrier() const |
| 767 | 767 |
{
|
| 768 |
Flow delta=0; |
|
| 769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
| 770 |
std::numeric_limits<Flow>::infinity() : |
|
| 771 |
std::numeric_limits<Flow>::max(); |
|
| 768 |
Value delta=0; |
|
| 769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
| 770 |
std::numeric_limits<Value>::infinity() : |
|
| 771 |
std::numeric_limits<Value>::max(); |
|
| 772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 773 | 773 |
if(barrier(n)) |
| 774 | 774 |
delta-=(*_supply)[n]; |
| 775 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 776 | 776 |
{
|
| 777 | 777 |
Node s=_g.source(e); |
| ... | ... |
@@ -19,13 +19,13 @@ |
| 19 | 19 |
#ifndef LEMON_CORE_H |
| 20 | 20 |
#define LEMON_CORE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 |
#include <lemon/ |
|
| 25 |
#include <lemon/config.h> |
|
| 26 | 26 |
#include <lemon/bits/enable_if.h> |
| 27 | 27 |
#include <lemon/bits/traits.h> |
| 28 | 28 |
#include <lemon/assert.h> |
| 29 | 29 |
|
| 30 | 30 |
///\file |
| 31 | 31 |
///\brief LEMON core utilities. |
| ... | ... |
@@ -27,15 +27,12 @@ |
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 |
#include <lemon/maps.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 36 | 33 |
|
| 37 | 34 |
namespace lemon {
|
| 38 | 35 |
|
| 39 | 36 |
/// \addtogroup min_cost_flow |
| 40 | 37 |
/// @{
|
| 41 | 38 |
|
| ... | ... |
@@ -47,55 +44,118 @@ |
| 47 | 44 |
/// This algorithm is a specialized version of the linear programming |
| 48 | 45 |
/// simplex method directly for the minimum cost flow problem. |
| 49 | 46 |
/// It is one of the most efficient solution methods. |
| 50 | 47 |
/// |
| 51 | 48 |
/// In general this class is the fastest implementation available |
| 52 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
| 54 |
/// constraints. For more information see \ref ProblemType. |
|
| 50 |
/// Moreover it supports both directions of the supply/demand inequality |
|
| 51 |
/// constraints. For more information see \ref SupplyType. |
|
| 52 |
/// |
|
| 53 |
/// Most of the parameters of the problem (except for the digraph) |
|
| 54 |
/// can be given using separate functions, and the algorithm can be |
|
| 55 |
/// executed using the \ref run() function. If some parameters are not |
|
| 56 |
/// specified, then default values will be used. |
|
| 55 | 57 |
/// |
| 56 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 57 |
/// \tparam |
|
| 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
| 58 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
| 59 | 61 |
/// \tparam C The value type used for costs and potentials in the |
| 60 |
/// algorithm. By default it is the same as \c |
|
| 62 |
/// algorithm. By default it is the same as \c V. |
|
| 61 | 63 |
/// |
| 62 | 64 |
/// \warning Both value types must be signed and all input data must |
| 63 | 65 |
/// be integer. |
| 64 | 66 |
/// |
| 65 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
| 66 | 68 |
/// implementations, from which the most efficient one is used |
| 67 | 69 |
/// by default. For more information see \ref PivotRule. |
| 68 |
template <typename GR, typename |
|
| 70 |
template <typename GR, typename V = int, typename C = V> |
|
| 69 | 71 |
class NetworkSimplex |
| 70 | 72 |
{
|
| 71 | 73 |
public: |
| 72 | 74 |
|
| 73 |
/// The flow type of the algorithm |
|
| 74 |
typedef F Flow; |
|
| 75 |
/// The |
|
| 75 |
/// The type of the flow amounts, capacity bounds and supply values |
|
| 76 |
typedef V Value; |
|
| 77 |
/// The type of the arc costs |
|
| 76 | 78 |
typedef C Cost; |
| 77 |
#ifdef DOXYGEN |
|
| 78 |
/// The type of the flow map |
|
| 79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
| 80 |
/// The type of the potential map |
|
| 81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
| 82 |
#else |
|
| 83 |
/// The type of the flow map |
|
| 84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
| 85 |
/// The type of the potential map |
|
| 86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
| 87 |
#endif |
|
| 88 | 79 |
|
| 89 | 80 |
public: |
| 90 | 81 |
|
| 91 |
/// \brief |
|
| 82 |
/// \brief Problem type constants for the \c run() function. |
|
| 92 | 83 |
/// |
| 93 |
/// Enum type |
|
| 84 |
/// Enum type containing the problem type constants that can be |
|
| 85 |
/// returned by the \ref run() function of the algorithm. |
|
| 86 |
enum ProblemType {
|
|
| 87 |
/// The problem has no feasible solution (flow). |
|
| 88 |
INFEASIBLE, |
|
| 89 |
/// The problem has optimal solution (i.e. it is feasible and |
|
| 90 |
/// bounded), and the algorithm has found optimal flow and node |
|
| 91 |
/// potentials (primal and dual solutions). |
|
| 92 |
OPTIMAL, |
|
| 93 |
/// The objective function of the problem is unbounded, i.e. |
|
| 94 |
/// there is a directed cycle having negative total cost and |
|
| 95 |
/// infinite upper bound. |
|
| 96 |
UNBOUNDED |
|
| 97 |
}; |
|
| 98 |
|
|
| 99 |
/// \brief Constants for selecting the type of the supply constraints. |
|
| 100 |
/// |
|
| 101 |
/// Enum type containing constants for selecting the supply type, |
|
| 102 |
/// i.e. the direction of the inequalities in the supply/demand |
|
| 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|
| 104 |
/// |
|
| 105 |
/// The default supply type is \c GEQ, since this form is supported |
|
| 106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 107 |
/// algorithm, as well. |
|
| 108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
| 94 | 109 |
/// function. |
| 95 | 110 |
/// |
| 111 |
/// Note that the equality form is a special case of both supply types. |
|
| 112 |
enum SupplyType {
|
|
| 113 |
|
|
| 114 |
/// This option means that there are <em>"greater or equal"</em> |
|
| 115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 116 |
/// formulation of the problem is the following. |
|
| 117 |
/** |
|
| 118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 120 |
sup(u) \quad \forall u\in V \f] |
|
| 121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 122 |
*/ |
|
| 123 |
/// It means that the total demand must be greater or equal to the |
|
| 124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 125 |
/// negative) and all the supplies have to be carried out from |
|
| 126 |
/// the supply nodes, but there could be demands that are not |
|
| 127 |
/// satisfied. |
|
| 128 |
GEQ, |
|
| 129 |
/// It is just an alias for the \c GEQ option. |
|
| 130 |
CARRY_SUPPLIES = GEQ, |
|
| 131 |
|
|
| 132 |
/// This option means that there are <em>"less or equal"</em> |
|
| 133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
| 134 |
/// formulation of the problem is the following. |
|
| 135 |
/** |
|
| 136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 138 |
sup(u) \quad \forall u\in V \f] |
|
| 139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 140 |
*/ |
|
| 141 |
/// It means that the total demand must be less or equal to the |
|
| 142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 143 |
/// positive) and all the demands have to be satisfied, but there |
|
| 144 |
/// could be supplies that are not carried out from the supply |
|
| 145 |
/// nodes. |
|
| 146 |
LEQ, |
|
| 147 |
/// It is just an alias for the \c LEQ option. |
|
| 148 |
SATISFY_DEMANDS = LEQ |
|
| 149 |
}; |
|
| 150 |
|
|
| 151 |
/// \brief Constants for selecting the pivot rule. |
|
| 152 |
/// |
|
| 153 |
/// Enum type containing constants for selecting the pivot rule for |
|
| 154 |
/// the \ref run() function. |
|
| 155 |
/// |
|
| 96 | 156 |
/// \ref NetworkSimplex provides five different pivot rule |
| 97 | 157 |
/// implementations that significantly affect the running time |
| 98 | 158 |
/// of the algorithm. |
| 99 | 159 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 100 | 160 |
/// proved to be the most efficient and the most robust on various |
| 101 | 161 |
/// test inputs according to our benchmark tests. |
| ... | ... |
@@ -128,77 +188,21 @@ |
| 128 | 188 |
/// It is a modified version of the Candidate List method. |
| 129 | 189 |
/// It keeps only the several best eligible arcs from the former |
| 130 | 190 |
/// candidate list and extends this list in every iteration. |
| 131 | 191 |
ALTERING_LIST |
| 132 | 192 |
}; |
| 133 | 193 |
|
| 134 |
/// \brief Enum type for selecting the problem type. |
|
| 135 |
/// |
|
| 136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
| 137 |
/// the inequalities in the supply/demand constraints of the |
|
| 138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
| 139 |
/// |
|
| 140 |
/// The default problem type is \c GEQ, since this form is supported |
|
| 141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
| 142 |
/// algorithm as well. |
|
| 143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
| 144 |
/// function. |
|
| 145 |
/// |
|
| 146 |
/// Note that the equality form is a special case of both problem type. |
|
| 147 |
enum ProblemType {
|
|
| 148 |
|
|
| 149 |
/// This option means that there are "<em>greater or equal</em>" |
|
| 150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 151 |
/// problem is the following. |
|
| 152 |
/** |
|
| 153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
|
| 155 |
sup(u) \quad \forall u\in V \f] |
|
| 156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 157 |
*/ |
|
| 158 |
/// It means that the total demand must be greater or equal to the |
|
| 159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 160 |
/// negative) and all the supplies have to be carried out from |
|
| 161 |
/// the supply nodes, but there could be demands that are not |
|
| 162 |
/// satisfied. |
|
| 163 |
GEQ, |
|
| 164 |
/// It is just an alias for the \c GEQ option. |
|
| 165 |
CARRY_SUPPLIES = GEQ, |
|
| 166 |
|
|
| 167 |
/// This option means that there are "<em>less or equal</em>" |
|
| 168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
| 169 |
/// problem is the following. |
|
| 170 |
/** |
|
| 171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
|
| 172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
