↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
\page min_cost_flow Minimum Cost Flow Problem
23 23

	
24 24
\section mcf_def Definition (GEQ form)
25 25

	
26 26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27 27
minimum total cost from a set of supply nodes to a set of demand nodes
28 28
in a network with capacity constraints (lower and upper bounds)
29 29
and arc costs.
30 30

	
31 31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32 32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33 33
upper bounds for the flow values on the arcs, for which
34 34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35 35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
36 36
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
37 37
signed supply values of the nodes.
38 38
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
39 39
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
40 40
\f$-sup(u)\f$ demand.
41 41
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
42 42
of the following optimization problem.
43 43

	
44 44
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
45 45
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
46 46
    sup(u) \quad \forall u\in V \f]
47 47
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
48 48

	
49 49
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
50 50
zero or negative in order to have a feasible solution (since the sum
51 51
of the expressions on the left-hand side of the inequalities is zero).
52 52
It means that the total demand must be greater or equal to the total
53 53
supply and all the supplies have to be carried out from the supply nodes,
54 54
but there could be demands that are not satisfied.
55 55
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
56 56
constraints have to be satisfied with equality, i.e. all demands
57 57
have to be satisfied and all supplies have to be used.
58 58

	
59 59

	
60 60
\section mcf_algs Algorithms
61 61

	
62 62
LEMON contains several algorithms for solving this problem, for more
63 63
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms".
64 64

	
65 65
A feasible solution for this problem can be found using \ref Circulation.
66 66

	
67 67

	
68 68
\section mcf_dual Dual Solution
69 69

	
70 70
The dual solution of the minimum cost flow problem is represented by
71 71
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
72 72
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
73 73
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
74 74
the following \e complementary \e slackness optimality conditions hold.
75 75

	
76 76
 - For all \f$uv\in A\f$ arcs:
77 77
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
78 78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79 79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80 80
 - For all \f$u\in V\f$ nodes:
81
   - \f$\pi(u)<=0\f$;
81
   - \f$\pi(u)\leq 0\f$;
82 82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83 83
     then \f$\pi(u)=0\f$.
84 84
 
85 85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86 86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87 87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88 88

	
89 89
All algorithms provide dual solution (node potentials), as well,
90 90
if an optimal flow is found.
91 91

	
92 92

	
93 93
\section mcf_eq Equality Form
94 94

	
95 95
The above \ref mcf_def "definition" is actually more general than the
96 96
usual formulation of the minimum cost flow problem, in which strict
97 97
equalities are required in the supply/demand contraints.
98 98

	
99 99
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
100 100
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
101 101
    sup(u) \quad \forall u\in V \f]
102 102
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
103 103

	
104 104
However if the sum of the supply values is zero, then these two problems
105 105
are equivalent.
106 106
The \ref min_cost_flow_algs "algorithms" in LEMON support the general
107 107
form, so if you need the equality form, you have to ensure this additional
108 108
contraint manually.
109 109

	
110 110

	
111 111
\section mcf_leq Opposite Inequalites (LEQ Form)
112 112

	
113 113
Another possible definition of the minimum cost flow problem is
114 114
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints,
115 115
instead of the <em>"greater or equal"</em> (GEQ) constraints.
116 116

	
117 117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118 118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119 119
    sup(u) \quad \forall u\in V \f]
120 120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121 121

	
122 122
It means that the total demand must be less or equal to the 
123 123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124 124
positive) and all the demands have to be satisfied, but there
125 125
could be supplies that are not carried out from the supply
126 126
nodes.
127 127
The equality form is also a special case of this form, of course.
128 128

	
129 129
You could easily transform this case to the \ref mcf_def "GEQ form"
130 130
of the problem by reversing the direction of the arcs and taking the
131 131
negative of the supply values (e.g. using \ref ReverseDigraph and
132 132
\ref NegMap adaptors).
133 133
However \ref NetworkSimplex algorithm also supports this form directly
134 134
for the sake of convenience.
135 135

	
136 136
Note that the optimality conditions for this supply constraint type are
137 137
slightly differ from the conditions that are discussed for the GEQ form,
138 138
namely the potentials have to be non-negative instead of non-positive.
139 139
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
140 140
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
141 141
node potentials the following conditions hold.
142 142

	
143 143
 - For all \f$uv\in A\f$ arcs:
144 144
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
145 145
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
146 146
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
147 147
 - For all \f$u\in V\f$ nodes:
148
   - \f$\pi(u)>=0\f$;
148
   - \f$\pi(u)\geq 0\f$;
149 149
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
150 150
     then \f$\pi(u)=0\f$.
151 151

	
152 152
*/
153 153
}
Ignore white space 6 line context
... ...
@@ -110,385 +110,385 @@
110 110
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
111 111
 
112 112
    /// \brief The type of the map that stores the last arcs of the 
113 113
    /// shortest paths.
114 114
    /// 
115 115
    /// The type of the map that stores the last
116 116
    /// arcs of the shortest paths.
117 117
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
118 118
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
119 119

	
120 120
    /// \brief Instantiates a \c PredMap.
121 121
    /// 
122 122
    /// This function instantiates a \ref PredMap. 
123 123
    /// \param g is the digraph to which we would like to define the
124 124
    /// \ref PredMap.
125 125
    static PredMap *createPredMap(const GR& g) {
126 126
      return new PredMap(g);
127 127
    }
128 128

	
129 129
    /// \brief The type of the map that stores the distances of the nodes.
130 130
    ///
131 131
    /// The type of the map that stores the distances of the nodes.
132 132
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
133 133
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
134 134

	
135 135
    /// \brief Instantiates a \c DistMap.
136 136
    ///
137 137
    /// This function instantiates a \ref DistMap. 
138 138
    /// \param g is the digraph to which we would like to define the 
139 139
    /// \ref DistMap.
140 140
    static DistMap *createDistMap(const GR& g) {
141 141
      return new DistMap(g);
142 142
    }
143 143

	
144 144
  };
145 145
  
146 146
  /// \brief %BellmanFord algorithm class.
147 147
  ///
148 148
  /// \ingroup shortest_path
149 149
  /// This class provides an efficient implementation of the Bellman-Ford 
150 150
  /// algorithm. The maximum time complexity of the algorithm is
151 151
  /// <tt>O(ne)</tt>.
152 152
  ///
153 153
  /// The Bellman-Ford algorithm solves the single-source shortest path
154 154
  /// problem when the arcs can have negative lengths, but the digraph
155 155
  /// should not contain directed cycles with negative total length.
156 156
  /// If all arc costs are non-negative, consider to use the Dijkstra
157 157
  /// algorithm instead, since it is more efficient.
158 158
  ///
159 159
  /// The arc lengths are passed to the algorithm using a
160 160
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
161 161
  /// kind of length. The type of the length values is determined by the
162 162
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
163 163
  ///
164 164
  /// There is also a \ref bellmanFord() "function-type interface" for the
165 165
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
166 166
  /// it can be used easier.
167 167
  ///
168 168
  /// \tparam GR The type of the digraph the algorithm runs on.
169 169
  /// The default type is \ref ListDigraph.
170 170
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
171 171
  /// the lengths of the arcs. The default map type is
172 172
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
173 173
#ifdef DOXYGEN
174 174
  template <typename GR, typename LEN, typename TR>
175 175
#else
176 176
  template <typename GR=ListDigraph,
177 177
            typename LEN=typename GR::template ArcMap<int>,
178 178
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
179 179
#endif
180 180
  class BellmanFord {
181 181
  public:
182 182

	
183 183
    ///The type of the underlying digraph.
184 184
    typedef typename TR::Digraph Digraph;
185 185
    
186 186
    /// \brief The type of the arc lengths.
187 187
    typedef typename TR::LengthMap::Value Value;
188 188
    /// \brief The type of the map that stores the arc lengths.
189 189
    typedef typename TR::LengthMap LengthMap;
190 190
    /// \brief The type of the map that stores the last
191 191
    /// arcs of the shortest paths.
192 192
    typedef typename TR::PredMap PredMap;
193 193
    /// \brief The type of the map that stores the distances of the nodes.
194 194
    typedef typename TR::DistMap DistMap;
195 195
    /// The type of the paths.
196 196
    typedef PredMapPath<Digraph, PredMap> Path;
197 197
    ///\brief The \ref BellmanFordDefaultOperationTraits
198 198
    /// "operation traits class" of the algorithm.
199 199
    typedef typename TR::OperationTraits OperationTraits;
200 200

	
201 201
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
202 202
    typedef TR Traits;
203 203

	
204 204
  private:
205 205

	
206 206
    typedef typename Digraph::Node Node;
207 207
    typedef typename Digraph::NodeIt NodeIt;
208 208
    typedef typename Digraph::Arc Arc;
209 209
    typedef typename Digraph::OutArcIt OutArcIt;
210 210

	
211 211
    // Pointer to the underlying digraph.
212 212
    const Digraph *_gr;
213 213
    // Pointer to the length map
214 214
    const LengthMap *_length;
215 215
    // Pointer to the map of predecessors arcs.
216 216
    PredMap *_pred;
217 217
    // Indicates if _pred is locally allocated (true) or not.
218 218
    bool _local_pred;
219 219
    // Pointer to the map of distances.
220 220
    DistMap *_dist;
221 221
    // Indicates if _dist is locally allocated (true) or not.
222 222
    bool _local_dist;
223 223

	
224 224
    typedef typename Digraph::template NodeMap<bool> MaskMap;
225 225
    MaskMap *_mask;
226 226

	
227 227
    std::vector<Node> _process;
228 228

	
229 229
    // Creates the maps if necessary.
230 230
    void create_maps() {
231 231
      if(!_pred) {
232 232
	_local_pred = true;
233 233
	_pred = Traits::createPredMap(*_gr);
234 234
      }
235 235
      if(!_dist) {
236 236
	_local_dist = true;
237 237
	_dist = Traits::createDistMap(*_gr);
238 238
      }
239 239
      _mask = new MaskMap(*_gr, false);
240 240
    }
241 241
    
242 242
  public :
243 243
 
244 244
    typedef BellmanFord Create;
245 245

	
246 246
    /// \name Named Template Parameters
247 247

	
248 248
    ///@{
249 249

	
250 250
    template <class T>
251 251
    struct SetPredMapTraits : public Traits {
252 252
      typedef T PredMap;
253 253
      static PredMap *createPredMap(const Digraph&) {
254 254
        LEMON_ASSERT(false, "PredMap is not initialized");
255 255
        return 0; // ignore warnings
256 256
      }
257 257
    };
258 258

	
259 259
    /// \brief \ref named-templ-param "Named parameter" for setting
260 260
    /// \c PredMap type.
261 261
    ///
262 262
    /// \ref named-templ-param "Named parameter" for setting
263 263
    /// \c PredMap type.
264 264
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
265 265
    template <class T>
266 266
    struct SetPredMap 
267 267
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
268 268
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
269 269
    };
270 270
    
271 271
    template <class T>
272 272
    struct SetDistMapTraits : public Traits {
273 273
      typedef T DistMap;
274 274
      static DistMap *createDistMap(const Digraph&) {
275 275
        LEMON_ASSERT(false, "DistMap is not initialized");
276 276
        return 0; // ignore warnings
277 277
      }
278 278
    };
279 279

	
280 280
    /// \brief \ref named-templ-param "Named parameter" for setting
281 281
    /// \c DistMap type.
282 282
    ///
283 283
    /// \ref named-templ-param "Named parameter" for setting
284 284
    /// \c DistMap type.
285 285
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
286 286
    template <class T>
287 287
    struct SetDistMap 
288 288
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
289 289
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
290 290
    };
291 291

	
292 292
    template <class T>
293 293
    struct SetOperationTraitsTraits : public Traits {
294 294
      typedef T OperationTraits;
295 295
    };
296 296
    
297 297
    /// \brief \ref named-templ-param "Named parameter" for setting 
298 298
    /// \c OperationTraits type.
299 299
    ///
300 300
    /// \ref named-templ-param "Named parameter" for setting
301 301
    /// \c OperationTraits type.
302
    /// For more information see \ref BellmanFordDefaultOperationTraits.
302
    /// For more information, see \ref BellmanFordDefaultOperationTraits.
303 303
    template <class T>
304 304
    struct SetOperationTraits
305 305
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
306 306
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
307 307
      Create;
308 308
    };
309 309
    
310 310
    ///@}
311 311

	
312 312
  protected:
313 313
    
314 314
    BellmanFord() {}
315 315

	
316 316
  public:      
317 317
    
318 318
    /// \brief Constructor.
319 319
    ///
320 320
    /// Constructor.
321 321
    /// \param g The digraph the algorithm runs on.
322 322
    /// \param length The length map used by the algorithm.
323 323
    BellmanFord(const Digraph& g, const LengthMap& length) :
324 324
      _gr(&g), _length(&length),
325 325
      _pred(0), _local_pred(false),
326 326
      _dist(0), _local_dist(false), _mask(0) {}
327 327
    
328 328
    ///Destructor.
329 329
    ~BellmanFord() {
330 330
      if(_local_pred) delete _pred;
331 331
      if(_local_dist) delete _dist;
332 332
      if(_mask) delete _mask;
333 333
    }
334 334

	
335 335
    /// \brief Sets the length map.
336 336
    ///
337 337
    /// Sets the length map.
338 338
    /// \return <tt>(*this)</tt>
339 339
    BellmanFord &lengthMap(const LengthMap &map) {
340 340
      _length = &map;
341 341
      return *this;
342 342
    }
343 343

	
344 344
    /// \brief Sets the map that stores the predecessor arcs.
345 345
    ///
346 346
    /// Sets the map that stores the predecessor arcs.
347 347
    /// If you don't use this function before calling \ref run()
348 348
    /// or \ref init(), an instance will be allocated automatically.
349 349
    /// The destructor deallocates this automatically allocated map,
350 350
    /// of course.
351 351
    /// \return <tt>(*this)</tt>
352 352
    BellmanFord &predMap(PredMap &map) {
353 353
      if(_local_pred) {
354 354
	delete _pred;
355 355
	_local_pred=false;
356 356
      }
357 357
      _pred = &map;
358 358
      return *this;
359 359
    }
360 360

	
361 361
    /// \brief Sets the map that stores the distances of the nodes.
362 362
    ///
363 363
    /// Sets the map that stores the distances of the nodes calculated
364 364
    /// by the algorithm.
365 365
    /// If you don't use this function before calling \ref run()
366 366
    /// or \ref init(), an instance will be allocated automatically.
367 367
    /// The destructor deallocates this automatically allocated map,
368 368
    /// of course.
369 369
    /// \return <tt>(*this)</tt>
370 370
    BellmanFord &distMap(DistMap &map) {
371 371
      if(_local_dist) {
372 372
	delete _dist;
373 373
	_local_dist=false;
374 374
      }
375 375
      _dist = &map;
376 376
      return *this;
377 377
    }
378 378

	
379 379
    /// \name Execution Control
380 380
    /// The simplest way to execute the Bellman-Ford algorithm is to use
381 381
    /// one of the member functions called \ref run().\n
382 382
    /// If you need better control on the execution, you have to call
383 383
    /// \ref init() first, then you can add several source nodes
384 384
    /// with \ref addSource(). Finally the actual path computation can be
385 385
    /// performed with \ref start(), \ref checkedStart() or
386 386
    /// \ref limitedStart().
387 387

	
388 388
    ///@{
389 389

	
390 390
    /// \brief Initializes the internal data structures.
391 391
    /// 
392 392
    /// Initializes the internal data structures. The optional parameter
393 393
    /// is the initial distance of each node.
394 394
    void init(const Value value = OperationTraits::infinity()) {
395 395
      create_maps();
396 396
      for (NodeIt it(*_gr); it != INVALID; ++it) {
397 397
	_pred->set(it, INVALID);
398 398
	_dist->set(it, value);
399 399
      }
400 400
      _process.clear();
401 401
      if (OperationTraits::less(value, OperationTraits::infinity())) {
402 402
	for (NodeIt it(*_gr); it != INVALID; ++it) {
403 403
	  _process.push_back(it);
404 404
	  _mask->set(it, true);
405 405
	}
406 406
      }
407 407
    }
408 408
    
409 409
    /// \brief Adds a new source node.
410 410
    ///
411 411
    /// This function adds a new source node. The optional second parameter
412 412
    /// is the initial distance of the node.
413 413
    void addSource(Node source, Value dst = OperationTraits::zero()) {
414 414
      _dist->set(source, dst);
415 415
      if (!(*_mask)[source]) {
416 416
	_process.push_back(source);
417 417
	_mask->set(source, true);
418 418
      }
419 419
    }
420 420

	
421 421
    /// \brief Executes one round from the Bellman-Ford algorithm.
422 422
    ///
423 423
    /// If the algoritm calculated the distances in the previous round
424 424
    /// exactly for the paths of at most \c k arcs, then this function
425 425
    /// will calculate the distances exactly for the paths of at most
426 426
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
427 427
    /// calculates the shortest path distances exactly for the paths
428 428
    /// consisting of at most \c k arcs.
429 429
    ///
430 430
    /// \warning The paths with limited arc number cannot be retrieved
431 431
    /// easily with \ref path() or \ref predArc() functions. If you also
432 432
    /// need the shortest paths and not only the distances, you should
433 433
    /// store the \ref predMap() "predecessor map" after each iteration
434 434
    /// and build the path manually.
435 435
    ///
436 436
    /// \return \c true when the algorithm have not found more shorter
437 437
    /// paths.
438 438
    ///
439 439
    /// \see ActiveIt
440 440
    bool processNextRound() {
441 441
      for (int i = 0; i < int(_process.size()); ++i) {
442 442
	_mask->set(_process[i], false);
443 443
      }
444 444
      std::vector<Node> nextProcess;
445 445
      std::vector<Value> values(_process.size());
446 446
      for (int i = 0; i < int(_process.size()); ++i) {
447 447
	values[i] = (*_dist)[_process[i]];
448 448
      }
449 449
      for (int i = 0; i < int(_process.size()); ++i) {
450 450
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
451 451
	  Node target = _gr->target(it);
452 452
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
453 453
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
454 454
	    _pred->set(target, it);
455 455
	    _dist->set(target, relaxed);
456 456
	    if (!(*_mask)[target]) {
457 457
	      _mask->set(target, true);
458 458
	      nextProcess.push_back(target);
459 459
	    }
460 460
	  }	  
461 461
	}
462 462
      }
463 463
      _process.swap(nextProcess);
464 464
      return _process.empty();
465 465
    }
466 466

	
467 467
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
468 468
    ///
469 469
    /// If the algorithm calculated the distances in the previous round
470 470
    /// at least for the paths of at most \c k arcs, then this function
471 471
    /// will calculate the distances at least for the paths of at most
472 472
    /// <tt>k+1</tt> arcs.
473 473
    /// This function does not make it possible to calculate the shortest
474 474
    /// path distances exactly for paths consisting of at most \c k arcs,
475 475
    /// this is why it is called weak round.
476 476
    ///
477 477
    /// \return \c true when the algorithm have not found more shorter
478 478
    /// paths.
479 479
    ///
480 480
    /// \see ActiveIt
481 481
    bool processNextWeakRound() {
482 482
      for (int i = 0; i < int(_process.size()); ++i) {
483 483
	_mask->set(_process[i], false);
484 484
      }
485 485
      std::vector<Node> nextProcess;
486 486
      for (int i = 0; i < int(_process.size()); ++i) {
487 487
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
488 488
	  Node target = _gr->target(it);
489 489
	  Value relaxed = 
490 490
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
491 491
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
492 492
	    _pred->set(target, it);
493 493
	    _dist->set(target, relaxed);
494 494
	    if (!(*_mask)[target]) {
... ...
@@ -528,400 +528,400 @@
528 528
    ///
529 529
    /// This method runs the Bellman-Ford algorithm from the root node(s)
530 530
    /// in order to compute the shortest path to each node and also checks
531 531
    /// if the digraph contains cycles with negative total length.
532 532
    ///
533 533
    /// The algorithm computes 
534 534
    /// - the shortest path tree (forest),
535 535
    /// - the distance of each node from the root(s).
536 536
    /// 
537 537
    /// \return \c false if there is a negative cycle in the digraph.
538 538
    ///
539 539
    /// \pre init() must be called and at least one root node should be
540 540
    /// added with addSource() before using this function. 
541 541
    bool checkedStart() {
542 542
      int num = countNodes(*_gr);
543 543
      for (int i = 0; i < num; ++i) {
544 544
	if (processNextWeakRound()) return true;
545 545
      }
546 546
      return _process.empty();
547 547
    }
548 548

	
549 549
    /// \brief Executes the algorithm with arc number limit.
550 550
    ///
551 551
    /// Executes the algorithm with arc number limit.
552 552
    ///
553 553
    /// This method runs the Bellman-Ford algorithm from the root node(s)
554 554
    /// in order to compute the shortest path distance for each node
555 555
    /// using only the paths consisting of at most \c num arcs.
556 556
    ///
557 557
    /// The algorithm computes
558 558
    /// - the limited distance of each node from the root(s),
559 559
    /// - the predecessor arc for each node.
560 560
    ///
561 561
    /// \warning The paths with limited arc number cannot be retrieved
562 562
    /// easily with \ref path() or \ref predArc() functions. If you also
563 563
    /// need the shortest paths and not only the distances, you should
564 564
    /// store the \ref predMap() "predecessor map" after each iteration
565 565
    /// and build the path manually.
566 566
    ///
567 567
    /// \pre init() must be called and at least one root node should be
568 568
    /// added with addSource() before using this function. 
569 569
    void limitedStart(int num) {
570 570
      for (int i = 0; i < num; ++i) {
571 571
	if (processNextRound()) break;
572 572
      }
573 573
    }
574 574
    
575 575
    /// \brief Runs the algorithm from the given root node.
576 576
    ///    
577 577
    /// This method runs the Bellman-Ford algorithm from the given root
578 578
    /// node \c s in order to compute the shortest path to each node.
579 579
    ///
580 580
    /// The algorithm computes
581 581
    /// - the shortest path tree (forest),
582 582
    /// - the distance of each node from the root(s).
583 583
    ///
584 584
    /// \note bf.run(s) is just a shortcut of the following code.
585 585
    /// \code
586 586
    ///   bf.init();
587 587
    ///   bf.addSource(s);
588 588
    ///   bf.start();
589 589
    /// \endcode
590 590
    void run(Node s) {
591 591
      init();
592 592
      addSource(s);
593 593
      start();
594 594
    }
595 595
    
596 596
    /// \brief Runs the algorithm from the given root node with arc
597 597
    /// number limit.
598 598
    ///    
599 599
    /// This method runs the Bellman-Ford algorithm from the given root
600 600
    /// node \c s in order to compute the shortest path distance for each
601 601
    /// node using only the paths consisting of at most \c num arcs.
602 602
    ///
603 603
    /// The algorithm computes
604 604
    /// - the limited distance of each node from the root(s),
605 605
    /// - the predecessor arc for each node.
606 606
    ///
607 607
    /// \warning The paths with limited arc number cannot be retrieved
608 608
    /// easily with \ref path() or \ref predArc() functions. If you also
609 609
    /// need the shortest paths and not only the distances, you should
610 610
    /// store the \ref predMap() "predecessor map" after each iteration
611 611
    /// and build the path manually.
612 612
    ///
613 613
    /// \note bf.run(s, num) is just a shortcut of the following code.
614 614
    /// \code
615 615
    ///   bf.init();
616 616
    ///   bf.addSource(s);
617 617
    ///   bf.limitedStart(num);
618 618
    /// \endcode
619 619
    void run(Node s, int num) {
620 620
      init();
621 621
      addSource(s);
622 622
      limitedStart(num);
623 623
    }
624 624
    
625 625
    ///@}
626 626

	
627 627
    /// \brief LEMON iterator for getting the active nodes.
628 628
    ///
629 629
    /// This class provides a common style LEMON iterator that traverses
630 630
    /// the active nodes of the Bellman-Ford algorithm after the last
631 631
    /// phase. These nodes should be checked in the next phase to
632 632
    /// find augmenting arcs outgoing from them.
633 633
    class ActiveIt {
634 634
    public:
635 635

	
636 636
      /// \brief Constructor.
637 637
      ///
638 638
      /// Constructor for getting the active nodes of the given BellmanFord
639 639
      /// instance. 
640 640
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
641 641
      {
642 642
        _index = _algorithm->_process.size() - 1;
643 643
      }
644 644

	
645 645
      /// \brief Invalid constructor.
646 646
      ///
647 647
      /// Invalid constructor.
648 648
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
649 649

	
650 650
      /// \brief Conversion to \c Node.
651 651
      ///
652 652
      /// Conversion to \c Node.
653 653
      operator Node() const { 
654 654
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
655 655
      }
656 656

	
657 657
      /// \brief Increment operator.
658 658
      ///
659 659
      /// Increment operator.
660 660
      ActiveIt& operator++() {
661 661
        --_index;
662 662
        return *this; 
663 663
      }
664 664

	
665 665
      bool operator==(const ActiveIt& it) const { 
666 666
        return static_cast<Node>(*this) == static_cast<Node>(it); 
667 667
      }
668 668
      bool operator!=(const ActiveIt& it) const { 
669 669
        return static_cast<Node>(*this) != static_cast<Node>(it); 
670 670
      }
671 671
      bool operator<(const ActiveIt& it) const { 
672 672
        return static_cast<Node>(*this) < static_cast<Node>(it); 
673 673
      }
674 674
      
675 675
    private:
676 676
      const BellmanFord* _algorithm;
677 677
      int _index;
678 678
    };
679 679
    
680 680
    /// \name Query Functions
681 681
    /// The result of the Bellman-Ford algorithm can be obtained using these
682 682
    /// functions.\n
683 683
    /// Either \ref run() or \ref init() should be called before using them.
684 684
    
685 685
    ///@{
686 686

	
687 687
    /// \brief The shortest path to the given node.
688 688
    ///    
689 689
    /// Gives back the shortest path to the given node from the root(s).
690 690
    ///
691 691
    /// \warning \c t should be reached from the root(s).
692 692
    ///
693 693
    /// \pre Either \ref run() or \ref init() must be called before
694 694
    /// using this function.
695 695
    Path path(Node t) const
696 696
    {
697 697
      return Path(*_gr, *_pred, t);
698 698
    }
699 699
	  
700 700
    /// \brief The distance of the given node from the root(s).
701 701
    ///
702 702
    /// Returns the distance of the given node from the root(s).
703 703
    ///
704 704
    /// \warning If node \c v is not reached from the root(s), then
705 705
    /// the return value of this function is undefined.
706 706
    ///
707 707
    /// \pre Either \ref run() or \ref init() must be called before
708 708
    /// using this function.
709 709
    Value dist(Node v) const { return (*_dist)[v]; }
710 710

	
711 711
    /// \brief Returns the 'previous arc' of the shortest path tree for
712 712
    /// the given node.
713 713
    ///
714 714
    /// This function returns the 'previous arc' of the shortest path
715 715
    /// tree for node \c v, i.e. it returns the last arc of a
716 716
    /// shortest path from a root to \c v. It is \c INVALID if \c v
717 717
    /// is not reached from the root(s) or if \c v is a root.
718 718
    ///
719 719
    /// The shortest path tree used here is equal to the shortest path
720
    /// tree used in \ref predNode() and \predMap().
720
    /// tree used in \ref predNode() and \ref predMap().
721 721
    ///
722 722
    /// \pre Either \ref run() or \ref init() must be called before
723 723
    /// using this function.
724 724
    Arc predArc(Node v) const { return (*_pred)[v]; }
725 725

	
726 726
    /// \brief Returns the 'previous node' of the shortest path tree for
727 727
    /// the given node.
728 728
    ///
729 729
    /// This function returns the 'previous node' of the shortest path
730 730
    /// tree for node \c v, i.e. it returns the last but one node of
731 731
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
732 732
    /// is not reached from the root(s) or if \c v is a root.
733 733
    ///
734 734
    /// The shortest path tree used here is equal to the shortest path
735
    /// tree used in \ref predArc() and \predMap().
735
    /// tree used in \ref predArc() and \ref predMap().
736 736
    ///
737 737
    /// \pre Either \ref run() or \ref init() must be called before
738 738
    /// using this function.
739 739
    Node predNode(Node v) const { 
740 740
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
741 741
    }
742 742
    
743 743
    /// \brief Returns a const reference to the node map that stores the
744 744
    /// distances of the nodes.
745 745
    ///
746 746
    /// Returns a const reference to the node map that stores the distances
747 747
    /// of the nodes calculated by the algorithm.
748 748
    ///
749 749
    /// \pre Either \ref run() or \ref init() must be called before
750 750
    /// using this function.
751 751
    const DistMap &distMap() const { return *_dist;}
752 752
 
753 753
    /// \brief Returns a const reference to the node map that stores the
754 754
    /// predecessor arcs.
755 755
    ///
756 756
    /// Returns a const reference to the node map that stores the predecessor
757 757
    /// arcs, which form the shortest path tree (forest).
758 758
    ///
759 759
    /// \pre Either \ref run() or \ref init() must be called before
760 760
    /// using this function.
761 761
    const PredMap &predMap() const { return *_pred; }
762 762
 
763 763
    /// \brief Checks if a node is reached from the root(s).
764 764
    ///
765 765
    /// Returns \c true if \c v is reached from the root(s).
766 766
    ///
767 767
    /// \pre Either \ref run() or \ref init() must be called before
768 768
    /// using this function.
769 769
    bool reached(Node v) const {
770 770
      return (*_dist)[v] != OperationTraits::infinity();
771 771
    }
772 772

	
773 773
    /// \brief Gives back a negative cycle.
774 774
    ///    
775 775
    /// This function gives back a directed cycle with negative total
776 776
    /// length if the algorithm has already found one.
777 777
    /// Otherwise it gives back an empty path.
778 778
    lemon::Path<Digraph> negativeCycle() {
779 779
      typename Digraph::template NodeMap<int> state(*_gr, -1);
780 780
      lemon::Path<Digraph> cycle;
781 781
      for (int i = 0; i < int(_process.size()); ++i) {
782 782
        if (state[_process[i]] != -1) continue;
783 783
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
784 784
             v = _gr->source((*_pred)[v])) {
785 785
          if (state[v] == i) {
786 786
            cycle.addFront((*_pred)[v]);
787 787
            for (Node u = _gr->source((*_pred)[v]); u != v;
788 788
                 u = _gr->source((*_pred)[u])) {
789 789
              cycle.addFront((*_pred)[u]);
790 790
            }
791 791
            return cycle;
792 792
          }
793 793
          else if (state[v] >= 0) {
794 794
            break;
795 795
          }
796 796
          state[v] = i;
797 797
        }
798 798
      }
799 799
      return cycle;
800 800
    }
801 801
    
802 802
    ///@}
803 803
  };
804 804
 
805 805
  /// \brief Default traits class of bellmanFord() function.
806 806
  ///
807 807
  /// Default traits class of bellmanFord() function.
808 808
  /// \tparam GR The type of the digraph.
809 809
  /// \tparam LEN The type of the length map.
810 810
  template <typename GR, typename LEN>
811 811
  struct BellmanFordWizardDefaultTraits {
812 812
    /// The type of the digraph the algorithm runs on. 
813 813
    typedef GR Digraph;
814 814

	
815 815
    /// \brief The type of the map that stores the arc lengths.
816 816
    ///
817 817
    /// The type of the map that stores the arc lengths.
818 818
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
819 819
    typedef LEN LengthMap;
820 820

	
821 821
    /// The type of the arc lengths.
822 822
    typedef typename LEN::Value Value;
823 823

	
824 824
    /// \brief Operation traits for Bellman-Ford algorithm.
825 825
    ///
826 826
    /// It defines the used operations and the infinity value for the
827 827
    /// given \c Value type.
828 828
    /// \see BellmanFordDefaultOperationTraits
829 829
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
830 830

	
831 831
    /// \brief The type of the map that stores the last
832 832
    /// arcs of the shortest paths.
833 833
    /// 
834 834
    /// The type of the map that stores the last arcs of the shortest paths.
835 835
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
836 836
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
837 837

	
838 838
    /// \brief Instantiates a \c PredMap.
839 839
    /// 
840 840
    /// This function instantiates a \ref PredMap.
841 841
    /// \param g is the digraph to which we would like to define the
842 842
    /// \ref PredMap.
843 843
    static PredMap *createPredMap(const GR &g) {
844 844
      return new PredMap(g);
845 845
    }
846 846

	
847 847
    /// \brief The type of the map that stores the distances of the nodes.
848 848
    ///
849 849
    /// The type of the map that stores the distances of the nodes.
850 850
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
851 851
    typedef typename GR::template NodeMap<Value> DistMap;
852 852

	
853 853
    /// \brief Instantiates a \c DistMap.
854 854
    ///
855 855
    /// This function instantiates a \ref DistMap. 
856 856
    /// \param g is the digraph to which we would like to define the
857 857
    /// \ref DistMap.
858 858
    static DistMap *createDistMap(const GR &g) {
859 859
      return new DistMap(g);
860 860
    }
861 861

	
862 862
    ///The type of the shortest paths.
863 863

	
864 864
    ///The type of the shortest paths.
865 865
    ///It must meet the \ref concepts::Path "Path" concept.
866 866
    typedef lemon::Path<Digraph> Path;
867 867
  };
868 868
  
869 869
  /// \brief Default traits class used by BellmanFordWizard.
870 870
  ///
871 871
  /// Default traits class used by BellmanFordWizard.
872 872
  /// \tparam GR The type of the digraph.
873 873
  /// \tparam LEN The type of the length map.
874 874
  template <typename GR, typename LEN>
875 875
  class BellmanFordWizardBase 
876 876
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
877 877

	
878 878
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
879 879
  protected:
880 880
    // Type of the nodes in the digraph.
881 881
    typedef typename Base::Digraph::Node Node;
882 882

	
883 883
    // Pointer to the underlying digraph.
884 884
    void *_graph;
885 885
    // Pointer to the length map
886 886
    void *_length;
887 887
    // Pointer to the map of predecessors arcs.
888 888
    void *_pred;
889 889
    // Pointer to the map of distances.
890 890
    void *_dist;
891 891
    //Pointer to the shortest path to the target node.
892 892
    void *_path;
893 893
    //Pointer to the distance of the target node.
894 894
    void *_di;
895 895

	
896 896
    public:
897 897
    /// Constructor.
898 898
    
899 899
    /// This constructor does not require parameters, it initiates
900 900
    /// all of the attributes to default values \c 0.
901 901
    BellmanFordWizardBase() :
902 902
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
903 903

	
904 904
    /// Constructor.
905 905
    
906 906
    /// This constructor requires two parameters,
907 907
    /// others are initiated to \c 0.
908 908
    /// \param gr The digraph the algorithm runs on.
909 909
    /// \param len The length map.
910 910
    BellmanFordWizardBase(const GR& gr, 
911 911
			  const LEN& len) :
912 912
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
913 913
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
914 914
      _pred(0), _dist(0), _path(0), _di(0) {}
915 915

	
916 916
  };
917 917
  
918 918
  /// \brief Auxiliary class for the function-type interface of the
919 919
  /// \ref BellmanFord "Bellman-Ford" algorithm.
920 920
  ///
921 921
  /// This auxiliary class is created to implement the
922 922
  /// \ref bellmanFord() "function-type interface" of the
923 923
  /// \ref BellmanFord "Bellman-Ford" algorithm.
924 924
  /// It does not have own \ref run() method, it uses the
925 925
  /// functions and features of the plain \ref BellmanFord.
926 926
  ///
927 927
  /// This class should only be used through the \ref bellmanFord()
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief BFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Bfs class.
36 36

	
37 37
  ///Default traits class of Bfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66
    ///By default, it is a NullMap.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68 68
    ///Instantiates a \c ProcessedMap.
69 69

	
70 70
    ///This function instantiates a \ref ProcessedMap.
71 71
    ///\param g is the digraph, to which
72 72
    ///we would like to define the \ref ProcessedMap
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 87
    ///Instantiates a \c ReachedMap.
88 88

	
89 89
    ///This function instantiates a \ref ReachedMap.
90 90
    ///\param g is the digraph, to which
91 91
    ///we would like to define the \ref ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102 102
    ///Instantiates a \c DistMap.
103 103

	
104 104
    ///This function instantiates a \ref DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106 106
    ///\ref DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%BFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %BFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref bfs() "function-type interface" for the BFS
119 119
  ///algorithm, which is convenient in the simplier cases and it can be
120 120
  ///used easier.
121 121
  ///
122 122
  ///\tparam GR The type of the digraph the algorithm runs on.
123 123
  ///The default type is \ref ListDigraph.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR,
126 126
            typename TR>
127 127
#else
128 128
  template <typename GR=ListDigraph,
129 129
            typename TR=BfsDefaultTraits<GR> >
130 130
#endif
131 131
  class Bfs {
132 132
  public:
133 133

	
134 134
    ///The type of the digraph the algorithm runs on.
135 135
    typedef typename TR::Digraph Digraph;
136 136