|
| 173 |
sup(u) \quad \forall u\in V \f] |
|
| 174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
| 175 |
*/ |
|
| 176 |
/// It means that the total demand must be less or equal to the |
|
| 177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
|
| 178 |
/// positive) and all the demands have to be satisfied, but there |
|
| 179 |
/// could be supplies that are not carried out from the supply |
|
| 180 |
/// nodes. |
|
| 181 |
LEQ, |
|
| 182 |
/// It is just an alias for the \c LEQ option. |
|
| 183 |
SATISFY_DEMANDS = LEQ |
|
| 184 |
}; |
|
| 185 |
|
|
| 186 | 194 |
private: |
| 187 | 195 |
|
| 188 | 196 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 189 | 197 |
|
| 190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
| 191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
| 192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
| 193 |
|
|
| 194 | 198 |
typedef std::vector<Arc> ArcVector; |
| 195 | 199 |
typedef std::vector<Node> NodeVector; |
| 196 | 200 |
typedef std::vector<int> IntVector; |
| 197 | 201 |
typedef std::vector<bool> BoolVector; |
| 198 |
typedef std::vector< |
|
| 202 |
typedef std::vector<Value> ValueVector; |
|
| 199 | 203 |
typedef std::vector<Cost> CostVector; |
| 200 | 204 |
|
| 201 | 205 |
// State constants for arcs |
| 202 | 206 |
enum ArcStateEnum {
|
| 203 | 207 |
STATE_UPPER = -1, |
| 204 | 208 |
STATE_TREE = 0, |
| ... | ... |
@@ -210,38 +214,29 @@ |
| 210 | 214 |
// Data related to the underlying digraph |
| 211 | 215 |
const GR &_graph; |
| 212 | 216 |
int _node_num; |
| 213 | 217 |
int _arc_num; |
| 214 | 218 |
|
| 215 | 219 |
// Parameters of the problem |
| 216 |
FlowArcMap *_plower; |
|
| 217 |
FlowArcMap *_pupper; |
|
| 218 |
CostArcMap *_pcost; |
|
| 219 |
FlowNodeMap *_psupply; |
|
| 220 |
bool _pstsup; |
|
| 221 |
Node _psource, _ptarget; |
|
| 222 |
Flow _pstflow; |
|
| 223 |
ProblemType _ptype; |
|
| 224 |
|
|
| 225 |
// Result maps |
|
| 226 |
FlowMap *_flow_map; |
|
| 227 |
PotentialMap *_potential_map; |
|
| 228 |
bool _local_flow; |
|
| 229 |
bool _local_potential; |
|
| 220 |
bool _have_lower; |
|
| 221 |
SupplyType _stype; |
|
| 222 |
Value _sum_supply; |
|
| 230 | 223 |
|
| 231 | 224 |
// Data structures for storing the digraph |
| 232 | 225 |
IntNodeMap _node_id; |
| 233 |
|
|
| 226 |
IntArcMap _arc_id; |
|
| 234 | 227 |
IntVector _source; |
| 235 | 228 |
IntVector _target; |
| 236 | 229 |
|
| 237 | 230 |
// Node and arc data |
| 238 |
|
|
| 231 |
ValueVector _lower; |
|
| 232 |
ValueVector _upper; |
|
| 233 |
ValueVector _cap; |
|
| 239 | 234 |
CostVector _cost; |
| 240 |
FlowVector _supply; |
|
| 241 |
FlowVector _flow; |
|
| 235 |
ValueVector _supply; |
|
| 236 |
ValueVector _flow; |
|
| 242 | 237 |
CostVector _pi; |
| 243 | 238 |
|
| 244 | 239 |
// Data for storing the spanning tree structure |
| 245 | 240 |
IntVector _parent; |
| 246 | 241 |
IntVector _pred; |
| 247 | 242 |
IntVector _thread; |
| ... | ... |
@@ -254,13 +249,22 @@ |
| 254 | 249 |
int _root; |
| 255 | 250 |
|
| 256 | 251 |
// Temporary data used in the current pivot iteration |
| 257 | 252 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 258 | 253 |
int first, second, right, last; |
| 259 | 254 |
int stem, par_stem, new_stem; |
| 260 |
|
|
| 255 |
Value delta; |
|
| 256 |
|
|
| 257 |
public: |
|
| 258 |
|
|
| 259 |
/// \brief Constant for infinite upper bounds (capacities). |
|
| 260 |
/// |
|
| 261 |
/// Constant for infinite upper bounds (capacities). |
|
| 262 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
| 263 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
| 264 |
const Value INF; |
|
| 261 | 265 |
|
| 262 | 266 |
private: |
| 263 | 267 |
|
| 264 | 268 |
// Implementation of the First Eligible pivot rule |
| 265 | 269 |
class FirstEligiblePivotRule |
| 266 | 270 |
{
|
| ... | ... |
@@ -656,323 +660,290 @@ |
| 656 | 660 |
/// \brief Constructor. |
| 657 | 661 |
/// |
| 658 | 662 |
/// The constructor of the class. |
| 659 | 663 |
/// |
| 660 | 664 |
/// \param graph The digraph the algorithm runs on. |
| 661 | 665 |
NetworkSimplex(const GR& graph) : |
| 662 |
_graph(graph), |
|
| 663 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
| 664 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
| 665 |
_flow_map(NULL), _potential_map(NULL), |
|
| 666 |
_local_flow(false), _local_potential(false), |
|
| 667 |
_node_id(graph) |
|
| 666 |
_graph(graph), _node_id(graph), _arc_id(graph), |
|
| 667 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
| 668 |
std::numeric_limits<Value>::infinity() : |
|
| 669 |
std::numeric_limits<Value>::max()) |
|
| 668 | 670 |
{
|
| 669 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
| 670 |
std::numeric_limits<Flow>::is_signed, |
|
| 671 |
"The flow type of NetworkSimplex must be signed integer"); |
|
| 672 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
| 673 |
std::numeric_limits<Cost>::is_signed, |
|
| 674 |
"The cost type of NetworkSimplex must be signed integer"); |
|
| 675 |
|
|
| 671 |
// Check the value types |
|
| 672 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
| 673 |
"The flow type of NetworkSimplex must be signed"); |
|
| 674 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|
| 675 |
"The cost type of NetworkSimplex must be signed"); |
|
| 676 |
|
|
| 677 |
// Resize vectors |
|
| 678 |
_node_num = countNodes(_graph); |
|
| 679 |
_arc_num = countArcs(_graph); |
|
| 680 |
int all_node_num = _node_num + 1; |
|
| 681 |
int all_arc_num = _arc_num + _node_num; |
|
| 676 | 682 |
|
| 677 |
/// Destructor. |
|
| 678 |
~NetworkSimplex() {
|
|
| 679 |
if (_local_flow) delete _flow_map; |
|
| 680 |
if (_local_potential) delete _potential_map; |
|
| 683 |
_source.resize(all_arc_num); |
|
| 684 |
_target.resize(all_arc_num); |
|
| 685 |
|
|
| 686 |
_lower.resize(all_arc_num); |
|
| 687 |
_upper.resize(all_arc_num); |
|
| 688 |
_cap.resize(all_arc_num); |
|
| 689 |
_cost.resize(all_arc_num); |
|
| 690 |
_supply.resize(all_node_num); |
|
| 691 |
_flow.resize(all_arc_num); |
|
| 692 |
_pi.resize(all_node_num); |
|
| 693 |
|
|
| 694 |
_parent.resize(all_node_num); |
|
| 695 |
_pred.resize(all_node_num); |
|
| 696 |
_forward.resize(all_node_num); |
|
| 697 |
_thread.resize(all_node_num); |
|
| 698 |
_rev_thread.resize(all_node_num); |
|
| 699 |
_succ_num.resize(all_node_num); |
|
| 700 |
_last_succ.resize(all_node_num); |
|
| 701 |
_state.resize(all_arc_num); |
|
| 702 |
|
|
| 703 |
// Copy the graph (store the arcs in a mixed order) |
|
| 704 |
int i = 0; |
|
| 705 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 706 |
_node_id[n] = i; |
|
| 707 |
} |
|
| 708 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 709 |
i = 0; |
|
| 710 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 711 |
_arc_id[a] = i; |
|
| 712 |
_source[i] = _node_id[_graph.source(a)]; |
|
| 713 |
_target[i] = _node_id[_graph.target(a)]; |
|
| 714 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 715 |
} |
|
| 716 |
|
|
| 717 |
// Initialize maps |
|
| 718 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 719 |
_supply[i] = 0; |
|
| 720 |
} |
|
| 721 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 722 |
_lower[i] = 0; |
|
| 723 |
_upper[i] = INF; |
|
| 724 |
_cost[i] = 1; |
|
| 725 |
} |
|
| 726 |
_have_lower = false; |
|
| 727 |
_stype = GEQ; |
|
| 681 | 728 |
} |
| 682 | 729 |
|
| 683 | 730 |
/// \name Parameters |
| 684 | 731 |
/// The parameters of the algorithm can be specified using these |
| 685 | 732 |
/// functions. |
| 686 | 733 |
|
| 687 | 734 |
/// @{
|
| 688 | 735 |
|
| 689 | 736 |
/// \brief Set the lower bounds on the arcs. |
| 690 | 737 |
/// |
| 691 | 738 |
/// This function sets the lower bounds on the arcs. |
| 692 |
/// If neither this function nor \ref boundMaps() is used before |
|
| 693 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 694 |
/// |
|
| 739 |
/// If it is not used before calling \ref run(), the lower bounds |
|
| 740 |
/// will be set to zero on all arcs. |
|
| 695 | 741 |
/// |
| 696 | 742 |
/// \param map An arc map storing the lower bounds. |
| 697 |
/// Its \c Value type must be convertible to the \c |
|
| 743 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 698 | 744 |
/// of the algorithm. |
| 699 | 745 |
/// |
| 700 | 746 |
/// \return <tt>(*this)</tt> |
| 701 |
template <typename LOWER> |
|
| 702 |
NetworkSimplex& lowerMap(const LOWER& map) {
|
|
| 703 |
delete _plower; |
|
| 704 |
_plower = new FlowArcMap(_graph); |
|
| 747 |
template <typename LowerMap> |
|
| 748 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
|
| 749 |
_have_lower = true; |
|
| 705 | 750 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 706 |
|
|
| 751 |
_lower[_arc_id[a]] = map[a]; |
|
| 707 | 752 |
} |
| 708 | 753 |
return *this; |
| 709 | 754 |
} |
| 710 | 755 |
|
| 711 | 756 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 712 | 757 |
/// |
| 713 | 758 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 714 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 715 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 716 |
/// the upper bounds (capacities) will be set to |
|
| 717 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 759 |
/// If it is not used before calling \ref run(), the upper bounds |
|
| 760 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
|
| 761 |
/// unbounded from above on each arc). |
|
| 718 | 762 |
/// |
| 719 | 763 |
/// \param map An arc map storing the upper bounds. |
| 720 |
/// Its \c Value type must be convertible to the \c |
|
| 764 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 721 | 765 |
/// of the algorithm. |
| 722 | 766 |
/// |
| 723 | 767 |
/// \return <tt>(*this)</tt> |
| 724 |
template<typename UPPER> |
|
| 725 |
NetworkSimplex& upperMap(const UPPER& map) {
|
|
| 726 |
delete _pupper; |
|
| 727 |
_pupper = new FlowArcMap(_graph); |
|
| 768 |
template<typename UpperMap> |
|
| 769 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
|
| 728 | 770 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 729 |
|
|
| 771 |
_upper[_arc_id[a]] = map[a]; |
|
| 730 | 772 |
} |
| 731 | 773 |
return *this; |
| 732 | 774 |
} |
| 733 | 775 |
|
| 734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
| 735 |
/// |
|
| 736 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
| 737 |
/// It is just an alias for \ref upperMap(). |
|
| 738 |
/// |
|
| 739 |
/// \return <tt>(*this)</tt> |
|
| 740 |
template<typename CAP> |
|
| 741 |
NetworkSimplex& capacityMap(const CAP& map) {
|
|
| 742 |
return upperMap(map); |
|
| 743 |
} |
|
| 744 |
|
|
| 745 |
/// \brief Set the lower and upper bounds on the arcs. |
|
| 746 |
/// |
|
| 747 |
/// This function sets the lower and upper bounds on the arcs. |
|
| 748 |
/// If neither this function nor \ref lowerMap() is used before |
|
| 749 |
/// calling \ref run(), the lower bounds will be set to zero |
|
| 750 |
/// on all arcs. |
|
| 751 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
| 752 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
| 753 |
/// the upper bounds (capacities) will be set to |
|
| 754 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
| 755 |
/// |
|
| 756 |
/// \param lower An arc map storing the lower bounds. |
|
| 757 |
/// \param upper An arc map storing the upper bounds. |
|
| 758 |
/// |
|
| 759 |
/// The \c Value type of the maps must be convertible to the |
|
| 760 |
/// \c Flow type of the algorithm. |
|
| 761 |
/// |
|
| 762 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
| 763 |
/// and \ref upperMap() separately. |
|
| 764 |
/// |
|
| 765 |
/// \return <tt>(*this)</tt> |
|
| 766 |
template <typename LOWER, typename UPPER> |
|
| 767 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
|
|
| 768 |
return lowerMap(lower).upperMap(upper); |
|
| 769 |
} |
|
| 770 |
|
|
| 771 | 776 |
/// \brief Set the costs of the arcs. |
| 772 | 777 |
/// |
| 773 | 778 |
/// This function sets the costs of the arcs. |
| 774 | 779 |
/// If it is not used before calling \ref run(), the costs |
| 775 | 780 |
/// will be set to \c 1 on all arcs. |
| 776 | 781 |
/// |
| 777 | 782 |
/// \param map An arc map storing the costs. |
| 778 | 783 |
/// Its \c Value type must be convertible to the \c Cost type |
| 779 | 784 |
/// of the algorithm. |
| 780 | 785 |
/// |
| 781 | 786 |
/// \return <tt>(*this)</tt> |
| 782 |
template<typename COST> |
|
| 783 |
NetworkSimplex& costMap(const COST& map) {
|
|
| 784 |
delete _pcost; |
|
| 785 |
_pcost = new CostArcMap(_graph); |
|
| 787 |
template<typename CostMap> |
|
| 788 |
NetworkSimplex& costMap(const CostMap& map) {
|
|
| 786 | 789 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 787 |
|
|
| 790 |
_cost[_arc_id[a]] = map[a]; |
|
| 788 | 791 |
} |
| 789 | 792 |
return *this; |
| 790 | 793 |
} |
| 791 | 794 |
|
| 792 | 795 |
/// \brief Set the supply values of the nodes. |
| 793 | 796 |
/// |
| 794 | 797 |
/// This function sets the supply values of the nodes. |
| 795 | 798 |
/// If neither this function nor \ref stSupply() is used before |
| 796 | 799 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 797 | 800 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 798 | 801 |
/// |
| 799 | 802 |
/// \param map A node map storing the supply values. |
| 800 |
/// Its \c Value type must be convertible to the \c |
|
| 803 |
/// Its \c Value type must be convertible to the \c Value type |
|
| 801 | 804 |
/// of the algorithm. |
| 802 | 805 |
/// |
| 803 | 806 |
/// \return <tt>(*this)</tt> |
| 804 |
template<typename SUP> |
|
| 805 |
NetworkSimplex& supplyMap(const SUP& map) {
|
|
| 806 |
delete _psupply; |
|
| 807 |
_pstsup = false; |
|
| 808 |
|
|
| 807 |
template<typename SupplyMap> |
|
| 808 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
|
| 809 | 809 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 810 |
|
|
| 810 |
_supply[_node_id[n]] = map[n]; |
|
| 811 | 811 |
} |
| 812 | 812 |
return *this; |
| 813 | 813 |
} |
| 814 | 814 |
|
| 815 | 815 |
/// \brief Set single source and target nodes and a supply value. |
| 816 | 816 |
/// |
| 817 | 817 |
/// This function sets a single source node and a single target node |
| 818 | 818 |
/// and the required flow value. |
| 819 | 819 |
/// If neither this function nor \ref supplyMap() is used before |
| 820 | 820 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 821 | 821 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 822 | 822 |
/// |
| 823 |
/// Using this function has the same effect as using \ref supplyMap() |
|
| 824 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
|
| 825 |
/// assigned to \c t and all other nodes have zero supply value. |
|
| 826 |
/// |
|
| 823 | 827 |
/// \param s The source node. |
| 824 | 828 |
/// \param t The target node. |
| 825 | 829 |
/// \param k The required amount of flow from node \c s to node \c t |
| 826 | 830 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 827 | 831 |
/// |
| 828 | 832 |
/// \return <tt>(*this)</tt> |
| 829 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
|
|
| 830 |
delete _psupply; |
|
| 831 |
_psupply = NULL; |
|
| 832 |
_pstsup = true; |
|
| 833 |
_psource = s; |
|
| 834 |
_ptarget = t; |
|
| 835 |
|
|
| 833 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
|
| 834 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 835 |
_supply[i] = 0; |
|
| 836 |
} |
|
| 837 |
_supply[_node_id[s]] = k; |
|
| 838 |
_supply[_node_id[t]] = -k; |
|
| 836 | 839 |
return *this; |
| 837 | 840 |
} |
| 838 | 841 |
|
| 839 |
/// \brief Set the |
|
| 842 |
/// \brief Set the type of the supply constraints. |
|
| 840 | 843 |
/// |
| 841 |
/// This function sets the problem type for the algorithm. |
|
| 842 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
| 844 |
/// This function sets the type of the supply/demand constraints. |
|
| 845 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
|
| 843 | 846 |
/// type will be used. |
| 844 | 847 |
/// |
| 845 |
/// For more information see \ref |
|
| 848 |
/// For more information see \ref SupplyType. |
|
| 846 | 849 |
/// |
| 847 | 850 |
/// \return <tt>(*this)</tt> |
| 848 |
NetworkSimplex& problemType(ProblemType problem_type) {
|
|
| 849 |
_ptype = problem_type; |
|
| 851 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
|
| 852 |
_stype = supply_type; |
|
| 850 | 853 |
return *this; |
| 851 | 854 |
} |
| 852 | 855 |
|
| 853 |
/// \brief Set the flow map. |
|
| 854 |
/// |
|
| 855 |
/// This function sets the flow map. |
|
| 856 |
/// If it is not used before calling \ref run(), an instance will |
|
| 857 |
/// be allocated automatically. The destructor deallocates this |
|
| 858 |
/// automatically allocated map, of course. |
|
| 859 |
/// |
|
| 860 |
/// \return <tt>(*this)</tt> |
|
| 861 |
NetworkSimplex& flowMap(FlowMap& map) {
|
|
| 862 |
if (_local_flow) {
|
|
| 863 |
delete _flow_map; |
|
| 864 |
_local_flow = false; |
|
| 865 |
} |
|
| 866 |
_flow_map = ↦ |
|
| 867 |
return *this; |
|
| 868 |
} |
|
| 869 |
|
|
| 870 |
/// \brief Set the potential map. |
|
| 871 |
/// |
|
| 872 |
/// This function sets the potential map, which is used for storing |
|
| 873 |
/// the dual solution. |
|
| 874 |
/// If it is not used before calling \ref run(), an instance will |
|
| 875 |
/// be allocated automatically. The destructor deallocates this |
|
| 876 |
/// automatically allocated map, of course. |
|
| 877 |
/// |
|
| 878 |
/// \return <tt>(*this)</tt> |
|
| 879 |
NetworkSimplex& potentialMap(PotentialMap& map) {
|
|
| 880 |
if (_local_potential) {
|
|
| 881 |
delete _potential_map; |
|
| 882 |
_local_potential = false; |
|
| 883 |
} |
|
| 884 |
_potential_map = ↦ |
|
| 885 |
return *this; |
|
| 886 |
} |
|
| 887 |
|
|
| 888 | 856 |
/// @} |
| 889 | 857 |
|
| 890 | 858 |
/// \name Execution Control |
| 891 | 859 |
/// The algorithm can be executed using \ref run(). |
| 892 | 860 |
|
| 893 | 861 |
/// @{
|
| 894 | 862 |
|
| 895 | 863 |
/// \brief Run the algorithm. |
| 896 | 864 |
/// |
| 897 | 865 |
/// This function runs the algorithm. |
| 898 | 866 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 899 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
| 900 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 901 |
/// \ref |
|
| 867 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
| 868 |
/// \ref supplyType(). |
|
| 902 | 869 |
/// For example, |
| 903 | 870 |
/// \code |
| 904 | 871 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 905 |
/// ns. |
|
| 872 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 906 | 873 |
/// .supplyMap(sup).run(); |
| 907 | 874 |
/// \endcode |
| 908 | 875 |
/// |
| 909 | 876 |
/// This function can be called more than once. All the parameters |
| 910 | 877 |
/// that have been given are kept for the next call, unless |
| 911 | 878 |
/// \ref reset() is called, thus only the modified parameters |
| 912 | 879 |
/// have to be set again. See \ref reset() for examples. |
| 880 |
/// However the underlying digraph must not be modified after this |
|
| 881 |
/// class have been constructed, since it copies and extends the graph. |
|
| 913 | 882 |
/// |
| 914 | 883 |
/// \param pivot_rule The pivot rule that will be used during the |
| 915 | 884 |
/// algorithm. For more information see \ref PivotRule. |
| 916 | 885 |
/// |
| 917 |
/// \return \c true if a feasible flow can be found. |
|
| 918 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 919 |
|
|
| 886 |
/// \return \c INFEASIBLE if no feasible flow exists, |
|
| 887 |
/// \n \c OPTIMAL if the problem has optimal solution |
|
| 888 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
|
| 889 |
/// optimal flow and node potentials (primal and dual solutions), |
|
| 890 |
/// \n \c UNBOUNDED if the objective function of the problem is |
|
| 891 |
/// unbounded, i.e. there is a directed cycle having negative total |
|
| 892 |
/// cost and infinite upper bound. |
|
| 893 |
/// |
|
| 894 |
/// \see ProblemType, PivotRule |
|
| 895 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
|
| 896 |
if (!init()) return INFEASIBLE; |
|
| 897 |
return start(pivot_rule); |
|
| 920 | 898 |