	
137 137
    ///\brief The type of the map that stores the predecessor arcs of the
138 138
    ///shortest paths.
139 139
    typedef typename TR::PredMap PredMap;
140 140
    ///The type of the map that stores the distances of the nodes.
141 141
    typedef typename TR::DistMap DistMap;
142 142
    ///The type of the map that indicates which nodes are reached.
143 143
    typedef typename TR::ReachedMap ReachedMap;
144 144
    ///The type of the map that indicates which nodes are processed.
145 145
    typedef typename TR::ProcessedMap ProcessedMap;
146 146
    ///The type of the paths.
147 147
    typedef PredMapPath<Digraph, PredMap> Path;
148 148

	
149 149
    ///The \ref BfsDefaultTraits "traits class" of the algorithm.
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    typedef typename Digraph::Node Node;
155 155
    typedef typename Digraph::NodeIt NodeIt;
156 156
    typedef typename Digraph::Arc Arc;
157 157
    typedef typename Digraph::OutArcIt OutArcIt;
158 158

	
159 159
    //Pointer to the underlying digraph.
160 160
    const Digraph *G;
161 161
    //Pointer to the map of predecessor arcs.
162 162
    PredMap *_pred;
163 163
    //Indicates if _pred is locally allocated (true) or not.
164 164
    bool local_pred;
165 165
    //Pointer to the map of distances.
166 166
    DistMap *_dist;
167 167
    //Indicates if _dist is locally allocated (true) or not.
168 168
    bool local_dist;
169 169
    //Pointer to the map of reached status of the nodes.
170 170
    ReachedMap *_reached;
171 171
    //Indicates if _reached is locally allocated (true) or not.
172 172
    bool local_reached;
173 173
    //Pointer to the map of processed status of the nodes.
174 174
    ProcessedMap *_processed;
175 175
    //Indicates if _processed is locally allocated (true) or not.
176 176
    bool local_processed;
177 177

	
178 178
    std::vector<typename Digraph::Node> _queue;
179 179
    int _queue_head,_queue_tail,_queue_next_dist;
180 180
    int _curr_dist;
181 181

	
182 182
    //Creates the maps if necessary.
183 183
    void create_maps()
184 184
    {
185 185
      if(!_pred) {
186 186
        local_pred = true;
187 187
        _pred = Traits::createPredMap(*G);
188 188
      }
189 189
      if(!_dist) {
190 190
        local_dist = true;
191 191
        _dist = Traits::createDistMap(*G);
192 192
      }
193 193
      if(!_reached) {
194 194
        local_reached = true;
195 195
        _reached = Traits::createReachedMap(*G);
196 196
      }
197 197
      if(!_processed) {
198 198
        local_processed = true;
199 199
        _processed = Traits::createProcessedMap(*G);
200 200
      }
201 201
    }
202 202

	
203 203
  protected:
204 204

	
205 205
    Bfs() {}
206 206

	
207 207
  public:
208 208

	
209 209
    typedef Bfs Create;
210 210

	
211 211
    ///\name Named Template Parameters
212 212

	
213 213
    ///@{
214 214

	
215 215
    template <class T>
216 216
    struct SetPredMapTraits : public Traits {
217 217
      typedef T PredMap;
218 218
      static PredMap *createPredMap(const Digraph &)
219 219
      {
220 220
        LEMON_ASSERT(false, "PredMap is not initialized");
221 221
        return 0; // ignore warnings
222 222
      }
223 223
    };
224 224
    ///\brief \ref named-templ-param "Named parameter" for setting
225 225
    ///\c PredMap type.
226 226
    ///
227 227
    ///\ref named-templ-param "Named parameter" for setting
228 228
    ///\c PredMap type.
229 229
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
230 230
    template <class T>
231 231
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
232 232
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
233 233
    };
234 234

	
235 235
    template <class T>
236 236
    struct SetDistMapTraits : public Traits {
237 237
      typedef T DistMap;
238 238
      static DistMap *createDistMap(const Digraph &)
239 239
      {
240 240
        LEMON_ASSERT(false, "DistMap is not initialized");
241 241
        return 0; // ignore warnings
242 242
      }
243 243
    };
244 244
    ///\brief \ref named-templ-param "Named parameter" for setting
245 245
    ///\c DistMap type.
246 246
    ///
247 247
    ///\ref named-templ-param "Named parameter" for setting
248 248
    ///\c DistMap type.
249 249
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
250 250
    template <class T>
251 251
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
252 252
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
253 253
    };
254 254

	
255 255
    template <class T>
256 256
    struct SetReachedMapTraits : public Traits {
257 257
      typedef T ReachedMap;
258 258
      static ReachedMap *createReachedMap(const Digraph &)
... ...
@@ -663,385 +663,385 @@
663 663
    ///
664 664
    ///The algorithm computes
665 665
    ///- the shortest path tree,
666 666
    ///- the distance of each node from the root.
667 667
    ///
668 668
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
669 669
    ///\code
670 670
    ///  b.init();
671 671
    ///  b.addSource(s);
672 672
    ///  b.start();
673 673
    ///\endcode
674 674
    void run(Node s) {
675 675
      init();
676 676
      addSource(s);
677 677
      start();
678 678
    }
679 679

	
680 680
    ///Finds the shortest path between \c s and \c t.
681 681

	
682 682
    ///This method runs the %BFS algorithm from node \c s
683 683
    ///in order to compute the shortest path to node \c t
684 684
    ///(it stops searching when \c t is processed).
685 685
    ///
686 686
    ///\return \c true if \c t is reachable form \c s.
687 687
    ///
688 688
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
689 689
    ///shortcut of the following code.
690 690
    ///\code
691 691
    ///  b.init();
692 692
    ///  b.addSource(s);
693 693
    ///  b.start(t);
694 694
    ///\endcode
695 695
    bool run(Node s,Node t) {
696 696
      init();
697 697
      addSource(s);
698 698
      start(t);
699 699
      return reached(t);
700 700
    }
701 701

	
702 702
    ///Runs the algorithm to visit all nodes in the digraph.
703 703

	
704 704
    ///This method runs the %BFS algorithm in order to
705 705
    ///compute the shortest path to each node.
706 706
    ///
707 707
    ///The algorithm computes
708 708
    ///- the shortest path tree (forest),
709 709
    ///- the distance of each node from the root(s).
710 710
    ///
711 711
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
712 712
    ///\code
713 713
    ///  b.init();
714 714
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
715 715
    ///    if (!b.reached(n)) {
716 716
    ///      b.addSource(n);
717 717
    ///      b.start();
718 718
    ///    }
719 719
    ///  }
720 720
    ///\endcode
721 721
    void run() {
722 722
      init();
723 723
      for (NodeIt n(*G); n != INVALID; ++n) {
724 724
        if (!reached(n)) {
725 725
          addSource(n);
726 726
          start();
727 727
        }
728 728
      }
729 729
    }
730 730

	
731 731
    ///@}
732 732

	
733 733
    ///\name Query Functions
734 734
    ///The results of the BFS algorithm can be obtained using these
735 735
    ///functions.\n
736 736
    ///Either \ref run(Node) "run()" or \ref start() should be called
737 737
    ///before using them.
738 738

	
739 739
    ///@{
740 740

	
741 741
    ///The shortest path to the given node.
742 742

	
743 743
    ///Returns the shortest path to the given node from the root(s).
744 744
    ///
745 745
    ///\warning \c t should be reached from the root(s).
746 746
    ///
747 747
    ///\pre Either \ref run(Node) "run()" or \ref init()
748 748
    ///must be called before using this function.
749 749
    Path path(Node t) const { return Path(*G, *_pred, t); }
750 750

	
751 751
    ///The distance of the given node from the root(s).
752 752

	
753 753
    ///Returns the distance of the given node from the root(s).
754 754
    ///
755 755
    ///\warning If node \c v is not reached from the root(s), then
756 756
    ///the return value of this function is undefined.
757 757
    ///
758 758
    ///\pre Either \ref run(Node) "run()" or \ref init()
759 759
    ///must be called before using this function.
760 760
    int dist(Node v) const { return (*_dist)[v]; }
761 761

	
762 762
    ///\brief Returns the 'previous arc' of the shortest path tree for
763 763
    ///the given node.
764 764
    ///
765 765
    ///This function returns the 'previous arc' of the shortest path
766 766
    ///tree for the node \c v, i.e. it returns the last arc of a
767 767
    ///shortest path from a root to \c v. It is \c INVALID if \c v
768 768
    ///is not reached from the root(s) or if \c v is a root.
769 769
    ///
770 770
    ///The shortest path tree used here is equal to the shortest path
771 771
    ///tree used in \ref predNode() and \ref predMap().
772 772
    ///
773 773
    ///\pre Either \ref run(Node) "run()" or \ref init()
774 774
    ///must be called before using this function.
775 775
    Arc predArc(Node v) const { return (*_pred)[v];}
776 776

	
777 777
    ///\brief Returns the 'previous node' of the shortest path tree for
778 778
    ///the given node.
779 779
    ///
780 780
    ///This function returns the 'previous node' of the shortest path
781 781
    ///tree for the node \c v, i.e. it returns the last but one node
782 782
    ///of a shortest path from a root to \c v. It is \c INVALID
783 783
    ///if \c v is not reached from the root(s) or if \c v is a root.
784 784
    ///
785 785
    ///The shortest path tree used here is equal to the shortest path
786 786
    ///tree used in \ref predArc() and \ref predMap().
787 787
    ///
788 788
    ///\pre Either \ref run(Node) "run()" or \ref init()
789 789
    ///must be called before using this function.
790 790
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
791 791
                                  G->source((*_pred)[v]); }
792 792

	
793 793
    ///\brief Returns a const reference to the node map that stores the
794 794
    /// distances of the nodes.
795 795
    ///
796 796
    ///Returns a const reference to the node map that stores the distances
797 797
    ///of the nodes calculated by the algorithm.
798 798
    ///
799 799
    ///\pre Either \ref run(Node) "run()" or \ref init()
800 800
    ///must be called before using this function.
801 801
    const DistMap &distMap() const { return *_dist;}
802 802

	
803 803
    ///\brief Returns a const reference to the node map that stores the
804 804
    ///predecessor arcs.
805 805
    ///
806 806
    ///Returns a const reference to the node map that stores the predecessor
807 807
    ///arcs, which form the shortest path tree (forest).
808 808
    ///
809 809
    ///\pre Either \ref run(Node) "run()" or \ref init()
810 810
    ///must be called before using this function.
811 811
    const PredMap &predMap() const { return *_pred;}
812 812

	
813 813
    ///Checks if the given node is reached from the root(s).
814 814

	
815 815
    ///Returns \c true if \c v is reached from the root(s).
816 816
    ///
817 817
    ///\pre Either \ref run(Node) "run()" or \ref init()
818 818
    ///must be called before using this function.
819 819
    bool reached(Node v) const { return (*_reached)[v]; }
820 820

	
821 821
    ///@}
822 822
  };
823 823

	
824 824
  ///Default traits class of bfs() function.
825 825

	
826 826
  ///Default traits class of bfs() function.
827 827
  ///\tparam GR Digraph type.
828 828
  template<class GR>
829 829
  struct BfsWizardDefaultTraits
830 830
  {
831 831
    ///The type of the digraph the algorithm runs on.
832 832
    typedef GR Digraph;
833 833

	
834 834
    ///\brief The type of the map that stores the predecessor
835 835
    ///arcs of the shortest paths.
836 836
    ///
837 837
    ///The type of the map that stores the predecessor
838 838
    ///arcs of the shortest paths.
839 839
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
840 840
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
841 841
    ///Instantiates a PredMap.
842 842

	
843 843
    ///This function instantiates a PredMap.
844 844
    ///\param g is the digraph, to which we would like to define the
845 845
    ///PredMap.
846 846
    static PredMap *createPredMap(const Digraph &g)
847 847
    {
848 848
      return new PredMap(g);
849 849
    }
850 850

	
851 851
    ///The type of the map that indicates which nodes are processed.
852 852

	
853 853
    ///The type of the map that indicates which nodes are processed.
854 854
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
855
    ///By default it is a NullMap.
855
    ///By default, it is a NullMap.
856 856
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
857 857
    ///Instantiates a ProcessedMap.
858 858

	
859 859
    ///This function instantiates a ProcessedMap.
860 860
    ///\param g is the digraph, to which
861 861
    ///we would like to define the ProcessedMap.
862 862
#ifdef DOXYGEN
863 863
    static ProcessedMap *createProcessedMap(const Digraph &g)
864 864
#else
865 865
    static ProcessedMap *createProcessedMap(const Digraph &)
866 866
#endif
867 867
    {
868 868
      return new ProcessedMap();
869 869
    }
870 870

	
871 871
    ///The type of the map that indicates which nodes are reached.
872 872

	
873 873
    ///The type of the map that indicates which nodes are reached.
874 874
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
875 875
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
876 876
    ///Instantiates a ReachedMap.
877 877

	
878 878
    ///This function instantiates a ReachedMap.
879 879
    ///\param g is the digraph, to which
880 880
    ///we would like to define the ReachedMap.
881 881
    static ReachedMap *createReachedMap(const Digraph &g)
882 882
    {
883 883
      return new ReachedMap(g);
884 884
    }
885 885

	
886 886
    ///The type of the map that stores the distances of the nodes.
887 887

	
888 888
    ///The type of the map that stores the distances of the nodes.
889 889
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
890 890
    typedef typename Digraph::template NodeMap<int> DistMap;
891 891
    ///Instantiates a DistMap.
892 892

	
893 893
    ///This function instantiates a DistMap.
894 894
    ///\param g is the digraph, to which we would like to define
895 895
    ///the DistMap
896 896
    static DistMap *createDistMap(const Digraph &g)
897 897
    {
898 898
      return new DistMap(g);
899 899
    }
900 900

	
901 901
    ///The type of the shortest paths.
902 902

	
903 903
    ///The type of the shortest paths.
904 904
    ///It must conform to the \ref concepts::Path "Path" concept.
905 905
    typedef lemon::Path<Digraph> Path;
906 906
  };
907 907

	
908 908
  /// Default traits class used by BfsWizard
909 909

	
910 910
  /// Default traits class used by BfsWizard.
911 911
  /// \tparam GR The type of the digraph.
912 912
  template<class GR>
913 913
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
914 914
  {
915 915

	
916 916
    typedef BfsWizardDefaultTraits<GR> Base;
917 917
  protected:
918 918
    //The type of the nodes in the digraph.
919 919
    typedef typename Base::Digraph::Node Node;
920 920

	
921 921
    //Pointer to the digraph the algorithm runs on.
922 922
    void *_g;
923 923
    //Pointer to the map of reached nodes.
924 924
    void *_reached;
925 925
    //Pointer to the map of processed nodes.
926 926
    void *_processed;
927 927
    //Pointer to the map of predecessors arcs.
928 928
    void *_pred;
929 929
    //Pointer to the map of distances.
930 930
    void *_dist;
931 931
    //Pointer to the shortest path to the target node.
932 932
    void *_path;
933 933
    //Pointer to the distance of the target node.
934 934
    int *_di;
935 935

	
936 936
    public:
937 937
    /// Constructor.
938 938

	
939 939
    /// This constructor does not require parameters, it initiates
940 940
    /// all of the attributes to \c 0.
941 941
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
942 942
                      _dist(0), _path(0), _di(0) {}
943 943

	
944 944
    /// Constructor.
945 945

	
946 946
    /// This constructor requires one parameter,
947 947
    /// others are initiated to \c 0.
948 948
    /// \param g The digraph the algorithm runs on.
949 949
    BfsWizardBase(const GR &g) :
950 950
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
951 951
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
952 952

	
953 953
  };
954 954

	
955 955
  /// Auxiliary class for the function-type interface of BFS algorithm.
956 956

	
957 957
  /// This auxiliary class is created to implement the
958 958
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
959 959
  /// It does not have own \ref run(Node) "run()" method, it uses the
960 960
  /// functions and features of the plain \ref Bfs.
961 961
  ///
962 962
  /// This class should only be used through the \ref bfs() function,
963 963
  /// which makes it easier to use the algorithm.
964 964
  template<class TR>
965 965
  class BfsWizard : public TR
966 966
  {
967 967
    typedef TR Base;
968 968

	
969 969
    typedef typename TR::Digraph Digraph;
970 970

	
971 971
    typedef typename Digraph::Node Node;
972 972
    typedef typename Digraph::NodeIt NodeIt;
973 973
    typedef typename Digraph::Arc Arc;
974 974
    typedef typename Digraph::OutArcIt OutArcIt;
975 975

	
976 976
    typedef typename TR::PredMap PredMap;
977 977
    typedef typename TR::DistMap DistMap;
978 978
    typedef typename TR::ReachedMap ReachedMap;
979 979
    typedef typename TR::ProcessedMap ProcessedMap;
980 980
    typedef typename TR::Path Path;
981 981

	
982 982
  public:
983 983

	
984 984
    /// Constructor.
985 985
    BfsWizard() : TR() {}
986 986

	
987 987
    /// Constructor that requires parameters.
988 988

	
989 989
    /// Constructor that requires parameters.
990 990
    /// These parameters will be the default values for the traits class.
991 991
    /// \param g The digraph the algorithm runs on.
992 992
    BfsWizard(const Digraph &g) :
993 993
      TR(g) {}
994 994

	
995 995
    ///Copy constructor
996 996
    BfsWizard(const TR &b) : TR(b) {}
997 997

	
998 998
    ~BfsWizard() {}
999 999

	
1000 1000
    ///Runs BFS algorithm from the given source node.
1001 1001

	
1002 1002
    ///This method runs BFS algorithm from node \c s
1003 1003
    ///in order to compute the shortest path to each node.
1004 1004
    void run(Node s)
1005 1005
    {
1006 1006
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1007 1007
      if (Base::_pred)
1008 1008
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1009 1009
      if (Base::_dist)
1010 1010
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1011 1011
      if (Base::_reached)
1012 1012
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1013 1013
      if (Base::_processed)
1014 1014
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1015 1015
      if (s!=INVALID)
1016 1016
        alg.run(s);
1017 1017
      else
1018 1018
        alg.run();
1019 1019
    }
1020 1020

	
1021 1021
    ///Finds the shortest path between \c s and \c t.
1022 1022

	
1023 1023
    ///This method runs BFS algorithm from node \c s
1024 1024
    ///in order to compute the shortest path to node \c t
1025 1025
    ///(it stops searching when \c t is processed).
1026 1026
    ///
1027 1027
    ///\return \c true if \c t is reachable form \c s.
1028 1028
    bool run(Node s, Node t)
1029 1029
    {
1030 1030
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1031 1031
      if (Base::_pred)
1032 1032
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1033 1033
      if (Base::_dist)
1034 1034
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1035 1035
      if (Base::_reached)
1036 1036
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1037 1037
      if (Base::_processed)
1038 1038
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1039 1039
      alg.run(s,t);
1040 1040
      if (Base::_path)
1041 1041
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
1042 1042
      if (Base::_di)
1043 1043
        *Base::_di = alg.dist(t);
1044 1044
      return alg.reached(t);
1045 1045
    }
1046 1046

	
1047 1047
    ///Runs BFS algorithm to visit all nodes in the digraph.
Ignore white space 6 line context
... ...
@@ -117,385 +117,385 @@
117 117

	
118 118
  /**
119 119
     \brief Push-relabel algorithm for the network circulation problem.
120 120

	
121 121
     \ingroup max_flow
122 122
     This class implements a push-relabel algorithm for the \e network
123 123
     \e circulation problem.
124 124
     It is to find a feasible circulation when lower and upper bounds
125 125
     are given for the flow values on the arcs and lower bounds are
126 126
     given for the difference between the outgoing and incoming flow
127 127
     at the nodes.
128 128

	
129 129
     The exact formulation of this problem is the following.
130 130
     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
131 131
     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
132 132
     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
133 133
     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
134 134
     denotes the signed supply values of the nodes.
135 135
     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
136 136
     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
137 137
     \f$-sup(u)\f$ demand.
138 138
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
139 139
     solution of the following problem.
140 140

	
141 141
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
142 142
     \geq sup(u) \quad \forall u\in V, \f]
143 143
     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
144 144
     
145 145
     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
146 146
     zero or negative in order to have a feasible solution (since the sum
147 147
     of the expressions on the left-hand side of the inequalities is zero).
148 148
     It means that the total demand must be greater or equal to the total
149 149
     supply and all the supplies have to be carried out from the supply nodes,
150 150
     but there could be demands that are not satisfied.
151 151
     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
152 152
     constraints have to be satisfied with equality, i.e. all demands
153 153
     have to be satisfied and all supplies have to be used.
154 154
     
155 155
     If you need the opposite inequalities in the supply/demand constraints
156 156
     (i.e. the total demand is less than the total supply and all the demands
157 157
     have to be satisfied while there could be supplies that are not used),
158 158
     then you could easily transform the problem to the above form by reversing
159 159
     the direction of the arcs and taking the negative of the supply values
160 160
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
161 161

	
162 162
     This algorithm either calculates a feasible circulation, or provides
163 163
     a \ref barrier() "barrier", which prooves that a feasible soultion
164 164
     cannot exist.
165 165

	
166 166
     Note that this algorithm also provides a feasible solution for the
167 167
     \ref min_cost_flow "minimum cost flow problem".
168 168

	
169 169
     \tparam GR The type of the digraph the algorithm runs on.
170 170
     \tparam LM The type of the lower bound map. The default
171 171
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
172 172
     \tparam UM The type of the upper bound (capacity) map.
173 173
     The default map type is \c LM.
174 174
     \tparam SM The type of the supply map. The default map type is
175 175
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
176 176
  */
177 177
#ifdef DOXYGEN
178 178
template< typename GR,
179 179
          typename LM,
180 180
          typename UM,
181 181
          typename SM,
182 182
          typename TR >
183 183
#else
184 184
template< typename GR,
185 185
          typename LM = typename GR::template ArcMap<int>,
186 186
          typename UM = LM,
187 187
          typename SM = typename GR::template NodeMap<typename UM::Value>,
188 188
          typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
189 189
#endif
190 190
  class Circulation {
191 191
  public:
192 192

	
193 193
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
194 194
    typedef TR Traits;
195 195
    ///The type of the digraph the algorithm runs on.
196 196
    typedef typename Traits::Digraph Digraph;
197 197
    ///The type of the flow and supply values.
198 198
    typedef typename Traits::Value Value;
199 199

	
200 200
    ///The type of the lower bound map.
201 201
    typedef typename Traits::LowerMap LowerMap;
202 202
    ///The type of the upper bound (capacity) map.
203 203
    typedef typename Traits::UpperMap UpperMap;
204 204
    ///The type of the supply map.
205 205
    typedef typename Traits::SupplyMap SupplyMap;
206 206
    ///The type of the flow map.
207 207
    typedef typename Traits::FlowMap FlowMap;
208 208

	
209 209
    ///The type of the elevator.
210 210
    typedef typename Traits::Elevator Elevator;
211 211
    ///The type of the tolerance.
212 212
    typedef typename Traits::Tolerance Tolerance;
213 213

	
214 214
  private:
215 215

	
216 216
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
217 217

	
218 218
    const Digraph &_g;
219 219
    int _node_num;
220 220

	
221 221
    const LowerMap *_lo;
222 222
    const UpperMap *_up;
223 223
    const SupplyMap *_supply;
224 224

	
225 225
    FlowMap *_flow;
226 226
    bool _local_flow;
227 227

	
228 228
    Elevator* _level;
229 229
    bool _local_level;
230 230

	
231 231
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
232 232
    ExcessMap* _excess;
233 233

	
234 234
    Tolerance _tol;
235 235
    int _el;
236 236

	
237 237
  public:
238 238

	
239 239
    typedef Circulation Create;
240 240

	
241 241
    ///\name Named Template Parameters
242 242

	
243 243
    ///@{
244 244

	
245 245
    template <typename T>
246 246
    struct SetFlowMapTraits : public Traits {
247 247
      typedef T FlowMap;
248 248
      static FlowMap *createFlowMap(const Digraph&) {
249 249
        LEMON_ASSERT(false, "FlowMap is not initialized");
250 250
        return 0; // ignore warnings
251 251
      }
252 252
    };
253 253

	
254 254
    /// \brief \ref named-templ-param "Named parameter" for setting
255 255
    /// FlowMap type
256 256
    ///
257 257
    /// \ref named-templ-param "Named parameter" for setting FlowMap
258 258
    /// type.
259 259
    template <typename T>
260 260
    struct SetFlowMap
261 261
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
262 262
                           SetFlowMapTraits<T> > {
263 263
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
264 264
                          SetFlowMapTraits<T> > Create;
265 265
    };
266 266

	
267 267
    template <typename T>
268 268
    struct SetElevatorTraits : public Traits {
269 269
      typedef T Elevator;
270 270
      static Elevator *createElevator(const Digraph&, int) {
271 271
        LEMON_ASSERT(false, "Elevator is not initialized");
272 272
        return 0; // ignore warnings
273 273
      }
274 274
    };
275 275

	
276 276
    /// \brief \ref named-templ-param "Named parameter" for setting
277 277
    /// Elevator type
278 278
    ///
279 279
    /// \ref named-templ-param "Named parameter" for setting Elevator
280 280
    /// type. If this named parameter is used, then an external
281 281
    /// elevator object must be passed to the algorithm using the
282 282
    /// \ref elevator(Elevator&) "elevator()" function before calling
283 283
    /// \ref run() or \ref init().
284 284
    /// \sa SetStandardElevator
285 285
    template <typename T>
286 286
    struct SetElevator
287 287
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
288 288
                           SetElevatorTraits<T> > {
289 289
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
290 290
                          SetElevatorTraits<T> > Create;
291 291
    };
292 292

	
293 293
    template <typename T>
294 294
    struct SetStandardElevatorTraits : public Traits {
295 295
      typedef T Elevator;
296 296
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
297 297
        return new Elevator(digraph, max_level);
298 298
      }
299 299
    };
300 300

	
301 301
    /// \brief \ref named-templ-param "Named parameter" for setting
302 302
    /// Elevator type with automatic allocation
303 303
    ///
304 304
    /// \ref named-templ-param "Named parameter" for setting Elevator
305 305
    /// type with automatic allocation.
306 306
    /// The Elevator should have standard constructor interface to be
307 307
    /// able to automatically created by the algorithm (i.e. the
308 308
    /// digraph and the maximum level should be passed to it).
309
    /// However an external elevator object could also be passed to the
309
    /// However, an external elevator object could also be passed to the
310 310
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
311 311
    /// before calling \ref run() or \ref init().
312 312
    /// \sa SetElevator
313 313
    template <typename T>
314 314
    struct SetStandardElevator
315 315
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
316 316
                       SetStandardElevatorTraits<T> > {
317 317
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
318 318
                      SetStandardElevatorTraits<T> > Create;
319 319
    };
320 320

	
321 321
    /// @}
322 322

	
323 323
  protected:
324 324

	
325 325
    Circulation() {}
326 326

	
327 327
  public:
328 328

	
329 329
    /// Constructor.
330 330

	
331 331
    /// The constructor of the class.
332 332
    ///
333 333
    /// \param graph The digraph the algorithm runs on.
334 334
    /// \param lower The lower bounds for the flow values on the arcs.
335 335
    /// \param upper The upper bounds (capacities) for the flow values 
336 336
    /// on the arcs.
337 337
    /// \param supply The signed supply values of the nodes.
338 338
    Circulation(const Digraph &graph, const LowerMap &lower,
339 339
                const UpperMap &upper, const SupplyMap &supply)
340 340
      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
341 341
        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
342 342
        _excess(NULL) {}
343 343

	
344 344
    /// Destructor.
345 345
    ~Circulation() {
346 346
      destroyStructures();
347 347
    }
348 348

	
349 349

	
350 350
  private:
351 351

	
352 352
    bool checkBoundMaps() {
353 353
      for (ArcIt e(_g);e!=INVALID;++e) {
354 354
        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
355 355
      }
356 356
      return true;
357 357
    }
358 358

	
359 359
    void createStructures() {
360 360
      _node_num = _el = countNodes(_g);
361 361

	
362 362
      if (!_flow) {
363 363
        _flow = Traits::createFlowMap(_g);
364 364
        _local_flow = true;
365 365
      }
366 366
      if (!_level) {
367 367
        _level = Traits::createElevator(_g, _node_num);
368 368
        _local_level = true;
369 369
      }
370 370
      if (!_excess) {
371 371
        _excess = new ExcessMap(_g);
372 372
      }
373 373
    }
374 374

	
375 375
    void destroyStructures() {
376 376
      if (_local_flow) {
377 377
        delete _flow;
378 378
      }
379 379
      if (_local_level) {
380 380
        delete _level;
381 381
      }
382 382
      if (_excess) {
383 383
        delete _excess;
384 384
      }
385 385
    }
386 386

	
387 387
  public:
388 388

	
389 389
    /// Sets the lower bound map.
390 390

	
391 391
    /// Sets the lower bound map.
392 392
    /// \return <tt>(*this)</tt>
393 393
    Circulation& lowerMap(const LowerMap& map) {
394 394
      _lo = &map;
395 395
      return *this;
396 396
    }
397 397

	
398 398
    /// Sets the upper bound (capacity) map.
399 399

	
400 400
    /// Sets the upper bound (capacity) map.
401 401
    /// \return <tt>(*this)</tt>
402 402
    Circulation& upperMap(const UpperMap& map) {
403 403
      _up = &map;
404 404
      return *this;
405 405
    }
406 406

	
407 407
    /// Sets the supply map.
408 408

	
409 409
    /// Sets the supply map.
410 410
    /// \return <tt>(*this)</tt>
411 411
    Circulation& supplyMap(const SupplyMap& map) {
412 412
      _supply = &map;
413 413
      return *this;
414 414
    }
415 415

	
416 416
    /// \brief Sets the flow map.
417 417
    ///
418 418
    /// Sets the flow map.
419 419
    /// If you don't use this function before calling \ref run() or
420 420
    /// \ref init(), an instance will be allocated automatically.
421 421
    /// The destructor deallocates this automatically allocated map,
422 422
    /// of course.
423 423
    /// \return <tt>(*this)</tt>
424 424
    Circulation& flowMap(FlowMap& map) {
425 425
      if (_local_flow) {
426 426
        delete _flow;
427 427
        _local_flow = false;
428 428
      }
429 429
      _flow = &map;
430 430
      return *this;
431 431
    }
432 432

	
433 433
    /// \brief Sets the elevator used by algorithm.
434 434
    ///
435 435
    /// Sets the elevator used by algorithm.
436 436
    /// If you don't use this function before calling \ref run() or
437 437
    /// \ref init(), an instance will be allocated automatically.
438 438
    /// The destructor deallocates this automatically allocated elevator,
439 439
    /// of course.
440 440
    /// \return <tt>(*this)</tt>
441 441
    Circulation& elevator(Elevator& elevator) {
442 442
      if (_local_level) {
443 443
        delete _level;
444 444
        _local_level = false;
445 445
      }
446 446
      _level = &elevator;
447 447
      return *this;
448 448
    }
449 449

	
450 450
    /// \brief Returns a const reference to the elevator.
451 451
    ///
452 452
    /// Returns a const reference to the elevator.
453 453
    ///
454 454
    /// \pre Either \ref run() or \ref init() must be called before
455 455
    /// using this function.
456 456
    const Elevator& elevator() const {
457 457
      return *_level;
458 458
    }
459 459

	
460 460
    /// \brief Sets the tolerance used by the algorithm.
461 461
    ///
462 462
    /// Sets the tolerance object used by the algorithm.
463 463
    /// \return <tt>(*this)</tt>
464 464
    Circulation& tolerance(const Tolerance& tolerance) {
465 465
      _tol = tolerance;
466 466
      return *this;
467 467
    }
468 468

	
469 469
    /// \brief Returns a const reference to the tolerance.
470 470
    ///
471 471
    /// Returns a const reference to the tolerance object used by
472 472
    /// the algorithm.
473 473
    const Tolerance& tolerance() const {
474 474
      return _tol;
475 475
    }
476 476

	
477 477
    /// \name Execution Control
478 478
    /// The simplest way to execute the algorithm is to call \ref run().\n
479 479
    /// If you need better control on the initial solution or the execution,
480 480
    /// you have to call one of the \ref init() functions first, then
481 481
    /// the \ref start() function.
482 482

	
483 483
    ///@{
484 484

	
485 485
    /// Initializes the internal data structures.
486 486

	
487 487
    /// Initializes the internal data structures and sets all flow values
488 488
    /// to the lower bound.
489 489
    void init()
490 490
    {
491 491
      LEMON_DEBUG(checkBoundMaps(),
492 492
        "Upper bounds must be greater or equal to the lower bounds");
493 493

	
494 494
      createStructures();
495 495

	
496 496
      for(NodeIt n(_g);n!=INVALID;++n) {
497 497
        (*_excess)[n] = (*_supply)[n];
498 498
      }
499 499

	
500 500
      for (ArcIt e(_g);e!=INVALID;++e) {
501 501
        _flow->set(e, (*_lo)[e]);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONCEPTS_DIGRAPH_H
20 20
#define LEMON_CONCEPTS_DIGRAPH_H
21 21

	
22 22
///\ingroup graph_concepts
23 23
///\file
24 24
///\brief The concept of directed graphs.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concepts/maps.h>
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/graph_components.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \ingroup graph_concepts
35 35
    ///
36 36
    /// \brief Class describing the concept of directed graphs.
37 37
    ///
38 38
    /// This class describes the common interface of all directed
39 39
    /// graphs (digraphs).
40 40
    ///
41 41
    /// Like all concept classes, it only provides an interface
42 42
    /// without any sensible implementation. So any general algorithm for
43 43
    /// directed graphs should compile with this class, but it will not
44 44
    /// run properly, of course.
45 45
    /// An actual digraph implementation like \ref ListDigraph or
46 46
    /// \ref SmartDigraph may have additional functionality.
47 47
    ///
48 48
    /// \sa Graph
49 49
    class Digraph {
50 50
    private:
51 51
      /// Diraphs are \e not copy constructible. Use DigraphCopy instead.
52 52
      Digraph(const Digraph &) {}
53 53
      /// \brief Assignment of a digraph to another one is \e not allowed.
54 54
      /// Use DigraphCopy instead.
55 55
      void operator=(const Digraph &) {}
56 56

	
57 57
    public:
58 58
      /// Default constructor.
59 59
      Digraph() { }
60 60

	
61 61
      /// The node type of the digraph
62 62

	
63 63
      /// This class identifies a node of the digraph. It also serves
64 64
      /// as a base class of the node iterators,
65 65
      /// thus they convert to this type.
66 66
      class Node {
67 67
      public:
68 68
        /// Default constructor
69 69

	
70 70
        /// Default constructor.
71 71
        /// \warning It sets the object to an undefined value.
72 72
        Node() { }
73 73
        /// Copy constructor.
74 74

	
75 75
        /// Copy constructor.
76 76
        ///
77 77
        Node(const Node&) { }
78 78

	
79 79
        /// %Invalid constructor \& conversion.
80 80

	
81 81
        /// Initializes the object to be invalid.
82 82
        /// \sa Invalid for more details.
83 83
        Node(Invalid) { }
84 84
        /// Equality operator
85 85

	
86 86
        /// Equality operator.
87 87
        ///
88 88
        /// Two iterators are equal if and only if they point to the
89 89
        /// same object or both are \c INVALID.
90 90
        bool operator==(Node) const { return true; }
91 91

	
92 92
        /// Inequality operator
93 93

	
94 94
        /// Inequality operator.
95 95
        bool operator!=(Node) const { return true; }
96 96

	
97 97
        /// Artificial ordering operator.
98 98

	
99 99
        /// Artificial ordering operator.
100 100
        ///
101 101
        /// \note This operator only has to define some strict ordering of
102 102
        /// the nodes; this order has nothing to do with the iteration
103 103
        /// ordering of the nodes.
104 104
        bool operator<(Node) const { return false; }
105 105
      };
106 106

	
107 107
      /// Iterator class for the nodes.
108 108

	
109 109
      /// This iterator goes through each node of the digraph.
110
      /// Its usage is quite simple, for example you can count the number
110
      /// Its usage is quite simple, for example, you can count the number
111 111
      /// of nodes in a digraph \c g of type \c %Digraph like this:
112 112
      ///\code
113 113
      /// int count=0;
114 114
      /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
115 115
      ///\endcode
116 116
      class NodeIt : public Node {
117 117
      public:
118 118
        /// Default constructor
119 119

	
120 120
        /// Default constructor.
121 121
        /// \warning It sets the iterator to an undefined value.
122 122
        NodeIt() { }
123 123
        /// Copy constructor.
124 124

	
125 125
        /// Copy constructor.
126 126
        ///
127 127
        NodeIt(const NodeIt& n) : Node(n) { }
128 128
        /// %Invalid constructor \& conversion.
129 129

	
130 130
        /// Initializes the iterator to be invalid.
131 131
        /// \sa Invalid for more details.
132 132
        NodeIt(Invalid) { }
133 133
        /// Sets the iterator to the first node.
134 134