} |
| 921 | 899 |
|
| 922 | 900 |
/// \brief Reset all the parameters that have been given before. |
| 923 | 901 |
/// |
| 924 | 902 |
/// This function resets all the paramaters that have been given |
| 925 | 903 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 926 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
| 927 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
| 928 |
/// \ref |
|
| 904 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|
| 929 | 905 |
/// |
| 930 | 906 |
/// It is useful for multiple run() calls. If this function is not |
| 931 | 907 |
/// used, all the parameters given before are kept for the next |
| 932 | 908 |
/// \ref run() call. |
| 909 |
/// However the underlying digraph must not be modified after this |
|
| 910 |
/// class have been constructed, since it copies and extends the graph. |
|
| 933 | 911 |
/// |
| 934 | 912 |
/// For example, |
| 935 | 913 |
/// \code |
| 936 | 914 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 937 | 915 |
/// |
| 938 | 916 |
/// // First run |
| 939 |
/// ns.lowerMap(lower). |
|
| 917 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|
| 940 | 918 |
/// .supplyMap(sup).run(); |
| 941 | 919 |
/// |
| 942 | 920 |
/// // Run again with modified cost map (reset() is not called, |
| 943 | 921 |
/// // so only the cost map have to be set again) |
| 944 | 922 |
/// cost[e] += 100; |
| 945 | 923 |
/// ns.costMap(cost).run(); |
| 946 | 924 |
/// |
| 947 | 925 |
/// // Run again from scratch using reset() |
| 948 | 926 |
/// // (the lower bounds will be set to zero on all arcs) |
| 949 | 927 |
/// ns.reset(); |
| 950 |
/// ns. |
|
| 928 |
/// ns.upperMap(capacity).costMap(cost) |
|
| 951 | 929 |
/// .supplyMap(sup).run(); |
| 952 | 930 |
/// \endcode |
| 953 | 931 |
/// |
| 954 | 932 |
/// \return <tt>(*this)</tt> |
| 955 | 933 |
NetworkSimplex& reset() {
|
| 956 |
delete _plower; |
|
| 957 |
delete _pupper; |
|
| 958 |
delete _pcost; |
|
| 959 |
delete _psupply; |
|
| 960 |
_plower = NULL; |
|
| 961 |
_pupper = NULL; |
|
| 962 |
_pcost = NULL; |
|
| 963 |
_psupply = NULL; |
|
| 964 |
_pstsup = false; |
|
| 965 |
_ptype = GEQ; |
|
| 966 |
if (_local_flow) delete _flow_map; |
|
| 967 |
if (_local_potential) delete _potential_map; |
|
| 968 |
_flow_map = NULL; |
|
| 969 |
_potential_map = NULL; |
|
| 970 |
_local_flow = false; |
|
| 971 |
_local_potential = false; |
|
| 972 |
|
|
| 934 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 935 |
_supply[i] = 0; |
|
| 936 |
} |
|
| 937 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 938 |
_lower[i] = 0; |
|
| 939 |
_upper[i] = INF; |
|
| 940 |
_cost[i] = 1; |
|
| 941 |
} |
|
| 942 |
_have_lower = false; |
|
| 943 |
_stype = GEQ; |
|
| 973 | 944 |
return *this; |
| 974 | 945 |
} |
| 975 | 946 |
|
| 976 | 947 |
/// @} |
| 977 | 948 |
|
| 978 | 949 |
/// \name Query Functions |
| ... | ... |
@@ -982,33 +953,30 @@ |
| 982 | 953 |
|
| 983 | 954 |
/// @{
|
| 984 | 955 |
|
| 985 | 956 |
/// \brief Return the total cost of the found flow. |
| 986 | 957 |
/// |
| 987 | 958 |
/// This function returns the total cost of the found flow. |
| 988 |
/// |
|
| 959 |
/// Its complexity is O(e). |
|
| 989 | 960 |
/// |
| 990 | 961 |
/// \note The return type of the function can be specified as a |
| 991 | 962 |
/// template parameter. For example, |
| 992 | 963 |
/// \code |
| 993 | 964 |
/// ns.totalCost<double>(); |
| 994 | 965 |
/// \endcode |
| 995 | 966 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 996 | 967 |
/// type of the algorithm, which is the default return type of the |
| 997 | 968 |
/// function. |
| 998 | 969 |
/// |
| 999 | 970 |
/// \pre \ref run() must be called before using this function. |
| 1000 |
template <typename Num> |
|
| 1001 |
Num totalCost() const {
|
|
| 1002 |
Num c = 0; |
|
| 1003 |
if (_pcost) {
|
|
| 1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1005 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
| 1006 |
} else {
|
|
| 1007 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 1008 |
|
|
| 971 |
template <typename Number> |
|
| 972 |
Number totalCost() const {
|
|
| 973 |
Number c = 0; |
|
| 974 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 975 |
int i = _arc_id[a]; |
|
| 976 |
c += Number(_flow[i]) * Number(_cost[i]); |
|
| 1009 | 977 |
} |
| 1010 | 978 |
return c; |
| 1011 | 979 |
} |
| 1012 | 980 |
|
| 1013 | 981 |
#ifndef DOXYGEN |
| 1014 | 982 |
Cost totalCost() const {
|
| ... | ... |
@@ -1018,293 +986,137 @@ |
| 1018 | 986 |
|
| 1019 | 987 |
/// \brief Return the flow on the given arc. |
| 1020 | 988 |
/// |
| 1021 | 989 |
/// This function returns the flow on the given arc. |
| 1022 | 990 |
/// |
| 1023 | 991 |
/// \pre \ref run() must be called before using this function. |
| 1024 |
Flow flow(const Arc& a) const {
|
|
| 1025 |
return (*_flow_map)[a]; |
|
| 992 |
Value flow(const Arc& a) const {
|
|
| 993 |
return _flow[_arc_id[a]]; |
|
| 1026 | 994 |
} |
| 1027 | 995 |
|
| 1028 |
/// \brief Return |
|
| 996 |
/// \brief Return the flow map (the primal solution). |
|
| 1029 | 997 |
/// |
| 1030 |
/// This function returns a const reference to an arc map storing |
|
| 1031 |
/// the found flow. |
|
| 998 |
/// This function copies the flow value on each arc into the given |
|
| 999 |
/// map. The \c Value type of the algorithm must be convertible to |
|
| 1000 |
/// the \c Value type of the map. |
|
| 1032 | 1001 |
/// |
| 1033 | 1002 |
/// \pre \ref run() must be called before using this function. |
| 1034 |
const FlowMap& flowMap() const {
|
|
| 1035 |
return *_flow_map; |
|
| 1003 |
template <typename FlowMap> |
|
| 1004 |
void flowMap(FlowMap &map) const {
|
|
| 1005 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
|
| 1006 |
map.set(a, _flow[_arc_id[a]]); |
|
| 1007 |
} |
|
| 1036 | 1008 |
} |
| 1037 | 1009 |
|
| 1038 | 1010 |
/// \brief Return the potential (dual value) of the given node. |
| 1039 | 1011 |
/// |
| 1040 | 1012 |
/// This function returns the potential (dual value) of the |
| 1041 | 1013 |
/// given node. |
| 1042 | 1014 |
/// |
| 1043 | 1015 |
/// \pre \ref run() must be called before using this function. |
| 1044 | 1016 |
Cost potential(const Node& n) const {
|
| 1045 |
return |
|
| 1017 |
return _pi[_node_id[n]]; |
|
| 1046 | 1018 |
} |
| 1047 | 1019 |
|
| 1048 |
/// \brief Return a const reference to the potential map |
|
| 1049 |
/// (the dual solution). |
|
| 1020 |
/// \brief Return the potential map (the dual solution). |
|
| 1050 | 1021 |
/// |
| 1051 |
/// This function returns a const reference to a node map storing |
|
| 1052 |
/// the found potentials, which form the dual solution of the |
|
| 1053 |
/// |
|
| 1022 |
/// This function copies the potential (dual value) of each node |
|
| 1023 |
/// into the given map. |
|
| 1024 |
/// The \c Cost type of the algorithm must be convertible to the |
|
| 1025 |
/// \c Value type of the map. |
|
| 1054 | 1026 |
/// |
| 1055 | 1027 |
/// \pre \ref run() must be called before using this function. |
| 1056 |
const PotentialMap& potentialMap() const {
|
|
| 1057 |
return *_potential_map; |
|
| 1028 |
template <typename PotentialMap> |
|
| 1029 |
void potentialMap(PotentialMap &map) const {
|
|
| 1030 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1031 |
map.set(n, _pi[_node_id[n]]); |
|
| 1032 |
} |
|
| 1058 | 1033 |
} |
| 1059 | 1034 |
|
| 1060 | 1035 |
/// @} |
| 1061 | 1036 |
|
| 1062 | 1037 |
private: |
| 1063 | 1038 |
|
| 1064 | 1039 |
// Initialize internal data structures |
| 1065 | 1040 |
bool init() {
|
| 1066 |
// Initialize result maps |
|
| 1067 |
if (!_flow_map) {
|
|
| 1068 |
_flow_map = new FlowMap(_graph); |
|
| 1069 |
_local_flow = true; |
|
| 1041 |
if (_node_num == 0) return false; |
|
| 1042 |
|
|
| 1043 |
// Check the sum of supply values |
|
| 1044 |
_sum_supply = 0; |
|
| 1045 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1046 |
_sum_supply += _supply[i]; |
|
| 1070 | 1047 |
} |
| 1071 |
if (!_potential_map) {
|
|
| 1072 |
_potential_map = new PotentialMap(_graph); |
|
| 1073 |
|
|
| 1048 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
|
| 1049 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
|
| 1050 |
|
|
| 1051 |
// Remove non-zero lower bounds |
|
| 1052 |
if (_have_lower) {
|
|
| 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1054 |
Value c = _lower[i]; |
|
| 1055 |
if (c >= 0) {
|
|
| 1056 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|
| 1057 |
} else {
|
|
| 1058 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|
| 1059 |
} |
|
| 1060 |
_supply[_source[i]] -= c; |
|
| 1061 |
_supply[_target[i]] += c; |
|
| 1062 |
} |
|
| 1063 |
} else {
|
|
| 1064 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1065 |
_cap[i] = _upper[i]; |
|
| 1066 |
} |
|
| 1074 | 1067 |
} |
| 1075 | 1068 |
|
| 1076 |
// Initialize vectors |
|
| 1077 |
_node_num = countNodes(_graph); |
|
| 1078 |
_arc_num = countArcs(_graph); |
|
| 1079 |
int all_node_num = _node_num + 1; |
|
| 1080 |
int all_arc_num = _arc_num + _node_num; |
|
| 1081 |
if (_node_num == 0) return false; |
|
| 1082 |
|
|
| 1083 |
_arc_ref.resize(_arc_num); |
|
| 1084 |
_source.resize(all_arc_num); |
|
| 1085 |
_target.resize(all_arc_num); |
|
| 1086 |
|
|
| 1087 |
_cap.resize(all_arc_num); |
|
| 1088 |
_cost.resize(all_arc_num); |
|
| 1089 |
_supply.resize(all_node_num); |
|
| 1090 |
_flow.resize(all_arc_num); |
|
| 1091 |
_pi.resize(all_node_num); |
|
| 1092 |
|
|
| 1093 |
_parent.resize(all_node_num); |
|
| 1094 |
_pred.resize(all_node_num); |
|
| 1095 |
_forward.resize(all_node_num); |
|
| 1096 |
_thread.resize(all_node_num); |
|
| 1097 |
_rev_thread.resize(all_node_num); |
|
| 1098 |
_succ_num.resize(all_node_num); |
|
| 1099 |
_last_succ.resize(all_node_num); |
|
| 1100 |
_state.resize(all_arc_num); |
|
| 1101 |
|
|
| 1102 |
// Initialize node related data |
|
| 1103 |
bool valid_supply = true; |
|
| 1104 |
Flow sum_supply = 0; |
|
| 1105 |
if (!_pstsup && !_psupply) {
|
|
| 1106 |
_pstsup = true; |
|
| 1107 |
_psource = _ptarget = NodeIt(_graph); |
|
| 1108 |