	
135 135
        /// Sets the iterator to the first node of the given digraph.
136 136
        ///
137 137
        explicit NodeIt(const Digraph&) { }
138 138
        /// Sets the iterator to the given node.
139 139

	
140 140
        /// Sets the iterator to the given node of the given digraph.
141 141
        ///
142 142
        NodeIt(const Digraph&, const Node&) { }
143 143
        /// Next node.
144 144

	
145 145
        /// Assign the iterator to the next node.
146 146
        ///
147 147
        NodeIt& operator++() { return *this; }
148 148
      };
149 149

	
150 150

	
151 151
      /// The arc type of the digraph
152 152

	
153 153
      /// This class identifies an arc of the digraph. It also serves
154 154
      /// as a base class of the arc iterators,
155 155
      /// thus they will convert to this type.
156 156
      class Arc {
157 157
      public:
158 158
        /// Default constructor
159 159

	
160 160
        /// Default constructor.
161 161
        /// \warning It sets the object to an undefined value.
162 162
        Arc() { }
163 163
        /// Copy constructor.
164 164

	
165 165
        /// Copy constructor.
166 166
        ///
167 167
        Arc(const Arc&) { }
168 168
        /// %Invalid constructor \& conversion.
169 169

	
170 170
        /// Initializes the object to be invalid.
171 171
        /// \sa Invalid for more details.
172 172
        Arc(Invalid) { }
173 173
        /// Equality operator
174 174

	
175 175
        /// Equality operator.
176 176
        ///
177 177
        /// Two iterators are equal if and only if they point to the
178 178
        /// same object or both are \c INVALID.
179 179
        bool operator==(Arc) const { return true; }
180 180
        /// Inequality operator
181 181

	
182 182
        /// Inequality operator.
183 183
        bool operator!=(Arc) const { return true; }
184 184

	
185 185
        /// Artificial ordering operator.
186 186

	
187 187
        /// Artificial ordering operator.
188 188
        ///
189 189
        /// \note This operator only has to define some strict ordering of
190 190
        /// the arcs; this order has nothing to do with the iteration
191 191
        /// ordering of the arcs.
192 192
        bool operator<(Arc) const { return false; }
193 193
      };
194 194

	
195 195
      /// Iterator class for the outgoing arcs of a node.
196 196

	
197 197
      /// This iterator goes trough the \e outgoing arcs of a certain node
198 198
      /// of a digraph.
199
      /// Its usage is quite simple, for example you can count the number
199
      /// Its usage is quite simple, for example, you can count the number
200 200
      /// of outgoing arcs of a node \c n
201 201
      /// in a digraph \c g of type \c %Digraph as follows.
202 202
      ///\code
203 203
      /// int count=0;
204 204
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
205 205
      ///\endcode
206 206
      class OutArcIt : public Arc {
207 207
      public:
208 208
        /// Default constructor
209 209

	
210 210
        /// Default constructor.
211 211
        /// \warning It sets the iterator to an undefined value.
212 212
        OutArcIt() { }
213 213
        /// Copy constructor.
214 214

	
215 215
        /// Copy constructor.
216 216
        ///
217 217
        OutArcIt(const OutArcIt& e) : Arc(e) { }
218 218
        /// %Invalid constructor \& conversion.
219 219

	
220 220
        /// Initializes the iterator to be invalid.
221 221
        /// \sa Invalid for more details.
222 222
        OutArcIt(Invalid) { }
223 223
        /// Sets the iterator to the first outgoing arc.
224 224

	
225 225
        /// Sets the iterator to the first outgoing arc of the given node.
226 226
        ///
227 227
        OutArcIt(const Digraph&, const Node&) { }
228 228
        /// Sets the iterator to the given arc.
229 229

	
230 230
        /// Sets the iterator to the given arc of the given digraph.
231 231
        ///
232 232
        OutArcIt(const Digraph&, const Arc&) { }
233 233
        /// Next outgoing arc
234 234

	
235 235
        /// Assign the iterator to the next
236 236
        /// outgoing arc of the corresponding node.
237 237
        OutArcIt& operator++() { return *this; }
238 238
      };
239 239

	
240 240
      /// Iterator class for the incoming arcs of a node.
241 241

	
242 242
      /// This iterator goes trough the \e incoming arcs of a certain node
243 243
      /// of a digraph.
244
      /// Its usage is quite simple, for example you can count the number
244
      /// Its usage is quite simple, for example, you can count the number
245 245
      /// of incoming arcs of a node \c n
246 246
      /// in a digraph \c g of type \c %Digraph as follows.
247 247
      ///\code
248 248
      /// int count=0;
249 249
      /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
250 250
      ///\endcode
251 251
      class InArcIt : public Arc {
252 252
      public:
253 253
        /// Default constructor
254 254

	
255 255
        /// Default constructor.
256 256
        /// \warning It sets the iterator to an undefined value.
257 257
        InArcIt() { }
258 258
        /// Copy constructor.
259 259

	
260 260
        /// Copy constructor.
261 261
        ///
262 262
        InArcIt(const InArcIt& e) : Arc(e) { }
263 263
        /// %Invalid constructor \& conversion.
264 264

	
265 265
        /// Initializes the iterator to be invalid.
266 266
        /// \sa Invalid for more details.
267 267
        InArcIt(Invalid) { }
268 268
        /// Sets the iterator to the first incoming arc.
269 269

	
270 270
        /// Sets the iterator to the first incoming arc of the given node.
271 271
        ///
272 272
        InArcIt(const Digraph&, const Node&) { }
273 273
        /// Sets the iterator to the given arc.
274 274

	
275 275
        /// Sets the iterator to the given arc of the given digraph.
276 276
        ///
277 277
        InArcIt(const Digraph&, const Arc&) { }
278 278
        /// Next incoming arc
279 279

	
280 280
        /// Assign the iterator to the next
281 281
        /// incoming arc of the corresponding node.
282 282
        InArcIt& operator++() { return *this; }
283 283
      };
284 284

	
285 285
      /// Iterator class for the arcs.
286 286

	
287 287
      /// This iterator goes through each arc of the digraph.
288
      /// Its usage is quite simple, for example you can count the number
288
      /// Its usage is quite simple, for example, you can count the number
289 289
      /// of arcs in a digraph \c g of type \c %Digraph as follows:
290 290
      ///\code
291 291
      /// int count=0;
292 292
      /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
293 293
      ///\endcode
294 294
      class ArcIt : public Arc {
295 295
      public:
296 296
        /// Default constructor
297 297

	
298 298
        /// Default constructor.
299 299
        /// \warning It sets the iterator to an undefined value.
300 300
        ArcIt() { }
301 301
        /// Copy constructor.
302 302

	
303 303
        /// Copy constructor.
304 304
        ///
305 305
        ArcIt(const ArcIt& e) : Arc(e) { }
306 306
        /// %Invalid constructor \& conversion.
307 307

	
308 308
        /// Initializes the iterator to be invalid.
309 309
        /// \sa Invalid for more details.
310 310
        ArcIt(Invalid) { }
311 311
        /// Sets the iterator to the first arc.
312 312

	
313 313
        /// Sets the iterator to the first arc of the given digraph.
314 314
        ///
315 315
        explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
316 316
        /// Sets the iterator to the given arc.
317 317

	
318 318
        /// Sets the iterator to the given arc of the given digraph.
319 319
        ///
320 320
        ArcIt(const Digraph&, const Arc&) { }
321 321
        /// Next arc
322 322

	
323 323
        /// Assign the iterator to the next arc.
324 324
        ///
325 325
        ArcIt& operator++() { return *this; }
326 326
      };
327 327

	
328 328
      /// \brief The source node of the arc.
329 329
      ///
330 330
      /// Returns the source node of the given arc.
331 331
      Node source(Arc) const { return INVALID; }
332 332

	
333 333
      /// \brief The target node of the arc.
334 334
      ///
335 335
      /// Returns the target node of the given arc.
336 336
      Node target(Arc) const { return INVALID; }
337 337

	
338 338
      /// \brief The ID of the node.
339 339
      ///
340 340
      /// Returns the ID of the given node.
341 341
      int id(Node) const { return -1; }
342 342

	
343 343
      /// \brief The ID of the arc.
344 344
      ///
345 345
      /// Returns the ID of the given arc.
346 346
      int id(Arc) const { return -1; }
347 347

	
348 348
      /// \brief The node with the given ID.
349 349
      ///
350 350
      /// Returns the node with the given ID.
351 351
      /// \pre The argument should be a valid node ID in the digraph.
352 352
      Node nodeFromId(int) const { return INVALID; }
353 353

	
354 354
      /// \brief The arc with the given ID.
355 355
      ///
356 356
      /// Returns the arc with the given ID.
357 357
      /// \pre The argument should be a valid arc ID in the digraph.
358 358
      Arc arcFromId(int) const { return INVALID; }
359 359

	
360 360
      /// \brief An upper bound on the node IDs.
361 361
      ///
362 362
      /// Returns an upper bound on the node IDs.
363 363
      int maxNodeId() const { return -1; }
364 364

	
365 365
      /// \brief An upper bound on the arc IDs.
366 366
      ///
367 367
      /// Returns an upper bound on the arc IDs.
368 368
      int maxArcId() const { return -1; }
369 369

	
370 370
      void first(Node&) const {}
371 371
      void next(Node&) const {}
372 372

	
373 373
      void first(Arc&) const {}
374 374
      void next(Arc&) const {}
375 375

	
376 376

	
377 377
      void firstIn(Arc&, const Node&) const {}
378 378
      void nextIn(Arc&) const {}
379 379

	
380 380
      void firstOut(Arc&, const Node&) const {}
381 381
      void nextOut(Arc&) const {}
382 382

	
383 383
      // The second parameter is dummy.
384 384
      Node fromId(int, Node) const { return INVALID; }
385 385
      // The second parameter is dummy.
386 386
      Arc fromId(int, Arc) const { return INVALID; }
387 387

	
388 388
      // Dummy parameter.
389 389
      int maxId(Node) const { return -1; }
390 390
      // Dummy parameter.
391 391
      int maxId(Arc) const { return -1; }
392 392

	
393 393
      /// \brief The opposite node on the arc.
394 394
      ///
395 395
      /// Returns the opposite node on the given arc.
396 396
      Node oppositeNode(Node, Arc) const { return INVALID; }
397 397

	
398 398
      /// \brief The base node of the iterator.
399 399
      ///
400 400
      /// Returns the base node of the given outgoing arc iterator
401 401
      /// (i.e. the source node of the corresponding arc).
402 402
      Node baseNode(OutArcIt) const { return INVALID; }
403 403

	
404 404
      /// \brief The running node of the iterator.
405 405
      ///
406 406
      /// Returns the running node of the given outgoing arc iterator
407 407
      /// (i.e. the target node of the corresponding arc).
408 408
      Node runningNode(OutArcIt) const { return INVALID; }
409 409

	
410 410
      /// \brief The base node of the iterator.
411 411
      ///
412 412
      /// Returns the base node of the given incomming arc iterator
413 413
      /// (i.e. the target node of the corresponding arc).
414 414
      Node baseNode(InArcIt) const { return INVALID; }
415 415

	
416 416
      /// \brief The running node of the iterator.
417 417
      ///
418 418
      /// Returns the running node of the given incomming arc iterator
419 419
      /// (i.e. the source node of the corresponding arc).
420 420
      Node runningNode(InArcIt) const { return INVALID; }
421 421

	
422 422
      /// \brief Standard graph map type for the nodes.
423 423
      ///
424 424
      /// Standard graph map type for the nodes.
425 425
      /// It conforms to the ReferenceMap concept.
426 426
      template<class T>
427 427
      class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
428 428
      public:
429 429

	
430 430
        /// Constructor
431 431
        explicit NodeMap(const Digraph&) { }
432 432
        /// Constructor with given initial value
433 433
        NodeMap(const Digraph&, T) { }
434 434

	
435 435
      private:
436 436
        ///Copy constructor
437 437
        NodeMap(const NodeMap& nm) : 
438 438
          ReferenceMap<Node, T, T&, const T&>(nm) { }
439 439
        ///Assignment operator
440 440
        template <typename CMap>
441 441
        NodeMap& operator=(const CMap&) {
442 442
          checkConcept<ReadMap<Node, T>, CMap>();
443 443
          return *this;
444 444
        }
445 445
      };
446 446

	
447 447
      /// \brief Standard graph map type for the arcs.
448 448
      ///
449 449
      /// Standard graph map type for the arcs.
450 450
      /// It conforms to the ReferenceMap concept.
451 451
      template<class T>
452 452
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
453 453
      public:
454 454

	
455 455
        /// Constructor
456 456
        explicit ArcMap(const Digraph&) { }
457 457
        /// Constructor with given initial value
458 458
        ArcMap(const Digraph&, T) { }
459 459

	
460 460
      private:
461 461
        ///Copy constructor
462 462
        ArcMap(const ArcMap& em) :
463 463
          ReferenceMap<Arc, T, T&, const T&>(em) { }
464 464
        ///Assignment operator
465 465
        template <typename CMap>
466 466
        ArcMap& operator=(const CMap&) {
467 467
          checkConcept<ReadMap<Arc, T>, CMap>();
468 468
          return *this;
469 469
        }
470 470
      };
471 471

	
472 472
      template <typename _Digraph>
473 473
      struct Constraints {
474 474
        void constraints() {
475 475
          checkConcept<BaseDigraphComponent, _Digraph>();
476 476
          checkConcept<IterableDigraphComponent<>, _Digraph>();
477 477
          checkConcept<IDableDigraphComponent<>, _Digraph>();
478 478
          checkConcept<MappableDigraphComponent<>, _Digraph>();
479 479
        }
480 480
      };
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21 21
///\brief The concept of undirected graphs.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_H
24 24
#define LEMON_CONCEPTS_GRAPH_H
25 25

	
26 26
#include <lemon/concepts/graph_components.h>
27 27
#include <lemon/concepts/maps.h>
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/core.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \ingroup graph_concepts
35 35
    ///
36 36
    /// \brief Class describing the concept of undirected graphs.
37 37
    ///
38 38
    /// This class describes the common interface of all undirected
39 39
    /// graphs.
40 40
    ///
41 41
    /// Like all concept classes, it only provides an interface
42 42
    /// without any sensible implementation. So any general algorithm for
43 43
    /// undirected graphs should compile with this class, but it will not
44 44
    /// run properly, of course.
45 45
    /// An actual graph implementation like \ref ListGraph or
46 46
    /// \ref SmartGraph may have additional functionality.    
47 47
    ///
48 48
    /// The undirected graphs also fulfill the concept of \ref Digraph
49 49
    /// "directed graphs", since each edge can also be regarded as two
50 50
    /// oppositely directed arcs.
51 51
    /// Undirected graphs provide an Edge type for the undirected edges and
52 52
    /// an Arc type for the directed arcs. The Arc type is convertible to
53 53
    /// Edge or inherited from it, i.e. the corresponding edge can be
54 54
    /// obtained from an arc.
55 55
    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
56 56
    /// and ArcMap classes can be used for the arcs (just like in digraphs).
57 57
    /// Both InArcIt and OutArcIt iterates on the same edges but with
58 58
    /// opposite direction. IncEdgeIt also iterates on the same edges
59 59
    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
60 60
    /// only to Edge.
61 61
    ///
62 62
    /// In LEMON, each undirected edge has an inherent orientation.
63 63
    /// Thus it can defined if an arc is forward or backward oriented in
64 64
    /// an undirected graph with respect to this default oriantation of
65 65
    /// the represented edge.
66 66
    /// With the direction() and direct() functions the direction
67 67
    /// of an arc can be obtained and set, respectively.
68 68
    ///
69 69
    /// Only nodes and edges can be added to or removed from an undirected
70 70
    /// graph and the corresponding arcs are added or removed automatically.
71 71
    ///
72 72
    /// \sa Digraph
73 73
    class Graph {
74 74
    private:
75 75
      /// Graphs are \e not copy constructible. Use DigraphCopy instead.
76 76
      Graph(const Graph&) {}
77 77
      /// \brief Assignment of a graph to another one is \e not allowed.
78 78
      /// Use DigraphCopy instead.
79 79
      void operator=(const Graph&) {}
80 80

	
81 81
    public:
82 82
      /// Default constructor.
83 83
      Graph() {}
84 84

	
85 85
      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
86 86
      ///
87 87
      /// Undirected graphs should be tagged with \c UndirectedTag.
88 88
      /// 
89 89
      /// This tag helps the \c enable_if technics to make compile time
90 90
      /// specializations for undirected graphs.
91 91
      typedef True UndirectedTag;
92 92

	
93 93
      /// The node type of the graph
94 94

	
95 95
      /// This class identifies a node of the graph. It also serves
96 96
      /// as a base class of the node iterators,
97 97
      /// thus they convert to this type.
98 98
      class Node {
99 99
      public:
100 100
        /// Default constructor
101 101

	
102 102
        /// Default constructor.
103 103
        /// \warning It sets the object to an undefined value.
104 104
        Node() { }
105 105
        /// Copy constructor.
106 106

	
107 107
        /// Copy constructor.
108 108
        ///
109 109
        Node(const Node&) { }
110 110

	
111 111
        /// %Invalid constructor \& conversion.
112 112

	
113 113
        /// Initializes the object to be invalid.
114 114
        /// \sa Invalid for more details.
115 115
        Node(Invalid) { }
116 116
        /// Equality operator
117 117

	
118 118
        /// Equality operator.
119 119
        ///
120 120
        /// Two iterators are equal if and only if they point to the
121 121
        /// same object or both are \c INVALID.
122 122
        bool operator==(Node) const { return true; }
123 123

	
124 124
        /// Inequality operator
125 125

	
126 126
        /// Inequality operator.
127 127
        bool operator!=(Node) const { return true; }
128 128

	
129 129
        /// Artificial ordering operator.
130 130

	
131 131
        /// Artificial ordering operator.
132 132
        ///
133 133
        /// \note This operator only has to define some strict ordering of
134 134
        /// the items; this order has nothing to do with the iteration
135 135
        /// ordering of the items.
136 136
        bool operator<(Node) const { return false; }
137 137

	
138 138
      };
139 139

	
140 140
      /// Iterator class for the nodes.
141 141

	
142 142
      /// This iterator goes through each node of the graph.
143
      /// Its usage is quite simple, for example you can count the number
143
      /// Its usage is quite simple, for example, you can count the number
144 144
      /// of nodes in a graph \c g of type \c %Graph like this:
145 145
      ///\code
146 146
      /// int count=0;
147 147
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
148 148
      ///\endcode
149 149
      class NodeIt : public Node {
150 150
      public:
151 151
        /// Default constructor
152 152

	
153 153
        /// Default constructor.
154 154
        /// \warning It sets the iterator to an undefined value.
155 155
        NodeIt() { }
156 156
        /// Copy constructor.
157 157

	
158 158
        /// Copy constructor.
159 159
        ///
160 160
        NodeIt(const NodeIt& n) : Node(n) { }
161 161
        /// %Invalid constructor \& conversion.
162 162

	
163 163
        /// Initializes the iterator to be invalid.
164 164
        /// \sa Invalid for more details.
165 165
        NodeIt(Invalid) { }
166 166
        /// Sets the iterator to the first node.
167 167

	
168 168
        /// Sets the iterator to the first node of the given digraph.
169 169
        ///
170 170
        explicit NodeIt(const Graph&) { }
171 171
        /// Sets the iterator to the given node.
172 172

	
173 173
        /// Sets the iterator to the given node of the given digraph.
174 174
        ///
175 175
        NodeIt(const Graph&, const Node&) { }
176 176
        /// Next node.
177 177

	
178 178
        /// Assign the iterator to the next node.
179 179
        ///
180 180
        NodeIt& operator++() { return *this; }
181 181
      };
182 182

	
183 183

	
184 184
      /// The edge type of the graph
185 185

	
186 186
      /// This class identifies an edge of the graph. It also serves
187 187
      /// as a base class of the edge iterators,
188 188
      /// thus they will convert to this type.
189 189
      class Edge {
190 190
      public:
191 191
        /// Default constructor
192 192

	
193 193
        /// Default constructor.
194 194
        /// \warning It sets the object to an undefined value.
195 195
        Edge() { }
196 196
        /// Copy constructor.
197 197

	
198 198
        /// Copy constructor.
199 199
        ///
200 200
        Edge(const Edge&) { }
201 201
        /// %Invalid constructor \& conversion.
202 202

	
203 203
        /// Initializes the object to be invalid.
204 204
        /// \sa Invalid for more details.
205 205
        Edge(Invalid) { }
206 206
        /// Equality operator
207 207

	
208 208
        /// Equality operator.
209 209
        ///
210 210
        /// Two iterators are equal if and only if they point to the
211 211
        /// same object or both are \c INVALID.
212 212
        bool operator==(Edge) const { return true; }
213 213
        /// Inequality operator
214 214

	
215 215
        /// Inequality operator.
216 216
        bool operator!=(Edge) const { return true; }
217 217

	
218 218
        /// Artificial ordering operator.
219 219

	
220 220
        /// Artificial ordering operator.
221 221
        ///
222 222
        /// \note This operator only has to define some strict ordering of
223 223
        /// the edges; this order has nothing to do with the iteration
224 224
        /// ordering of the edges.
225 225
        bool operator<(Edge) const { return false; }
226 226
      };
227 227

	
228 228
      /// Iterator class for the edges.
229 229

	
230 230
      /// This iterator goes through each edge of the graph.
231
      /// Its usage is quite simple, for example you can count the number
231
      /// Its usage is quite simple, for example, you can count the number
232 232
      /// of edges in a graph \c g of type \c %Graph as follows:
233 233
      ///\code
234 234
      /// int count=0;
235 235
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
236 236
      ///\endcode
237 237
      class EdgeIt : public Edge {
238 238
      public:
239 239
        /// Default constructor
240 240

	
241 241
        /// Default constructor.
242 242
        /// \warning It sets the iterator to an undefined value.
243 243
        EdgeIt() { }
244 244
        /// Copy constructor.
245 245

	
246 246
        /// Copy constructor.
247 247
        ///
248 248
        EdgeIt(const EdgeIt& e) : Edge(e) { }
249 249
        /// %Invalid constructor \& conversion.
250 250

	
251 251
        /// Initializes the iterator to be invalid.
252 252
        /// \sa Invalid for more details.
253 253
        EdgeIt(Invalid) { }
254 254
        /// Sets the iterator to the first edge.
255 255

	
256 256
        /// Sets the iterator to the first edge of the given graph.
257 257
        ///
258 258
        explicit EdgeIt(const Graph&) { }
259 259
        /// Sets the iterator to the given edge.
260 260

	
261 261
        /// Sets the iterator to the given edge of the given graph.
262 262
        ///
263 263
        EdgeIt(const Graph&, const Edge&) { }
264 264
        /// Next edge
265 265

	
266 266
        /// Assign the iterator to the next edge.
267 267
        ///
268 268
        EdgeIt& operator++() { return *this; }
269 269
      };
270 270

	
271 271
      /// Iterator class for the incident edges of a node.
272 272

	
273 273
      /// This iterator goes trough the incident undirected edges
274 274
      /// of a certain node of a graph.
275
      /// Its usage is quite simple, for example you can compute the
275
      /// Its usage is quite simple, for example, you can compute the
276 276
      /// degree (i.e. the number of incident edges) of a node \c n
277 277
      /// in a graph \c g of type \c %Graph as follows.
278 278
      ///
279 279
      ///\code
280 280
      /// int count=0;
281 281
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
282 282
      ///\endcode
283 283
      ///
284 284
      /// \warning Loop edges will be iterated twice.
285 285
      class IncEdgeIt : public Edge {
286 286
      public:
287 287
        /// Default constructor
288 288

	
289 289
        /// Default constructor.
290 290
        /// \warning It sets the iterator to an undefined value.
291 291
        IncEdgeIt() { }
292 292
        /// Copy constructor.
293 293

	
294 294
        /// Copy constructor.
295 295
        ///
296 296
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
297 297
        /// %Invalid constructor \& conversion.
298 298

	
299 299
        /// Initializes the iterator to be invalid.
300 300
        /// \sa Invalid for more details.
301 301
        IncEdgeIt(Invalid) { }
302 302
        /// Sets the iterator to the first incident edge.
303 303

	
304 304
        /// Sets the iterator to the first incident edge of the given node.
305 305
        ///
306 306
        IncEdgeIt(const Graph&, const Node&) { }
307 307
        /// Sets the iterator to the given edge.
308 308

	
309 309
        /// Sets the iterator to the given edge of the given graph.
310 310
        ///
311 311
        IncEdgeIt(const Graph&, const Edge&) { }
312 312
        /// Next incident edge
313 313

	
314 314
        /// Assign the iterator to the next incident edge
315 315
        /// of the corresponding node.
316 316
        IncEdgeIt& operator++() { return *this; }
317 317
      };
318 318

	
319 319
      /// The arc type of the graph
320 320

	
321 321
      /// This class identifies a directed arc of the graph. It also serves
322 322
      /// as a base class of the arc iterators,
323 323
      /// thus they will convert to this type.
324 324
      class Arc {
325 325
      public:
326 326
        /// Default constructor
327 327

	
328 328
        /// Default constructor.
329 329
        /// \warning It sets the object to an undefined value.
330 330
        Arc() { }
331 331
        /// Copy constructor.
332 332

	
333 333
        /// Copy constructor.
334 334
        ///
335 335
        Arc(const Arc&) { }
336 336
        /// %Invalid constructor \& conversion.
337 337

	
338 338
        /// Initializes the object to be invalid.
339 339
        /// \sa Invalid for more details.
340 340
        Arc(Invalid) { }
341 341
        /// Equality operator
342 342

	
343 343
        /// Equality operator.
344 344
        ///
345 345
        /// Two iterators are equal if and only if they point to the
346 346
        /// same object or both are \c INVALID.
347 347
        bool operator==(Arc) const { return true; }
348 348
        /// Inequality operator
349 349

	
350 350
        /// Inequality operator.
351 351
        bool operator!=(Arc) const { return true; }
352 352

	
353 353
        /// Artificial ordering operator.
354 354

	
355 355
        /// Artificial ordering operator.
356 356
        ///
357 357
        /// \note This operator only has to define some strict ordering of
358 358
        /// the arcs; this order has nothing to do with the iteration
359 359
        /// ordering of the arcs.
360 360
        bool operator<(Arc) const { return false; }
361 361

	
362 362
        /// Converison to \c Edge
363 363
        
364 364
        /// Converison to \c Edge.
365 365
        ///
366 366
        operator Edge() const { return Edge(); }
367 367
      };
368 368

	
369 369
      /// Iterator class for the arcs.
370 370

	
371 371
      /// This iterator goes through each directed arc of the graph.
372
      /// Its usage is quite simple, for example you can count the number
372
      /// Its usage is quite simple, for example, you can count the number
373 373
      /// of arcs in a graph \c g of type \c %Graph as follows:
374 374
      ///\code
375 375
      /// int count=0;
376 376
      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
377 377
      ///\endcode
378 378
      class ArcIt : public Arc {
379 379
      public:
380 380
        /// Default constructor
381 381

	
382 382
        /// Default constructor.
383 383
        /// \warning It sets the iterator to an undefined value.
384 384
        ArcIt() { }
385 385
        /// Copy constructor.
386 386

	
387 387
        /// Copy constructor.
388 388
        ///
389 389
        ArcIt(const ArcIt& e) : Arc(e) { }
390 390
        /// %Invalid constructor \& conversion.
391 391

	
392 392
        /// Initializes the iterator to be invalid.
393 393
        /// \sa Invalid for more details.
394 394
        ArcIt(Invalid) { }
395 395
        /// Sets the iterator to the first arc.
396 396

	
397 397
        /// Sets the iterator to the first arc of the given graph.
398 398
        ///
399 399
        explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
400 400
        /// Sets the iterator to the given arc.
401 401

	
402 402
        /// Sets the iterator to the given arc of the given graph.
403 403
        ///
404 404
        ArcIt(const Graph&, const Arc&) { }
405 405
        /// Next arc
406 406

	
407 407
        /// Assign the iterator to the next arc.
408 408
        ///
409 409
        ArcIt& operator++() { return *this; }
410 410
      };
411 411

	
412 412
      /// Iterator class for the outgoing arcs of a node.
413 413

	
414 414
      /// This iterator goes trough the \e outgoing directed arcs of a
415 415
      /// certain node of a graph.
416
      /// Its usage is quite simple, for example you can count the number
416
      /// Its usage is quite simple, for example, you can count the number
417 417
      /// of outgoing arcs of a node \c n
418 418
      /// in a graph \c g of type \c %Graph as follows.
419 419
      ///\code
420 420
      /// int count=0;
421 421
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
422 422
      ///\endcode
423 423
      class OutArcIt : public Arc {
424 424
      public:
425 425
        /// Default constructor
426 426

	
427 427
        /// Default constructor.
428 428
        /// \warning It sets the iterator to an undefined value.
429 429
        OutArcIt() { }
430 430
        /// Copy constructor.
431 431

	
432 432
        /// Copy constructor.
433 433
        ///
434 434
        OutArcIt(const OutArcIt& e) : Arc(e) { }
435 435
        /// %Invalid constructor \& conversion.
436 436

	
437 437
        /// Initializes the iterator to be invalid.
438 438
        /// \sa Invalid for more details.
439 439
        OutArcIt(Invalid) { }
440 440
        /// Sets the iterator to the first outgoing arc.
441 441

	
442 442
        /// Sets the iterator to the first outgoing arc of the given node.
443 443
        ///
444 444
        OutArcIt(const Graph& n, const Node& g) {
445 445
          ignore_unused_variable_warning(n);
446 446
          ignore_unused_variable_warning(g);
447 447
        }
448 448
        /// Sets the iterator to the given arc.
449 449

	
450 450
        /// Sets the iterator to the given arc of the given graph.
451 451
        ///
452 452
        OutArcIt(const Graph&, const Arc&) { }
453 453
        /// Next outgoing arc
454 454

	
455 455
        /// Assign the iterator to the next
456 456
        /// outgoing arc of the corresponding node.
457 457
        OutArcIt& operator++() { return *this; }
458 458
      };
459 459

	
460 460
      /// Iterator class for the incoming arcs of a node.
461 461

	
462 462
      /// This iterator goes trough the \e incoming directed arcs of a
463 463
      /// certain node of a graph.
464
      /// Its usage is quite simple, for example you can count the number
464
      /// Its usage is quite simple, for example, you can count the number
465 465
      /// of incoming arcs of a node \c n
466 466
      /// in a graph \c g of type \c %Graph as follows.
467 467
      ///\code
468 468
      /// int count=0;
469 469
      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
470 470
      ///\endcode
471 471
      class InArcIt : public Arc {
472 472
      public:
473 473
        /// Default constructor
474 474

	
475 475
        /// Default constructor.
476 476
        /// \warning It sets the iterator to an undefined value.
477 477
        InArcIt() { }
478 478
        /// Copy constructor.
479 479

	
480 480
        /// Copy constructor.
481 481
        ///
482 482
        InArcIt(const InArcIt& e) : Arc(e) { }
483 483
        /// %Invalid constructor \& conversion.
484 484

	
485 485
        /// Initializes the iterator to be invalid.
486 486
        /// \sa Invalid for more details.
487 487
        InArcIt(Invalid) { }
488 488
        /// Sets the iterator to the first incoming arc.
489 489

	
490 490
        /// Sets the iterator to the first incoming arc of the given node.
491 491
        ///
492 492
        InArcIt(const Graph& g, const Node& n) {
493 493
          ignore_unused_variable_warning(n);
494 494
          ignore_unused_variable_warning(g);
495 495
        }
496 496
        /// Sets the iterator to the given arc.
497 497

	
498 498
        /// Sets the iterator to the given arc of the given graph.
499 499
        ///
500 500
        InArcIt(const Graph&, const Arc&) { }
501 501
        /// Next incoming arc
502 502

	
503 503
        /// Assign the iterator to the next
504 504
        /// incoming arc of the corresponding node.
505 505
        InArcIt& operator++() { return *this; }
506 506
      };
507 507

	
508 508
      /// \brief Standard graph map type for the nodes.
509 509
      ///
510 510
      /// Standard graph map type for the nodes.
511 511
      /// It conforms to the ReferenceMap concept.
512 512
      template<class T>
513 513
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
514 514
      {
515 515
      public:
516 516

	
517 517
        /// Constructor
518 518
        explicit NodeMap(const Graph&) { }
519 519
        /// Constructor with given initial value
520 520
        NodeMap(const Graph&, T) { }
521 521

	
522 522
      private:
523 523
        ///Copy constructor
524 524
        NodeMap(const NodeMap& nm) :
525 525
          ReferenceMap<Node, T, T&, const T&>(nm) { }
526 526
        ///Assignment operator
527 527
        template <typename CMap>
528 528
        NodeMap& operator=(const CMap&) {
529 529
          checkConcept<ReadMap<Node, T>, CMap>();
530 530
          return *this;
531 531
        }
532 532
      };
533 533

	
534 534
      /// \brief Standard graph map type for the arcs.
535 535
      ///
536 536
      /// Standard graph map type for the arcs.
537 537
      /// It conforms to the ReferenceMap concept.
538 538
      template<class T>
539 539
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
540 540
      {
541 541
      public:
542 542

	
543 543
        /// Constructor
544 544
        explicit ArcMap(const Graph&) { }
545 545
        /// Constructor with given initial value
546 546
        ArcMap(const Graph&, T) { }
547 547

	
548 548
      private:
549 549
        ///Copy constructor
550 550
        ArcMap(const ArcMap& em) :
551 551
          ReferenceMap<Arc, T, T&, const T&>(em) { }
552 552
        ///Assignment operator
553 553
        template <typename CMap>
554 554
        ArcMap& operator=(const CMap&) {
555 555
          checkConcept<ReadMap<Arc, T>, CMap>();
556 556
          return *this;
557 557
        }
558 558
      };
559 559

	
560 560
      /// \brief Standard graph map type for the edges.
561 561
      ///
562 562
      /// Standard graph map type for the edges.
563 563
      /// It conforms to the ReferenceMap concept.
564 564
      template<class T>
565 565
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
566 566
      {
567 567
      public:
568 568

	
569 569
        /// Constructor
570 570
        explicit EdgeMap(const Graph&) { }
571 571
        /// Constructor with given initial value
572 572
        EdgeMap(const Graph&, T) { }
573 573

	
574 574
      private:
575 575
        ///Copy constructor
576 576
        EdgeMap(const EdgeMap& em) :
577 577
          ReferenceMap<Edge, T, T&, const T&>(em) {}
578 578
        ///Assignment operator
579 579
        template <typename CMap>
580 580
        EdgeMap& operator=(const CMap&) {
581 581
          checkConcept<ReadMap<Edge, T>, CMap>();
582 582
          return *this;
583 583
        }
584 584
      };
585 585

	
586 586
      /// \brief The first node of the edge.
587 587
      ///
588 588
      /// Returns the first node of the given edge.
589 589
      ///
590
      /// Edges don't have source and target nodes, however methods
590
      /// Edges don't have source and target nodes, however, methods
591 591
      /// u() and v() are used to query the two end-nodes of an edge.
592 592
      /// The orientation of an edge that arises this way is called
593 593
      /// the inherent direction, it is used to define the default
594 594
      /// direction for the corresponding arcs.
595 595
      /// \sa v()
596 596
      /// \sa direction()
597 597
      Node u(Edge) const { return INVALID; }
598 598

	
599 599
      /// \brief The second node of the edge.
600 600
      ///
601 601
      /// Returns the second node of the given edge.
602 602
      ///
603
      /// Edges don't have source and target nodes, however methods
603
      /// Edges don't have source and target nodes, however, methods
604 604
      /// u() and v() are used to query the two end-nodes of an edge.
605 605
      /// The orientation of an edge that arises this way is called
606 606
      /// the inherent direction, it is used to define the default
607 607
      /// direction for the corresponding arcs.
608 608
      /// \sa u()
609 609
      /// \sa direction()
610 610
      Node v(Edge) const { return INVALID; }
611 611

	
612 612
      /// \brief The source node of the arc.
613 613
      ///
614 614
      /// Returns the source node of the given arc.
615 615
      Node source(Arc) const { return INVALID; }
616 616

	
617 617
      /// \brief The target node of the arc.
618 618
      ///
619 619
      /// Returns the target node of the given arc.
620 620
      Node target(Arc) const { return INVALID; }
621 621

	
622 622
      /// \brief The ID of the node.
623 623
      ///
624 624
      /// Returns the ID of the given node.
625 625
      int id(Node) const { return -1; }
626 626

	
627 627
      /// \brief The ID of the edge.
628 628
      ///
629 629
      /// Returns the ID of the given edge.
630 630
      int id(Edge) const { return -1; }
631 631

	
632 632
      /// \brief The ID of the arc.
633 633
      ///
634 634
      /// Returns the ID of the given arc.
635 635
      int id(Arc) const { return -1; }
636 636

	
637 637
      /// \brief The node with the given ID.
638 638
      ///
639 639
      /// Returns the node with the given ID.
640 640
      /// \pre The argument should be a valid node ID in the graph.
641 641
      Node nodeFromId(int) const { return INVALID; }
642 642

	
643 643
      /// \brief The edge with the given ID.
644 644
      ///
645 645
      /// Returns the edge with the given ID.
646 646
      /// \pre The argument should be a valid edge ID in the graph.
647 647
      Edge edgeFromId(int) const { return INVALID; }
648 648

	
649 649
      /// \brief The arc with the given ID.
650 650
      ///
651 651
      /// Returns the arc with the given ID.
652 652
      /// \pre The argument should be a valid arc ID in the graph.
653 653
      Arc arcFromId(int) const { return INVALID; }
654 654

	
655 655
      /// \brief An upper bound on the node IDs.
656 656
      ///
657 657
      /// Returns an upper bound on the node IDs.
658 658
      int maxNodeId() const { return -1; }
659 659

	
660 660
      /// \brief An upper bound on the edge IDs.
661 661
      ///
662 662
      /// Returns an upper bound on the edge IDs.
663 663
      int maxEdgeId() const { return -1; }
664 664

	
665 665
      /// \brief An upper bound on the arc IDs.
666 666
      ///
667 667
      /// Returns an upper bound on the arc IDs.
668 668
      int maxArcId() const { return -1; }
669 669

	
670 670
      /// \brief The direction of the arc.
671 671
      ///
672 672
      /// Returns \c true if the direction of the given arc is the same as
673 673
      /// the inherent orientation of the represented edge.
674 674
      bool direction(Arc) const { return true; }
675 675

	
676 676
      /// \brief Direct the edge.
677 677
      ///
678 678
      /// Direct the given edge. The returned arc
679 679
      /// represents the given edge and its direction comes
680 680
      /// from the bool parameter. If it is \c true, then the direction
681 681
      /// of the arc is the same as the inherent orientation of the edge.
682 682
      Arc direct(Edge, bool) const {
683 683
        return INVALID;
684 684
      }
685 685

	
686 686
      /// \brief Direct the edge.
687 687
      ///
688 688
      /// Direct the given edge. The returned arc represents the given
689 689
      /// edge and its source node is the given node.
690 690
      Arc direct(Edge, Node) const {
691 691
        return INVALID;
692 692
      }
693 693

	
694 694
      /// \brief The oppositely directed arc.
695 695
      ///
696 696
      /// Returns the oppositely directed arc representing the same edge.
697 697
      Arc oppositeArc(Arc) const { return INVALID; }
698 698

	
699 699
      /// \brief The opposite node on the edge.
700 700
      ///
701 701
      /// Returns the opposite node on the given edge.
702 702
      Node oppositeNode(Node, Edge) const { return INVALID; }
703 703

	
704 704
      void first(Node&) const {}
705 705
      void next(Node&) const {}
706 706

	
707 707
      void first(Edge&) const {}
708 708
      void next(Edge&) const {}
709 709

	
710 710
      void first(Arc&) const {}
711 711
      void next(Arc&) const {}
712 712

	
713 713
      void firstOut(Arc&, Node) const {}
714 714
      void nextOut(Arc&) const {}
715 715

	
716 716
      void firstIn(Arc&, Node) const {}
717 717
      void nextIn(Arc&) const {}
718 718

	
719 719
      void firstInc(Edge &, bool &, const Node &) const {}
720 720
      void nextInc(Edge &, bool &) const {}
721 721

	
722 722
      // The second parameter is dummy.
723 723
      Node fromId(int, Node) const { return INVALID; }
724 724
      // The second parameter is dummy.
725 725
      Edge fromId(int, Edge) const { return INVALID; }
726 726
      // The second parameter is dummy.
727 727
      Arc fromId(int, Arc) const { return INVALID; }
728 728

	
729 729
      // Dummy parameter.
730 730
      int maxId(Node) const { return -1; }
731 731
      // Dummy parameter.
732 732
      int maxId(Edge) const { return -1; }
733 733
      // Dummy parameter.
734 734
      int maxId(Arc) const { return -1; }
735 735

	
736 736
      /// \brief The base node of the iterator.
737 737
      ///
738 738
      /// Returns the base node of the given incident edge iterator.
739 739
      Node baseNode(IncEdgeIt) const { return INVALID; }
740 740

	
741 741
      /// \brief The running node of the iterator.
742 742
      ///
743 743
      /// Returns the running node of the given incident edge iterator.
744 744
      Node runningNode(IncEdgeIt) const { return INVALID; }
745 745

	
746 746
      /// \brief The base node of the iterator.
747 747
      ///
748 748
      /// Returns the base node of the given outgoing arc iterator
749 749
      /// (i.e. the source node of the corresponding arc).
750 750
      Node baseNode(OutArcIt) const { return INVALID; }
751 751

	
752 752
      /// \brief The running node of the iterator.
753 753
      ///
754 754
      /// Returns the running node of the given outgoing arc iterator
755 755
      /// (i.e. the target node of the corresponding arc).
756 756
      Node runningNode(OutArcIt) const { return INVALID; }
757 757

	
758 758
      /// \brief The base node of the iterator.
759 759
      ///
760 760
      /// Returns the base node of the given incomming arc iterator
761 761
      /// (i.e. the target node of the corresponding arc).
762 762
      Node baseNode(InArcIt) const { return INVALID; }
763 763

	
764 764
      /// \brief The running node of the iterator.
765 765
      ///
766 766
      /// Returns the running node of the given incomming arc iterator
767 767
      /// (i.e. the source node of the corresponding arc).
768 768
      Node runningNode(InArcIt) const { return INVALID; }
769 769

	
770 770
      template <typename _Graph>
771 771
      struct Constraints {
772 772
        void constraints() {
773 773
          checkConcept<BaseGraphComponent, _Graph>();
774 774
          checkConcept<IterableGraphComponent<>, _Graph>();
775 775
          checkConcept<IDableGraphComponent<>, _Graph>();
776 776
          checkConcept<MappableGraphComponent<>, _Graph>();
777 777
        }
778 778
      };
779 779

	
780 780
    };
781 781

	
782 782
  }
783 783

	
784 784
}
785 785

	
786 786
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21
///\brief The concept of graph components.
21
///\brief The concepts of graph components.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
24 24
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
#include <lemon/bits/alteration_notifier.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \brief Concept class for \c Node, \c Arc and \c Edge types.
35 35
    ///
36 36
    /// This class describes the concept of \c Node, \c Arc and \c Edge
37 37
    /// subtypes of digraph and graph types.
38 38
    ///
39 39
    /// \note This class is a template class so that we can use it to
40 40
    /// create graph skeleton classes. The reason for this is that \c Node
41 41
    /// and \c Arc (or \c Edge) types should \e not derive from the same 
42 42
    /// base class. For \c Node you should instantiate it with character
43 43
    /// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
44 44
#ifndef DOXYGEN
45 45
    template <char sel = '0'>
46 46
#endif
47 47
    class GraphItem {
48 48
    public:
49 49
      /// \brief Default constructor.
50 50
      ///
51 51
      /// Default constructor.
52 52
      /// \warning The default constructor is not required to set
53 53
      /// the item to some well-defined value. So you should consider it
54 54
      /// as uninitialized.
55 55
      GraphItem() {}
56 56

	
57 57
      /// \brief Copy constructor.
58 58
      ///
59 59
      /// Copy constructor.
60 60
      GraphItem(const GraphItem &) {}
61 61

	
62 62
      /// \brief Constructor for conversion from \c INVALID.
63 63
      ///
64 64
      /// Constructor for conversion from \c INVALID.
65 65
      /// It initializes the item to be invalid.
66 66
      /// \sa Invalid for more details.
67 67
      GraphItem(Invalid) {}
68 68

	
69 69
      /// \brief Assignment operator.
70 70
      ///
71 71
      /// Assignment operator for the item.
72 72
      GraphItem& operator=(const GraphItem&) { return *this; }
73 73

	
74 74
      /// \brief Assignment operator for INVALID.
75 75
      ///
76 76
      /// This operator makes the item invalid.
77 77
      GraphItem& operator=(Invalid) { return *this; }
78 78

	
79 79
      /// \brief Equality operator.
80 80
      ///
81 81
      /// Equality operator.
82 82
      bool operator==(const GraphItem&) const { return false; }
83 83

	
84 84
      /// \brief Inequality operator.
85 85
      ///
86 86
      /// Inequality operator.
87 87
      bool operator!=(const GraphItem&) const { return false; }
88 88

	
89 89
      /// \brief Ordering operator.
90 90
      ///
91 91
      /// This operator defines an ordering of the items.
92 92
      /// It makes possible to use graph item types as key types in 
93 93
      /// associative containers (e.g. \c std::map).
94 94
      ///
95 95
      /// \note This operator only has to define some strict ordering of
96 96
      /// the items; this order has nothing to do with the iteration
97 97
      /// ordering of the items.
98 98
      bool operator<(const GraphItem&) const { return false; }
99 99

	
100 100
      template<typename _GraphItem>
101 101
      struct Constraints {
102 102
        void constraints() {
103 103
          _GraphItem i1;
104 104
          i1=INVALID;
105 105
          _GraphItem i2 = i1;
106 106
          _GraphItem i3 = INVALID;
107 107

	
108 108
          i1 = i2 = i3;
109 109

	
110 110
          bool b;
111 111
          b = (ia == ib) && (ia != ib);
112 112
          b = (ia == INVALID) && (ib != INVALID);
113 113
          b = (ia < ib);
114 114
        }
115 115

	
116 116
        const _GraphItem &ia;
117 117
        const _GraphItem &ib;
118 118
      };
119 119
    };
120 120

	
121 121
    /// \brief Base skeleton class for directed graphs.
122 122
    ///
123 123
    /// This class describes the base interface of directed graph types.
124 124
    /// All digraph %concepts have to conform to this class.
125 125
    /// It just provides types for nodes and arcs and functions 
126 126
    /// to get the source and the target nodes of arcs.
127 127
    class BaseDigraphComponent {
128 128
    public:
129 129

	
130 130
      typedef BaseDigraphComponent Digraph;
131 131

	
132 132
      /// \brief Node class of the digraph.
133 133
      ///
134 134
      /// This class represents the nodes of the digraph.
135 135
      typedef GraphItem<'n'> Node;
136 136

	
137 137
      /// \brief Arc class of the digraph.
138 138
      ///
139 139
      /// This class represents the arcs of the digraph.
140 140
      typedef GraphItem<'a'> Arc;
141 141

	
142 142
      /// \brief Return the source node of an arc.
143 143
      ///
144 144
      /// This function returns the source node of an arc.
145 145
      Node source(const Arc&) const { return INVALID; }
146 146

	
147 147
      /// \brief Return the target node of an arc.
148 148
      ///
149 149
      /// This function returns the target node of an arc.
150 150
      Node target(const Arc&) const { return INVALID; }
151 151

	
152 152
      /// \brief Return the opposite node on the given arc.
153 153
      ///
154 154
      /// This function returns the opposite node on the given arc.
155 155
      Node oppositeNode(const Node&, const Arc&) const {
156 156
        return INVALID;
157 157
      }
158 158

	
159 159
      template <typename _Digraph>
160 160
      struct Constraints {
161 161
        typedef typename _Digraph::Node Node;
162 162
        typedef typename _Digraph::Arc Arc;
163 163

	
164 164
        void constraints() {
165 165
          checkConcept<GraphItem<'n'>, Node>();
166 166
          checkConcept<GraphItem<'a'>, Arc>();
167 167
          {
168 168
            Node n;
169 169
            Arc e(INVALID);
170 170
            n = digraph.source(e);
171 171
            n = digraph.target(e);
172 172
            n = digraph.oppositeNode(n, e);
173 173
          }
174 174
        }
175 175

	
176 176
        const _Digraph& digraph;
177 177
      };
178 178
    };
179 179

	
180 180
    /// \brief Base skeleton class for undirected graphs.
181 181
    ///
182 182
    /// This class describes the base interface of undirected graph types.
183 183
    /// All graph %concepts have to conform to this class.
184 184
    /// It extends the interface of \ref BaseDigraphComponent with an
185 185
    /// \c Edge type and functions to get the end nodes of edges,
186 186
    /// to convert from arcs to edges and to get both direction of edges.
187 187
    class BaseGraphComponent : public BaseDigraphComponent {
188 188
    public:
189 189

	
190 190
      typedef BaseGraphComponent Graph;
191 191

	
192 192
      typedef BaseDigraphComponent::Node Node;
193 193
      typedef BaseDigraphComponent::Arc Arc;
194 194

	
195 195
      /// \brief Undirected edge class of the graph.
196 196
      ///
197 197
      /// This class represents the undirected edges of the graph.
198 198
      /// Undirected graphs can be used as directed graphs, each edge is
199 199
      /// represented by two opposite directed arcs.
200 200
      class Edge : public GraphItem<'e'> {
201 201
        typedef GraphItem<'e'> Parent;
202 202

	
203 203
      public:
204 204
        /// \brief Default constructor.
205 205
        ///
206 206
        /// Default constructor.
207 207
        /// \warning The default constructor is not required to set
208 208
        /// the item to some well-defined value. So you should consider it
209 209
        /// as uninitialized.
210 210
        Edge() {}
211 211

	
212 212
        /// \brief Copy constructor.
213 213
        ///
Ignore white space 6 line context
... ...
@@ -23,227 +23,227 @@
23 23
#include <iostream>
24 24

	
25 25
///\ingroup timecount
26 26
///\file
27 27
///\brief Tools for counting steps and events
28 28

	
29 29
namespace lemon
30 30
{
31 31

	
32 32
  template<class P> class _NoSubCounter;
33 33

	
34 34
  template<class P>
35 35
  class _SubCounter
36 36
  {
37 37
    P &_parent;
38 38
    std::string _title;
39 39
    std::ostream &_os;
40 40
    int count;
41 41
  public:
42 42

	
43 43
    typedef _SubCounter<_SubCounter<P> > SubCounter;
44 44
    typedef _NoSubCounter<_SubCounter<P> > NoSubCounter;
45 45

	
46 46
    _SubCounter(P &parent)
47 47
      : _parent(parent), _title(), _os(std::cerr), count(0) {}
48 48
    _SubCounter(P &parent,std::string title,std::ostream &os=std::cerr)
49 49
      : _parent(parent), _title(title), _os(os), count(0) {}
50 50
    _SubCounter(P &parent,const char *title,std::ostream &os=std::cerr)
51 51
      : _parent(parent), _title(title), _os(os), count(0) {}
52 52
    ~_SubCounter() {
53 53
      _os << _title << count <<std::endl;
54 54
      _parent+=count;
55 55
    }
56 56
    _SubCounter &operator++() { count++; return *this;}
57 57
    int operator++(int) { return count++; }
58 58
    _SubCounter &operator--() { count--; return *this;}
59 59
    int operator--(int) { return count--; }
60 60
    _SubCounter &operator+=(int c) { count+=c; return *this;}
61 61
    _SubCounter &operator-=(int c) { count-=c; return *this;}
62 62
    operator int() {return count;}
63 63
  };
64 64

	
65 65
  template<class P>
66 66
  class _NoSubCounter
67 67
  {
68 68
    P &_parent;
69 69
  public:
70 70
    typedef _NoSubCounter<_NoSubCounter<P> > SubCounter;
71 71
    typedef _NoSubCounter<_NoSubCounter<P> > NoSubCounter;
72 72

	
73 73
    _NoSubCounter(P &parent) :_parent(parent) {}
74 74
    _NoSubCounter(P &parent,std::string,std::ostream &)
75 75
      :_parent(parent) {}
76 76
    _NoSubCounter(P &parent,std::string)
77 77
      :_parent(parent) {}
78 78
    _NoSubCounter(P &parent,const char *,std::ostream &)
79 79
      :_parent(parent) {}
80 80
    _NoSubCounter(P &parent,const char *)
81 81
      :_parent(parent) {}
82 82
    ~_NoSubCounter() {}
83 83
    _NoSubCounter &operator++() { ++_parent; return *this;}
84 84
    int operator++(int) { _parent++; return 0;}
85 85
    _NoSubCounter &operator--() { --_parent; return *this;}
86 86
    int operator--(int) { _parent--; return 0;}
87 87
    _NoSubCounter &operator+=(int c) { _parent+=c; return *this;}
88 88
    _NoSubCounter &operator-=(int c) { _parent-=c; return *this;}
89 89
    operator int() {return 0;}
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup timecount
94 94
  /// @{
95 95

	
96 96
  /// A counter class
97 97

	
98 98
  /// This class makes it easier to count certain events (e.g. for debug
99 99
  /// reasons).
100 100
  /// You can increment or decrement the counter using \c operator++,
101 101
  /// \c operator--, \c operator+= and \c operator-=. You can also
102 102
  /// define subcounters for the different phases of the algorithm or
103 103
  /// for different types of operations.
104 104
  /// A report containing the given title and the value of the counter
105 105
  /// is automatically printed on destruction.
106 106
  ///
107 107
  /// The following example shows the usage of counters and subcounters.
108 108
  /// \code
109 109
  /// // Bubble sort
110 110
  /// std::vector<T> v;
111 111
  /// ...
112 112
  /// Counter op("Operations: ");
113 113
  /// Counter::SubCounter as(op, "Assignments: ");
114 114
  /// Counter::SubCounter co(op, "Comparisons: ");
115 115
  /// for (int i = v.size()-1; i > 0; --i) {
116 116
  ///   for (int j = 0; j < i; ++j) {
117 117
  ///     if (v[j] > v[j+1]) {
118 118
  ///       T tmp = v[j];
119 119
  ///       v[j] = v[j+1];
120 120
  ///       v[j+1] = tmp;
121 121
  ///       as += 3;          // three assignments
122 122
  ///     }
123 123
  ///     ++co;               // one comparison
124 124
  ///   }
125 125
  /// }
126 126
  /// \endcode
127 127
  ///
128 128
  /// This code prints out something like that:
129 129
  /// \code
130 130
  /// Comparisons: 45
131 131
  /// Assignments: 57
132 132
  /// Operations: 102
133 133
  /// \endcode
134 134
  ///
135 135
  /// \sa NoCounter
136 136
  class Counter
137 137
  {
138 138
    std::string _title;
139 139
    std::ostream &_os;
140 140
    int count;
141 141
  public:
142 142

	
143 143
    /// SubCounter class
144 144

	
145 145
    /// This class can be used to setup subcounters for a \ref Counter
146 146
    /// to have finer reports. A subcounter provides exactly the same
147 147
    /// operations as the main \ref Counter, but it also increments and
148 148
    /// decrements the value of its parent.
149 149
    /// Subcounters can also have subcounters.
150 150
    ///
151 151
    /// The parent counter must be given as the first parameter of the
152 152
    /// constructor. Apart from that a title and an \c ostream object
153 153
    /// can also be given just like for the main \ref Counter.
154 154
    ///
155 155
    /// A report containing the given title and the value of the
156 156
    /// subcounter is automatically printed on destruction. If you
157 157
    /// would like to turn off this report, use \ref NoSubCounter
158 158
    /// instead.
159 159
    ///
160 160
    /// \sa NoSubCounter
161 161
    typedef _SubCounter<Counter> SubCounter;
162 162

	
163 163
    /// SubCounter class without printing report on destruction
164 164

	
165 165
    /// This class can be used to setup subcounters for a \ref Counter.
166 166
    /// It is the same as \ref SubCounter but it does not print report
167 167
    /// on destruction. (It modifies the value of its parent, so 'No'
168 168
    /// only means 'do not print'.)
169 169
    ///
170 170
    /// Replacing \ref SubCounter "SubCounter"s with \ref NoSubCounter
171 171
    /// "NoSubCounter"s makes it possible to turn off reporting
172 172
    /// subcounter values without actually removing the definitions
173 173
    /// and the increment or decrement operators.
174 174
    ///
175 175
    /// \sa SubCounter
176 176
    typedef _NoSubCounter<Counter> NoSubCounter;
177 177

	
178 178
    /// Constructor.
179 179
    Counter() : _title(), _os(std::cerr), count(0) {}
180 180
    /// Constructor.
181 181
    Counter(std::string title,std::ostream &os=std::cerr)
182 182
      : _title(title), _os(os), count(0) {}
183 183
    /// Constructor.
184 184
    Counter(const char *title,std::ostream &os=std::cerr)
185 185
      : _title(title), _os(os), count(0) {}
186 186
    /// Destructor. Prints the given title and the value of the counter.
187 187
    ~Counter() {
188 188
      _os << _title << count <<std::endl;
189 189
    }
190 190
    ///\e
191 191
    Counter &operator++() { count++; return *this;}
192 192
    ///\e
193 193
    int operator++(int) { return count++;}
194 194
    ///\e
195 195
    Counter &operator--() { count--; return *this;}
196 196
    ///\e
197 197
    int operator--(int) { return count--;}
198 198
    ///\e
199 199
    Counter &operator+=(int c) { count+=c; return *this;}
200 200
    ///\e
201 201
    Counter &operator-=(int c) { count-=c; return *this;}
202 202
    /// Resets the counter to the given value.
203 203

	
204 204
    /// Resets the counter to the given value.
205 205
    /// \note This function does not reset the values of
206 206
    /// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter
207 207
    /// "NoSubCounter"s along with the main counter.
208 208
    void reset(int c=0) {count=c;}
209 209
    /// Returns the value of the counter.
210 210
    operator int() {return count;}
211 211
  };
212 212

	
213 213
  /// 'Do nothing' version of Counter.
214 214

	
215
  /// This class can be used in the same way as \ref Counter however it
215
  /// This class can be used in the same way as \ref Counter, but it
216 216
  /// does not count at all and does not print report on destruction.
217 217
  ///
218 218
  /// Replacing a \ref Counter with a \ref NoCounter makes it possible
219 219
  /// to turn off all counting and reporting (SubCounters should also
220 220
  /// be replaced with NoSubCounters), so it does not affect the
221 221
  /// efficiency of the program at all.
222 222
  ///
223 223
  /// \sa Counter
224 224
  class NoCounter
225 225
  {
226 226
  public:
227 227
    typedef _NoSubCounter<NoCounter> SubCounter;
228 228
    typedef _NoSubCounter<NoCounter> NoSubCounter;
229 229

	
230 230
    NoCounter() {}
231 231
    NoCounter(std::string,std::ostream &) {}
232 232
    NoCounter(const char *,std::ostream &) {}
233 233
    NoCounter(std::string) {}
234 234
    NoCounter(const char *) {}
235 235
    NoCounter &operator++() { return *this; }
236 236
    int operator++(int) { return 0; }
237 237
    NoCounter &operator--() { return *this; }
238 238
    int operator--(int) { return 0; }
239 239
    NoCounter &operator+=(int) { return *this;}
240 240
    NoCounter &operator-=(int) { return *this;}
241 241
    void reset(int) {}
242 242
    void reset() {}
243 243
    operator int() {return 0;}
244 244
  };
245 245

	
246 246
  ///@}
247 247
}
248 248

	
249 249
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief DFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Dfs class.
36 36

	
37 37
  ///Default traits class of Dfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct DfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the %DFS paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the %DFS paths.
50 50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66
    ///By default, it is a NullMap.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68 68
    ///Instantiates a \c ProcessedMap.
69 69

	
70 70
    ///This function instantiates a \ref ProcessedMap.
71 71
    ///\param g is the digraph, to which
72 72
    ///we would like to define the \ref ProcessedMap.
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 87
    ///Instantiates a \c ReachedMap.
88 88

	
89 89
    ///This function instantiates a \ref ReachedMap.
90 90
    ///\param g is the digraph, to which
91 91
    ///we would like to define the \ref ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102 102
    ///Instantiates a \c DistMap.
103 103

	
104 104
    ///This function instantiates a \ref DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106 106
    ///\ref DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%DFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %DFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref dfs() "function-type interface" for the DFS
119 119
  ///algorithm, which is convenient in the simplier cases and it can be
120 120
  ///used easier.
121 121
  ///
122 122
  ///\tparam GR The type of the digraph the algorithm runs on.
123 123
  ///The default type is \ref ListDigraph.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR,
126 126
            typename TR>
127 127
#else
128 128
  template <typename GR=ListDigraph,
129 129
            typename TR=DfsDefaultTraits<GR> >
130 130
#endif
131 131
  class Dfs {
132 132
  public:
133 133

	
134 134
    ///The type of the digraph the algorithm runs on.
135 135
    typedef typename TR::Digraph Digraph;
136 136

	
137 137
    ///\brief The type of the map that stores the predecessor arcs of the
138 138
    ///DFS paths.
139 139
    typedef typename TR::PredMap PredMap;
140 140
    ///The type of the map that stores the distances of the nodes.
141 141
    typedef typename TR::DistMap DistMap;
142 142
    ///The type of the map that indicates which nodes are reached.
143 143
    typedef typename TR::ReachedMap ReachedMap;
144 144
    ///The type of the map that indicates which nodes are processed.
145 145
    typedef typename TR::ProcessedMap ProcessedMap;
146 146
    ///The type of the paths.
147 147
    typedef PredMapPath<Digraph, PredMap> Path;
148 148

	
149 149
    ///The \ref DfsDefaultTraits "traits class" of the algorithm.
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    typedef typename Digraph::Node Node;
155 155
    typedef typename Digraph::NodeIt NodeIt;
156 156
    typedef typename Digraph::Arc Arc;
157 157
    typedef typename Digraph::OutArcIt OutArcIt;
158 158

	
159 159
    //Pointer to the underlying digraph.
160 160
    const Digraph *G;
161 161
    //Pointer to the map of predecessor arcs.
162 162
    PredMap *_pred;
163 163
    //Indicates if _pred is locally allocated (true) or not.
164 164
    bool local_pred;
165 165
    //Pointer to the map of distances.
166 166
    DistMap *_dist;
167 167
    //Indicates if _dist is locally allocated (true) or not.
168 168
    bool local_dist;
169 169
    //Pointer to the map of reached status of the nodes.
170 170
    ReachedMap *_reached;
171 171
    //Indicates if _reached is locally allocated (true) or not.
172 172
    bool local_reached;
173 173
    //Pointer to the map of processed status of the nodes.
174 174
    ProcessedMap *_processed;
175 175
    //Indicates if _processed is locally allocated (true) or not.
176 176
    bool local_processed;
177 177

	
178 178
    std::vector<typename Digraph::OutArcIt> _stack;
179 179
    int _stack_head;
180 180

	
181 181
    //Creates the maps if necessary.
182 182
    void create_maps()
183 183
    {
184 184
      if(!_pred) {
185 185
        local_pred = true;
186 186
        _pred = Traits::createPredMap(*G);
187 187
      }
188 188
      if(!_dist) {
189 189
        local_dist = true;
190 190
        _dist = Traits::createDistMap(*G);
191 191
      }
192 192
      if(!_reached) {
193 193
        local_reached = true;
194 194
        _reached = Traits::createReachedMap(*G);
195 195
      }
196 196
      if(!_processed) {
197 197
        local_processed = true;
198 198
        _processed = Traits::createProcessedMap(*G);
199 199
      }
200 200
    }
201 201

	
202 202
  protected:
203 203

	
204 204
    Dfs() {}
205 205

	
206 206
  public:
207 207

	
208 208
    typedef Dfs Create;
209 209

	
210 210
    ///\name Named Template Parameters
211 211

	
212 212
    ///@{
213 213

	
214 214
    template <class T>
215 215
    struct SetPredMapTraits : public Traits {
216 216
      typedef T PredMap;
217 217
      static PredMap *createPredMap(const Digraph &)
218 218
      {
219 219
        LEMON_ASSERT(false, "PredMap is not initialized");
220 220
        return 0; // ignore warnings
221 221
      }
222 222
    };
223 223
    ///\brief \ref named-templ-param "Named parameter" for setting
224 224
    ///\c PredMap type.
225 225
    ///
226 226
    ///\ref named-templ-param "Named parameter" for setting
227 227
    ///\c PredMap type.
228 228
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
229 229
    template <class T>
230 230
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
231 231
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
232 232
    };
233 233

	
234 234
    template <class T>
235 235
    struct SetDistMapTraits : public Traits {
236 236
      typedef T DistMap;
237 237
      static DistMap *createDistMap(const Digraph &)
238 238
      {
239 239
        LEMON_ASSERT(false, "DistMap is not initialized");
240 240
        return 0; // ignore warnings
241 241
      }
242 242
    };
243 243
    ///\brief \ref named-templ-param "Named parameter" for setting
244 244
    ///\c DistMap type.
245 245
    ///
246 246
    ///\ref named-templ-param "Named parameter" for setting
247 247
    ///\c DistMap type.
248 248
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
249 249
    template <class T>
250 250
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
251 251
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
252 252
    };
253 253

	
254 254
    template <class T>
255 255
    struct SetReachedMapTraits : public Traits {
256 256
      typedef T ReachedMap;
257 257
      static ReachedMap *createReachedMap(const Digraph &)
258 258
      {
... ...
@@ -593,385 +593,385 @@
593 593
    ///This method runs the %DFS algorithm from node \c s
594 594
    ///in order to compute the DFS path to each node.
595 595
    ///
596 596
    ///The algorithm computes
597 597
    ///- the %DFS tree,
598 598
    ///- the distance of each node from the root in the %DFS tree.
599 599
    ///
600 600
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
601 601
    ///\code
602 602
    ///  d.init();
603 603
    ///  d.addSource(s);
604 604
    ///  d.start();
605 605
    ///\endcode
606 606
    void run(Node s) {
607 607
      init();
608 608
      addSource(s);
609 609
      start();
610 610
    }
611 611

	
612 612
    ///Finds the %DFS path between \c s and \c t.
613 613

	
614 614
    ///This method runs the %DFS algorithm from node \c s
615 615
    ///in order to compute the DFS path to node \c t
616 616
    ///(it stops searching when \c t is processed)
617 617
    ///
618 618
    ///\return \c true if \c t is reachable form \c s.
619 619
    ///
620 620
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
621 621
    ///just a shortcut of the following code.
622 622
    ///\code
623 623
    ///  d.init();
624 624
    ///  d.addSource(s);
625 625
    ///  d.start(t);
626 626
    ///\endcode
627 627
    bool run(Node s,Node t) {
628 628
      init();
629 629
      addSource(s);
630 630
      start(t);
631 631
      return reached(t);
632 632
    }
633 633

	
634 634
    ///Runs the algorithm to visit all nodes in the digraph.
635 635

	
636 636
    ///This method runs the %DFS algorithm in order to compute the
637 637
    ///%DFS path to each node.
638 638
    ///
639 639
    ///The algorithm computes
640 640
    ///- the %DFS tree (forest),
641 641
    ///- the distance of each node from the root(s) in the %DFS tree.
642 642
    ///
643 643
    ///\note <tt>d.run()</tt> is just a shortcut of the following code.
644 644
    ///\code
645 645
    ///  d.init();
646 646
    ///  for (NodeIt n(digraph); n != INVALID; ++n) {
647 647
    ///    if (!d.reached(n)) {
648 648
    ///      d.addSource(n);
649 649
    ///      d.start();
650 650
    ///    }
651 651
    ///  }
652 652
    ///\endcode
653 653
    void run() {
654 654
      init();
655 655
      for (NodeIt it(*G); it != INVALID; ++it) {
656 656
        if (!reached(it)) {
657 657
          addSource(it);
658 658
          start();
659 659
        }
660 660
      }
661 661
    }
662 662

	
663 663
    ///@}
664 664

	
665 665
    ///\name Query Functions
666 666
    ///The results of the DFS algorithm can be obtained using these
667 667
    ///functions.\n
668 668
    ///Either \ref run(Node) "run()" or \ref start() should be called
669 669
    ///before using them.
670 670

	
671 671
    ///@{
672 672

	
673 673
    ///The DFS path to the given node.
674 674

	
675 675
    ///Returns the DFS path to the given node from the root(s).
676 676
    ///
677 677
    ///\warning \c t should be reached from the root(s).
678 678
    ///
679 679
    ///\pre Either \ref run(Node) "run()" or \ref init()
680 680
    ///must be called before using this function.
681 681
    Path path(Node t) const { return Path(*G, *_pred, t); }
682 682

	
683 683
    ///The distance of the given node from the root(s).
684 684

	
685 685
    ///Returns the distance of the given node from the root(s).
686 686
    ///
687 687
    ///\warning If node \c v is not reached from the root(s), then
688 688
    ///the return value of this function is undefined.
689 689
    ///
690 690
    ///\pre Either \ref run(Node) "run()" or \ref init()
691 691
    ///must be called before using this function.
692 692
    int dist(Node v) const { return (*_dist)[v]; }
693 693

	
694 694
    ///Returns the 'previous arc' of the %DFS tree for the given node.
695 695

	
696 696
    ///This function returns the 'previous arc' of the %DFS tree for the
697 697
    ///node \c v, i.e. it returns the last arc of a %DFS path from a
698 698
    ///root to \c v. It is \c INVALID if \c v is not reached from the
699 699
    ///root(s) or if \c v is a root.
700 700
    ///
701 701
    ///The %DFS tree used here is equal to the %DFS tree used in
702 702
    ///\ref predNode() and \ref predMap().
703 703
    ///
704 704
    ///\pre Either \ref run(Node) "run()" or \ref init()
705 705
    ///must be called before using this function.
706 706
    Arc predArc(Node v) const { return (*_pred)[v];}
707 707

	
708 708
    ///Returns the 'previous node' of the %DFS tree for the given node.
709 709

	
710 710
    ///This function returns the 'previous node' of the %DFS
711 711
    ///tree for the node \c v, i.e. it returns the last but one node
712 712
    ///of a %DFS path from a root to \c v. It is \c INVALID
713 713
    ///if \c v is not reached from the root(s) or if \c v is a root.
714 714
    ///
715 715
    ///The %DFS tree used here is equal to the %DFS tree used in
716 716
    ///\ref predArc() and \ref predMap().
717 717
    ///
718 718
    ///\pre Either \ref run(Node) "run()" or \ref init()
719 719
    ///must be called before using this function.
720 720
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
721 721
                                  G->source((*_pred)[v]); }
722 722

	
723 723
    ///\brief Returns a const reference to the node map that stores the
724 724
    ///distances of the nodes.
725 725
    ///
726 726
    ///Returns a const reference to the node map that stores the
727 727
    ///distances of the nodes calculated by the algorithm.
728 728
    ///
729 729
    ///\pre Either \ref run(Node) "run()" or \ref init()
730 730
    ///must be called before using this function.
731 731
    const DistMap &distMap() const { return *_dist;}
732 732

	
733 733
    ///\brief Returns a const reference to the node map that stores the
734 734
    ///predecessor arcs.
735 735
    ///
736 736
    ///Returns a const reference to the node map that stores the predecessor
737 737
    ///arcs, which form the DFS tree (forest).
738 738
    ///
739 739
    ///\pre Either \ref run(Node) "run()" or \ref init()
740 740
    ///must be called before using this function.
741 741
    const PredMap &predMap() const { return *_pred;}
742 742

	
743 743
    ///Checks if the given node. node is reached from the root(s).
744 744

	
745 745
    ///Returns \c true if \c v is reached from the root(s).
746 746
    ///
747 747
    ///\pre Either \ref run(Node) "run()" or \ref init()
748 748
    ///must be called before using this function.
749 749
    bool reached(Node v) const { return (*_reached)[v]; }
750 750

	
751 751
    ///@}
752 752
  };
753 753

	
754 754
  ///Default traits class of dfs() function.
755 755

	
756 756
  ///Default traits class of dfs() function.
757 757
  ///\tparam GR Digraph type.
758 758
  template<class GR>
759 759
  struct DfsWizardDefaultTraits
760 760
  {
761 761
    ///The type of the digraph the algorithm runs on.
762 762
    typedef GR Digraph;
763 763

	
764 764
    ///\brief The type of the map that stores the predecessor
765 765
    ///arcs of the %DFS paths.
766 766
    ///
767 767
    ///The type of the map that stores the predecessor
768 768
    ///arcs of the %DFS paths.
769 769
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
770 770
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
771 771
    ///Instantiates a PredMap.
772 772

	
773 773
    ///This function instantiates a PredMap.
774 774
    ///\param g is the digraph, to which we would like to define the
775 775
    ///PredMap.
776 776
    static PredMap *createPredMap(const Digraph &g)
777 777
    {
778 778
      return new PredMap(g);
779 779
    }
780 780

	
781 781
    ///The type of the map that indicates which nodes are processed.
782 782

	
783 783
    ///The type of the map that indicates which nodes are processed.
784 784
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
785
    ///By default it is a NullMap.
785
    ///By default, it is a NullMap.
786 786
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
787 787
    ///Instantiates a ProcessedMap.
788 788

	
789 789
    ///This function instantiates a ProcessedMap.
790 790
    ///\param g is the digraph, to which
791 791
    ///we would like to define the ProcessedMap.
792 792
#ifdef DOXYGEN
793 793
    static ProcessedMap *createProcessedMap(const Digraph &g)
794 794
#else
795 795
    static ProcessedMap *createProcessedMap(const Digraph &)
796 796
#endif
797 797
    {
798 798
      return new ProcessedMap();
799 799
    }
800 800