_pstflow = 0; |
|
| 1109 |
} |
|
| 1110 |
if (_psupply) {
|
|
| 1111 |
int i = 0; |
|
| 1112 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1113 |
_node_id[n] = i; |
|
| 1114 |
_supply[i] = (*_psupply)[n]; |
|
| 1115 |
sum_supply += _supply[i]; |
|
| 1069 |
// Initialize artifical cost |
|
| 1070 |
Cost ART_COST; |
|
| 1071 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1072 |
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1073 |
} else {
|
|
| 1074 |
ART_COST = std::numeric_limits<Cost>::min(); |
|
| 1075 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1076 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|
| 1116 | 1077 |
} |
| 1117 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
| 1118 |
(_ptype == LEQ && sum_supply >= 0); |
|
| 1119 |
} else {
|
|
| 1120 |
int i = 0; |
|
| 1121 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
|
| 1122 |
_node_id[n] = i; |
|
| 1123 |
_supply[i] = 0; |
|
| 1124 |
} |
|
| 1125 |
_supply[_node_id[_psource]] = _pstflow; |
|
| 1126 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
| 1127 |
} |
|
| 1128 |
if (!valid_supply) return false; |
|
| 1129 |
|
|
| 1130 |
// Infinite capacity value |
|
| 1131 |
Flow inf_cap = |
|
| 1132 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1133 |
std::numeric_limits<Flow>::infinity() : |
|
| 1134 |
std::numeric_limits<Flow>::max(); |
|
| 1135 |
|
|
| 1136 |
// Initialize artifical cost |
|
| 1137 |
Cost art_cost; |
|
| 1138 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1139 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1140 |
} else {
|
|
| 1141 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1142 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1143 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1144 |
} |
|
| 1145 |
|
|
| 1078 |
ART_COST = (ART_COST + 1) * _node_num; |
|
| 1146 | 1079 |
} |
| 1147 | 1080 |
|
| 1148 |
// Run Circulation to check if a feasible solution exists |
|
| 1149 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
| 1150 |
ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap); |
|
| 1151 |
FlowNodeMap *csup = NULL; |
|
| 1152 |
bool local_csup = false; |
|
| 1153 |
if (_psupply) {
|
|
| 1154 |
csup = _psupply; |
|
| 1155 |
} else {
|
|
| 1156 |
csup = new FlowNodeMap(_graph, 0); |
|
| 1157 |
(*csup)[_psource] = _pstflow; |
|
| 1158 |
(*csup)[_ptarget] = -_pstflow; |
|
| 1159 |
local_csup = true; |
|
| 1081 |
// Initialize arc maps |
|
| 1082 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1083 |
_flow[i] = 0; |
|
| 1084 |
_state[i] = STATE_LOWER; |
|
| 1160 | 1085 |
} |
| 1161 |
bool circ_result = false; |
|
| 1162 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
|
|
| 1163 |
// GEQ problem type |
|
| 1164 |
if (_plower) {
|
|
| 1165 |
if (_pupper) {
|
|
| 1166 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
| 1167 |
circ(_graph, *_plower, *_pupper, *csup); |
|
| 1168 |
circ_result = circ.run(); |
|
| 1169 |
} else {
|
|
| 1170 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
| 1171 |
circ(_graph, *_plower, inf_arc_map, *csup); |
|
| 1172 |
circ_result = circ.run(); |
|
| 1173 |
} |
|
| 1174 |
} else {
|
|
| 1175 |
if (_pupper) {
|
|
| 1176 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
| 1177 |
circ(_graph, zero_arc_map, *_pupper, *csup); |
|
| 1178 |
circ_result = circ.run(); |
|
| 1179 |
} else {
|
|
| 1180 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
| 1181 |
circ(_graph, zero_arc_map, inf_arc_map, *csup); |
|
| 1182 |
circ_result = circ.run(); |
|
| 1183 |
} |
|
| 1184 |
} |
|
| 1185 |
} else {
|
|
| 1186 |
// LEQ problem type |
|
| 1187 |
typedef ReverseDigraph<const GR> RevGraph; |
|
| 1188 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
| 1189 |
RevGraph rgraph(_graph); |
|
| 1190 |
NegNodeMap neg_csup(*csup); |
|
| 1191 |
if (_plower) {
|
|
| 1192 |
if (_pupper) {
|
|
| 1193 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
| 1194 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
| 1195 |
circ_result = circ.run(); |
|
| 1196 |
} else {
|
|
| 1197 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
| 1198 |
circ(rgraph, *_plower, inf_arc_map, neg_csup); |
|
| 1199 |
circ_result = circ.run(); |
|
| 1200 |
} |
|
| 1201 |
} else {
|
|
| 1202 |
if (_pupper) {
|
|
| 1203 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
| 1204 |
circ(rgraph, zero_arc_map, *_pupper, neg_csup); |
|
| 1205 |
circ_result = circ.run(); |
|
| 1206 |
} else {
|
|
| 1207 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
| 1208 |
circ(rgraph, zero_arc_map, inf_arc_map, neg_csup); |
|
| 1209 |
circ_result = circ.run(); |
|
| 1210 |
} |
|
| 1211 |
} |
|
| 1212 |
} |
|
| 1213 |
if (local_csup) delete csup; |
|
| 1214 |
if (!circ_result) return false; |
|
| 1215 |
|
|
| 1086 |
|
|
| 1216 | 1087 |
// Set data for the artificial root node |
| 1217 | 1088 |
_root = _node_num; |
| 1218 | 1089 |
_parent[_root] = -1; |
| 1219 | 1090 |
_pred[_root] = -1; |
| 1220 | 1091 |
_thread[_root] = 0; |
| 1221 | 1092 |
_rev_thread[0] = _root; |
| 1222 |
_succ_num[_root] = |
|
| 1093 |
_succ_num[_root] = _node_num + 1; |
|
| 1223 | 1094 |
_last_succ[_root] = _root - 1; |
| 1224 |
_supply[_root] = -sum_supply; |
|
| 1225 |
if (sum_supply < 0) {
|
|
| 1226 |
_pi[_root] = -art_cost; |
|
| 1227 |
} else {
|
|
| 1228 |
_pi[_root] = art_cost; |
|
| 1229 |
} |
|
| 1230 |
|
|
| 1231 |
// Store the arcs in a mixed order |
|
| 1232 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
| 1233 |
int i = 0; |
|
| 1234 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1235 |
_arc_ref[i] = e; |
|
| 1236 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 1237 |
} |
|
| 1238 |
|
|
| 1239 |
// Initialize arc maps |
|
| 1240 |
if (_pupper && _pcost) {
|
|
| 1241 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1242 |
Arc e = _arc_ref[i]; |
|
| 1243 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1244 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1245 |
_cap[i] = (*_pupper)[e]; |
|
| 1246 |
_cost[i] = (*_pcost)[e]; |
|
| 1247 |
_flow[i] = 0; |
|
| 1248 |
_state[i] = STATE_LOWER; |
|
| 1249 |
} |
|
| 1250 |
} else {
|
|
| 1251 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1252 |
Arc e = _arc_ref[i]; |
|
| 1253 |
_source[i] = _node_id[_graph.source(e)]; |
|
| 1254 |
_target[i] = _node_id[_graph.target(e)]; |
|
| 1255 |
_flow[i] = 0; |
|
| 1256 |
_state[i] = STATE_LOWER; |
|
| 1257 |
} |
|
| 1258 |
if (_pupper) {
|
|
| 1259 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1260 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
| 1261 |
} else {
|
|
| 1262 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1263 |
_cap[i] = inf_cap; |
|
| 1264 |
} |
|
| 1265 |
if (_pcost) {
|
|
| 1266 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1267 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
| 1268 |
} else {
|
|
| 1269 |
for (int i = 0; i != _arc_num; ++i) |
|
| 1270 |
_cost[i] = 1; |
|
| 1271 |
} |
|
| 1272 |
} |
|
| 1273 |
|
|
| 1274 |
// Remove non-zero lower bounds |
|
| 1275 |
if (_plower) {
|
|
| 1276 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1277 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
| 1278 |
if (c != 0) {
|
|
| 1279 |
_cap[i] -= c; |
|
| 1280 |
_supply[_source[i]] -= c; |
|
| 1281 |
_supply[_target[i]] += c; |
|
| 1282 |
} |
|
| 1283 |
} |
|
| 1284 |
|
|
| 1095 |
_supply[_root] = -_sum_supply; |
|
| 1096 |
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST; |
|
| 1285 | 1097 |
|
| 1286 | 1098 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1287 | 1099 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1100 |
_parent[u] = _root; |
|
| 1101 |
_pred[u] = e; |
|
| 1288 | 1102 |
_thread[u] = u + 1; |
| 1289 | 1103 |
_rev_thread[u + 1] = u; |
| 1290 | 1104 |
_succ_num[u] = 1; |
| 1291 | 1105 |
_last_succ[u] = u; |
| 1292 |
_parent[u] = _root; |
|
| 1293 |
_pred[u] = e; |
|
| 1294 |
_cost[e] = art_cost; |
|
| 1295 |
_cap[e] = inf_cap; |
|
| 1106 |
_cost[e] = ART_COST; |
|
| 1107 |
_cap[e] = INF; |
|
| 1296 | 1108 |
_state[e] = STATE_TREE; |
| 1297 |
if (_supply[u] > 0 || (_supply[u] == 0 && |
|
| 1109 |
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
|
| 1298 | 1110 |
_flow[e] = _supply[u]; |
| 1299 | 1111 |
_forward[u] = true; |
| 1300 |
_pi[u] = - |
|
| 1112 |
_pi[u] = -ART_COST + _pi[_root]; |
|
| 1301 | 1113 |
} else {
|
| 1302 | 1114 |
_flow[e] = -_supply[u]; |
| 1303 | 1115 |
_forward[u] = false; |
| 1304 |
_pi[u] = |
|
| 1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
| 1305 | 1117 |
} |
| 1306 | 1118 |
} |
| 1307 | 1119 |
|
| 1308 | 1120 |
return true; |
| 1309 | 1121 |
} |
| 1310 | 1122 |
|
| ... | ... |
@@ -1333,29 +1145,31 @@ |
| 1333 | 1145 |
} else {
|
| 1334 | 1146 |
first = _target[in_arc]; |
| 1335 | 1147 |
second = _source[in_arc]; |
| 1336 | 1148 |
} |
| 1337 | 1149 |
delta = _cap[in_arc]; |
| 1338 | 1150 |
int result = 0; |
| 1339 |
|
|
| 1151 |
Value d; |
|
| 1340 | 1152 |
int e; |
| 1341 | 1153 |
|
| 1342 | 1154 |
// Search the cycle along the path form the first node to the root |
| 1343 | 1155 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1344 | 1156 |
e = _pred[u]; |
| 1345 |
d = _forward[u] ? |
|
| 1157 |
d = _forward[u] ? |
|
| 1158 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|
| 1346 | 1159 |
if (d < delta) {
|
| 1347 | 1160 |
delta = d; |
| 1348 | 1161 |
u_out = u; |
| 1349 | 1162 |
result = 1; |
| 1350 | 1163 |
} |
| 1351 | 1164 |
} |
| 1352 | 1165 |
// Search the cycle along the path form the second node to the root |
| 1353 | 1166 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1354 | 1167 |
e = _pred[u]; |
| 1355 |
d = _forward[u] ? |
|
| 1168 |
d = _forward[u] ? |
|
| 1169 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
| 1356 | 1170 |
if (d <= delta) {
|
| 1357 | 1171 |
delta = d; |
| 1358 | 1172 |
u_out = u; |
| 1359 | 1173 |
result = 2; |
| 1360 | 1174 |
} |
| 1361 | 1175 |
} |
| ... | ... |
@@ -1371,13 +1185,13 @@ |
| 1371 | 1185 |
} |
| 1372 | 1186 |
|
| 1373 | 1187 |
// Change _flow and _state vectors |
| 1374 | 1188 |
void changeFlow(bool change) {
|
| 1375 | 1189 |
// Augment along the cycle |
| 1376 | 1190 |
if (delta > 0) {
|
| 1377 |
|
|
| 1191 |
Value val = _state[in_arc] * delta; |
|
| 1378 | 1192 |
_flow[in_arc] += val; |
| 1379 | 1193 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1380 | 1194 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1381 | 1195 |
} |
| 1382 | 1196 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1383 | 1197 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| ... | ... |
@@ -1523,13 +1337,13 @@ |
| 1523 | 1337 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1524 | 1338 |
_pi[u] += sigma; |
| 1525 | 1339 |
} |
| 1526 | 1340 |
} |
| 1527 | 1341 |
|
| 1528 | 1342 |
// Execute the algorithm |
| 1529 |
|
|
| 1343 |
ProblemType start(PivotRule pivot_rule) {
|
|
| 1530 | 1344 |
// Select the pivot rule implementation |
| 1531 | 1345 |
switch (pivot_rule) {
|
| 1532 | 1346 |
case FIRST_ELIGIBLE: |
| 1533 | 1347 |
return start<FirstEligiblePivotRule>(); |
| 1534 | 1348 |
case BEST_ELIGIBLE: |
| 1535 | 1349 |
return start<BestEligiblePivotRule>(); |
| ... | ... |
@@ -1537,47 +1351,61 @@ |
| 1537 | 1351 |
return start<BlockSearchPivotRule>(); |
| 1538 | 1352 |
case CANDIDATE_LIST: |
| 1539 | 1353 |
return start<CandidateListPivotRule>(); |
| 1540 | 1354 |
case ALTERING_LIST: |
| 1541 | 1355 |
return start<AlteringListPivotRule>(); |
| 1542 | 1356 |
} |
| 1543 |
return |
|
| 1357 |
return INFEASIBLE; // avoid warning |
|
| 1544 | 1358 |
} |
| 1545 | 1359 |
|
| 1546 | 1360 |
template <typename PivotRuleImpl> |
| 1547 |
|
|
| 1361 |
ProblemType start() {
|
|
| 1548 | 1362 |
PivotRuleImpl pivot(*this); |
| 1549 | 1363 |
|
| 1550 | 1364 |
// Execute the Network Simplex algorithm |
| 1551 | 1365 |
while (pivot.findEnteringArc()) {
|
| 1552 | 1366 |
findJoinNode(); |
| 1553 | 1367 |
bool change = findLeavingArc(); |
| 1368 |
if (delta >= INF) return UNBOUNDED; |
|
| 1554 | 1369 |
changeFlow(change); |
| 1555 | 1370 |
if (change) {
|
| 1556 | 1371 |
updateTreeStructure(); |
| 1557 | 1372 |
updatePotential(); |
| 1558 | 1373 |
} |
| 1559 | 1374 |
} |
| 1560 |
|
|
| 1561 |
// Copy flow values to _flow_map |
|
| 1562 |
if (_plower) {
|
|
| 1563 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1564 |
Arc e = _arc_ref[i]; |
|
| 1565 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
| 1566 |
} |
|
| 1567 |
} else {
|
|
| 1568 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1569 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
| 1375 |
|
|
| 1376 |
// Check feasibility |
|
| 1377 |
if (_sum_supply < 0) {
|
|
| 1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1570 | 1380 |
} |
| 1571 | 1381 |
} |
| 1572 |
// Copy potential values to _potential_map |
|
| 1573 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1574 |
|
|
| 1382 |
else if (_sum_supply > 0) {
|
|
| 1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
| 1385 |
} |
|
| 1386 |
} |
|
| 1387 |
else {
|
|
| 1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 1389 |
if (_flow[e] != 0) return INFEASIBLE; |
|
| 1390 |
} |
|
| 1575 | 1391 |
} |
| 1576 | 1392 |
|
| 1577 |
|
|
| 1393 |
// Transform the solution and the supply map to the original form |
|
| 1394 |
if (_have_lower) {
|
|
| 1395 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1396 |
Value c = _lower[i]; |
|
| 1397 |
if (c != 0) {
|
|
| 1398 |
_flow[i] += c; |
|
| 1399 |
_supply[_source[i]] += c; |
|
| 1400 |
_supply[_target[i]] -= c; |
|
| 1401 |
} |
|
| 1402 |
} |
|
| 1403 |
} |
|
| 1404 |
|
|
| 1405 |
return OPTIMAL; |
|
| 1578 | 1406 |
} |
| 1579 | 1407 |
|
| 1580 | 1408 |
}; //class NetworkSimplex |
| 1581 | 1409 |
|
| 1582 | 1410 |
///@} |
| 1583 | 1411 |
| ... | ... |
@@ -43,19 +43,19 @@ |
| 43 | 43 |
/// |
| 44 | 44 |
/// The type of the map that stores the arc capacities. |
| 45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 46 | 46 |
typedef CAP CapacityMap; |
| 47 | 47 |
|
| 48 | 48 |
/// \brief The type of the flow values. |
| 49 |
typedef typename CapacityMap::Value |
|
| 49 |
typedef typename CapacityMap::Value Value; |
|
| 50 | 50 |
|
| 51 | 51 |
/// \brief The type of the map that stores the flow values. |
| 52 | 52 |
/// |
| 53 | 53 |
/// The type of the map that stores the flow values. |
| 54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 55 |
typedef typename Digraph::template ArcMap< |
|
| 55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Instantiates a FlowMap. |
| 58 | 58 |
/// |
| 59 | 59 |
/// This function instantiates a \ref FlowMap. |
| 60 | 60 |
/// \param digraph The digraph for which we would like to define |
| 61 | 61 |
/// the flow map. |
| ... | ... |
@@ -81,13 +81,13 @@ |
| 81 | 81 |
return new Elevator(digraph, max_level); |
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
/// \brief The tolerance used by the algorithm |
| 85 | 85 |
/// |
| 86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 87 |
typedef lemon::Tolerance< |
|
| 87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
| 88 | 88 |
|
| 89 | 89 |
}; |
| 90 | 90 |
|
| 91 | 91 |
|
| 92 | 92 |
/// \ingroup max_flow |
| 93 | 93 |
/// |
| ... | ... |
@@ -122,13 +122,13 @@ |
| 122 | 122 |
typedef TR Traits; |
| 123 | 123 |
///The type of the digraph the algorithm runs on. |
| 124 | 124 |
typedef typename Traits::Digraph Digraph; |
| 125 | 125 |
///The type of the capacity map. |
| 126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
| 127 | 127 |
///The type of the flow values. |
| 128 |
typedef typename Traits:: |
|
| 128 |
typedef typename Traits::Value Value; |
|
| 129 | 129 |
|
| 130 | 130 |
///The type of the flow map. |
| 131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
| 132 | 132 |
///The type of the elevator. |
| 133 | 133 |
typedef typename Traits::Elevator Elevator; |
| 134 | 134 |
///The type of the tolerance. |
| ... | ... |
@@ -148,13 +148,13 @@ |
| 148 | 148 |
FlowMap* _flow; |
| 149 | 149 |
bool _local_flow; |
| 150 | 150 |
|
| 151 | 151 |
Elevator* _level; |
| 152 | 152 |
bool _local_level; |
| 153 | 153 |
|
| 154 |
typedef typename Digraph::template NodeMap< |
|
| 154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
| 155 | 155 |
ExcessMap* _excess; |
| 156 | 156 |
|
| 157 | 157 |
Tolerance _tolerance; |
| 158 | 158 |
|
| 159 | 159 |
bool _phase; |
| 160 | 160 |
|
| ... | ... |
@@ -467,13 +467,13 @@ |
| 467 | 467 |
|
| 468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 469 | 469 |
_flow->set(e, flowMap[e]); |
| 470 | 470 |
} |
| 471 | 471 |
|
| 472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 473 |
|
|
| 473 |
Value excess = 0; |
|
| 474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 475 | 475 |
excess += (*_flow)[e]; |
| 476 | 476 |
} |
| 477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 478 | 478 |
excess -= (*_flow)[e]; |
| 479 | 479 |
} |
| ... | ... |
@@ -516,25 +516,25 @@ |
| 516 | 516 |
} |
| 517 | 517 |
queue.swap(nqueue); |
| 518 | 518 |
} |
| 519 | 519 |
_level->initFinish(); |
| 520 | 520 |
|
| 521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 522 |
|
|
| 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 523 | 523 |
if (_tolerance.positive(rem)) {
|
| 524 | 524 |
Node u = _graph.target(e); |
| 525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 526 | 526 |
_flow->set(e, (*_capacity)[e]); |
| 527 | 527 |
(*_excess)[u] += rem; |
| 528 | 528 |
if (u != _target && !_level->active(u)) {
|
| 529 | 529 |
_level->activate(u); |
| 530 | 530 |
} |
| 531 | 531 |
} |
| 532 | 532 |
} |
| 533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 534 |
|
|
| 534 |
Value rem = (*_flow)[e]; |
|
| 535 | 535 |
if (_tolerance.positive(rem)) {
|
| 536 | 536 |
Node v = _graph.source(e); |
| 537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 538 | 538 |
_flow->set(e, 0); |
| 539 | 539 |
(*_excess)[v] += rem; |
| 540 | 540 |
if (v != _target && !_level->active(v)) {
|
| ... | ... |
@@ -561,17 +561,17 @@ |
| 561 | 561 |
Node n = _level->highestActive(); |
| 562 | 562 |
int level = _level->highestActiveLevel(); |
| 563 | 563 |
while (n != INVALID) {
|
| 564 | 564 |
int num = _node_num; |
| 565 | 565 |
|
| 566 | 566 |
while (num > 0 && n != INVALID) {
|
| 567 |
|
|
| 567 |
Value excess = (*_excess)[n]; |
|
| 568 | 568 |
int new_level = _level->maxLevel(); |
| 569 | 569 |
|
| 570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 571 |
|
|
| 571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 572 | 572 |
if (!_tolerance.positive(rem)) continue; |
| 573 | 573 |
Node v = _graph.target(e); |
| 574 | 574 |
if ((*_level)[v] < level) {
|
| 575 | 575 |
if (!_level->active(v) && v != _target) {
|
| 576 | 576 |
_level->activate(v); |
| 577 | 577 |
} |
| ... | ... |
@@ -588,13 +588,13 @@ |
| 588 | 588 |
} else if (new_level > (*_level)[v]) {
|
| 589 | 589 |
new_level = (*_level)[v]; |
| 590 | 590 |
} |
| 591 | 591 |
} |
| 592 | 592 |
|
| 593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 594 |
|
|
| 594 |
Value rem = (*_flow)[e]; |
|
| 595 | 595 |
if (!_tolerance.positive(rem)) continue; |
| 596 | 596 |
Node v = _graph.source(e); |
| 597 | 597 |
if ((*_level)[v] < level) {
|
| 598 | 598 |
if (!_level->active(v) && v != _target) {
|
| 599 | 599 |
_level->activate(v); |
| 600 | 600 |
} |
| ... | ... |
@@ -634,17 +634,17 @@ |
| 634 | 634 |
level = _level->highestActiveLevel(); |
| 635 | 635 |
--num; |
| 636 | 636 |
} |
| 637 | 637 |
|
| 638 | 638 |
num = _node_num * 20; |
| 639 | 639 |
while (num > 0 && n != INVALID) {
|
| 640 |
|
|
| 640 |
Value excess = (*_excess)[n]; |
|
| 641 | 641 |
int new_level = _level->maxLevel(); |
| 642 | 642 |
|
| 643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 644 |
|
|
| 644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 645 | 645 |
if (!_tolerance.positive(rem)) continue; |
| 646 | 646 |
Node v = _graph.target(e); |
| 647 | 647 |
if ((*_level)[v] < level) {
|
| 648 | 648 |
if (!_level->active(v) && v != _target) {
|
| 649 | 649 |
_level->activate(v); |
| 650 | 650 |
} |
| ... | ... |
@@ -661,13 +661,13 @@ |
| 661 | 661 |
} else if (new_level > (*_level)[v]) {
|
| 662 | 662 |