	
801 801
    ///The type of the map that indicates which nodes are reached.
802 802

	
803 803
    ///The type of the map that indicates which nodes are reached.
804 804
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
805 805
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
806 806
    ///Instantiates a ReachedMap.
807 807

	
808 808
    ///This function instantiates a ReachedMap.
809 809
    ///\param g is the digraph, to which
810 810
    ///we would like to define the ReachedMap.
811 811
    static ReachedMap *createReachedMap(const Digraph &g)
812 812
    {
813 813
      return new ReachedMap(g);
814 814
    }
815 815

	
816 816
    ///The type of the map that stores the distances of the nodes.
817 817

	
818 818
    ///The type of the map that stores the distances of the nodes.
819 819
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
820 820
    typedef typename Digraph::template NodeMap<int> DistMap;
821 821
    ///Instantiates a DistMap.
822 822

	
823 823
    ///This function instantiates a DistMap.
824 824
    ///\param g is the digraph, to which we would like to define
825 825
    ///the DistMap
826 826
    static DistMap *createDistMap(const Digraph &g)
827 827
    {
828 828
      return new DistMap(g);
829 829
    }
830 830

	
831 831
    ///The type of the DFS paths.
832 832

	
833 833
    ///The type of the DFS paths.
834 834
    ///It must conform to the \ref concepts::Path "Path" concept.
835 835
    typedef lemon::Path<Digraph> Path;
836 836
  };
837 837

	
838 838
  /// Default traits class used by DfsWizard
839 839

	
840 840
  /// Default traits class used by DfsWizard.
841 841
  /// \tparam GR The type of the digraph.
842 842
  template<class GR>
843 843
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
844 844
  {
845 845

	
846 846
    typedef DfsWizardDefaultTraits<GR> Base;
847 847
  protected:
848 848
    //The type of the nodes in the digraph.
849 849
    typedef typename Base::Digraph::Node Node;
850 850

	
851 851
    //Pointer to the digraph the algorithm runs on.
852 852
    void *_g;
853 853
    //Pointer to the map of reached nodes.
854 854
    void *_reached;
855 855
    //Pointer to the map of processed nodes.
856 856
    void *_processed;
857 857
    //Pointer to the map of predecessors arcs.
858 858
    void *_pred;
859 859
    //Pointer to the map of distances.
860 860
    void *_dist;
861 861
    //Pointer to the DFS path to the target node.
862 862
    void *_path;
863 863
    //Pointer to the distance of the target node.
864 864
    int *_di;
865 865

	
866 866
    public:
867 867
    /// Constructor.
868 868

	
869 869
    /// This constructor does not require parameters, it initiates
870 870
    /// all of the attributes to \c 0.
871 871
    DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
872 872
                      _dist(0), _path(0), _di(0) {}
873 873

	
874 874
    /// Constructor.
875 875

	
876 876
    /// This constructor requires one parameter,
877 877
    /// others are initiated to \c 0.
878 878
    /// \param g The digraph the algorithm runs on.
879 879
    DfsWizardBase(const GR &g) :
880 880
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
881 881
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
882 882

	
883 883
  };
884 884

	
885 885
  /// Auxiliary class for the function-type interface of DFS algorithm.
886 886

	
887 887
  /// This auxiliary class is created to implement the
888 888
  /// \ref dfs() "function-type interface" of \ref Dfs algorithm.
889 889
  /// It does not have own \ref run(Node) "run()" method, it uses the
890 890
  /// functions and features of the plain \ref Dfs.
891 891
  ///
892 892
  /// This class should only be used through the \ref dfs() function,
893 893
  /// which makes it easier to use the algorithm.
894 894
  template<class TR>
895 895
  class DfsWizard : public TR
896 896
  {
897 897
    typedef TR Base;
898 898

	
899 899
    typedef typename TR::Digraph Digraph;
900 900

	
901 901
    typedef typename Digraph::Node Node;
902 902
    typedef typename Digraph::NodeIt NodeIt;
903 903
    typedef typename Digraph::Arc Arc;
904 904
    typedef typename Digraph::OutArcIt OutArcIt;
905 905

	
906 906
    typedef typename TR::PredMap PredMap;
907 907
    typedef typename TR::DistMap DistMap;
908 908
    typedef typename TR::ReachedMap ReachedMap;
909 909
    typedef typename TR::ProcessedMap ProcessedMap;
910 910
    typedef typename TR::Path Path;
911 911

	
912 912
  public:
913 913

	
914 914
    /// Constructor.
915 915
    DfsWizard() : TR() {}
916 916

	
917 917
    /// Constructor that requires parameters.
918 918

	
919 919
    /// Constructor that requires parameters.
920 920
    /// These parameters will be the default values for the traits class.
921 921
    /// \param g The digraph the algorithm runs on.
922 922
    DfsWizard(const Digraph &g) :
923 923
      TR(g) {}
924 924

	
925 925
    ///Copy constructor
926 926
    DfsWizard(const TR &b) : TR(b) {}
927 927

	
928 928
    ~DfsWizard() {}
929 929

	
930 930
    ///Runs DFS algorithm from the given source node.
931 931

	
932 932
    ///This method runs DFS algorithm from node \c s
933 933
    ///in order to compute the DFS path to each node.
934 934
    void run(Node s)
935 935
    {
936 936
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
937 937
      if (Base::_pred)
938 938
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
939 939
      if (Base::_dist)
940 940
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
941 941
      if (Base::_reached)
942 942
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
943 943
      if (Base::_processed)
944 944
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
945 945
      if (s!=INVALID)
946 946
        alg.run(s);
947 947
      else
948 948
        alg.run();
949 949
    }
950 950

	
951 951
    ///Finds the DFS path between \c s and \c t.
952 952

	
953 953
    ///This method runs DFS algorithm from node \c s
954 954
    ///in order to compute the DFS path to node \c t
955 955
    ///(it stops searching when \c t is processed).
956 956
    ///
957 957
    ///\return \c true if \c t is reachable form \c s.
958 958
    bool run(Node s, Node t)
959 959
    {
960 960
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
961 961
      if (Base::_pred)
962 962
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
963 963
      if (Base::_dist)
964 964
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
965 965
      if (Base::_reached)
966 966
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
967 967
      if (Base::_processed)
968 968
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
969 969
      alg.run(s,t);
970 970
      if (Base::_path)
971 971
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
972 972
      if (Base::_di)
973 973
        *Base::_di = alg.dist(t);
974 974
      return alg.reached(t);
975 975
      }
976 976

	
977 977
    ///Runs DFS algorithm to visit all nodes in the digraph.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DIJKSTRA_H
20 20
#define LEMON_DIJKSTRA_H
21 21

	
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief Dijkstra algorithm.
25 25

	
26 26
#include <limits>
27 27
#include <lemon/list_graph.h>
28 28
#include <lemon/bin_heap.h>
29 29
#include <lemon/bits/path_dump.h>
30 30
#include <lemon/core.h>
31 31
#include <lemon/error.h>
32 32
#include <lemon/maps.h>
33 33
#include <lemon/path.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Default operation traits for the Dijkstra algorithm class.
38 38
  ///
39 39
  /// This operation traits class defines all computational operations and
40 40
  /// constants which are used in the Dijkstra algorithm.
41 41
  template <typename V>
42 42
  struct DijkstraDefaultOperationTraits {
43 43
    /// \e
44 44
    typedef V Value;
45 45
    /// \brief Gives back the zero value of the type.
46 46
    static Value zero() {
47 47
      return static_cast<Value>(0);
48 48
    }
49 49
    /// \brief Gives back the sum of the given two elements.
50 50
    static Value plus(const Value& left, const Value& right) {
51 51
      return left + right;
52 52
    }
53 53
    /// \brief Gives back true only if the first value is less than the second.
54 54
    static bool less(const Value& left, const Value& right) {
55 55
      return left < right;
56 56
    }
57 57
  };
58 58

	
59 59
  ///Default traits class of Dijkstra class.
60 60

	
61 61
  ///Default traits class of Dijkstra class.
62 62
  ///\tparam GR The type of the digraph.
63 63
  ///\tparam LEN The type of the length map.
64 64
  template<typename GR, typename LEN>
65 65
  struct DijkstraDefaultTraits
66 66
  {
67 67
    ///The type of the digraph the algorithm runs on.
68 68
    typedef GR Digraph;
69 69

	
70 70
    ///The type of the map that stores the arc lengths.
71 71

	
72 72
    ///The type of the map that stores the arc lengths.
73 73
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
74 74
    typedef LEN LengthMap;
75 75
    ///The type of the arc lengths.
76 76
    typedef typename LEN::Value Value;
77 77

	
78 78
    /// Operation traits for %Dijkstra algorithm.
79 79

	
80 80
    /// This class defines the operations that are used in the algorithm.
81 81
    /// \see DijkstraDefaultOperationTraits
82 82
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
83 83

	
84 84
    /// The cross reference type used by the heap.
85 85

	
86 86
    /// The cross reference type used by the heap.
87 87
    /// Usually it is \c Digraph::NodeMap<int>.
88 88
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
89 89
    ///Instantiates a \c HeapCrossRef.
90 90

	
91 91
    ///This function instantiates a \ref HeapCrossRef.
92 92
    /// \param g is the digraph, to which we would like to define the
93 93
    /// \ref HeapCrossRef.
94 94
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
95 95
    {
96 96
      return new HeapCrossRef(g);
97 97
    }
98 98

	
99 99
    ///The heap type used by the %Dijkstra algorithm.
100 100

	
101 101
    ///The heap type used by the Dijkstra algorithm.
102 102
    ///
103 103
    ///\sa BinHeap
104 104
    ///\sa Dijkstra
105 105
    typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
106 106
    ///Instantiates a \c Heap.
107 107

	
108 108
    ///This function instantiates a \ref Heap.
109 109
    static Heap *createHeap(HeapCrossRef& r)
110 110
    {
111 111
      return new Heap(r);
112 112
    }
113 113

	
114 114
    ///\brief The type of the map that stores the predecessor
115 115
    ///arcs of the shortest paths.
116 116
    ///
117 117
    ///The type of the map that stores the predecessor
118 118
    ///arcs of the shortest paths.
119 119
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
120 120
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
121 121
    ///Instantiates a \c PredMap.
122 122

	
123 123
    ///This function instantiates a \ref PredMap.
124 124
    ///\param g is the digraph, to which we would like to define the
125 125
    ///\ref PredMap.
126 126
    static PredMap *createPredMap(const Digraph &g)
127 127
    {
128 128
      return new PredMap(g);
129 129
    }
130 130

	
131 131
    ///The type of the map that indicates which nodes are processed.
132 132

	
133 133
    ///The type of the map that indicates which nodes are processed.
134 134
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
135
    ///By default it is a NullMap.
135
    ///By default, it is a NullMap.
136 136
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
137 137
    ///Instantiates a \c ProcessedMap.
138 138

	
139 139
    ///This function instantiates a \ref ProcessedMap.
140 140
    ///\param g is the digraph, to which
141 141
    ///we would like to define the \ref ProcessedMap.
142 142
#ifdef DOXYGEN
143 143
    static ProcessedMap *createProcessedMap(const Digraph &g)
144 144
#else
145 145
    static ProcessedMap *createProcessedMap(const Digraph &)
146 146
#endif
147 147
    {
148 148
      return new ProcessedMap();
149 149
    }
150 150

	
151 151
    ///The type of the map that stores the distances of the nodes.
152 152

	
153 153
    ///The type of the map that stores the distances of the nodes.
154 154
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
155 155
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
156 156
    ///Instantiates a \c DistMap.
157 157

	
158 158
    ///This function instantiates a \ref DistMap.
159 159
    ///\param g is the digraph, to which we would like to define
160 160
    ///the \ref DistMap.
161 161
    static DistMap *createDistMap(const Digraph &g)
162 162
    {
163 163
      return new DistMap(g);
164 164
    }
165 165
  };
166 166

	
167 167
  ///%Dijkstra algorithm class.
168 168

	
169 169
  /// \ingroup shortest_path
170 170
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
171 171
  ///
172 172
  ///The %Dijkstra algorithm solves the single-source shortest path problem
173 173
  ///when all arc lengths are non-negative. If there are negative lengths,
174 174
  ///the BellmanFord algorithm should be used instead.
175 175
  ///
176 176
  ///The arc lengths are passed to the algorithm using a
177 177
  ///\ref concepts::ReadMap "ReadMap",
178 178
  ///so it is easy to change it to any kind of length.
179 179
  ///The type of the length is determined by the
180 180
  ///\ref concepts::ReadMap::Value "Value" of the length map.
181 181
  ///It is also possible to change the underlying priority heap.
182 182
  ///
183 183
  ///There is also a \ref dijkstra() "function-type interface" for the
184 184
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
185 185
  ///it can be used easier.
186 186
  ///
187 187
  ///\tparam GR The type of the digraph the algorithm runs on.
188 188
  ///The default type is \ref ListDigraph.
189 189
  ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
190 190
  ///the lengths of the arcs.
191 191
  ///It is read once for each arc, so the map may involve in
192 192
  ///relatively time consuming process to compute the arc lengths if
193 193
  ///it is necessary. The default map type is \ref
194 194
  ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
195 195
#ifdef DOXYGEN
196 196
  template <typename GR, typename LEN, typename TR>
197 197
#else
198 198
  template <typename GR=ListDigraph,
199 199
            typename LEN=typename GR::template ArcMap<int>,
200 200
            typename TR=DijkstraDefaultTraits<GR,LEN> >
201 201
#endif
202 202
  class Dijkstra {
203 203
  public:
204 204

	
205 205
    ///The type of the digraph the algorithm runs on.
206 206
    typedef typename TR::Digraph Digraph;
207 207

	
208 208
    ///The type of the arc lengths.
209 209
    typedef typename TR::LengthMap::Value Value;
210 210
    ///The type of the map that stores the arc lengths.
211 211
    typedef typename TR::LengthMap LengthMap;
212 212
    ///\brief The type of the map that stores the predecessor arcs of the
213 213
    ///shortest paths.
214 214
    typedef typename TR::PredMap PredMap;
215 215
    ///The type of the map that stores the distances of the nodes.
216 216
    typedef typename TR::DistMap DistMap;
217 217
    ///The type of the map that indicates which nodes are processed.
218 218
    typedef typename TR::ProcessedMap ProcessedMap;
219 219
    ///The type of the paths.
220 220
    typedef PredMapPath<Digraph, PredMap> Path;
221 221
    ///The cross reference type used for the current heap.
222 222
    typedef typename TR::HeapCrossRef HeapCrossRef;
223 223
    ///The heap type used by the algorithm.
224 224
    typedef typename TR::Heap Heap;
225 225
    ///\brief The \ref DijkstraDefaultOperationTraits "operation traits class"
226 226
    ///of the algorithm.
227 227
    typedef typename TR::OperationTraits OperationTraits;
228 228

	
229 229
    ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
230 230
    typedef TR Traits;
231 231

	
232 232
  private:
233 233

	
234 234
    typedef typename Digraph::Node Node;
235 235
    typedef typename Digraph::NodeIt NodeIt;
236 236
    typedef typename Digraph::Arc Arc;
237 237
    typedef typename Digraph::OutArcIt OutArcIt;
238 238

	
239 239
    //Pointer to the underlying digraph.
240 240
    const Digraph *G;
241 241
    //Pointer to the length map.
242 242
    const LengthMap *_length;
243 243
    //Pointer to the map of predecessors arcs.
244 244
    PredMap *_pred;
245 245
    //Indicates if _pred is locally allocated (true) or not.
246 246
    bool local_pred;
247 247
    //Pointer to the map of distances.
248 248
    DistMap *_dist;
249 249
    //Indicates if _dist is locally allocated (true) or not.
250 250
    bool local_dist;
251 251
    //Pointer to the map of processed status of the nodes.
252 252
    ProcessedMap *_processed;
253 253
    //Indicates if _processed is locally allocated (true) or not.
254 254
    bool local_processed;
255 255
    //Pointer to the heap cross references.
256 256
    HeapCrossRef *_heap_cross_ref;
257 257
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
258 258
    bool local_heap_cross_ref;
259 259
    //Pointer to the heap.
260 260
    Heap *_heap;
261 261
    //Indicates if _heap is locally allocated (true) or not.
262 262
    bool local_heap;
263 263

	
264 264
    //Creates the maps if necessary.
265 265
    void create_maps()
266 266
    {
267 267
      if(!_pred) {
268 268
        local_pred = true;
269 269
        _pred = Traits::createPredMap(*G);
270 270
      }
271 271
      if(!_dist) {
272 272
        local_dist = true;
273 273
        _dist = Traits::createDistMap(*G);
274 274
      }
275 275
      if(!_processed) {
276 276
        local_processed = true;
277 277
        _processed = Traits::createProcessedMap(*G);
278 278
      }
279 279
      if (!_heap_cross_ref) {
280 280
        local_heap_cross_ref = true;
281 281
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
282 282
      }
283 283
      if (!_heap) {
284 284
        local_heap = true;
285 285
        _heap = Traits::createHeap(*_heap_cross_ref);
286 286
      }
287 287
    }
288 288

	
289 289
  public:
290 290

	
291 291
    typedef Dijkstra Create;
292 292

	
293 293
    ///\name Named Template Parameters
294 294

	
295 295
    ///@{
296 296

	
297 297
    template <class T>
298 298
    struct SetPredMapTraits : public Traits {
299 299
      typedef T PredMap;
300 300
      static PredMap *createPredMap(const Digraph &)
301 301
      {
302 302
        LEMON_ASSERT(false, "PredMap is not initialized");
303 303
        return 0; // ignore warnings
304 304
      }
305 305
    };
306 306
    ///\brief \ref named-templ-param "Named parameter" for setting
307 307
    ///\c PredMap type.
308 308
    ///
309 309
    ///\ref named-templ-param "Named parameter" for setting
310 310
    ///\c PredMap type.
311 311
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
312 312
    template <class T>
313 313
    struct SetPredMap
314 314
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
315 315
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
316 316
    };
317 317

	
318 318
    template <class T>
319 319
    struct SetDistMapTraits : public Traits {
320 320
      typedef T DistMap;
321 321
      static DistMap *createDistMap(const Digraph &)
322 322
      {
323 323
        LEMON_ASSERT(false, "DistMap is not initialized");
324 324
        return 0; // ignore warnings
325 325
      }
326 326
    };
327 327
    ///\brief \ref named-templ-param "Named parameter" for setting
328 328
    ///\c DistMap type.
329 329
    ///
330 330
    ///\ref named-templ-param "Named parameter" for setting
331 331
    ///\c DistMap type.
332 332
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
333 333
    template <class T>
334 334
    struct SetDistMap
335 335
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
336 336
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
337 337
    };
338 338

	
339 339
    template <class T>
340 340
    struct SetProcessedMapTraits : public Traits {
341 341
      typedef T ProcessedMap;
342 342
      static ProcessedMap *createProcessedMap(const Digraph &)
343 343
      {
344 344
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
345 345
        return 0; // ignore warnings
346 346
      }
347 347
    };
348 348
    ///\brief \ref named-templ-param "Named parameter" for setting
349 349
    ///\c ProcessedMap type.
350 350
    ///
351 351
    ///\ref named-templ-param "Named parameter" for setting
352 352
    ///\c ProcessedMap type.
353 353
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
354 354
    template <class T>
355 355
    struct SetProcessedMap
356 356
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
357 357
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
358 358
    };
359 359

	
360 360
    struct SetStandardProcessedMapTraits : public Traits {
361 361
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
362 362
      static ProcessedMap *createProcessedMap(const Digraph &g)
363 363
      {
364 364
        return new ProcessedMap(g);
365 365
      }
366 366
    };
367 367
    ///\brief \ref named-templ-param "Named parameter" for setting
368 368
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
369 369
    ///
370 370
    ///\ref named-templ-param "Named parameter" for setting
371 371
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
372 372
    ///If you don't set it explicitly, it will be automatically allocated.
373 373
    struct SetStandardProcessedMap
374 374
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
375 375
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
376 376
      Create;
377 377
    };
378 378

	
379 379
    template <class H, class CR>
380 380
    struct SetHeapTraits : public Traits {
381 381
      typedef CR HeapCrossRef;
382 382
      typedef H Heap;
383 383
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
384 384
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
385 385
        return 0; // ignore warnings
386 386
      }
387 387
      static Heap *createHeap(HeapCrossRef &)
388 388
      {
389 389
        LEMON_ASSERT(false, "Heap is not initialized");
390 390
        return 0; // ignore warnings
391 391
      }
392 392
    };
393 393
    ///\brief \ref named-templ-param "Named parameter" for setting
394 394
    ///heap and cross reference types
395 395
    ///
396 396
    ///\ref named-templ-param "Named parameter" for setting heap and cross
397 397
    ///reference types. If this named parameter is used, then external
398 398
    ///heap and cross reference objects must be passed to the algorithm
399 399
    ///using the \ref heap() function before calling \ref run(Node) "run()"
400 400
    ///or \ref init().
401 401
    ///\sa SetStandardHeap
402 402
    template <class H, class CR = typename Digraph::template NodeMap<int> >
403 403
    struct SetHeap
404 404
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
405 405
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
406 406
    };
407 407

	
408 408
    template <class H, class CR>
409 409
    struct SetStandardHeapTraits : public Traits {
410 410
      typedef CR HeapCrossRef;
411 411
      typedef H Heap;
412 412
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
413 413
        return new HeapCrossRef(G);
414 414
      }
415 415
      static Heap *createHeap(HeapCrossRef &R)
416 416
      {
417 417
        return new Heap(R);
418 418
      }
419 419
    };
420 420
    ///\brief \ref named-templ-param "Named parameter" for setting
421 421
    ///heap and cross reference types with automatic allocation
422 422
    ///
423 423
    ///\ref named-templ-param "Named parameter" for setting heap and cross
424 424
    ///reference types with automatic allocation.
425 425
    ///They should have standard constructor interfaces to be able to
426 426
    ///automatically created by the algorithm (i.e. the digraph should be
427 427
    ///passed to the constructor of the cross reference and the cross
428 428
    ///reference should be passed to the constructor of the heap).
429
    ///However external heap and cross reference objects could also be
429
    ///However, external heap and cross reference objects could also be
430 430
    ///passed to the algorithm using the \ref heap() function before
431 431
    ///calling \ref run(Node) "run()" or \ref init().
432 432
    ///\sa SetHeap
433 433
    template <class H, class CR = typename Digraph::template NodeMap<int> >
434 434
    struct SetStandardHeap
435 435
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
436 436
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
437 437
      Create;
438 438
    };
439 439

	
440 440
    template <class T>
441 441
    struct SetOperationTraitsTraits : public Traits {
442 442
      typedef T OperationTraits;
443 443
    };
444 444

	
445 445
    /// \brief \ref named-templ-param "Named parameter" for setting
446 446
    ///\c OperationTraits type
447 447
    ///
448 448
    ///\ref named-templ-param "Named parameter" for setting
449 449
    ///\c OperationTraits type.
450
    /// For more information see \ref DijkstraDefaultOperationTraits.
450
    /// For more information, see \ref DijkstraDefaultOperationTraits.
451 451
    template <class T>
452 452
    struct SetOperationTraits
453 453
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
454 454
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
455 455
      Create;
456 456
    };
457 457

	
458 458
    ///@}
459 459

	
460 460
  protected:
461 461

	
462 462
    Dijkstra() {}
463 463

	
464 464
  public:
465 465

	
466 466
    ///Constructor.
467 467

	
468 468
    ///Constructor.
469 469
    ///\param g The digraph the algorithm runs on.
470 470
    ///\param length The length map used by the algorithm.
471 471
    Dijkstra(const Digraph& g, const LengthMap& length) :
472 472
      G(&g), _length(&length),
473 473
      _pred(NULL), local_pred(false),
474 474
      _dist(NULL), local_dist(false),
475 475
      _processed(NULL), local_processed(false),
476 476
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
477 477
      _heap(NULL), local_heap(false)
478 478
    { }
479 479

	
480 480
    ///Destructor.
481 481
    ~Dijkstra()
482 482
    {
483 483
      if(local_pred) delete _pred;
484 484
      if(local_dist) delete _dist;
485 485
      if(local_processed) delete _processed;
486 486
      if(local_heap_cross_ref) delete _heap_cross_ref;
487 487
      if(local_heap) delete _heap;
488 488
    }
489 489

	
490 490
    ///Sets the length map.
491 491

	
492 492
    ///Sets the length map.
493 493
    ///\return <tt> (*this) </tt>
494 494
    Dijkstra &lengthMap(const LengthMap &m)
495 495
    {
496 496
      _length = &m;
497 497
      return *this;
498 498
    }
499 499

	
500 500
    ///Sets the map that stores the predecessor arcs.
501 501

	
502 502
    ///Sets the map that stores the predecessor arcs.
503 503
    ///If you don't use this function before calling \ref run(Node) "run()"
504 504
    ///or \ref init(), an instance will be allocated automatically.
505 505
    ///The destructor deallocates this automatically allocated map,
506 506
    ///of course.
507 507
    ///\return <tt> (*this) </tt>
508 508
    Dijkstra &predMap(PredMap &m)
509 509
    {
510 510
      if(local_pred) {
511 511
        delete _pred;
512 512
        local_pred=false;
513 513
      }
514 514
      _pred = &m;
515 515
      return *this;
516 516
    }
517 517

	
518 518
    ///Sets the map that indicates which nodes are processed.
519 519

	
520 520
    ///Sets the map that indicates which nodes are processed.
521 521
    ///If you don't use this function before calling \ref run(Node) "run()"
522 522
    ///or \ref init(), an instance will be allocated automatically.
523 523
    ///The destructor deallocates this automatically allocated map,
524 524
    ///of course.
525 525
    ///\return <tt> (*this) </tt>
526 526
    Dijkstra &processedMap(ProcessedMap &m)
527 527
    {
528 528
      if(local_processed) {
529 529
        delete _processed;
530 530
        local_processed=false;
531 531
      }
532 532
      _processed = &m;
533 533
      return *this;
534 534
    }
535 535

	
536 536
    ///Sets the map that stores the distances of the nodes.
537 537

	
538 538
    ///Sets the map that stores the distances of the nodes calculated by the
539 539
    ///algorithm.
540 540
    ///If you don't use this function before calling \ref run(Node) "run()"
541 541
    ///or \ref init(), an instance will be allocated automatically.
542 542
    ///The destructor deallocates this automatically allocated map,
543 543
    ///of course.
544 544
    ///\return <tt> (*this) </tt>
545 545
    Dijkstra &distMap(DistMap &m)
546 546
    {
547 547
      if(local_dist) {
548 548
        delete _dist;
549 549
        local_dist=false;
550 550
      }
551 551
      _dist = &m;
552 552
      return *this;
553 553
    }
554 554

	
555 555
    ///Sets the heap and the cross reference used by algorithm.
556 556

	
557 557
    ///Sets the heap and the cross reference used by algorithm.
558 558
    ///If you don't use this function before calling \ref run(Node) "run()"
559 559
    ///or \ref init(), heap and cross reference instances will be
560 560
    ///allocated automatically.
561 561
    ///The destructor deallocates these automatically allocated objects,
562 562
    ///of course.
563 563
    ///\return <tt> (*this) </tt>
564 564
    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
565 565
    {
566 566
      if(local_heap_cross_ref) {
567 567
        delete _heap_cross_ref;
568 568
        local_heap_cross_ref=false;
569 569
      }
570 570
      _heap_cross_ref = &cr;
571 571
      if(local_heap) {
572 572
        delete _heap;
573 573
        local_heap=false;
574 574
      }
575 575
      _heap = &hp;
576 576
      return *this;
577 577
    }
578 578

	
579 579
  private:
580 580

	
581 581
    void finalizeNodeData(Node v,Value dst)
582 582
    {
583 583
      _processed->set(v,true);
584 584
      _dist->set(v, dst);
585 585
    }
586 586

	
587 587
  public:
588 588

	
589 589
    ///\name Execution Control
590 590
    ///The simplest way to execute the %Dijkstra algorithm is to use
591 591
    ///one of the member functions called \ref run(Node) "run()".\n
592 592
    ///If you need better control on the execution, you have to call
593 593
    ///\ref init() first, then you can add several source nodes with
594 594
    ///\ref addSource(). Finally the actual path computation can be
595 595
    ///performed with one of the \ref start() functions.
596 596

	
597 597
    ///@{
598 598

	
599 599
    ///\brief Initializes the internal data structures.
600 600
    ///
601 601
    ///Initializes the internal data structures.
602 602
    void init()
603 603
    {
604 604
      create_maps();
605 605
      _heap->clear();
606 606
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
607 607
        _pred->set(u,INVALID);
608 608
        _processed->set(u,false);
609 609
        _heap_cross_ref->set(u,Heap::PRE_HEAP);
610 610
      }
611 611
    }
612 612

	
613 613
    ///Adds a new source node.
614 614

	
615 615
    ///Adds a new source node to the priority heap.
616 616
    ///The optional second parameter is the initial distance of the node.
617 617
    ///
618 618
    ///The function checks if the node has already been added to the heap and
619 619
    ///it is pushed to the heap only if either it was not in the heap
620 620
    ///or the shortest path found till then is shorter than \c dst.
621 621
    void addSource(Node s,Value dst=OperationTraits::zero())
622 622
    {
623 623
      if(_heap->state(s) != Heap::IN_HEAP) {
624 624
        _heap->push(s,dst);
625 625
      } else if(OperationTraits::less((*_heap)[s], dst)) {
626 626
        _heap->set(s,dst);
627 627
        _pred->set(s,INVALID);
628 628
      }
629 629
    }
630 630

	
631 631
    ///Processes the next node in the priority heap
632 632

	
633 633
    ///Processes the next node in the priority heap.
634 634
    ///
635 635
    ///\return The processed node.
636 636
    ///
637 637
    ///\warning The priority heap must not be empty.
638 638
    Node processNextNode()
639 639
    {
640 640
      Node v=_heap->top();
641 641
      Value oldvalue=_heap->prio();
642 642
      _heap->pop();
... ...
@@ -807,385 +807,385 @@
807 807
    ///The results of the %Dijkstra algorithm can be obtained using these
808 808
    ///functions.\n
809 809
    ///Either \ref run(Node) "run()" or \ref init() should be called
810 810
    ///before using them.
811 811

	
812 812
    ///@{
813 813

	
814 814
    ///The shortest path to the given node.
815 815

	
816 816
    ///Returns the shortest path to the given node from the root(s).
817 817
    ///
818 818
    ///\warning \c t should be reached from the root(s).
819 819
    ///
820 820
    ///\pre Either \ref run(Node) "run()" or \ref init()
821 821
    ///must be called before using this function.
822 822
    Path path(Node t) const { return Path(*G, *_pred, t); }
823 823

	
824 824
    ///The distance of the given node from the root(s).
825 825

	
826 826
    ///Returns the distance of the given node from the root(s).
827 827
    ///
828 828
    ///\warning If node \c v is not reached from the root(s), then
829 829
    ///the return value of this function is undefined.
830 830
    ///
831 831
    ///\pre Either \ref run(Node) "run()" or \ref init()
832 832
    ///must be called before using this function.
833 833
    Value dist(Node v) const { return (*_dist)[v]; }
834 834

	
835 835
    ///\brief Returns the 'previous arc' of the shortest path tree for
836 836
    ///the given node.
837 837
    ///
838 838
    ///This function returns the 'previous arc' of the shortest path
839 839
    ///tree for the node \c v, i.e. it returns the last arc of a
840 840
    ///shortest path from a root to \c v. It is \c INVALID if \c v
841 841
    ///is not reached from the root(s) or if \c v is a root.
842 842
    ///
843 843
    ///The shortest path tree used here is equal to the shortest path
844 844
    ///tree used in \ref predNode() and \ref predMap().
845 845
    ///
846 846
    ///\pre Either \ref run(Node) "run()" or \ref init()
847 847
    ///must be called before using this function.
848 848
    Arc predArc(Node v) const { return (*_pred)[v]; }
849 849

	
850 850
    ///\brief Returns the 'previous node' of the shortest path tree for
851 851
    ///the given node.
852 852
    ///
853 853
    ///This function returns the 'previous node' of the shortest path
854 854
    ///tree for the node \c v, i.e. it returns the last but one node
855 855
    ///of a shortest path from a root to \c v. It is \c INVALID
856 856
    ///if \c v is not reached from the root(s) or if \c v is a root.
857 857
    ///
858 858
    ///The shortest path tree used here is equal to the shortest path
859 859
    ///tree used in \ref predArc() and \ref predMap().
860 860
    ///
861 861
    ///\pre Either \ref run(Node) "run()" or \ref init()
862 862
    ///must be called before using this function.
863 863
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
864 864
                                  G->source((*_pred)[v]); }
865 865

	
866 866
    ///\brief Returns a const reference to the node map that stores the
867 867
    ///distances of the nodes.
868 868
    ///
869 869
    ///Returns a const reference to the node map that stores the distances
870 870
    ///of the nodes calculated by the algorithm.
871 871
    ///
872 872
    ///\pre Either \ref run(Node) "run()" or \ref init()
873 873
    ///must be called before using this function.
874 874
    const DistMap &distMap() const { return *_dist;}
875 875

	
876 876
    ///\brief Returns a const reference to the node map that stores the
877 877
    ///predecessor arcs.
878 878
    ///
879 879
    ///Returns a const reference to the node map that stores the predecessor
880 880
    ///arcs, which form the shortest path tree (forest).
881 881
    ///
882 882
    ///\pre Either \ref run(Node) "run()" or \ref init()
883 883
    ///must be called before using this function.
884 884
    const PredMap &predMap() const { return *_pred;}
885 885

	
886 886
    ///Checks if the given node is reached from the root(s).
887 887

	
888 888
    ///Returns \c true if \c v is reached from the root(s).
889 889
    ///
890 890
    ///\pre Either \ref run(Node) "run()" or \ref init()
891 891
    ///must be called before using this function.
892 892
    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
893 893
                                        Heap::PRE_HEAP; }
894 894

	
895 895
    ///Checks if a node is processed.
896 896

	
897 897
    ///Returns \c true if \c v is processed, i.e. the shortest
898 898
    ///path to \c v has already found.
899 899
    ///
900 900
    ///\pre Either \ref run(Node) "run()" or \ref init()
901 901
    ///must be called before using this function.
902 902
    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
903 903
                                          Heap::POST_HEAP; }
904 904

	
905 905
    ///The current distance of the given node from the root(s).
906 906

	
907 907
    ///Returns the current distance of the given node from the root(s).
908 908
    ///It may be decreased in the following processes.
909 909
    ///
910 910
    ///\pre Either \ref run(Node) "run()" or \ref init()
911 911
    ///must be called before using this function and
912 912
    ///node \c v must be reached but not necessarily processed.
913 913
    Value currentDist(Node v) const {
914 914
      return processed(v) ? (*_dist)[v] : (*_heap)[v];
915 915
    }
916 916

	
917 917
    ///@}
918 918
  };
919 919

	
920 920

	
921 921
  ///Default traits class of dijkstra() function.
922 922

	
923 923
  ///Default traits class of dijkstra() function.
924 924
  ///\tparam GR The type of the digraph.
925 925
  ///\tparam LEN The type of the length map.
926 926
  template<class GR, class LEN>
927 927
  struct DijkstraWizardDefaultTraits
928 928
  {
929 929
    ///The type of the digraph the algorithm runs on.
930 930
    typedef GR Digraph;
931 931
    ///The type of the map that stores the arc lengths.
932 932

	
933 933
    ///The type of the map that stores the arc lengths.
934 934
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
935 935
    typedef LEN LengthMap;
936 936
    ///The type of the arc lengths.
937 937
    typedef typename LEN::Value Value;
938 938

	
939 939
    /// Operation traits for Dijkstra algorithm.
940 940

	
941 941
    /// This class defines the operations that are used in the algorithm.
942 942
    /// \see DijkstraDefaultOperationTraits
943 943
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
944 944

	
945 945
    /// The cross reference type used by the heap.
946 946

	
947 947
    /// The cross reference type used by the heap.
948 948
    /// Usually it is \c Digraph::NodeMap<int>.
949 949
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
950 950
    ///Instantiates a \ref HeapCrossRef.
951 951

	
952 952
    ///This function instantiates a \ref HeapCrossRef.
953 953
    /// \param g is the digraph, to which we would like to define the
954 954
    /// HeapCrossRef.
955 955
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
956 956
    {
957 957
      return new HeapCrossRef(g);
958 958
    }
959 959

	
960 960
    ///The heap type used by the Dijkstra algorithm.
961 961

	
962 962
    ///The heap type used by the Dijkstra algorithm.
963 963
    ///
964 964
    ///\sa BinHeap
965 965
    ///\sa Dijkstra
966 966
    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
967 967
                    std::less<Value> > Heap;
968 968

	
969 969
    ///Instantiates a \ref Heap.
970 970

	
971 971
    ///This function instantiates a \ref Heap.
972 972
    /// \param r is the HeapCrossRef which is used.
973 973
    static Heap *createHeap(HeapCrossRef& r)
974 974
    {
975 975
      return new Heap(r);
976 976
    }
977 977

	
978 978
    ///\brief The type of the map that stores the predecessor
979 979
    ///arcs of the shortest paths.
980 980
    ///
981 981
    ///The type of the map that stores the predecessor
982 982
    ///arcs of the shortest paths.
983 983
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
984 984
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
985 985
    ///Instantiates a PredMap.
986 986

	
987 987
    ///This function instantiates a PredMap.
988 988
    ///\param g is the digraph, to which we would like to define the
989 989
    ///PredMap.
990 990
    static PredMap *createPredMap(const Digraph &g)
991 991
    {
992 992
      return new PredMap(g);
993 993
    }
994 994

	
995 995
    ///The type of the map that indicates which nodes are processed.
996 996

	
997 997
    ///The type of the map that indicates which nodes are processed.
998 998
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
999
    ///By default it is a NullMap.
999
    ///By default, it is a NullMap.
1000 1000
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1001 1001
    ///Instantiates a ProcessedMap.
1002 1002

	
1003 1003
    ///This function instantiates a ProcessedMap.
1004 1004
    ///\param g is the digraph, to which
1005 1005
    ///we would like to define the ProcessedMap.
1006 1006
#ifdef DOXYGEN
1007 1007
    static ProcessedMap *createProcessedMap(const Digraph &g)
1008 1008
#else
1009 1009
    static ProcessedMap *createProcessedMap(const Digraph &)
1010 1010
#endif
1011 1011
    {
1012 1012
      return new ProcessedMap();
1013 1013
    }
1014 1014

	
1015 1015
    ///The type of the map that stores the distances of the nodes.
1016 1016

	
1017 1017
    ///The type of the map that stores the distances of the nodes.
1018 1018
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
1019 1019
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
1020 1020
    ///Instantiates a DistMap.
1021 1021

	
1022 1022
    ///This function instantiates a DistMap.
1023 1023
    ///\param g is the digraph, to which we would like to define
1024 1024
    ///the DistMap
1025 1025
    static DistMap *createDistMap(const Digraph &g)
1026 1026
    {
1027 1027
      return new DistMap(g);
1028 1028
    }
1029 1029

	
1030 1030
    ///The type of the shortest paths.
1031 1031

	
1032 1032
    ///The type of the shortest paths.
1033 1033
    ///It must conform to the \ref concepts::Path "Path" concept.
1034 1034
    typedef lemon::Path<Digraph> Path;
1035 1035
  };
1036 1036

	
1037 1037
  /// Default traits class used by DijkstraWizard
1038 1038

	
1039 1039
  /// Default traits class used by DijkstraWizard.
1040 1040
  /// \tparam GR The type of the digraph.
1041 1041
  /// \tparam LEN The type of the length map.
1042 1042
  template<typename GR, typename LEN>
1043 1043
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
1044 1044
  {
1045 1045
    typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
1046 1046
  protected:
1047 1047
    //The type of the nodes in the digraph.
1048 1048
    typedef typename Base::Digraph::Node Node;
1049 1049

	
1050 1050
    //Pointer to the digraph the algorithm runs on.
1051 1051
    void *_g;
1052 1052
    //Pointer to the length map.
1053 1053
    void *_length;
1054 1054
    //Pointer to the map of processed nodes.
1055 1055
    void *_processed;
1056 1056
    //Pointer to the map of predecessors arcs.
1057 1057
    void *_pred;
1058 1058
    //Pointer to the map of distances.
1059 1059
    void *_dist;
1060 1060
    //Pointer to the shortest path to the target node.
1061 1061
    void *_path;
1062 1062
    //Pointer to the distance of the target node.
1063 1063
    void *_di;
1064 1064

	
1065 1065
  public:
1066 1066
    /// Constructor.
1067 1067

	
1068 1068
    /// This constructor does not require parameters, therefore it initiates
1069 1069
    /// all of the attributes to \c 0.
1070 1070
    DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1071 1071
                           _dist(0), _path(0), _di(0) {}
1072 1072

	
1073 1073
    /// Constructor.
1074 1074

	
1075 1075
    /// This constructor requires two parameters,
1076 1076
    /// others are initiated to \c 0.
1077 1077
    /// \param g The digraph the algorithm runs on.
1078 1078
    /// \param l The length map.
1079 1079
    DijkstraWizardBase(const GR &g,const LEN &l) :
1080 1080
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1081 1081
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
1082 1082
      _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1083 1083

	
1084 1084
  };
1085 1085

	
1086 1086
  /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1087 1087

	
1088 1088
  /// This auxiliary class is created to implement the
1089 1089
  /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1090 1090
  /// It does not have own \ref run(Node) "run()" method, it uses the
1091 1091
  /// functions and features of the plain \ref Dijkstra.
1092 1092
  ///
1093 1093
  /// This class should only be used through the \ref dijkstra() function,
1094 1094
  /// which makes it easier to use the algorithm.
1095 1095
  template<class TR>
1096 1096
  class DijkstraWizard : public TR
1097 1097
  {
1098 1098
    typedef TR Base;
1099 1099

	
1100 1100
    typedef typename TR::Digraph Digraph;
1101 1101

	
1102 1102
    typedef typename Digraph::Node Node;
1103 1103
    typedef typename Digraph::NodeIt NodeIt;
1104 1104
    typedef typename Digraph::Arc Arc;
1105 1105
    typedef typename Digraph::OutArcIt OutArcIt;
1106 1106

	
1107 1107
    typedef typename TR::LengthMap LengthMap;
1108 1108
    typedef typename LengthMap::Value Value;
1109 1109
    typedef typename TR::PredMap PredMap;
1110 1110
    typedef typename TR::DistMap DistMap;
1111 1111
    typedef typename TR::ProcessedMap ProcessedMap;
1112 1112
    typedef typename TR::Path Path;
1113 1113
    typedef typename TR::Heap Heap;
1114 1114

	
1115 1115
  public:
1116 1116

	
1117 1117
    /// Constructor.
1118 1118
    DijkstraWizard() : TR() {}
1119 1119

	
1120 1120
    /// Constructor that requires parameters.
1121 1121

	
1122 1122
    /// Constructor that requires parameters.
1123 1123
    /// These parameters will be the default values for the traits class.
1124 1124
    /// \param g The digraph the algorithm runs on.
1125 1125
    /// \param l The length map.
1126 1126
    DijkstraWizard(const Digraph &g, const LengthMap &l) :
1127 1127
      TR(g,l) {}
1128 1128

	
1129 1129
    ///Copy constructor
1130 1130
    DijkstraWizard(const TR &b) : TR(b) {}
1131 1131

	
1132 1132
    ~DijkstraWizard() {}
1133 1133

	
1134 1134
    ///Runs Dijkstra algorithm from the given source node.
1135 1135

	
1136 1136
    ///This method runs %Dijkstra algorithm from the given source node
1137 1137
    ///in order to compute the shortest path to each node.
1138 1138
    void run(Node s)
1139 1139
    {
1140 1140
      Dijkstra<Digraph,LengthMap,TR>
1141 1141
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1142 1142
             *reinterpret_cast<const LengthMap*>(Base::_length));
1143 1143
      if (Base::_pred)
1144 1144
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1145 1145
      if (Base::_dist)
1146 1146
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1147 1147
      if (Base::_processed)
1148 1148
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1149 1149
      dijk.run(s);
1150 1150
    }
1151 1151

	
1152 1152
    ///Finds the shortest path between \c s and \c t.
1153 1153

	
1154 1154
    ///This method runs the %Dijkstra algorithm from node \c s
1155 1155
    ///in order to compute the shortest path to node \c t
1156 1156
    ///(it stops searching when \c t is processed).
1157 1157
    ///
1158 1158
    ///\return \c true if \c t is reachable form \c s.
1159 1159
    bool run(Node s, Node t)
1160 1160
    {
1161 1161
      Dijkstra<Digraph,LengthMap,TR>
1162 1162
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1163 1163
             *reinterpret_cast<const LengthMap*>(Base::_length));
1164 1164
      if (Base::_pred)
1165 1165
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1166 1166
      if (Base::_dist)
1167 1167
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1168 1168
      if (Base::_processed)
1169 1169
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1170 1170
      dijk.run(s,t);
1171 1171
      if (Base::_path)
1172 1172
        *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1173 1173
      if (Base::_di)
1174 1174
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1175 1175
      return dijk.reached(t);
1176 1176
    }
1177 1177

	
1178 1178
    template<class T>
1179 1179
    struct SetPredMapBase : public Base {
1180 1180
      typedef T PredMap;
1181 1181
      static PredMap *createPredMap(const Digraph &) { return 0; };
1182 1182
      SetPredMapBase(const TR &b) : TR(b) {}
1183 1183
    };
1184 1184

	
1185 1185
    ///\brief \ref named-templ-param "Named parameter" for setting
1186 1186
    ///the predecessor map.
1187 1187
    ///
1188 1188
    ///\ref named-templ-param "Named parameter" function for setting
1189 1189
    ///the map that stores the predecessor arcs of the nodes.
1190 1190
    template<class T>
1191 1191
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
Ignore white space 6 line context
... ...
@@ -105,466 +105,464 @@
105 105
      }
106 106
      if (_weight) {
107 107
	delete _weight;
108 108
      }
109 109
      if (_order) {
110 110
	delete _order;
111 111
      }
112 112
    }
113 113
  
114 114
  public:
115 115

	
116 116
    /// \brief Constructor
117 117
    ///
118 118
    /// Constructor.
119 119
    /// \param graph The undirected graph the algorithm runs on.
120 120
    /// \param capacity The edge capacity map.
121 121
    GomoryHu(const Graph& graph, const Capacity& capacity) 
122 122
      : _graph(graph), _capacity(capacity),
123 123
	_pred(0), _weight(0), _order(0) 
124 124
    {
125 125
      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
126 126
    }
127 127

	
128 128

	
129 129
    /// \brief Destructor
130 130
    ///
131 131
    /// Destructor.
132 132
    ~GomoryHu() {
133 133
      destroyStructures();
134 134
    }
135 135

	
136 136
  private:
137 137
  
138 138
    // Initialize the internal data structures
139 139
    void init() {
140 140
      createStructures();
141 141

	
142 142
      _root = NodeIt(_graph);
143 143
      for (NodeIt n(_graph); n != INVALID; ++n) {
144 144
        (*_pred)[n] = _root;
145 145
        (*_order)[n] = -1;
146 146
      }
147 147
      (*_pred)[_root] = INVALID;
148 148
      (*_weight)[_root] = std::numeric_limits<Value>::max(); 
149 149
    }
150 150

	
151 151

	
152 152
    // Start the algorithm
153 153
    void start() {
154 154
      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
155 155

	
156 156
      for (NodeIt n(_graph); n != INVALID; ++n) {
157 157
	if (n == _root) continue;
158 158

	
159 159
	Node pn = (*_pred)[n];
160 160
	fa.source(n);
161 161
	fa.target(pn);
162 162

	
163 163
	fa.runMinCut();
164 164

	
165 165
	(*_weight)[n] = fa.flowValue();
166 166

	
167 167
	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
168 168
	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
169 169
	    (*_pred)[nn] = n;
170 170
	  }
171 171
	}
172 172
	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
173 173
	  (*_pred)[n] = (*_pred)[pn];
174 174
	  (*_pred)[pn] = n;
175 175
	  (*_weight)[n] = (*_weight)[pn];
176 176
	  (*_weight)[pn] = fa.flowValue();
177 177
	}
178 178
      }
179 179

	
180 180
      (*_order)[_root] = 0;
181 181
      int index = 1;
182 182

	
183 183
      for (NodeIt n(_graph); n != INVALID; ++n) {
184 184
	std::vector<Node> st;
185 185
	Node nn = n;
186 186
	while ((*_order)[nn] == -1) {
187 187
	  st.push_back(nn);
188 188
	  nn = (*_pred)[nn];
189 189
	}
190 190
	while (!st.empty()) {
191 191
	  (*_order)[st.back()] = index++;
192 192
	  st.pop_back();
193 193
	}
194 194
      }
195 195
    }
196 196

	
197 197
  public:
198 198

	
199 199
    ///\name Execution Control
200 200
 
201 201
    ///@{
202 202

	
203 203
    /// \brief Run the Gomory-Hu algorithm.
204 204
    ///
205 205
    /// This function runs the Gomory-Hu algorithm.
206 206
    void run() {
207 207
      init();
208 208
      start();
209 209
    }
210 210
    
211 211
    /// @}
212 212

	
213 213
    ///\name Query Functions
214 214
    ///The results of the algorithm can be obtained using these
215 215
    ///functions.\n
216 216
    ///\ref run() should be called before using them.\n
217 217
    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
218 218

	
219 219
    ///@{
220 220

	
221 221
    /// \brief Return the predecessor node in the Gomory-Hu tree.
222 222
    ///
223 223
    /// This function returns the predecessor node of the given node
224 224
    /// in the Gomory-Hu tree.
225 225
    /// If \c node is the root of the tree, then it returns \c INVALID.
226 226
    ///
227 227
    /// \pre \ref run() must be called before using this function.
228 228
    Node predNode(const Node& node) const {
229 229
      return (*_pred)[node];
230 230
    }
231 231

	
232 232
    /// \brief Return the weight of the predecessor edge in the
233 233
    /// Gomory-Hu tree.
234 234
    ///
235 235
    /// This function returns the weight of the predecessor edge of the 
236 236
    /// given node in the Gomory-Hu tree.
237 237
    /// If \c node is the root of the tree, the result is undefined.
238 238
    ///
239 239
    /// \pre \ref run() must be called before using this function.
240 240
    Value predValue(const Node& node) const {
241 241
      return (*_weight)[node];
242 242
    }
243 243

	
244 244
    /// \brief Return the distance from the root node in the Gomory-Hu tree.
245 245
    ///
246 246
    /// This function returns the distance of the given node from the root
247 247
    /// node in the Gomory-Hu tree.
248 248
    ///
249 249
    /// \pre \ref run() must be called before using this function.
250 250
    int rootDist(const Node& node) const {
251 251
      return (*_order)[node];
252 252
    }
253 253

	
254 254
    /// \brief Return the minimum cut value between two nodes
255 255
    ///
256 256
    /// This function returns the minimum cut value between the nodes
257 257
    /// \c s and \c t. 
258 258
    /// It finds the nearest common ancestor of the given nodes in the
259 259
    /// Gomory-Hu tree and calculates the minimum weight edge on the
260 260
    /// paths to the ancestor.
261 261
    ///
262 262
    /// \pre \ref run() must be called before using this function.
263 263
    Value minCutValue(const Node& s, const Node& t) const {
264 264
      Node sn = s, tn = t;
265 265
      Value value = std::numeric_limits<Value>::max();
266 266
      
267 267
      while (sn != tn) {
268 268
	if ((*_order)[sn] < (*_order)[tn]) {
269 269
	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
270 270
	  tn = (*_pred)[tn];
271 271
	} else {
272 272
	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
273 273
	  sn = (*_pred)[sn];
274 274
	}
275 275
      }
276 276
      return value;
277 277
    }
278 278

	
279 279
    /// \brief Return the minimum cut between two nodes
280 280
    ///
281 281
    /// This function returns the minimum cut between the nodes \c s and \c t
282 282
    /// in the \c cutMap parameter by setting the nodes in the component of
283 283
    /// \c s to \c true and the other nodes to \c false.
284 284
    ///
285 285
    /// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt.
286 286
    ///
287 287
    /// \param s The base node.
288 288
    /// \param t The node you want to separate from node \c s.
289 289
    /// \param cutMap The cut will be returned in this map.
290 290
    /// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap
291 291
    /// "ReadWriteMap" on the graph nodes.
292 292
    ///
293 293
    /// \return The value of the minimum cut between \c s and \c t.
294 294
    ///
295 295
    /// \pre \ref run() must be called before using this function.
296 296
    template <typename CutMap>
297
    Value minCutMap(const Node& s, ///< 
297
    Value minCutMap(const Node& s,
298 298
                    const Node& t,
299
                    ///< 
300 299
                    CutMap& cutMap
301
                    ///< 
302 300
                    ) const {
303 301
      Node sn = s, tn = t;
304 302
      bool s_root=false;
305 303
      Node rn = INVALID;
306 304
      Value value = std::numeric_limits<Value>::max();
307 305
      
308 306
      while (sn != tn) {
309 307
	if ((*_order)[sn] < (*_order)[tn]) {
310 308
	  if ((*_weight)[tn] <= value) {
311 309
	    rn = tn;
312 310
            s_root = false;
313 311
	    value = (*_weight)[tn];
314 312
	  }
315 313
	  tn = (*_pred)[tn];
316 314
	} else {
317 315
	  if ((*_weight)[sn] <= value) {
318 316
	    rn = sn;
319 317
            s_root = true;
320 318
	    value = (*_weight)[sn];
321 319
	  }
322 320
	  sn = (*_pred)[sn];
323 321
	}
324 322
      }
325 323

	
326 324
      typename Graph::template NodeMap<bool> reached(_graph, false);
327 325
      reached[_root] = true;
328 326
      cutMap.set(_root, !s_root);
329 327
      reached[rn] = true;
330 328
      cutMap.set(rn, s_root);
331 329

	
332 330
      std::vector<Node> st;
333 331
      for (NodeIt n(_graph); n != INVALID; ++n) {
334 332
	st.clear();
335 333
        Node nn = n;
336 334
	while (!reached[nn]) {
337 335
	  st.push_back(nn);
338 336
	  nn = (*_pred)[nn];
339 337
	}
340 338
	while (!st.empty()) {
341 339
	  cutMap.set(st.back(), cutMap[nn]);
342 340
	  st.pop_back();
343 341
	}
344 342
      }
345 343
      
346 344
      return value;
347 345
    }
348 346

	
349 347
    ///@}
350 348

	
351 349
    friend class MinCutNodeIt;
352 350

	
353 351
    /// Iterate on the nodes of a minimum cut
354 352
    
355 353
    /// This iterator class lists the nodes of a minimum cut found by
356 354
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
357 355
    /// and call its \ref GomoryHu::run() "run()" method.
358 356
    ///
359 357
    /// This example counts the nodes in the minimum cut separating \c s from
360 358
    /// \c t.
361 359
    /// \code
362 360
    /// GomoryHu<Graph> gom(g, capacities);
363 361
    /// gom.run();
364 362
    /// int cnt=0;
365 363
    /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
366 364
    /// \endcode
367 365
    class MinCutNodeIt
368 366
    {
369 367
      bool _side;
370 368
      typename Graph::NodeIt _node_it;
371 369
      typename Graph::template NodeMap<bool> _cut;
372 370
    public:
373 371
      /// Constructor
374 372

	
375 373
      /// Constructor.
376 374
      ///
377 375
      MinCutNodeIt(GomoryHu const &gomory,
378 376
                   ///< The GomoryHu class. You must call its
379 377
                   ///  run() method
380 378
                   ///  before initializing this iterator.
381 379
                   const Node& s, ///< The base node.
382 380
                   const Node& t,
383 381
                   ///< The node you want to separate from node \c s.
384 382
                   bool side=true
385 383
                   ///< If it is \c true (default) then the iterator lists
386 384
                   ///  the nodes of the component containing \c s,
387 385
                   ///  otherwise it lists the other component.
388 386
                   /// \note As the minimum cut is not always unique,
389 387
                   /// \code
390 388
                   /// MinCutNodeIt(gomory, s, t, true);
391 389
                   /// \endcode
392 390
                   /// and
393 391
                   /// \code
394 392
                   /// MinCutNodeIt(gomory, t, s, false);
395 393
                   /// \endcode
396 394
                   /// does not necessarily give the same set of nodes.
397
                   /// However it is ensured that
395
                   /// However, it is ensured that
398 396
                   /// \code
399 397
                   /// MinCutNodeIt(gomory, s, t, true);
400 398
                   /// \endcode
401 399
                   /// and
402 400
                   /// \code
403 401
                   /// MinCutNodeIt(gomory, s, t, false);
404 402
                   /// \endcode
405 403
                   /// together list each node exactly once.
406 404
                   )
407 405
        : _side(side), _cut(gomory._graph)
408 406
      {
409 407
        gomory.minCutMap(s,t,_cut);
410 408
        for(_node_it=typename Graph::NodeIt(gomory._graph);
411 409
            _node_it!=INVALID && _cut[_node_it]!=_side;
412 410
            ++_node_it) {}
413 411
      }
414 412
      /// Conversion to \c Node
415 413

	
416 414
      /// Conversion to \c Node.
417 415
      ///
418 416
      operator typename Graph::Node() const
419 417
      {
420 418
        return _node_it;
421 419
      }
422 420
      bool operator==(Invalid) { return _node_it==INVALID; }
423 421
      bool operator!=(Invalid) { return _node_it!=INVALID; }
424 422
      /// Next node
425 423

	
426 424
      /// Next node.
427 425
      ///
428 426
      MinCutNodeIt &operator++()
429 427
      {
430 428
        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
431 429
        return *this;
432 430
      }
433 431
      /// Postfix incrementation
434 432

	
435 433
      /// Postfix incrementation.
436 434
      ///
437 435
      /// \warning This incrementation
438 436
      /// returns a \c Node, not a \c MinCutNodeIt, as one may
439 437
      /// expect.
440 438
      typename Graph::Node operator++(int)
441 439
      {
442 440
        typename Graph::Node n=*this;
443 441
        ++(*this);
444 442
        return n;
445 443
      }
446 444
    };
447 445
    
448 446
    friend class MinCutEdgeIt;
449 447
    
450 448
    /// Iterate on the edges of a minimum cut
451 449
    
452 450
    /// This iterator class lists the edges of a minimum cut found by
453 451
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
454 452
    /// and call its \ref GomoryHu::run() "run()" method.
455 453
    ///
456 454
    /// This example computes the value of the minimum cut separating \c s from
457 455
    /// \c t.
458 456
    /// \code
459 457
    /// GomoryHu<Graph> gom(g, capacities);
460 458
    /// gom.run();
461 459
    /// int value=0;
462 460
    /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
463 461
    ///   value+=capacities[e];
464 462
    /// \endcode
465 463
    /// The result will be the same as the value returned by
466 464
    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
467 465
    class MinCutEdgeIt
468 466
    {
469 467
      bool _side;
470 468
      const Graph &_graph;
471 469
      typename Graph::NodeIt _node_it;
472 470
      typename Graph::OutArcIt _arc_it;
473 471
      typename Graph::template NodeMap<bool> _cut;
474 472
      void step()
475 473
      {
476 474
        ++_arc_it;
477 475
        while(_node_it!=INVALID && _arc_it==INVALID)
478 476
          {
479 477
            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
480 478
            if(_node_it!=INVALID)
481 479
              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
482 480
          }
483 481
      }
484 482
      
485 483
    public:
486 484
      /// Constructor
487 485

	
488 486
      /// Constructor.
489 487
      ///
490 488
      MinCutEdgeIt(GomoryHu const &gomory,
491 489
                   ///< The GomoryHu class. You must call its
492 490
                   ///  run() method
493 491
                   ///  before initializing this iterator.
494 492
                   const Node& s,  ///< The base node.
495 493
                   const Node& t,
496 494
                   ///< The node you want to separate from node \c s.
497 495
                   bool side=true
498 496
                   ///< If it is \c true (default) then the listed arcs
499 497
                   ///  will be oriented from the
500 498
                   ///  nodes of the component containing \c s,
501 499
                   ///  otherwise they will be oriented in the opposite
502 500
                   ///  direction.
503 501
                   )
504 502
        : _graph(gomory._graph), _cut(_graph)
505 503
      {
506 504
        gomory.minCutMap(s,t,_cut);
507 505
        if(!side)
508 506
          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
509 507
            _cut[n]=!_cut[n];
510 508

	
511 509
        for(_node_it=typename Graph::NodeIt(_graph);
512 510
            _node_it!=INVALID && !_cut[_node_it];
513 511
            ++_node_it) {}
514 512
        _arc_it = _node_it!=INVALID ?
515 513
          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
516 514
        while(_node_it!=INVALID && _arc_it == INVALID)
517 515
          {
518 516
            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
519 517
            if(_node_it!=INVALID)
520 518
              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
521 519
          }
522 520
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
523 521
      }
524 522
      /// Conversion to \c Arc
525 523

	
526 524
      /// Conversion to \c Arc.
527 525
      ///
528 526
      operator typename Graph::Arc() const
529 527
      {
530 528
        return _arc_it;
531 529
      }
532 530
      /// Conversion to \c Edge
533 531

	
534 532
      /// Conversion to \c Edge.
535 533
      ///
536 534
      operator typename Graph::Edge() const
537 535
      {
538 536
        return _arc_it;
539 537
      }
540 538
      bool operator==(Invalid) { return _node_it==INVALID; }
541 539
      bool operator!=(Invalid) { return _node_it!=INVALID; }
542 540
      /// Next edge
543 541

	
544 542
      /// Next edge.
545 543
      ///
546 544
      MinCutEdgeIt &operator++()
547 545
      {
548 546
        step();
549 547
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
550 548
        return *this;
551 549
      }
552 550
      /// Postfix incrementation
553 551
      
554 552
      /// Postfix incrementation.
555 553
      ///
556 554
      /// \warning This incrementation
557 555
      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
558 556
      typename Graph::Arc operator++(int)
559 557
      {
560 558
        typename Graph::Arc e=*this;
561 559
        ++(*this);
562 560
        return e;
563 561
      }
564 562
    };
565 563

	
566 564
  };
567 565

	
568 566
}
569 567

	
570 568
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GRAPH_TO_EPS_H
20 20
#define LEMON_GRAPH_TO_EPS_H
21 21

	
22 22
#include<iostream>
23 23
#include<fstream>
24 24
#include<sstream>
25 25
#include<algorithm>
26 26
#include<vector>
27 27

	
28 28
#ifndef WIN32
29 29
#include<sys/time.h>
30 30
#include<ctime>
31 31
#else
32 32
#include<lemon/bits/windows.h>
33 33
#endif
34 34

	
35 35
#include<lemon/math.h>
36 36
#include<lemon/core.h>
37 37
#include<lemon/dim2.h>
38 38
#include<lemon/maps.h>
39 39
#include<lemon/color.h>
40 40
#include<lemon/bits/bezier.h>
41 41
#include<lemon/error.h>
42 42

	
43 43

	
44 44
///\ingroup eps_io
45 45
///\file
46 46
///\brief A well configurable tool for visualizing graphs
47 47

	
48 48
namespace lemon {
49 49

	
50 50
  namespace _graph_to_eps_bits {
51 51
    template<class MT>
52 52
    class _NegY {
53 53
    public:
54 54
      typedef typename MT::Key Key;
55 55
      typedef typename MT::Value Value;
56 56
      const MT &map;
57 57
      int yscale;
58 58
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
59 59
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
60 60
    };
61 61
  }
62 62

	
63 63
///Default traits class of GraphToEps
64 64

	
65 65
///Default traits class of \ref GraphToEps.
66 66
///
67 67
///\param GR is the type of the underlying graph.
68 68
template<class GR>
69 69
struct DefaultGraphToEpsTraits
70 70
{
71 71
  typedef GR Graph;
72 72
  typedef GR Digraph;
73 73
  typedef typename Graph::Node Node;
74 74
  typedef typename Graph::NodeIt NodeIt;
75 75
  typedef typename Graph::Arc Arc;
76 76
  typedef typename Graph::ArcIt ArcIt;
77 77
  typedef typename Graph::InArcIt InArcIt;
78 78
  typedef typename Graph::OutArcIt OutArcIt;
79 79

	
80 80

	
81 81
  const Graph &g;
82 82

	
83 83
  std::ostream& os;
84 84

	
85 85
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
86 86
  CoordsMapType _coords;
87 87
  ConstMap<typename Graph::Node,double > _nodeSizes;
88 88
  ConstMap<typename Graph::Node,int > _nodeShapes;
89 89

	
90 90
  ConstMap<typename Graph::Node,Color > _nodeColors;
91 91
  ConstMap<typename Graph::Arc,Color > _arcColors;
92 92

	
93 93
  ConstMap<typename Graph::Arc,double > _arcWidths;
94 94

	
95 95
  double _arcWidthScale;
96 96

	
97 97
  double _nodeScale;
98 98
  double _xBorder, _yBorder;
99 99
  double _scale;
100 100
  double _nodeBorderQuotient;
101 101

	
102 102
  bool _drawArrows;
103 103
  double _arrowLength, _arrowWidth;
104 104

	
105 105
  bool _showNodes, _showArcs;
106 106

	
107 107
  bool _enableParallel;
108 108
  double _parArcDist;
109 109

	
110 110
  bool _showNodeText;
111 111
  ConstMap<typename Graph::Node,bool > _nodeTexts;
112 112
  double _nodeTextSize;
113 113

	
114 114
  bool _showNodePsText;
115 115
  ConstMap<typename Graph::Node,bool > _nodePsTexts;
116 116
  char *_nodePsTextsPreamble;
117 117

	
118 118
  bool _undirected;
119 119

	
120 120
  bool _pleaseRemoveOsStream;
121 121

	
122 122
  bool _scaleToA4;
123 123

	
124 124
  std::string _title;
125 125
  std::string _copyright;
126 126

	
127 127
  enum NodeTextColorType
128 128
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
129 129
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
130 130

	
131 131
  bool _autoNodeScale;
132 132
  bool _autoArcWidthScale;
133 133

	
134 134
  bool _absoluteNodeSizes;
135 135
  bool _absoluteArcWidths;
136 136

	
137 137
  bool _negY;
138 138

	
139 139
  bool _preScale;
140 140
  ///Constructor
141 141

	
142 142
  ///Constructor
143 143
  ///\param gr  Reference to the graph to be printed.
144 144
  ///\param ost Reference to the output stream.
145
  ///By default it is <tt>std::cout</tt>.
145
  ///By default, it is <tt>std::cout</tt>.
146 146
  ///\param pros If it is \c true, then the \c ostream referenced by \c os
147 147
  ///will be explicitly deallocated by the destructor.
148 148
  DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout,
149 149
                          bool pros = false) :
150 150
    g(gr), os(ost),
151 151
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
152 152
    _nodeColors(WHITE), _arcColors(BLACK),
153 153
    _arcWidths(1.0), _arcWidthScale(0.003),
154 154
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
155 155
    _nodeBorderQuotient(.1),
156 156
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
157 157
    _showNodes(true), _showArcs(true),
158 158
    _enableParallel(false), _parArcDist(1),
159 159
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
160 160
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
161 161
    _undirected(lemon::UndirectedTagIndicator<GR>::value),
162 162
    _pleaseRemoveOsStream(pros), _scaleToA4(false),
163 163
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
164 164
    _autoNodeScale(false),
165 165
    _autoArcWidthScale(false),
166 166
    _absoluteNodeSizes(false),
167 167
    _absoluteArcWidths(false),
168 168
    _negY(false),
169 169
    _preScale(true)
170 170
  {}
171 171
};
172 172

	
173 173
///Auxiliary class to implement the named parameters of \ref graphToEps()
174 174

	
175 175
///Auxiliary class to implement the named parameters of \ref graphToEps().
176 176
///
177 177
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
178 178
template<class T> class GraphToEps : public T
179 179
{
180 180
  // Can't believe it is required by the C++ standard
181 181
  using T::g;
182 182
  using T::os;
183 183

	
184 184
  using T::_coords;
185 185
  using T::_nodeSizes;
186 186
  using T::_nodeShapes;
187 187
  using T::_nodeColors;
188 188
  using T::_arcColors;
189 189
  using T::_arcWidths;
190 190

	
191 191
  using T::_arcWidthScale;
192 192
  using T::_nodeScale;
193 193
  using T::_xBorder;
194 194
  using T::_yBorder;
195 195
  using T::_scale;
196 196
  using T::_nodeBorderQuotient;
197 197

	
198 198
  using T::_drawArrows;
199 199
  using T::_arrowLength;
200 200
  using T::_arrowWidth;
201 201

	
202 202
  using T::_showNodes;
203 203
  using T::_showArcs;
204 204

	
205 205
  using T::_enableParallel;
206 206
  using T::_parArcDist;
207 207

	
208 208
  using T::_showNodeText;
209 209
  using T::_nodeTexts;
210 210
  using T::_nodeTextSize;
211 211

	
212 212
  using T::_showNodePsText;
213 213
  using T::_nodePsTexts;
214 214
  using T::_nodePsTextsPreamble;
215 215

	
216 216
  using T::_undirected;
217 217

	
218 218
  using T::_pleaseRemoveOsStream;
219 219

	
220 220
  using T::_scaleToA4;
221 221

	
222 222
  using T::_title;
223 223
  using T::_copyright;
224 224

	
225 225
  using T::NodeTextColorType;
226 226
  using T::CUST_COL;
227 227
  using T::DIST_COL;
228 228
  using T::DIST_BW;
229 229
  using T::_nodeTextColorType;
230 230
  using T::_nodeTextColors;
231 231

	
232 232
  using T::_autoNodeScale;
233 233
  using T::_autoArcWidthScale;
234 234

	
235 235
  using T::_absoluteNodeSizes;
236 236
  using T::_absoluteArcWidths;
237 237

	
238 238

	
239 239
  using T::_negY;
240 240
  using T::_preScale;
241 241

	
242 242
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
243 243

	
244 244
  typedef typename T::Graph Graph;
245 245
  typedef typename T::Digraph Digraph;
246 246
  typedef typename Graph::Node Node;
247 247
  typedef typename Graph::NodeIt NodeIt;
248 248
  typedef typename Graph::Arc Arc;
249 249
  typedef typename Graph::ArcIt ArcIt;
250 250
  typedef typename Graph::InArcIt InArcIt;
251 251
  typedef typename Graph::OutArcIt OutArcIt;
252 252

	
253 253
  static const int INTERPOL_PREC;
254 254
  static const double A4HEIGHT;
255 255
  static const double A4WIDTH;
256 256
  static const double A4BORDER;
257 257

	
258 258
  bool dontPrint;
259 259

	
260 260
public:
261 261
  ///Node shapes
262 262

	
263 263
  ///Node shapes.
264 264
  ///
265 265
  enum NodeShapes {
266 266
    /// = 0
267 267
    ///\image html nodeshape_0.png
268 268
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
269 269
    CIRCLE=0,
270 270
    /// = 1
271 271
    ///\image html nodeshape_1.png
272 272
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
273 273
    SQUARE=1,
274 274
    /// = 2
275 275
    ///\image html nodeshape_2.png
276 276
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
277 277
    DIAMOND=2,
278 278
    /// = 3
279 279
    ///\image html nodeshape_3.png
280 280
    ///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm
281 281
    MALE=3,
282 282
    /// = 4
283 283
    ///\image html nodeshape_4.png
284 284
    ///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm
285 285
    FEMALE=4
286 286
  };
287 287

	
288 288
private:
289 289
  class arcLess {
290 290
    const Graph &g;
291 291
  public:
292 292
    arcLess(const Graph &_g) : g(_g) {}
293 293
    bool operator()(Arc a,Arc b) const
294 294
    {
295 295
      Node ai=std::min(g.source(a),g.target(a));
296 296
      Node aa=std::max(g.source(a),g.target(a));
297 297
      Node bi=std::min(g.source(b),g.target(b));
298 298
      Node ba=std::max(g.source(b),g.target(b));
299 299
      return ai<bi ||
300 300
        (ai==bi && (aa < ba ||
301 301
                    (aa==ba && ai==g.source(a) && bi==g.target(b))));
302 302
    }
303 303
  };
304 304
  bool isParallel(Arc e,Arc f) const
305 305
  {
306 306
    return (g.source(e)==g.source(f)&&
307 307
            g.target(e)==g.target(f)) ||
308 308
      (g.source(e)==g.target(f)&&
309 309
       g.target(e)==g.source(f));
310 310
  }
311 311
  template<class TT>
312 312
  static std::string psOut(const dim2::Point<TT> &p)
313 313
    {
314 314
      std::ostringstream os;
315 315
      os << p.x << ' ' << p.y;
316 316
      return os.str();
317 317
    }
318 318
  static std::string psOut(const Color &c)
319 319
    {
320 320
      std::ostringstream os;
321 321
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
322 322
      return os.str();
323 323
    }
324 324

	
325 325
public:
326 326
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
327 327

	
328 328
  template<class X> struct CoordsTraits : public T {
329 329
  typedef X CoordsMapType;
330 330
    const X &_coords;
331 331
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
332 332
  };
333 333
  ///Sets the map of the node coordinates
334 334

	
335 335
  ///Sets the map of the node coordinates.
336 336
  ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
337 337
  ///\ref dim2::Point "dim2::Point<int>" values.
338 338
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
339 339
    dontPrint=true;
340 340
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
341 341
  }
342 342
  template<class X> struct NodeSizesTraits : public T {
343 343
    const X &_nodeSizes;
344 344
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
345 345
  };
346 346
  ///Sets the map of the node sizes
347 347