new_level = (*_level)[v]; |
| 663 | 663 |
} |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 667 |
|
|
| 667 |
Value rem = (*_flow)[e]; |
|
| 668 | 668 |
if (!_tolerance.positive(rem)) continue; |
| 669 | 669 |
Node v = _graph.source(e); |
| 670 | 670 |
if ((*_level)[v] < level) {
|
| 671 | 671 |
if (!_level->active(v) && v != _target) {
|
| 672 | 672 |
_level->activate(v); |
| 673 | 673 |
} |
| ... | ... |
@@ -775,18 +775,18 @@ |
| 775 | 775 |
_level->activate(n); |
| 776 | 776 |
} |
| 777 | 777 |
} |
| 778 | 778 |
|
| 779 | 779 |
Node n; |
| 780 | 780 |
while ((n = _level->highestActive()) != INVALID) {
|
| 781 |
|
|
| 781 |
Value excess = (*_excess)[n]; |
|
| 782 | 782 |
int level = _level->highestActiveLevel(); |
| 783 | 783 |
int new_level = _level->maxLevel(); |
| 784 | 784 |
|
| 785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 786 |
|
|
| 786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
| 787 | 787 |
if (!_tolerance.positive(rem)) continue; |
| 788 | 788 |
Node v = _graph.target(e); |
| 789 | 789 |
if ((*_level)[v] < level) {
|
| 790 | 790 |
if (!_level->active(v) && v != _source) {
|
| 791 | 791 |
_level->activate(v); |
| 792 | 792 |
} |
| ... | ... |
@@ -803,13 +803,13 @@ |
| 803 | 803 |
} else if (new_level > (*_level)[v]) {
|
| 804 | 804 |
new_level = (*_level)[v]; |
| 805 | 805 |
} |
| 806 | 806 |
} |
| 807 | 807 |
|
| 808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 809 |
|
|
| 809 |
Value rem = (*_flow)[e]; |
|
| 810 | 810 |
if (!_tolerance.positive(rem)) continue; |
| 811 | 811 |
Node v = _graph.source(e); |
| 812 | 812 |
if ((*_level)[v] < level) {
|
| 813 | 813 |
if (!_level->active(v) && v != _source) {
|
| 814 | 814 |
_level->activate(v); |
| 815 | 815 |
} |
| ... | ... |
@@ -894,24 +894,24 @@ |
| 894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
| 895 | 895 |
/// of the target node. This value equals to the value of |
| 896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
| 897 | 897 |
/// |
| 898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
| 899 | 899 |
/// using this function. |
| 900 |
|
|
| 900 |
Value flowValue() const {
|
|
| 901 | 901 |
return (*_excess)[_target]; |
| 902 | 902 |
} |
| 903 | 903 |
|
| 904 |
/// \brief Returns the flow on the given arc. |
|
| 904 |
/// \brief Returns the flow value on the given arc. |
|
| 905 | 905 |
/// |
| 906 |
/// Returns the flow on the given arc. This method can |
|
| 906 |
/// Returns the flow value on the given arc. This method can |
|
| 907 | 907 |
/// be called after the second phase of the algorithm. |
| 908 | 908 |
/// |
| 909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
| 910 | 910 |
/// using this function. |
| 911 |
|
|
| 911 |
Value flow(const Arc& arc) const {
|
|
| 912 | 912 |
return (*_flow)[arc]; |
| 913 | 913 |
} |
| 914 | 914 |
|
| 915 | 915 |
/// \brief Returns a const reference to the flow map. |
| 916 | 916 |
/// |
| 917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
| ... | ... |
@@ -18,15 +18,13 @@ |
| 18 | 18 |
|
| 19 | 19 |
#include <sstream> |
| 20 | 20 |
#include <lemon/lp_skeleton.h> |
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
|
| 24 |
#ifdef HAVE_CONFIG_H |
|
| 25 | 24 |
#include <lemon/config.h> |
| 26 |
#endif |
|
| 27 | 25 |
|
| 28 | 26 |
#ifdef LEMON_HAVE_GLPK |
| 29 | 27 |
#include <lemon/glpk.h> |
| 30 | 28 |
#endif |
| 31 | 29 |
|
| 32 | 30 |
#ifdef LEMON_HAVE_CPLEX |
| ... | ... |
@@ -15,12 +15,13 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 |
#include <limits> |
|
| 21 | 22 |
|
| 22 | 23 |
#include <lemon/list_graph.h> |
| 23 | 24 |
#include <lemon/lgf_reader.h> |
| 24 | 25 |
|
| 25 | 26 |
#include <lemon/network_simplex.h> |
| 26 | 27 |
|
| ... | ... |
@@ -30,131 +31,124 @@ |
| 30 | 31 |
#include "test_tools.h" |
| 31 | 32 |
|
| 32 | 33 |
using namespace lemon; |
| 33 | 34 |
|
| 34 | 35 |
char test_lgf[] = |
| 35 | 36 |
"@nodes\n" |
| 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
| 37 |
" 1 20 27 0 20 30\n" |
|
| 38 |
" 2 -4 0 0 -8 -3\n" |
|
| 39 |
" 3 0 0 0 0 0\n" |
|
| 40 |
" 4 0 0 0 0 0\n" |
|
| 41 |
" 5 9 0 0 6 11\n" |
|
| 42 |
" 6 -6 0 0 -5 -6\n" |
|
| 43 |
" 7 0 0 0 0 0\n" |
|
| 44 |
" 8 0 0 0 0 3\n" |
|
| 45 |
" 9 3 0 0 0 0\n" |
|
| 46 |
" 10 -2 0 0 -7 -2\n" |
|
| 47 |
" 11 0 0 0 -10 0\n" |
|
| 48 |
" 12 -20 -27 0 -30 -20\n" |
|
| 49 |
"\n" |
|
| 37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
|
| 38 |
" 1 20 27 0 30 20 30\n" |
|
| 39 |
" 2 -4 0 0 0 -8 -3\n" |
|
| 40 |
" 3 0 0 0 0 0 0\n" |
|
| 41 |
" 4 0 0 0 0 0 0\n" |
|
| 42 |
" 5 9 0 0 0 6 11\n" |
|
| 43 |
" 6 -6 0 0 0 -5 -6\n" |
|
| 44 |
" 7 0 0 0 0 0 0\n" |
|
| 45 |
" 8 0 0 0 0 0 3\n" |
|
| 46 |
" 9 3 0 0 0 0 0\n" |
|
| 47 |
" 10 -2 0 0 0 -7 -2\n" |
|
| 48 |
" 11 0 0 0 0 -10 0\n" |
|
| 49 |
" 12 -20 -27 0 -30 -30 -20\n" |
|
| 50 |
"\n" |
|
| 50 | 51 |
"@arcs\n" |
| 51 |
" cost cap low1 low2\n" |
|
| 52 |
" 1 2 70 11 0 8\n" |
|
| 53 |
" 1 3 150 3 0 1\n" |
|
| 54 |
" 1 4 80 15 0 2\n" |
|
| 55 |
" 2 8 80 12 0 0\n" |
|
| 56 |
" 3 5 140 5 0 3\n" |
|
| 57 |
" 4 6 60 10 0 1\n" |
|
| 58 |
" 4 7 80 2 0 0\n" |
|
| 59 |
" 4 8 110 3 0 0\n" |
|
| 60 |
" 5 7 60 14 0 0\n" |
|
| 61 |
" 5 11 120 12 0 0\n" |
|
| 62 |
" 6 3 0 3 0 0\n" |
|
| 63 |
" 6 9 140 4 0 0\n" |
|
| 64 |
" 6 10 90 8 0 0\n" |
|
| 65 |
" 7 1 30 5 0 0\n" |
|
| 66 |
" 8 12 60 16 0 4\n" |
|
| 67 |
" 9 12 50 6 0 0\n" |
|
| 68 |
"10 12 70 13 0 5\n" |
|
| 69 |
"10 2 100 7 0 0\n" |
|
| 70 |
"10 7 60 10 0 0\n" |
|
| 71 |
"11 10 20 14 0 6\n" |
|
| 72 |
"12 11 30 10 0 0\n" |
|
| 52 |
" cost cap low1 low2 low3\n" |
|
| 53 |
" 1 2 70 11 0 8 8\n" |
|
| 54 |
" 1 3 150 3 0 1 0\n" |
|
| 55 |
" 1 4 80 15 0 2 2\n" |
|
| 56 |
" 2 8 80 12 0 0 0\n" |
|
| 57 |
" 3 5 140 5 0 3 1\n" |
|
| 58 |
" 4 6 60 10 0 1 0\n" |
|
| 59 |
" 4 7 80 2 0 0 0\n" |
|
| 60 |
" 4 8 110 3 0 0 0\n" |
|
| 61 |
" 5 7 60 14 0 0 0\n" |
|
| 62 |
" 5 11 120 12 0 0 0\n" |
|
| 63 |
" 6 3 0 3 0 0 0\n" |
|
| 64 |
" 6 9 140 4 0 0 0\n" |
|
| 65 |
" 6 10 90 8 0 0 0\n" |
|
| 66 |
" 7 1 30 5 0 0 -5\n" |
|
| 67 |
" 8 12 60 16 0 4 3\n" |
|
| 68 |
" 9 12 50 6 0 0 0\n" |
|
| 69 |
"10 12 70 13 0 5 2\n" |
|
| 70 |
"10 2 100 7 0 0 0\n" |
|
| 71 |
"10 7 60 10 0 0 -3\n" |
|
| 72 |
"11 10 20 14 0 6 -20\n" |
|
| 73 |
"12 11 30 10 0 0 -10\n" |
|
| 73 | 74 |
"\n" |
| 74 | 75 |
"@attributes\n" |
| 75 | 76 |
"source 1\n" |
| 76 | 77 |
"target 12\n"; |
| 77 | 78 |
|
| 78 | 79 |
|
| 79 |
enum |
|
| 80 |
enum SupplyType {
|
|
| 80 | 81 |
EQ, |
| 81 | 82 |
GEQ, |
| 82 | 83 |
LEQ |
| 83 | 84 |
}; |
| 84 | 85 |
|
| 85 | 86 |
// Check the interface of an MCF algorithm |
| 86 |
template <typename GR, typename |
|
| 87 |
template <typename GR, typename Value, typename Cost> |
|
| 87 | 88 |
class McfClassConcept |
| 88 | 89 |
{
|
| 89 | 90 |
public: |
| 90 | 91 |
|
| 91 | 92 |
template <typename MCF> |
| 92 | 93 |
struct Constraints {
|
| 93 | 94 |
void constraints() {
|
| 94 | 95 |
checkConcept<concepts::Digraph, GR>(); |
| 95 | 96 |
|
| 96 | 97 |
MCF mcf(g); |
| 98 |
const MCF& const_mcf = mcf; |
|
| 97 | 99 |
|
| 98 | 100 |
b = mcf.reset() |
| 99 | 101 |
.lowerMap(lower) |
| 100 | 102 |
.upperMap(upper) |
| 101 |
.capacityMap(upper) |
|
| 102 |
.boundMaps(lower, upper) |
|
| 103 | 103 |
.costMap(cost) |
| 104 | 104 |
.supplyMap(sup) |
| 105 | 105 |
.stSupply(n, n, k) |
| 106 |
.flowMap(flow) |
|
| 107 |
.potentialMap(pot) |
|
| 108 | 106 |
.run(); |
| 109 |
|
|
| 110 |
const MCF& const_mcf = mcf; |
|
| 111 | 107 |
|
| 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
| 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
| 114 |
|
|
| 115 |
v = const_mcf.totalCost(); |
|
| 116 |
|
|
| 108 |
c = const_mcf.totalCost(); |
|
| 109 |
x = const_mcf.template totalCost<double>(); |
|
| 117 | 110 |
v = const_mcf.flow(a); |
| 118 |
v = const_mcf.potential(n); |
|
| 119 |
|
|
| 120 |
ignore_unused_variable_warning(fm); |
|
| 121 |
ignore_unused_variable_warning(pm); |
|
| 122 |
|
|
| 111 |
c = const_mcf.potential(n); |
|
| 112 |
const_mcf.flowMap(fm); |
|
| 113 |
const_mcf.potentialMap(pm); |
|
| 123 | 114 |
} |
| 124 | 115 |
|
| 125 | 116 |
typedef typename GR::Node Node; |
| 126 | 117 |
typedef typename GR::Arc Arc; |
| 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
| 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
| 118 |
typedef concepts::ReadMap<Node, Value> NM; |
|
| 119 |
typedef concepts::ReadMap<Arc, Value> VAM; |
|
| 129 | 120 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 121 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
|
| 122 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
|
| 130 | 123 |
|
| 131 | 124 |
const GR &g; |
| 132 |
const FAM &lower; |
|
| 133 |
const FAM &upper; |
|
| 125 |
const VAM &lower; |
|
| 126 |
const VAM &upper; |
|
| 134 | 127 |
const CAM &cost; |
| 135 | 128 |
const NM ⊃ |
| 136 | 129 |
const Node &n; |
| 137 | 130 |
const Arc &a; |
| 138 |
const Flow &k; |
|
| 139 |
Flow v; |
|
| 131 |
const Value &k; |
|
| 132 |
FlowMap fm; |
|
| 133 |
PotMap pm; |
|
| 140 | 134 |
bool b; |
| 141 |
|
|
| 142 |
typename MCF::FlowMap &flow; |
|
| 143 |
|
|
| 135 |
double x; |
|
| 136 |
typename MCF::Value v; |
|
| 137 |
typename MCF::Cost c; |
|
| 144 | 138 |
}; |
| 145 | 139 |
|
| 146 | 140 |
}; |
| 147 | 141 |
|
| 148 | 142 |
|
| 149 | 143 |
// Check the feasibility of the given flow (primal soluiton) |
| 150 | 144 |
template < typename GR, typename LM, typename UM, |
| 151 | 145 |
typename SM, typename FM > |
| 152 | 146 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 153 | 147 |
const SM& supply, const FM& flow, |
| 154 |
|
|
| 148 |
SupplyType type = EQ ) |
|
| 155 | 149 |
{
|
| 156 | 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 157 | 151 |
|
| 158 | 152 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 159 | 153 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 160 | 154 |
} |
| ... | ... |
@@ -205,130 +199,192 @@ |
| 205 | 199 |
return opt; |
| 206 | 200 |
} |
| 207 | 201 |
|
| 208 | 202 |
// Run a minimum cost flow algorithm and check the results |
| 209 | 203 |
template < typename MCF, typename GR, |
| 210 | 204 |
typename LM, typename UM, |