	
348 348
  ///Sets the map of the node sizes.
349 349
  ///\param x must be a node map with \c double (or convertible) values.
350 350
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
351 351
  {
352 352
    dontPrint=true;
353 353
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
354 354
  }
355 355
  template<class X> struct NodeShapesTraits : public T {
356 356
    const X &_nodeShapes;
357 357
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
358 358
  };
359 359
  ///Sets the map of the node shapes
360 360

	
361 361
  ///Sets the map of the node shapes.
362 362
  ///The available shape values
363 363
  ///can be found in \ref NodeShapes "enum NodeShapes".
364 364
  ///\param x must be a node map with \c int (or convertible) values.
365 365
  ///\sa NodeShapes
366 366
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
367 367
  {
368 368
    dontPrint=true;
369 369
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
370 370
  }
371 371
  template<class X> struct NodeTextsTraits : public T {
372 372
    const X &_nodeTexts;
373 373
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
374 374
  };
375 375
  ///Sets the text printed on the nodes
376 376

	
377 377
  ///Sets the text printed on the nodes.
378 378
  ///\param x must be a node map with type that can be pushed to a standard
379 379
  ///\c ostream.
380 380
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
381 381
  {
382 382
    dontPrint=true;
383 383
    _showNodeText=true;
384 384
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
385 385
  }
386 386
  template<class X> struct NodePsTextsTraits : public T {
387 387
    const X &_nodePsTexts;
388 388
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
389 389
  };
390 390
  ///Inserts a PostScript block to the nodes
391 391

	
392 392
  ///With this command it is possible to insert a verbatim PostScript
393 393
  ///block to the nodes.
394 394
  ///The PS current point will be moved to the center of the node before
395 395
  ///the PostScript block inserted.
396 396
  ///
397 397
  ///Before and after the block a newline character is inserted so you
398 398
  ///don't have to bother with the separators.
399 399
  ///
400 400
  ///\param x must be a node map with type that can be pushed to a standard
401 401
  ///\c ostream.
402 402
  ///
403 403
  ///\sa nodePsTextsPreamble()
404 404
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
405 405
  {
406 406
    dontPrint=true;
407 407
    _showNodePsText=true;
408 408
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
409 409
  }
410 410
  template<class X> struct ArcWidthsTraits : public T {
411 411
    const X &_arcWidths;
412 412
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
413 413
  };
414 414
  ///Sets the map of the arc widths
415 415

	
416 416
  ///Sets the map of the arc widths.
417 417
  ///\param x must be an arc map with \c double (or convertible) values.
418 418
  template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
419 419
  {
420 420
    dontPrint=true;
421 421
    return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
422 422
  }
423 423

	
424 424
  template<class X> struct NodeColorsTraits : public T {
425 425
    const X &_nodeColors;
426 426
    NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
427 427
  };
428 428
  ///Sets the map of the node colors
429 429

	
430 430
  ///Sets the map of the node colors.
431 431
  ///\param x must be a node map with \ref Color values.
432 432
  ///
433 433
  ///\sa Palette
434 434
  template<class X> GraphToEps<NodeColorsTraits<X> >
435 435
  nodeColors(const X &x)
436 436
  {
437 437
    dontPrint=true;
438 438
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
439 439
  }
440 440
  template<class X> struct NodeTextColorsTraits : public T {
441 441
    const X &_nodeTextColors;
442 442
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
443 443
  };
444 444
  ///Sets the map of the node text colors
445 445

	
446 446
  ///Sets the map of the node text colors.
447 447
  ///\param x must be a node map with \ref Color values.
448 448
  ///
449 449
  ///\sa Palette
450 450
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
451 451
  nodeTextColors(const X &x)
452 452
  {
453 453
    dontPrint=true;
454 454
    _nodeTextColorType=CUST_COL;
455 455
    return GraphToEps<NodeTextColorsTraits<X> >
456 456
      (NodeTextColorsTraits<X>(*this,x));
457 457
  }
458 458
  template<class X> struct ArcColorsTraits : public T {
459 459
    const X &_arcColors;
460 460
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
461 461
  };
462 462
  ///Sets the map of the arc colors
463 463

	
464 464
  ///Sets the map of the arc colors.
465 465
  ///\param x must be an arc map with \ref Color values.
466 466
  ///
467 467
  ///\sa Palette
468 468
  template<class X> GraphToEps<ArcColorsTraits<X> >
469 469
  arcColors(const X &x)
470 470
  {
471 471
    dontPrint=true;
472 472
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
473 473
  }
474 474
  ///Sets a global scale factor for node sizes
475 475

	
476 476
  ///Sets a global scale factor for node sizes.
477 477
  ///
478 478
  /// If nodeSizes() is not given, this function simply sets the node
479 479
  /// sizes to \c d.  If nodeSizes() is given, but
480 480
  /// autoNodeScale() is not, then the node size given by
481 481
  /// nodeSizes() will be multiplied by the value \c d.
482 482
  /// If both nodeSizes() and autoNodeScale() are used, then the
483 483
  /// node sizes will be scaled in such a way that the greatest size will be
484 484
  /// equal to \c d.
485 485
  /// \sa nodeSizes()
486 486
  /// \sa autoNodeScale()
487 487
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
488 488
  ///Turns on/off the automatic node size scaling.
489 489

	
490 490
  ///Turns on/off the automatic node size scaling.
491 491
  ///
492 492
  ///\sa nodeScale()
493 493
  ///
494 494
  GraphToEps<T> &autoNodeScale(bool b=true) {
495 495
    _autoNodeScale=b;return *this;
496 496
  }
497 497

	
498 498
  ///Turns on/off the absolutematic node size scaling.
499 499

	
500 500
  ///Turns on/off the absolutematic node size scaling.
501 501
  ///
502 502
  ///\sa nodeScale()
503 503
  ///
504 504
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
505 505
    _absoluteNodeSizes=b;return *this;
506 506
  }
507 507

	
508 508
  ///Negates the Y coordinates.
509 509
  GraphToEps<T> &negateY(bool b=true) {
510 510
    _negY=b;return *this;
511 511
  }
512 512

	
513 513
  ///Turn on/off pre-scaling
514 514

	
515
  ///By default graphToEps() rescales the whole image in order to avoid
515
  ///By default, graphToEps() rescales the whole image in order to avoid
516 516
  ///very big or very small bounding boxes.
517 517
  ///
518 518
  ///This (p)rescaling can be turned off with this function.
519 519
  ///
520 520
  GraphToEps<T> &preScale(bool b=true) {
521 521
    _preScale=b;return *this;
522 522
  }
523 523

	
524 524
  ///Sets a global scale factor for arc widths
525 525

	
526 526
  /// Sets a global scale factor for arc widths.
527 527
  ///
528 528
  /// If arcWidths() is not given, this function simply sets the arc
529 529
  /// widths to \c d.  If arcWidths() is given, but
530 530
  /// autoArcWidthScale() is not, then the arc withs given by
531 531
  /// arcWidths() will be multiplied by the value \c d.
532 532
  /// If both arcWidths() and autoArcWidthScale() are used, then the
533 533
  /// arc withs will be scaled in such a way that the greatest width will be
534 534
  /// equal to \c d.
535 535
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
536 536
  ///Turns on/off the automatic arc width scaling.
537 537

	
538 538
  ///Turns on/off the automatic arc width scaling.
539 539
  ///
540 540
  ///\sa arcWidthScale()
541 541
  ///
542 542
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
543 543
    _autoArcWidthScale=b;return *this;
544 544
  }
545 545
  ///Turns on/off the absolutematic arc width scaling.
546 546

	
547 547
  ///Turns on/off the absolutematic arc width scaling.
548 548
  ///
549 549
  ///\sa arcWidthScale()
550 550
  ///
551 551
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
552 552
    _absoluteArcWidths=b;return *this;
553 553
  }
554 554
  ///Sets a global scale factor for the whole picture
555 555
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
556 556
  ///Sets the width of the border around the picture
557 557
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
558 558
  ///Sets the width of the border around the picture
559 559
  GraphToEps<T> &border(double x, double y) {
560 560
    _xBorder=x;_yBorder=y;return *this;
561 561
  }
562 562
  ///Sets whether to draw arrows
563 563
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
564 564
  ///Sets the length of the arrowheads
565 565
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
566 566
  ///Sets the width of the arrowheads
567 567
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
568 568

	
569 569
  ///Scales the drawing to fit to A4 page
570 570
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
571 571

	
572 572
  ///Enables parallel arcs
573 573
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
574 574

	
575 575
  ///Sets the distance between parallel arcs
576 576
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
577 577

	
578 578
  ///Hides the arcs
579 579
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
580 580
  ///Hides the nodes
581 581
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
582 582

	
583 583
  ///Sets the size of the node texts
584 584
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
585 585

	
586 586
  ///Sets the color of the node texts to be different from the node color
587 587

	
588 588
  ///Sets the color of the node texts to be as different from the node color
589 589
  ///as it is possible.
590 590
  GraphToEps<T> &distantColorNodeTexts()
591 591
  {_nodeTextColorType=DIST_COL;return *this;}
592 592
  ///Sets the color of the node texts to be black or white and always visible.
593 593

	
594 594
  ///Sets the color of the node texts to be black or white according to
595 595
  ///which is more different from the node color.
596 596
  GraphToEps<T> &distantBWNodeTexts()
597 597
  {_nodeTextColorType=DIST_BW;return *this;}
598 598

	
599 599
  ///Gives a preamble block for node Postscript block.
600 600

	
601 601
  ///Gives a preamble block for node Postscript block.
602 602
  ///
603 603
  ///\sa nodePsTexts()
604 604
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
605 605
    _nodePsTextsPreamble=str ;return *this;
606 606
  }
607 607
  ///Sets whether the graph is undirected
608 608

	
609 609
  ///Sets whether the graph is undirected.
610 610
  ///
611 611
  ///This setting is the default for undirected graphs.
612 612
  ///
613 613
  ///\sa directed()
614 614
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
615 615

	
616 616
  ///Sets whether the graph is directed
617 617

	
618 618
  ///Sets whether the graph is directed.
619 619
  ///Use it to show the edges as a pair of directed ones.
620 620
  ///
621 621
  ///This setting is the default for digraphs.
622 622
  ///
623 623
  ///\sa undirected()
624 624
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
625 625

	
626 626
  ///Sets the title.
627 627

	
628 628
  ///Sets the title of the generated image,
629 629
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
630 630
  ///the EPS file.
631 631
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
632 632
  ///Sets the copyright statement.
633 633

	
634 634
  ///Sets the copyright statement of the generated image,
635 635
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
636 636
  ///the EPS file.
637 637
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
638 638

	
639 639
protected:
640 640
  bool isInsideNode(dim2::Point<double> p, double r,int t)
641 641
  {
642 642
    switch(t) {
643 643
    case CIRCLE:
644 644
    case MALE:
645 645
    case FEMALE:
646 646
      return p.normSquare()<=r*r;
647 647
    case SQUARE:
648 648
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
649 649
    case DIAMOND:
650 650
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
651 651
    }
652 652
    return false;
653 653
  }
654 654

	
655 655
public:
656 656
  ~GraphToEps() { }
657 657

	
658 658
  ///Draws the graph.
659 659

	
660 660
  ///Like other functions using
661 661
  ///\ref named-templ-func-param "named template parameters",
662 662
  ///this function calls the algorithm itself, i.e. in this case
663 663
  ///it draws the graph.
664 664
  void run() {
665 665
    const double EPSILON=1e-9;
666 666
    if(dontPrint) return;
667 667

	
668 668
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
669 669
      mycoords(_coords,_negY);
670 670

	
671 671
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
672 672
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
673 673
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
674 674
    os << "%%Creator: LEMON, graphToEps()\n";
675 675

	
676 676
    {
677 677
      os << "%%CreationDate: ";
678 678
#ifndef WIN32
679 679
      timeval tv;
680 680
      gettimeofday(&tv, 0);
681 681

	
682 682
      char cbuf[26];
683 683
      ctime_r(&tv.tv_sec,cbuf);
684 684
      os << cbuf;
685 685
#else
686 686
      os << bits::getWinFormattedDate();
687 687
#endif
688 688
    }
689 689
    os << std::endl;
690 690

	
691 691
    if (_autoArcWidthScale) {
692 692
      double max_w=0;
693 693
      for(ArcIt e(g);e!=INVALID;++e)
694 694
        max_w=std::max(double(_arcWidths[e]),max_w);
695 695
      if(max_w>EPSILON) {
696 696
        _arcWidthScale/=max_w;
697 697
      }
698 698
    }
699 699

	
700 700
    if (_autoNodeScale) {
701 701
      double max_s=0;
702 702
      for(NodeIt n(g);n!=INVALID;++n)
703 703
        max_s=std::max(double(_nodeSizes[n]),max_s);
704 704
      if(max_s>EPSILON) {
705 705
        _nodeScale/=max_s;
706 706
      }
707 707
    }
... ...
@@ -925,263 +925,263 @@
925 925
              bez=bez.before((t1+t2)/2);
926 926
//               rn=_nodeSizes[g.source(*e)]*_nodeScale;
927 927
//               node_shape=_nodeShapes[g.source(*e)];
928 928
//               t1=0;t2=1;
929 929
//               for(int i=0;i<INTERPOL_PREC;++i)
930 930
//                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
931 931
//                   t1=(t1+t2)/2;
932 932
//                 else t2=(t1+t2)/2;
933 933
//               bez=bez.after((t1+t2)/2);
934 934
              os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
935 935
                 << _arcColors[*e].red() << ' '
936 936
                 << _arcColors[*e].green() << ' '
937 937
                 << _arcColors[*e].blue() << " setrgbcolor newpath\n"
938 938
                 << bez.p1.x << ' ' <<  bez.p1.y << " moveto\n"
939 939
                 << bez.p2.x << ' ' << bez.p2.y << ' '
940 940
                 << bez.p3.x << ' ' << bez.p3.y << ' '
941 941
                 << bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
942 942
              dim2::Point<double> dd(rot90(linend-apoint));
943 943
              dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
944 944
                std::sqrt(dd.normSquare());
945 945
              os << "newpath " << psOut(apoint) << " moveto "
946 946
                 << psOut(linend+dd) << " lineto "
947 947
                 << psOut(linend-dd) << " lineto closepath fill\n";
948 948
            }
949 949
            else {
950 950
              os << mycoords[g.source(*e)].x << ' '
951 951
                 << mycoords[g.source(*e)].y << ' '
952 952
                 << mm.x << ' ' << mm.y << ' '
953 953
                 << mycoords[g.target(*e)].x << ' '
954 954
                 << mycoords[g.target(*e)].y << ' '
955 955
                 << _arcColors[*e].red() << ' '
956 956
                 << _arcColors[*e].green() << ' '
957 957
                 << _arcColors[*e].blue() << ' '
958 958
                 << _arcWidths[*e]*_arcWidthScale << " lb\n";
959 959
            }
960 960
            sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist;
961 961
          }
962 962
        }
963 963
      }
964 964
      else for(ArcIt e(g);e!=INVALID;++e)
965 965
        if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
966 966
           &&g.source(e)!=g.target(e)) {
967 967
          if(_drawArrows) {
968 968
            dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]);
969 969
            double rn=_nodeSizes[g.target(e)]*_nodeScale;
970 970
            int node_shape=_nodeShapes[g.target(e)];
971 971
            double t1=0,t2=1;
972 972
            for(int i=0;i<INTERPOL_PREC;++i)
973 973
              if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2;
974 974
              else t2=(t1+t2)/2;
975 975
            double l=std::sqrt(d.normSquare());
976 976
            d/=l;
977 977

	
978 978
            os << l*(1-(t1+t2)/2) << ' '
979 979
               << _arcWidths[e]*_arcWidthScale << ' '
980 980
               << d.x << ' ' << d.y << ' '
981 981
               << mycoords[g.source(e)].x << ' '
982 982
               << mycoords[g.source(e)].y << ' '
983 983
               << _arcColors[e].red() << ' '
984 984
               << _arcColors[e].green() << ' '
985 985
               << _arcColors[e].blue() << " arr\n";
986 986
          }
987 987
          else os << mycoords[g.source(e)].x << ' '
988 988
                  << mycoords[g.source(e)].y << ' '
989 989
                  << mycoords[g.target(e)].x << ' '
990 990
                  << mycoords[g.target(e)].y << ' '
991 991
                  << _arcColors[e].red() << ' '
992 992
                  << _arcColors[e].green() << ' '
993 993
                  << _arcColors[e].blue() << ' '
994 994
                  << _arcWidths[e]*_arcWidthScale << " l\n";
995 995
        }
996 996
      os << "grestore\n";
997 997
    }
998 998
    if(_showNodes) {
999 999
      os << "%Nodes:\ngsave\n";
1000 1000
      for(NodeIt n(g);n!=INVALID;++n) {
1001 1001
        os << mycoords[n].x << ' ' << mycoords[n].y << ' '
1002 1002
           << _nodeSizes[n]*_nodeScale << ' '
1003 1003
           << _nodeColors[n].red() << ' '
1004 1004
           << _nodeColors[n].green() << ' '
1005 1005
           << _nodeColors[n].blue() << ' ';
1006 1006
        switch(_nodeShapes[n]) {
1007 1007
        case CIRCLE:
1008 1008
          os<< "nc";break;
1009 1009
        case SQUARE:
1010 1010
          os<< "nsq";break;
1011 1011
        case DIAMOND:
1012 1012
          os<< "ndi";break;
1013 1013
        case MALE:
1014 1014
          os<< "nmale";break;
1015 1015
        case FEMALE:
1016 1016
          os<< "nfemale";break;
1017 1017
        }
1018 1018
        os<<'\n';
1019 1019
      }
1020 1020
      os << "grestore\n";
1021 1021
    }
1022 1022
    if(_showNodeText) {
1023 1023
      os << "%Node texts:\ngsave\n";
1024 1024
      os << "/fosi " << _nodeTextSize << " def\n";
1025 1025
      os << "(Helvetica) findfont fosi scalefont setfont\n";
1026 1026
      for(NodeIt n(g);n!=INVALID;++n) {
1027 1027
        switch(_nodeTextColorType) {
1028 1028
        case DIST_COL:
1029 1029
          os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n";
1030 1030
          break;
1031 1031
        case DIST_BW:
1032 1032
          os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n";
1033 1033
          break;
1034 1034
        case CUST_COL:
1035 1035
          os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n";
1036 1036
          break;
1037 1037
        default:
1038 1038
          os << "0 0 0 setrgbcolor\n";
1039 1039
        }
1040 1040
        os << mycoords[n].x << ' ' << mycoords[n].y
1041 1041
           << " (" << _nodeTexts[n] << ") cshow\n";
1042 1042
      }
1043 1043
      os << "grestore\n";
1044 1044
    }
1045 1045
    if(_showNodePsText) {
1046 1046
      os << "%Node PS blocks:\ngsave\n";
1047 1047
      for(NodeIt n(g);n!=INVALID;++n)
1048 1048
        os << mycoords[n].x << ' ' << mycoords[n].y
1049 1049
           << " moveto\n" << _nodePsTexts[n] << "\n";
1050 1050
      os << "grestore\n";
1051 1051
    }
1052 1052

	
1053 1053
    os << "grestore\nshowpage\n";
1054 1054

	
1055 1055
    //CleanUp:
1056 1056
    if(_pleaseRemoveOsStream) {delete &os;}
1057 1057
  }
1058 1058

	
1059 1059
  ///\name Aliases
1060 1060
  ///These are just some aliases to other parameter setting functions.
1061 1061

	
1062 1062
  ///@{
1063 1063

	
1064 1064
  ///An alias for arcWidths()
1065 1065
  template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x)
1066 1066
  {
1067 1067
    return arcWidths(x);
1068 1068
  }
1069 1069

	
1070 1070
  ///An alias for arcColors()
1071 1071
  template<class X> GraphToEps<ArcColorsTraits<X> >
1072 1072
  edgeColors(const X &x)
1073 1073
  {
1074 1074
    return arcColors(x);
1075 1075
  }
1076 1076

	
1077 1077
  ///An alias for arcWidthScale()
1078 1078
  GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
1079 1079

	
1080 1080
  ///An alias for autoArcWidthScale()
1081 1081
  GraphToEps<T> &autoEdgeWidthScale(bool b=true)
1082 1082
  {
1083 1083
    return autoArcWidthScale(b);
1084 1084
  }
1085 1085

	
1086 1086
  ///An alias for absoluteArcWidths()
1087 1087
  GraphToEps<T> &absoluteEdgeWidths(bool b=true)
1088 1088
  {
1089 1089
    return absoluteArcWidths(b);
1090 1090
  }
1091 1091

	
1092 1092
  ///An alias for parArcDist()
1093 1093
  GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);}
1094 1094

	
1095 1095
  ///An alias for hideArcs()
1096 1096
  GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);}
1097 1097

	
1098 1098
  ///@}
1099 1099
};
1100 1100

	
1101 1101
template<class T>
1102 1102
const int GraphToEps<T>::INTERPOL_PREC = 20;
1103 1103
template<class T>
1104 1104
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276;
1105 1105
template<class T>
1106 1106
const double GraphToEps<T>::A4WIDTH  = 595.275590551181;
1107 1107
template<class T>
1108 1108
const double GraphToEps<T>::A4BORDER = 15;
1109 1109

	
1110 1110

	
1111 1111
///Generates an EPS file from a graph
1112 1112

	
1113 1113
///\ingroup eps_io
1114 1114
///Generates an EPS file from a graph.
1115 1115
///\param g Reference to the graph to be printed.
1116 1116
///\param os Reference to the output stream.
1117
///By default it is <tt>std::cout</tt>.
1117
///By default, it is <tt>std::cout</tt>.
1118 1118
///
1119 1119
///This function also has a lot of
1120 1120
///\ref named-templ-func-param "named parameters",
1121 1121
///they are declared as the members of class \ref GraphToEps. The following
1122 1122
///example shows how to use these parameters.
1123 1123
///\code
1124 1124
/// graphToEps(g,os).scale(10).coords(coords)
1125 1125
///              .nodeScale(2).nodeSizes(sizes)
1126 1126
///              .arcWidthScale(.4).run();
1127 1127
///\endcode
1128 1128
///
1129
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file.
1129
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file.
1130 1130
///
1131 1131
///\warning Don't forget to put the \ref GraphToEps::run() "run()"
1132 1132
///to the end of the parameter list.
1133 1133
///\sa GraphToEps
1134 1134
///\sa graphToEps(GR &g, const char *file_name)
1135 1135
template<class GR>
1136 1136
GraphToEps<DefaultGraphToEpsTraits<GR> >
1137 1137
graphToEps(GR &g, std::ostream& os=std::cout)
1138 1138
{
1139 1139
  return
1140 1140
    GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os));
1141 1141
}
1142 1142

	
1143 1143
///Generates an EPS file from a graph
1144 1144

	
1145 1145
///\ingroup eps_io
1146 1146
///This function does the same as
1147 1147
///\ref graphToEps(GR &g,std::ostream& os)
1148 1148
///but it writes its output into the file \c file_name
1149 1149
///instead of a stream.
1150 1150
///\sa graphToEps(GR &g, std::ostream& os)
1151 1151
template<class GR>
1152 1152
GraphToEps<DefaultGraphToEpsTraits<GR> >
1153 1153
graphToEps(GR &g,const char *file_name)
1154 1154
{
1155 1155
  std::ostream* os = new std::ofstream(file_name);
1156 1156
  if (!(*os)) {
1157 1157
    delete os;
1158 1158
    throw IoError("Cannot write file", file_name);
1159 1159
  }
1160 1160
  return GraphToEps<DefaultGraphToEpsTraits<GR> >
1161 1161
    (DefaultGraphToEpsTraits<GR>(g,*os,true));
1162 1162
}
1163 1163

	
1164 1164
///Generates an EPS file from a graph
1165 1165

	
1166 1166
///\ingroup eps_io
1167 1167
///This function does the same as
1168 1168
///\ref graphToEps(GR &g,std::ostream& os)
1169 1169
///but it writes its output into the file \c file_name
1170 1170
///instead of a stream.
1171 1171
///\sa graphToEps(GR &g, std::ostream& os)
1172 1172
template<class GR>
1173 1173
GraphToEps<DefaultGraphToEpsTraits<GR> >
1174 1174
graphToEps(GR &g,const std::string& file_name)
1175 1175
{
1176 1176
  std::ostream* os = new std::ofstream(file_name.c_str());
1177 1177
  if (!(*os)) {
1178 1178
    delete os;
1179 1179
    throw IoError("Cannot write file", file_name);
1180 1180
  }
1181 1181
  return GraphToEps<DefaultGraphToEpsTraits<GR> >
1182 1182
    (DefaultGraphToEpsTraits<GR>(g,*os,true));
1183 1183
}
1184 1184

	
1185 1185
} //END OF NAMESPACE LEMON
1186 1186

	
1187 1187
#endif // LEMON_GRAPH_TO_EPS_H
Ignore white space 6 line context
... ...
@@ -98,360 +98,360 @@
98 98
    typedef True FindEdgeTag;
99 99
    typedef True FindArcTag;
100 100

	
101 101
    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
102 102
      if (prev != INVALID) return INVALID;
103 103
      int d = u._id ^ v._id;
104 104
      int k = 0;
105 105
      if (d == 0) return INVALID;
106 106
      for ( ; (d & 1) == 0; d >>= 1) ++k;
107 107
      if (d >> 1 != 0) return INVALID;
108 108
      return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
109 109
        (u._id & ((1 << k) - 1));
110 110
    }
111 111

	
112 112
    Arc findArc(Node u, Node v, Arc prev = INVALID) const {
113 113
      Edge edge = findEdge(u, v, prev);
114 114
      if (edge == INVALID) return INVALID;
115 115
      int k = edge._id >> (_dim-1);
116 116
      return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
117 117
    }
118 118

	
119 119
    class Node {
120 120
      friend class HypercubeGraphBase;
121 121

	
122 122
    protected:
123 123
      int _id;
124 124
      Node(int id) : _id(id) {}
125 125
    public:
126 126
      Node() {}
127 127
      Node (Invalid) : _id(-1) {}
128 128
      bool operator==(const Node node) const {return _id == node._id;}
129 129
      bool operator!=(const Node node) const {return _id != node._id;}
130 130
      bool operator<(const Node node) const {return _id < node._id;}
131 131
    };
132 132

	
133 133
    class Edge {
134 134
      friend class HypercubeGraphBase;
135 135
      friend class Arc;
136 136

	
137 137
    protected:
138 138
      int _id;
139 139

	
140 140
      Edge(int id) : _id(id) {}
141 141

	
142 142
    public:
143 143
      Edge() {}
144 144
      Edge (Invalid) : _id(-1) {}
145 145
      bool operator==(const Edge edge) const {return _id == edge._id;}
146 146
      bool operator!=(const Edge edge) const {return _id != edge._id;}
147 147
      bool operator<(const Edge edge) const {return _id < edge._id;}
148 148
    };
149 149

	
150 150
    class Arc {
151 151
      friend class HypercubeGraphBase;
152 152

	
153 153
    protected:
154 154
      int _id;
155 155

	
156 156
      Arc(int id) : _id(id) {}
157 157

	
158 158
    public:
159 159
      Arc() {}
160 160
      Arc (Invalid) : _id(-1) {}
161 161
      operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
162 162
      bool operator==(const Arc arc) const {return _id == arc._id;}
163 163
      bool operator!=(const Arc arc) const {return _id != arc._id;}
164 164
      bool operator<(const Arc arc) const {return _id < arc._id;}
165 165
    };
166 166

	
167 167
    void first(Node& node) const {
168 168
      node._id = _node_num - 1;
169 169
    }
170 170

	
171 171
    static void next(Node& node) {
172 172
      --node._id;
173 173
    }
174 174

	
175 175
    void first(Edge& edge) const {
176 176
      edge._id = _edge_num - 1;
177 177
    }
178 178

	
179 179
    static void next(Edge& edge) {
180 180
      --edge._id;
181 181
    }
182 182

	
183 183
    void first(Arc& arc) const {
184 184
      arc._id = 2 * _edge_num - 1;
185 185
    }
186 186

	
187 187
    static void next(Arc& arc) {
188 188
      --arc._id;
189 189
    }
190 190

	
191 191
    void firstInc(Edge& edge, bool& dir, const Node& node) const {
192 192
      edge._id = node._id >> 1;
193 193
      dir = (node._id & 1) == 0;
194 194
    }
195 195

	
196 196
    void nextInc(Edge& edge, bool& dir) const {
197 197
      Node n = dir ? u(edge) : v(edge);
198 198
      int k = (edge._id >> (_dim-1)) + 1;
199 199
      if (k < _dim) {
200 200
        edge._id = (k << (_dim-1)) |
201 201
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
202 202
        dir = ((n._id >> k) & 1) == 0;
203 203
      } else {
204 204
        edge._id = -1;
205 205
        dir = true;
206 206
      }
207 207
    }
208 208

	
209 209
    void firstOut(Arc& arc, const Node& node) const {
210 210
      arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
211 211
    }
212 212

	
213 213
    void nextOut(Arc& arc) const {
214 214
      Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
215 215
      int k = (arc._id >> _dim) + 1;
216 216
      if (k < _dim) {
217 217
        arc._id = (k << (_dim-1)) |
218 218
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
219 219
        arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
220 220
      } else {
221 221
        arc._id = -1;
222 222
      }
223 223
    }
224 224

	
225 225
    void firstIn(Arc& arc, const Node& node) const {
226 226
      arc._id = ((node._id >> 1) << 1) | (node._id & 1);
227 227
    }
228 228

	
229 229
    void nextIn(Arc& arc) const {
230 230
      Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
231 231
      int k = (arc._id >> _dim) + 1;
232 232
      if (k < _dim) {
233 233
        arc._id = (k << (_dim-1)) |
234 234
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
235 235
        arc._id = (arc._id << 1) | ((n._id >> k) & 1);
236 236
      } else {
237 237
        arc._id = -1;
238 238
      }
239 239
    }
240 240

	
241 241
    static bool direction(Arc arc) {
242 242
      return (arc._id & 1) == 1;
243 243
    }
244 244

	
245 245
    static Arc direct(Edge edge, bool dir) {
246 246
      return Arc((edge._id << 1) | (dir ? 1 : 0));
247 247
    }
248 248

	
249 249
    int dimension() const {
250 250
      return _dim;
251 251
    }
252 252

	
253 253
    bool projection(Node node, int n) const {
254 254
      return static_cast<bool>(node._id & (1 << n));
255 255
    }
256 256

	
257 257
    int dimension(Edge edge) const {
258 258
      return edge._id >> (_dim-1);
259 259
    }
260 260

	
261 261
    int dimension(Arc arc) const {
262 262
      return arc._id >> _dim;
263 263
    }
264 264

	
265 265
    int index(Node node) const {
266 266
      return node._id;
267 267
    }
268 268

	
269 269
    Node operator()(int ix) const {
270 270
      return Node(ix);
271 271
    }
272 272

	
273 273
  private:
274 274
    int _dim;
275 275
    int _node_num, _edge_num;
276 276
  };
277 277

	
278 278

	
279 279
  typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
280 280

	
281 281
  /// \ingroup graphs
282 282
  ///
283 283
  /// \brief Hypercube graph class
284 284
  ///
285 285
  /// HypercubeGraph implements a special graph type. The nodes of the
286 286
  /// graph are indexed with integers having at most \c dim binary digits.
287 287
  /// Two nodes are connected in the graph if and only if their indices
288 288
  /// differ only on one position in the binary form.
289 289
  /// This class is completely static and it needs constant memory space.
290
  /// Thus you can neither add nor delete nodes or edges, however 
290
  /// Thus you can neither add nor delete nodes or edges, however,
291 291
  /// the structure can be resized using resize().
292 292
  ///
293 293
  /// This type fully conforms to the \ref concepts::Graph "Graph concept".
294 294
  /// Most of its member functions and nested classes are documented
295 295
  /// only in the concept class.
296 296
  ///
297 297
  /// \note The type of the indices is chosen to \c int for efficiency
298 298
  /// reasons. Thus the maximum dimension of this implementation is 26
299 299
  /// (assuming that the size of \c int is 32 bit).
300 300
  class HypercubeGraph : public ExtendedHypercubeGraphBase {
301 301
    typedef ExtendedHypercubeGraphBase Parent;
302 302

	
303 303
  public:
304 304

	
305 305
    /// \brief Constructs a hypercube graph with \c dim dimensions.
306 306
    ///
307 307
    /// Constructs a hypercube graph with \c dim dimensions.
308 308
    HypercubeGraph(int dim) { construct(dim); }
309 309

	
310 310
    /// \brief Resizes the graph
311 311
    ///
312 312
    /// This function resizes the graph. It fully destroys and
313 313
    /// rebuilds the structure, therefore the maps of the graph will be
314 314
    /// reallocated automatically and the previous values will be lost.
315 315
    void resize(int dim) {
316 316
      Parent::notifier(Arc()).clear();
317 317
      Parent::notifier(Edge()).clear();
318 318
      Parent::notifier(Node()).clear();
319 319
      construct(dim);
320 320
      Parent::notifier(Node()).build();
321 321
      Parent::notifier(Edge()).build();
322 322
      Parent::notifier(Arc()).build();
323 323
    }
324 324

	
325 325
    /// \brief The number of dimensions.
326 326
    ///
327 327
    /// Gives back the number of dimensions.
328 328
    int dimension() const {
329 329
      return Parent::dimension();
330 330
    }
331 331

	
332 332
    /// \brief Returns \c true if the n'th bit of the node is one.
333 333
    ///
334 334
    /// Returns \c true if the n'th bit of the node is one.
335 335
    bool projection(Node node, int n) const {
336 336
      return Parent::projection(node, n);
337 337
    }
338 338

	
339 339
    /// \brief The dimension id of an edge.
340 340
    ///
341 341
    /// Gives back the dimension id of the given edge.
342 342
    /// It is in the range <tt>[0..dim-1]</tt>.
343 343
    int dimension(Edge edge) const {
344 344
      return Parent::dimension(edge);
345 345
    }
346 346

	
347 347
    /// \brief The dimension id of an arc.
348 348
    ///
349 349
    /// Gives back the dimension id of the given arc.
350 350
    /// It is in the range <tt>[0..dim-1]</tt>.
351 351
    int dimension(Arc arc) const {
352 352
      return Parent::dimension(arc);
353 353
    }
354 354

	
355 355
    /// \brief The index of a node.
356 356
    ///
357 357
    /// Gives back the index of the given node.
358 358
    /// The lower bits of the integer describes the node.
359 359
    int index(Node node) const {
360 360
      return Parent::index(node);
361 361
    }
362 362

	
363 363
    /// \brief Gives back a node by its index.
364 364
    ///
365 365
    /// Gives back a node by its index.
366 366
    Node operator()(int ix) const {
367 367
      return Parent::operator()(ix);
368 368
    }
369 369

	
370 370
    /// \brief Number of nodes.
371 371
    int nodeNum() const { return Parent::nodeNum(); }
372 372
    /// \brief Number of edges.
373 373
    int edgeNum() const { return Parent::edgeNum(); }
374 374
    /// \brief Number of arcs.
375 375
    int arcNum() const { return Parent::arcNum(); }
376 376

	
377 377
    /// \brief Linear combination map.
378 378
    ///
379 379
    /// This map makes possible to give back a linear combination
380 380
    /// for each node. It works like the \c std::accumulate function,
381 381
    /// so it accumulates the \c bf binary function with the \c fv first
382 382
    /// value. The map accumulates only on that positions (dimensions)
383 383
    /// where the index of the node is one. The values that have to be
384 384
    /// accumulated should be given by the \c begin and \c end iterators
385 385
    /// and the length of this range should be equal to the dimension
386 386
    /// number of the graph.
387 387
    ///
388 388
    ///\code
389 389
    /// const int DIM = 3;
390 390
    /// HypercubeGraph graph(DIM);
391 391
    /// dim2::Point<double> base[DIM];
392 392
    /// for (int k = 0; k < DIM; ++k) {
393 393
    ///   base[k].x = rnd();
394 394
    ///   base[k].y = rnd();
395 395
    /// }
396 396
    /// HypercubeGraph::HyperMap<dim2::Point<double> >
397 397
    ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
398 398
    ///\endcode
399 399
    ///
400 400
    /// \see HypercubeGraph
401 401
    template <typename T, typename BF = std::plus<T> >
402 402
    class HyperMap {
403 403
    public:
404 404

	
405 405
      /// \brief The key type of the map
406 406
      typedef Node Key;
407 407
      /// \brief The value type of the map
408 408
      typedef T Value;
409 409