| 211 |
typename CM, typename SM > |
|
| 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
| 205 |
typename CM, typename SM, |
|
| 206 |
typename PT > |
|
| 207 |
void checkMcf( const MCF& mcf, PT mcf_result, |
|
| 213 | 208 |
const GR& gr, const LM& lower, const UM& upper, |
| 214 | 209 |
const CM& cost, const SM& supply, |
| 215 |
bool |
|
| 210 |
PT result, bool optimal, typename CM::Value total, |
|
| 216 | 211 |
const std::string &test_id = "", |
| 217 |
|
|
| 212 |
SupplyType type = EQ ) |
|
| 218 | 213 |
{
|
| 219 | 214 |
check(mcf_result == result, "Wrong result " + test_id); |
| 220 |
if (result) {
|
|
| 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
| 215 |
if (optimal) {
|
|
| 216 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
|
| 217 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
|
| 218 |
mcf.flowMap(flow); |
|
| 219 |
mcf.potentialMap(pi); |
|
| 220 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
|
| 222 | 221 |
"The flow is not feasible " + test_id); |
| 223 | 222 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
| 225 |
mcf.potentialMap()), |
|
| 223 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi), |
|
| 226 | 224 |
"Wrong potentials " + test_id); |
| 227 | 225 |
} |
| 228 | 226 |
} |
| 229 | 227 |
|
| 230 | 228 |
int main() |
| 231 | 229 |
{
|
| 232 | 230 |
// Check the interfaces |
| 233 | 231 |
{
|
| 234 |
typedef int Flow; |
|
| 235 |
typedef int Cost; |
|
| 236 | 232 |
typedef concepts::Digraph GR; |
| 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
| 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
| 233 |
checkConcept< McfClassConcept<GR, int, int>, |
|
| 234 |
NetworkSimplex<GR> >(); |
|
| 235 |
checkConcept< McfClassConcept<GR, double, double>, |
|
| 236 |
NetworkSimplex<GR, double> >(); |
|
| 237 |
checkConcept< McfClassConcept<GR, int, double>, |
|
| 238 |
NetworkSimplex<GR, int, double> >(); |
|
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
// Run various MCF tests |
| 242 | 242 |
typedef ListDigraph Digraph; |
| 243 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 244 | 244 |
|
| 245 | 245 |
// Read the test digraph |
| 246 | 246 |
Digraph gr; |
| 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
| 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
| 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
|
| 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
|
| 249 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 250 | 250 |
Node v, w; |
| 251 | 251 |
|
| 252 | 252 |
std::istringstream input(test_lgf); |
| 253 | 253 |
DigraphReader<Digraph>(gr, input) |
| 254 | 254 |
.arcMap("cost", c)
|
| 255 | 255 |
.arcMap("cap", u)
|
| 256 | 256 |
.arcMap("low1", l1)
|
| 257 | 257 |
.arcMap("low2", l2)
|
| 258 |
.arcMap("low3", l3)
|
|
| 258 | 259 |
.nodeMap("sup1", s1)
|
| 259 | 260 |
.nodeMap("sup2", s2)
|
| 260 | 261 |
.nodeMap("sup3", s3)
|
| 261 | 262 |
.nodeMap("sup4", s4)
|
| 262 | 263 |
.nodeMap("sup5", s5)
|
| 264 |
.nodeMap("sup6", s6)
|
|
| 263 | 265 |
.node("source", v)
|
| 264 | 266 |
.node("target", w)
|
| 265 | 267 |
.run(); |
| 268 |
|
|
| 269 |
// Build a test digraph for testing negative costs |
|
| 270 |
Digraph ngr; |
|
| 271 |
Node n1 = ngr.addNode(); |
|
| 272 |
Node n2 = ngr.addNode(); |
|
| 273 |
Node n3 = ngr.addNode(); |
|
| 274 |
Node n4 = ngr.addNode(); |
|
| 275 |
Node n5 = ngr.addNode(); |
|
| 276 |
Node n6 = ngr.addNode(); |
|
| 277 |
Node n7 = ngr.addNode(); |
|
| 278 |
|
|
| 279 |
Arc a1 = ngr.addArc(n1, n2); |
|
| 280 |
Arc a2 = ngr.addArc(n1, n3); |
|
| 281 |
Arc a3 = ngr.addArc(n2, n4); |
|
| 282 |
Arc a4 = ngr.addArc(n3, n4); |
|
| 283 |
Arc a5 = ngr.addArc(n3, n2); |
|
| 284 |
Arc a6 = ngr.addArc(n5, n3); |
|
| 285 |
Arc a7 = ngr.addArc(n5, n6); |
|
| 286 |
Arc a8 = ngr.addArc(n6, n7); |
|
| 287 |
Arc a9 = ngr.addArc(n7, n5); |
|
| 288 |
|
|
| 289 |
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0); |
|
| 290 |
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000); |
|
| 291 |
Digraph::NodeMap<int> ns(ngr, 0); |
|
| 292 |
|
|
| 293 |
nl2[a7] = 1000; |
|
| 294 |
nl2[a8] = -1000; |
|
| 295 |
|
|
| 296 |
ns[n1] = 100; |
|
| 297 |
ns[n4] = -100; |
|
| 298 |
|
|
| 299 |
nc[a1] = 100; |
|
| 300 |
nc[a2] = 30; |
|
| 301 |
nc[a3] = 20; |
|
| 302 |
nc[a4] = 80; |
|
| 303 |
nc[a5] = 50; |
|
| 304 |
nc[a6] = 10; |
|
| 305 |
nc[a7] = 80; |
|
| 306 |
nc[a8] = 30; |
|
| 307 |
nc[a9] = -120; |
|
| 266 | 308 |
|
| 267 | 309 |
// A. Test NetworkSimplex with the default pivot rule |
| 268 | 310 |
{
|
| 269 | 311 |
NetworkSimplex<Digraph> mcf(gr); |
| 270 | 312 |
|
| 271 | 313 |
// Check the equality form |
| 272 | 314 |
mcf.upperMap(u).costMap(c); |
| 273 | 315 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 316 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
|
| 275 | 317 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 318 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
|
| 277 | 319 |
mcf.lowerMap(l2); |
| 278 | 320 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
| 321 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3"); |
|
| 280 | 322 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
| 323 |
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4"); |
|
| 282 | 324 |
mcf.reset(); |
| 283 | 325 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
| 326 |
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5"); |
|
| 285 | 327 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
| 328 |
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6"); |
|
| 287 | 329 |
mcf.reset(); |
| 288 | 330 |
checkMcf(mcf, mcf.run(), |
| 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
| 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
| 291 |
gr, |
|
| 331 |
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7"); |
|
| 332 |
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(), |
|
| 333 |
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8"); |
|
| 334 |
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
|
| 335 |
checkMcf(mcf, mcf.run(), |
|
| 336 |
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9"); |
|
| 292 | 337 |
|
| 293 | 338 |
// Check the GEQ form |
| 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap( |
|
| 339 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
|
| 295 | 340 |
checkMcf(mcf, mcf.run(), |
| 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
| 297 |
mcf.problemType(mcf.GEQ); |
|
| 341 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
|
| 342 |
mcf.supplyType(mcf.GEQ); |
|
| 298 | 343 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
| 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
| 344 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
|
| 345 |
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6); |
|
| 301 | 346 |
checkMcf(mcf, mcf.run(), |
| 302 |
gr, l2, u, c, |
|
| 347 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
|
| 303 | 348 |
|
| 304 | 349 |
// Check the LEQ form |
| 305 |
mcf.reset().problemType(mcf.LEQ); |
|
| 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
| 350 |
mcf.reset().supplyType(mcf.LEQ); |
|
| 351 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
|
| 307 | 352 |
checkMcf(mcf, mcf.run(), |
| 308 |
gr, l1, u, c, |
|
| 353 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
|
| 309 | 354 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
| 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
| 355 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
|
| 356 |
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5); |
|
| 312 | 357 |
checkMcf(mcf, mcf.run(), |
| 313 |
gr, l2, u, c, |
|
| 358 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
|
| 359 |
|
|
| 360 |
// Check negative costs |
|
| 361 |
NetworkSimplex<Digraph> nmcf(ngr); |
|
| 362 |
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns); |
|
| 363 |
checkMcf(nmcf, nmcf.run(), |
|
| 364 |
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16"); |
|
| 365 |
checkMcf(nmcf, nmcf.upperMap(nu2).run(), |
|
| 366 |
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17"); |
|
| 367 |
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns); |
|
| 368 |
checkMcf(nmcf, nmcf.run(), |
|
| 369 |
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18"); |
|
| 314 | 370 |
} |
| 315 | 371 |
|
| 316 | 372 |
// B. Test NetworkSimplex with each pivot rule |
| 317 | 373 |
{
|
| 318 | 374 |
NetworkSimplex<Digraph> mcf(gr); |
| 319 |
mcf.supplyMap(s1).costMap(c). |
|
| 375 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
|
| 320 | 376 |
|
| 321 | 377 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
| 378 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
|
| 323 | 379 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
| 380 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
|
| 325 | 381 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
| 382 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
|
| 327 | 383 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 384 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
|
| 329 | 385 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
| 386 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
|
| 331 | 387 |
} |
| 332 | 388 |
|
| 333 | 389 |
return 0; |
| 334 | 390 |
} |
| ... | ... |
@@ -116,14 +116,14 @@ |
| 116 | 116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
| 117 | 117 |
} |
| 118 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
| 119 | 119 |
|
| 120 | 120 |
ti.restart(); |
| 121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
| 122 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.problemType(ns.LEQ); |
|
| 122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
|
| 123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
|
| 124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
| 125 | 125 |
ti.restart(); |
| 126 | 126 |
bool res = ns.run(); |
| 127 | 127 |
if (report) {
|
| 128 | 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
| 129 | 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
0 comments (0 inline)