	
410 410
      /// \brief Constructor for HyperMap.
411 411
      ///
412 412
      /// Construct a HyperMap for the given graph. The values that have
413 413
      /// to be accumulated should be given by the \c begin and \c end
414 414
      /// iterators and the length of this range should be equal to the
415 415
      /// dimension number of the graph.
416 416
      ///
417 417
      /// This map accumulates the \c bf binary function with the \c fv
418 418
      /// first value on that positions (dimensions) where the index of
419 419
      /// the node is one.
420 420
      template <typename It>
421 421
      HyperMap(const Graph& graph, It begin, It end,
422 422
               T fv = 0, const BF& bf = BF())
423 423
        : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
424 424
      {
425 425
        LEMON_ASSERT(_values.size() == graph.dimension(),
426 426
                     "Wrong size of range");
427 427
      }
428 428

	
429 429
      /// \brief The partial accumulated value.
430 430
      ///
431 431
      /// Gives back the partial accumulated value.
432 432
      Value operator[](const Key& k) const {
433 433
        Value val = _first_value;
434 434
        int id = _graph.index(k);
435 435
        int n = 0;
436 436
        while (id != 0) {
437 437
          if (id & 1) {
438 438
            val = _bin_func(val, _values[n]);
439 439
          }
440 440
          id >>= 1;
441 441
          ++n;
442 442
        }
443 443
        return val;
444 444
      }
445 445

	
446 446
    private:
447 447
      const Graph& _graph;
448 448
      std::vector<T> _values;
449 449
      T _first_value;
450 450
      BF _bin_func;
451 451
    };
452 452

	
453 453
  };
454 454

	
455 455
}
456 456

	
457 457
#endif
Ignore white space 6 line context
... ...
@@ -238,385 +238,385 @@
238 238
      if (!is.get(c))
239 239
        throw FormatError("Escape format error");
240 240

	
241 241
      switch (c) {
242 242
      case '\\':
243 243
        return '\\';
244 244
      case '\"':
245 245
        return '\"';
246 246
      case '\'':
247 247
        return '\'';
248 248
      case '\?':
249 249
        return '\?';
250 250
      case 'a':
251 251
        return '\a';
252 252
      case 'b':
253 253
        return '\b';
254 254
      case 'f':
255 255
        return '\f';
256 256
      case 'n':
257 257
        return '\n';
258 258
      case 'r':
259 259
        return '\r';
260 260
      case 't':
261 261
        return '\t';
262 262
      case 'v':
263 263
        return '\v';
264 264
      case 'x':
265 265
        {
266 266
          int code;
267 267
          if (!is.get(c) || !isHex(c))
268 268
            throw FormatError("Escape format error");
269 269
          else if (code = valueHex(c), !is.get(c) || !isHex(c)) is.putback(c);
270 270
          else code = code * 16 + valueHex(c);
271 271
          return code;
272 272
        }
273 273
      default:
274 274
        {
275 275
          int code;
276 276
          if (!isOct(c))
277 277
            throw FormatError("Escape format error");
278 278
          else if (code = valueOct(c), !is.get(c) || !isOct(c))
279 279
            is.putback(c);
280 280
          else if (code = code * 8 + valueOct(c), !is.get(c) || !isOct(c))
281 281
            is.putback(c);
282 282
          else code = code * 8 + valueOct(c);
283 283
          return code;
284 284
        }
285 285
      }
286 286
    }
287 287

	
288 288
    inline std::istream& readToken(std::istream& is, std::string& str) {
289 289
      std::ostringstream os;
290 290

	
291 291
      char c;
292 292
      is >> std::ws;
293 293

	
294 294
      if (!is.get(c))
295 295
        return is;
296 296

	
297 297
      if (c == '\"') {
298 298
        while (is.get(c) && c != '\"') {
299 299
          if (c == '\\')
300 300
            c = readEscape(is);
301 301
          os << c;
302 302
        }
303 303
        if (!is)
304 304
          throw FormatError("Quoted format error");
305 305
      } else {
306 306
        is.putback(c);
307 307
        while (is.get(c) && !isWhiteSpace(c)) {
308 308
          if (c == '\\')
309 309
            c = readEscape(is);
310 310
          os << c;
311 311
        }
312 312
        if (!is) {
313 313
          is.clear();
314 314
        } else {
315 315
          is.putback(c);
316 316
        }
317 317
      }
318 318
      str = os.str();
319 319
      return is;
320 320
    }
321 321

	
322 322
    class Section {
323 323
    public:
324 324
      virtual ~Section() {}
325 325
      virtual void process(std::istream& is, int& line_num) = 0;
326 326
    };
327 327

	
328 328
    template <typename Functor>
329 329
    class LineSection : public Section {
330 330
    private:
331 331

	
332 332
      Functor _functor;
333 333

	
334 334
    public:
335 335

	
336 336
      LineSection(const Functor& functor) : _functor(functor) {}
337 337
      virtual ~LineSection() {}
338 338

	
339 339
      virtual void process(std::istream& is, int& line_num) {
340 340
        char c;
341 341
        std::string line;
342 342
        while (is.get(c) && c != '@') {
343 343
          if (c == '\n') {
344 344
            ++line_num;
345 345
          } else if (c == '#') {
346 346
            getline(is, line);
347 347
            ++line_num;
348 348
          } else if (!isWhiteSpace(c)) {
349 349
            is.putback(c);
350 350
            getline(is, line);
351 351
            _functor(line);
352 352
            ++line_num;
353 353
          }
354 354
        }
355 355
        if (is) is.putback(c);
356 356
        else if (is.eof()) is.clear();
357 357
      }
358 358
    };
359 359

	
360 360
    template <typename Functor>
361 361
    class StreamSection : public Section {
362 362
    private:
363 363

	
364 364
      Functor _functor;
365 365

	
366 366
    public:
367 367

	
368 368
      StreamSection(const Functor& functor) : _functor(functor) {}
369 369
      virtual ~StreamSection() {}
370 370

	
371 371
      virtual void process(std::istream& is, int& line_num) {
372 372
        _functor(is, line_num);
373 373
        char c;
374 374
        std::string line;
375 375
        while (is.get(c) && c != '@') {
376 376
          if (c == '\n') {
377 377
            ++line_num;
378 378
          } else if (!isWhiteSpace(c)) {
379 379
            getline(is, line);
380 380
            ++line_num;
381 381
          }
382 382
        }
383 383
        if (is) is.putback(c);
384 384
        else if (is.eof()) is.clear();
385 385
      }
386 386
    };
387 387

	
388 388
  }
389 389

	
390 390
  template <typename DGR>
391 391
  class DigraphReader;
392 392

	
393 393
  template <typename TDGR>
394 394
  DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is = std::cin);
395 395
  template <typename TDGR>
396 396
  DigraphReader<TDGR> digraphReader(TDGR& digraph, const std::string& fn);
397 397
  template <typename TDGR>
398 398
  DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn);
399 399

	
400 400
  /// \ingroup lemon_io
401 401
  ///
402 402
  /// \brief \ref lgf-format "LGF" reader for directed graphs
403 403
  ///
404 404
  /// This utility reads an \ref lgf-format "LGF" file.
405 405
  ///
406 406
  /// The reading method does a batch processing. The user creates a
407 407
  /// reader object, then various reading rules can be added to the
408 408
  /// reader, and eventually the reading is executed with the \c run()
409 409
  /// member function. A map reading rule can be added to the reader
410 410
  /// with the \c nodeMap() or \c arcMap() members. An optional
411 411
  /// converter parameter can also be added as a standard functor
412 412
  /// converting from \c std::string to the value type of the map. If it
413 413
  /// is set, it will determine how the tokens in the file should be
414 414
  /// converted to the value type of the map. If the functor is not set,
415 415
  /// then a default conversion will be used. One map can be read into
416 416
  /// multiple map objects at the same time. The \c attribute(), \c
417 417
  /// node() and \c arc() functions are used to add attribute reading
418 418
  /// rules.
419 419
  ///
420 420
  ///\code
421 421
  /// DigraphReader<DGR>(digraph, std::cin).
422 422
  ///   nodeMap("coordinates", coord_map).
423 423
  ///   arcMap("capacity", cap_map).
424 424
  ///   node("source", src).
425 425
  ///   node("target", trg).
426 426
  ///   attribute("caption", caption).
427 427
  ///   run();
428 428
  ///\endcode
429 429
  ///
430
  /// By default the reader uses the first section in the file of the
430
  /// By default, the reader uses the first section in the file of the
431 431
  /// proper type. If a section has an optional name, then it can be
432 432
  /// selected for reading by giving an optional name parameter to the
433 433
  /// \c nodes(), \c arcs() or \c attributes() functions.
434 434
  ///
435 435
  /// The \c useNodes() and \c useArcs() functions are used to tell the reader
436 436
  /// that the nodes or arcs should not be constructed (added to the
437 437
  /// graph) during the reading, but instead the label map of the items
438 438
  /// are given as a parameter of these functions. An
439 439
  /// application of these functions is multipass reading, which is
440 440
  /// important if two \c \@arcs sections must be read from the
441 441
  /// file. In this case the first phase would read the node set and one
442 442
  /// of the arc sets, while the second phase would read the second arc
443 443
  /// set into an \e ArcSet class (\c SmartArcSet or \c ListArcSet).
444 444
  /// The previously read label node map should be passed to the \c
445 445
  /// useNodes() functions. Another application of multipass reading when
446 446
  /// paths are given as a node map or an arc map.
447 447
  /// It is impossible to read this in
448 448
  /// a single pass, because the arcs are not constructed when the node
449 449
  /// maps are read.
450 450
  template <typename DGR>
451 451
  class DigraphReader {
452 452
  public:
453 453

	
454 454
    typedef DGR Digraph;
455 455

	
456 456
  private:
457 457

	
458 458
    TEMPLATE_DIGRAPH_TYPEDEFS(DGR);
459 459

	
460 460
    std::istream* _is;
461 461
    bool local_is;
462 462
    std::string _filename;
463 463

	
464 464
    DGR& _digraph;
465 465

	
466 466
    std::string _nodes_caption;
467 467
    std::string _arcs_caption;
468 468
    std::string _attributes_caption;
469 469

	
470 470
    typedef std::map<std::string, Node> NodeIndex;
471 471
    NodeIndex _node_index;
472 472
    typedef std::map<std::string, Arc> ArcIndex;
473 473
    ArcIndex _arc_index;
474 474

	
475 475
    typedef std::vector<std::pair<std::string,
476 476
      _reader_bits::MapStorageBase<Node>*> > NodeMaps;
477 477
    NodeMaps _node_maps;
478 478

	
479 479
    typedef std::vector<std::pair<std::string,
480 480
      _reader_bits::MapStorageBase<Arc>*> >ArcMaps;
481 481
    ArcMaps _arc_maps;
482 482

	
483 483
    typedef std::multimap<std::string, _reader_bits::ValueStorageBase*>
484 484
      Attributes;
485 485
    Attributes _attributes;
486 486

	
487 487
    bool _use_nodes;
488 488
    bool _use_arcs;
489 489

	
490 490
    bool _skip_nodes;
491 491
    bool _skip_arcs;
492 492

	
493 493
    int line_num;
494 494
    std::istringstream line;
495 495

	
496 496
  public:
497 497

	
498 498
    /// \brief Constructor
499 499
    ///
500 500
    /// Construct a directed graph reader, which reads from the given
501 501
    /// input stream.
502 502
    DigraphReader(DGR& digraph, std::istream& is = std::cin)
503 503
      : _is(&is), local_is(false), _digraph(digraph),
504 504
        _use_nodes(false), _use_arcs(false),
505 505
        _skip_nodes(false), _skip_arcs(false) {}
506 506

	
507 507
    /// \brief Constructor
508 508
    ///
509 509
    /// Construct a directed graph reader, which reads from the given
510 510
    /// file.
511 511
    DigraphReader(DGR& digraph, const std::string& fn)
512 512
      : _is(new std::ifstream(fn.c_str())), local_is(true),
513 513
        _filename(fn), _digraph(digraph),
514 514
        _use_nodes(false), _use_arcs(false),
515 515
        _skip_nodes(false), _skip_arcs(false) {
516 516
      if (!(*_is)) {
517 517
        delete _is;
518 518
        throw IoError("Cannot open file", fn);
519 519
      }
520 520
    }
521 521

	
522 522
    /// \brief Constructor
523 523
    ///
524 524
    /// Construct a directed graph reader, which reads from the given
525 525
    /// file.
526 526
    DigraphReader(DGR& digraph, const char* fn)
527 527
      : _is(new std::ifstream(fn)), local_is(true),
528 528
        _filename(fn), _digraph(digraph),
529 529
        _use_nodes(false), _use_arcs(false),
530 530
        _skip_nodes(false), _skip_arcs(false) {
531 531
      if (!(*_is)) {
532 532
        delete _is;
533 533
        throw IoError("Cannot open file", fn);
534 534
      }
535 535
    }
536 536

	
537 537
    /// \brief Destructor
538 538
    ~DigraphReader() {
539 539
      for (typename NodeMaps::iterator it = _node_maps.begin();
540 540
           it != _node_maps.end(); ++it) {
541 541
        delete it->second;
542 542
      }
543 543

	
544 544
      for (typename ArcMaps::iterator it = _arc_maps.begin();
545 545
           it != _arc_maps.end(); ++it) {
546 546
        delete it->second;
547 547
      }
548 548

	
549 549
      for (typename Attributes::iterator it = _attributes.begin();
550 550
           it != _attributes.end(); ++it) {
551 551
        delete it->second;
552 552
      }
553 553

	
554 554
      if (local_is) {
555 555
        delete _is;
556 556
      }
557 557

	
558 558
    }
559 559

	
560 560
  private:
561 561

	
562 562
    template <typename TDGR>
563 563
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is);
564 564
    template <typename TDGR>
565 565
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, 
566 566
                                             const std::string& fn);
567 567
    template <typename TDGR>
568 568
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn);
569 569

	
570 570
    DigraphReader(DigraphReader& other)
571 571
      : _is(other._is), local_is(other.local_is), _digraph(other._digraph),
572 572
        _use_nodes(other._use_nodes), _use_arcs(other._use_arcs),
573 573
        _skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) {
574 574

	
575 575
      other._is = 0;
576 576
      other.local_is = false;
577 577

	
578 578
      _node_index.swap(other._node_index);
579 579
      _arc_index.swap(other._arc_index);
580 580

	
581 581
      _node_maps.swap(other._node_maps);
582 582
      _arc_maps.swap(other._arc_maps);
583 583
      _attributes.swap(other._attributes);
584 584

	
585 585
      _nodes_caption = other._nodes_caption;
586 586
      _arcs_caption = other._arcs_caption;
587 587
      _attributes_caption = other._attributes_caption;
588 588

	
589 589
    }
590 590

	
591 591
    DigraphReader& operator=(const DigraphReader&);
592 592

	
593 593
  public:
594 594

	
595 595
    /// \name Reading Rules
596 596
    /// @{
597 597

	
598 598
    /// \brief Node map reading rule
599 599
    ///
600 600
    /// Add a node map reading rule to the reader.
601 601
    template <typename Map>
602 602
    DigraphReader& nodeMap(const std::string& caption, Map& map) {
603 603
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
604 604
      _reader_bits::MapStorageBase<Node>* storage =
605 605
        new _reader_bits::MapStorage<Node, Map>(map);
606 606
      _node_maps.push_back(std::make_pair(caption, storage));
607 607
      return *this;
608 608
    }
609 609

	
610 610
    /// \brief Node map reading rule
611 611
    ///
612 612
    /// Add a node map reading rule with specialized converter to the
613 613
    /// reader.
614 614
    template <typename Map, typename Converter>
615 615
    DigraphReader& nodeMap(const std::string& caption, Map& map,
616 616
                           const Converter& converter = Converter()) {
617 617
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
618 618
      _reader_bits::MapStorageBase<Node>* storage =
619 619
        new _reader_bits::MapStorage<Node, Map, Converter>(map, converter);
620 620
      _node_maps.push_back(std::make_pair(caption, storage));
621 621
      return *this;
622 622
    }
... ...
@@ -2032,385 +2032,385 @@
2032 2032
            }
2033 2033
          } else {
2034 2034
            readLine();
2035 2035
            skipSection();
2036 2036
          }
2037 2037
        } catch (FormatError& error) {
2038 2038
          error.line(line_num);
2039 2039
          error.file(_filename);
2040 2040
          throw;
2041 2041
        }
2042 2042
      }
2043 2043

	
2044 2044
      if (!nodes_done) {
2045 2045
        throw FormatError("Section @nodes not found");
2046 2046
      }
2047 2047

	
2048 2048
      if (!edges_done) {
2049 2049
        throw FormatError("Section @edges not found");
2050 2050
      }
2051 2051

	
2052 2052
      if (!attributes_done && !_attributes.empty()) {
2053 2053
        throw FormatError("Section @attributes not found");
2054 2054
      }
2055 2055

	
2056 2056
    }
2057 2057

	
2058 2058
    /// @}
2059 2059

	
2060 2060
  };
2061 2061

	
2062 2062
  /// \ingroup lemon_io
2063 2063
  ///
2064 2064
  /// \brief Return a \ref GraphReader class
2065 2065
  ///
2066 2066
  /// This function just returns a \ref GraphReader class. 
2067 2067
  ///
2068 2068
  /// With this function a graph can be read from an 
2069 2069
  /// \ref lgf-format "LGF" file or input stream with several maps and
2070 2070
  /// attributes. For example, there is weighted matching problem on a
2071 2071
  /// graph, i.e. a graph with a \e weight map on the edges. This
2072 2072
  /// graph can be read with the following code:
2073 2073
  ///
2074 2074
  ///\code
2075 2075
  ///ListGraph graph;
2076 2076
  ///ListGraph::EdgeMap<int> weight(graph);
2077 2077
  ///graphReader(graph, std::cin).
2078 2078
  ///  edgeMap("weight", weight).
2079 2079
  ///  run();
2080 2080
  ///\endcode
2081 2081
  ///
2082 2082
  /// For a complete documentation, please see the \ref GraphReader
2083 2083
  /// class documentation.
2084 2084
  /// \warning Don't forget to put the \ref GraphReader::run() "run()"
2085 2085
  /// to the end of the parameter list.
2086 2086
  /// \relates GraphReader
2087 2087
  /// \sa graphReader(TGR& graph, const std::string& fn)
2088 2088
  /// \sa graphReader(TGR& graph, const char* fn)
2089 2089
  template <typename TGR>
2090 2090
  GraphReader<TGR> graphReader(TGR& graph, std::istream& is) {
2091 2091
    GraphReader<TGR> tmp(graph, is);
2092 2092
    return tmp;
2093 2093
  }
2094 2094

	
2095 2095
  /// \brief Return a \ref GraphReader class
2096 2096
  ///
2097 2097
  /// This function just returns a \ref GraphReader class.
2098 2098
  /// \relates GraphReader
2099 2099
  /// \sa graphReader(TGR& graph, std::istream& is)
2100 2100
  template <typename TGR>
2101 2101
  GraphReader<TGR> graphReader(TGR& graph, const std::string& fn) {
2102 2102
    GraphReader<TGR> tmp(graph, fn);
2103 2103
    return tmp;
2104 2104
  }
2105 2105

	
2106 2106
  /// \brief Return a \ref GraphReader class
2107 2107
  ///
2108 2108
  /// This function just returns a \ref GraphReader class.
2109 2109
  /// \relates GraphReader
2110 2110
  /// \sa graphReader(TGR& graph, std::istream& is)
2111 2111
  template <typename TGR>
2112 2112
  GraphReader<TGR> graphReader(TGR& graph, const char* fn) {
2113 2113
    GraphReader<TGR> tmp(graph, fn);
2114 2114
    return tmp;
2115 2115
  }
2116 2116

	
2117 2117
  class SectionReader;
2118 2118

	
2119 2119
  SectionReader sectionReader(std::istream& is);
2120 2120
  SectionReader sectionReader(const std::string& fn);
2121 2121
  SectionReader sectionReader(const char* fn);
2122 2122

	
2123 2123
  /// \ingroup lemon_io
2124 2124
  ///
2125 2125
  /// \brief Section reader class
2126 2126
  ///
2127 2127
  /// In the \ref lgf-format "LGF" file extra sections can be placed,
2128 2128
  /// which contain any data in arbitrary format. Such sections can be
2129 2129
  /// read with this class. A reading rule can be added to the class
2130 2130
  /// with two different functions. With the \c sectionLines() function a
2131 2131
  /// functor can process the section line-by-line, while with the \c
2132 2132
  /// sectionStream() member the section can be read from an input
2133 2133
  /// stream.
2134 2134
  class SectionReader {
2135 2135
  private:
2136 2136

	
2137 2137
    std::istream* _is;
2138 2138
    bool local_is;
2139 2139
    std::string _filename;
2140 2140

	
2141 2141
    typedef std::map<std::string, _reader_bits::Section*> Sections;
2142 2142
    Sections _sections;
2143 2143

	
2144 2144
    int line_num;
2145 2145
    std::istringstream line;
2146 2146

	
2147 2147
  public:
2148 2148

	
2149 2149
    /// \brief Constructor
2150 2150
    ///
2151 2151
    /// Construct a section reader, which reads from the given input
2152 2152
    /// stream.
2153 2153
    SectionReader(std::istream& is)
2154 2154
      : _is(&is), local_is(false) {}
2155 2155

	
2156 2156
    /// \brief Constructor
2157 2157
    ///
2158 2158
    /// Construct a section reader, which reads from the given file.
2159 2159
    SectionReader(const std::string& fn)
2160 2160
      : _is(new std::ifstream(fn.c_str())), local_is(true),
2161 2161
        _filename(fn) {
2162 2162
      if (!(*_is)) {
2163 2163
        delete _is;
2164 2164
        throw IoError("Cannot open file", fn);
2165 2165
      }
2166 2166
    }
2167 2167

	
2168 2168
    /// \brief Constructor
2169 2169
    ///
2170 2170
    /// Construct a section reader, which reads from the given file.
2171 2171
    SectionReader(const char* fn)
2172 2172
      : _is(new std::ifstream(fn)), local_is(true),
2173 2173
        _filename(fn) {
2174 2174
      if (!(*_is)) {
2175 2175
        delete _is;
2176 2176
        throw IoError("Cannot open file", fn);
2177 2177
      }
2178 2178
    }
2179 2179

	
2180 2180
    /// \brief Destructor
2181 2181
    ~SectionReader() {
2182 2182
      for (Sections::iterator it = _sections.begin();
2183 2183
           it != _sections.end(); ++it) {
2184 2184
        delete it->second;
2185 2185
      }
2186 2186

	
2187 2187
      if (local_is) {
2188 2188
        delete _is;
2189 2189
      }
2190 2190

	
2191 2191
    }
2192 2192

	
2193 2193
  private:
2194 2194

	
2195 2195
    friend SectionReader sectionReader(std::istream& is);
2196 2196
    friend SectionReader sectionReader(const std::string& fn);
2197 2197
    friend SectionReader sectionReader(const char* fn);
2198 2198

	
2199 2199
    SectionReader(SectionReader& other)
2200 2200
      : _is(other._is), local_is(other.local_is) {
2201 2201

	
2202 2202
      other._is = 0;
2203 2203
      other.local_is = false;
2204 2204

	
2205 2205
      _sections.swap(other._sections);
2206 2206
    }
2207 2207

	
2208 2208
    SectionReader& operator=(const SectionReader&);
2209 2209

	
2210 2210
  public:
2211 2211

	
2212 2212
    /// \name Section Readers
2213 2213
    /// @{
2214 2214

	
2215 2215
    /// \brief Add a section processor with line oriented reading
2216 2216
    ///
2217 2217
    /// The first parameter is the type descriptor of the section, the
2218 2218
    /// second is a functor, which takes just one \c std::string
2219 2219
    /// parameter. At the reading process, each line of the section
2220 2220
    /// will be given to the functor object. However, the empty lines
2221 2221
    /// and the comment lines are filtered out, and the leading
2222 2222
    /// whitespaces are trimmed from each processed string.
2223 2223
    ///
2224
    /// For example let's see a section, which contain several
2224
    /// For example, let's see a section, which contain several
2225 2225
    /// integers, which should be inserted into a vector.
2226 2226
    ///\code
2227 2227
    ///  @numbers
2228 2228
    ///  12 45 23
2229 2229
    ///  4
2230 2230
    ///  23 6
2231 2231
    ///\endcode
2232 2232
    ///
2233 2233
    /// The functor is implemented as a struct:
2234 2234
    ///\code
2235 2235
    ///  struct NumberSection {
2236 2236
    ///    std::vector<int>& _data;
2237 2237
    ///    NumberSection(std::vector<int>& data) : _data(data) {}
2238 2238
    ///    void operator()(const std::string& line) {
2239 2239
    ///      std::istringstream ls(line);
2240 2240
    ///      int value;
2241 2241
    ///      while (ls >> value) _data.push_back(value);
2242 2242
    ///    }
2243 2243
    ///  };
2244 2244
    ///
2245 2245
    ///  // ...
2246 2246
    ///
2247 2247
    ///  reader.sectionLines("numbers", NumberSection(vec));
2248 2248
    ///\endcode
2249 2249
    template <typename Functor>
2250 2250
    SectionReader& sectionLines(const std::string& type, Functor functor) {
2251 2251
      LEMON_ASSERT(!type.empty(), "Type is empty.");
2252 2252
      LEMON_ASSERT(_sections.find(type) == _sections.end(),
2253 2253
                   "Multiple reading of section.");
2254 2254
      _sections.insert(std::make_pair(type,
2255 2255
        new _reader_bits::LineSection<Functor>(functor)));
2256 2256
      return *this;
2257 2257
    }
2258 2258

	
2259 2259

	
2260 2260
    /// \brief Add a section processor with stream oriented reading
2261 2261
    ///
2262 2262
    /// The first parameter is the type of the section, the second is
2263 2263
    /// a functor, which takes an \c std::istream& and an \c int&
2264 2264
    /// parameter, the latter regard to the line number of stream. The
2265 2265
    /// functor can read the input while the section go on, and the
2266 2266
    /// line number should be modified accordingly.
2267 2267
    template <typename Functor>
2268 2268
    SectionReader& sectionStream(const std::string& type, Functor functor) {
2269 2269
      LEMON_ASSERT(!type.empty(), "Type is empty.");
2270 2270
      LEMON_ASSERT(_sections.find(type) == _sections.end(),
2271 2271
                   "Multiple reading of section.");
2272 2272
      _sections.insert(std::make_pair(type,
2273 2273
         new _reader_bits::StreamSection<Functor>(functor)));
2274 2274
      return *this;
2275 2275
    }
2276 2276

	
2277 2277
    /// @}
2278 2278

	
2279 2279
  private:
2280 2280

	
2281 2281
    bool readLine() {
2282 2282
      std::string str;
2283 2283
      while(++line_num, std::getline(*_is, str)) {
2284 2284
        line.clear(); line.str(str);
2285 2285
        char c;
2286 2286
        if (line >> std::ws >> c && c != '#') {
2287 2287
          line.putback(c);
2288 2288
          return true;
2289 2289
        }
2290 2290
      }
2291 2291
      return false;
2292 2292
    }
2293 2293

	
2294 2294
    bool readSuccess() {
2295 2295
      return static_cast<bool>(*_is);
2296 2296
    }
2297 2297

	
2298 2298
    void skipSection() {
2299 2299
      char c;
2300 2300
      while (readSuccess() && line >> c && c != '@') {
2301 2301
        readLine();
2302 2302
      }
2303 2303
      if (readSuccess()) {
2304 2304
        line.putback(c);
2305 2305
      }
2306 2306
    }
2307 2307

	
2308 2308
  public:
2309 2309

	
2310 2310

	
2311 2311
    /// \name Execution of the Reader
2312 2312
    /// @{
2313 2313

	
2314 2314
    /// \brief Start the batch processing
2315 2315
    ///
2316 2316
    /// This function starts the batch processing.
2317 2317
    void run() {
2318 2318

	
2319 2319
      LEMON_ASSERT(_is != 0, "This reader assigned to an other reader");
2320 2320

	
2321 2321
      std::set<std::string> extra_sections;
2322 2322

	
2323 2323
      line_num = 0;
2324 2324
      readLine();
2325 2325
      skipSection();
2326 2326

	
2327 2327
      while (readSuccess()) {
2328 2328
        try {
2329 2329
          char c;
2330 2330
          std::string section, caption;
2331 2331
          line >> c;
2332 2332
          _reader_bits::readToken(line, section);
2333 2333
          _reader_bits::readToken(line, caption);
2334 2334

	
2335 2335
          if (line >> c)
2336 2336
            throw FormatError("Extra character at the end of line");
2337 2337

	
2338 2338
          if (extra_sections.find(section) != extra_sections.end()) {
2339 2339
            std::ostringstream msg;
2340 2340
            msg << "Multiple occurence of section: " << section;
2341 2341
            throw FormatError(msg.str());
2342 2342
          }
2343 2343
          Sections::iterator it = _sections.find(section);
2344 2344
          if (it != _sections.end()) {
2345 2345
            extra_sections.insert(section);
2346 2346
            it->second->process(*_is, line_num);
2347 2347
          }
2348 2348
          readLine();
2349 2349
          skipSection();
2350 2350
        } catch (FormatError& error) {
2351 2351
          error.line(line_num);
2352 2352
          error.file(_filename);
2353 2353
          throw;
2354 2354
        }
2355 2355
      }
2356 2356
      for (Sections::iterator it = _sections.begin();
2357 2357
           it != _sections.end(); ++it) {
2358 2358
        if (extra_sections.find(it->first) == extra_sections.end()) {
2359 2359
          std::ostringstream os;
2360 2360
          os << "Cannot find section: " << it->first;
2361 2361
          throw FormatError(os.str());
2362 2362
        }
2363 2363
      }
2364 2364
    }
2365 2365

	
2366 2366
    /// @}
2367 2367

	
2368 2368
  };
2369 2369

	
2370 2370
  /// \ingroup lemon_io
2371 2371
  ///
2372 2372
  /// \brief Return a \ref SectionReader class
2373 2373
  ///
2374 2374
  /// This function just returns a \ref SectionReader class.
2375 2375
  ///
2376 2376
  /// Please see SectionReader documentation about the custom section
2377 2377
  /// input.
2378 2378
  ///
2379 2379
  /// \relates SectionReader
2380 2380
  /// \sa sectionReader(const std::string& fn)
2381 2381
  /// \sa sectionReader(const char *fn)
2382 2382
  inline SectionReader sectionReader(std::istream& is) {
2383 2383
    SectionReader tmp(is);
2384 2384
    return tmp;
2385 2385
  }
2386 2386

	
2387 2387
  /// \brief Return a \ref SectionReader class
2388 2388
  ///
2389 2389
  /// This function just returns a \ref SectionReader class.
2390 2390
  /// \relates SectionReader
2391 2391
  /// \sa sectionReader(std::istream& is)
2392 2392
  inline SectionReader sectionReader(const std::string& fn) {
2393 2393
    SectionReader tmp(fn);
2394 2394
    return tmp;
2395 2395
  }
2396 2396

	
2397 2397
  /// \brief Return a \ref SectionReader class
2398 2398
  ///
2399 2399
  /// This function just returns a \ref SectionReader class.
2400 2400
  /// \relates SectionReader
2401 2401
  /// \sa sectionReader(std::istream& is)
2402 2402
  inline SectionReader sectionReader(const char* fn) {
2403 2403
    SectionReader tmp(fn);
2404 2404
    return tmp;
2405 2405
  }
2406 2406

	
2407 2407
  /// \ingroup lemon_io
2408 2408
  ///
2409 2409
  /// \brief Reader for the contents of the \ref lgf-format "LGF" file
2410 2410
  ///
2411 2411
  /// This class can be used to read the sections, the map names and
2412 2412
  /// the attributes from a file. Usually, the LEMON programs know
2413 2413
  /// that, which type of graph, which maps and which attributes
2414 2414
  /// should be read from a file, but in general tools (like glemon)
2415 2415
  /// the contents of an LGF file should be guessed somehow. This class
2416 2416
  /// reads the graph and stores the appropriate information for
Ignore white space 6 line context
... ...
@@ -202,543 +202,543 @@
202 202

	
203 203
      arcs[n].source = u.id;
204 204
      arcs[n].target = v.id;
205 205

	
206 206
      arcs[n].next_out = nodes[u.id].first_out;
207 207
      if(nodes[u.id].first_out != -1) {
208 208
        arcs[nodes[u.id].first_out].prev_out = n;
209 209
      }
210 210

	
211 211
      arcs[n].next_in = nodes[v.id].first_in;
212 212
      if(nodes[v.id].first_in != -1) {
213 213
        arcs[nodes[v.id].first_in].prev_in = n;
214 214
      }
215 215

	
216 216
      arcs[n].prev_in = arcs[n].prev_out = -1;
217 217

	
218 218
      nodes[u.id].first_out = nodes[v.id].first_in = n;
219 219

	
220 220
      return Arc(n);
221 221
    }
222 222

	
223 223
    void erase(const Node& node) {
224 224
      int n = node.id;
225 225

	
226 226
      if(nodes[n].next != -1) {
227 227
        nodes[nodes[n].next].prev = nodes[n].prev;
228 228
      }
229 229

	
230 230
      if(nodes[n].prev != -1) {
231 231
        nodes[nodes[n].prev].next = nodes[n].next;
232 232
      } else {
233 233
        first_node = nodes[n].next;
234 234
      }
235 235

	
236 236
      nodes[n].next = first_free_node;
237 237
      first_free_node = n;
238 238
      nodes[n].prev = -2;
239 239

	
240 240
    }
241 241

	
242 242
    void erase(const Arc& arc) {
243 243
      int n = arc.id;
244 244

	
245 245
      if(arcs[n].next_in!=-1) {
246 246
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
247 247
      }
248 248

	
249 249
      if(arcs[n].prev_in!=-1) {
250 250
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
251 251
      } else {
252 252
        nodes[arcs[n].target].first_in = arcs[n].next_in;
253 253
      }
254 254

	
255 255

	
256 256
      if(arcs[n].next_out!=-1) {
257 257
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
258 258
      }
259 259

	
260 260
      if(arcs[n].prev_out!=-1) {
261 261
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
262 262
      } else {
263 263
        nodes[arcs[n].source].first_out = arcs[n].next_out;
264 264
      }
265 265

	
266 266
      arcs[n].next_in = first_free_arc;
267 267
      first_free_arc = n;
268 268
      arcs[n].prev_in = -2;
269 269
    }
270 270

	
271 271
    void clear() {
272 272
      arcs.clear();
273 273
      nodes.clear();
274 274
      first_node = first_free_node = first_free_arc = -1;
275 275
    }
276 276

	
277 277
  protected:
278 278
    void changeTarget(Arc e, Node n)
279 279
    {
280 280
      if(arcs[e.id].next_in != -1)
281 281
        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
282 282
      if(arcs[e.id].prev_in != -1)
283 283
        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
284 284
      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
285 285
      if (nodes[n.id].first_in != -1) {
286 286
        arcs[nodes[n.id].first_in].prev_in = e.id;
287 287
      }
288 288
      arcs[e.id].target = n.id;
289 289
      arcs[e.id].prev_in = -1;
290 290
      arcs[e.id].next_in = nodes[n.id].first_in;
291 291
      nodes[n.id].first_in = e.id;
292 292
    }
293 293
    void changeSource(Arc e, Node n)
294 294
    {
295 295
      if(arcs[e.id].next_out != -1)
296 296
        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
297 297
      if(arcs[e.id].prev_out != -1)
298 298
        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
299 299
      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
300 300
      if (nodes[n.id].first_out != -1) {
301 301
        arcs[nodes[n.id].first_out].prev_out = e.id;
302 302
      }
303 303
      arcs[e.id].source = n.id;
304 304
      arcs[e.id].prev_out = -1;
305 305
      arcs[e.id].next_out = nodes[n.id].first_out;
306 306
      nodes[n.id].first_out = e.id;
307 307
    }
308 308

	
309 309
  };
310 310

	
311 311
  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
312 312

	
313 313
  /// \addtogroup graphs
314 314
  /// @{
315 315

	
316 316
  ///A general directed graph structure.
317 317

	
318 318
  ///\ref ListDigraph is a versatile and fast directed graph
319 319
  ///implementation based on linked lists that are stored in
320 320
  ///\c std::vector structures.
321 321
  ///
322 322
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
323 323
  ///and it also provides several useful additional functionalities.
324 324
  ///Most of its member functions and nested classes are documented
325 325
  ///only in the concept class.
326 326
  ///
327 327
  ///\sa concepts::Digraph
328 328
  ///\sa ListGraph
329 329
  class ListDigraph : public ExtendedListDigraphBase {
330 330
    typedef ExtendedListDigraphBase Parent;
331 331

	
332 332
  private:
333 333
    /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
334 334
    ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
335 335
    /// \brief Assignment of a digraph to another one is \e not allowed.
336 336
    /// Use DigraphCopy instead.
337 337
    void operator=(const ListDigraph &) {}
338 338
  public:
339 339

	
340 340
    /// Constructor
341 341

	
342 342
    /// Constructor.
343 343
    ///
344 344
    ListDigraph() {}
345 345

	
346 346
    ///Add a new node to the digraph.
347 347

	
348 348
    ///This function adds a new node to the digraph.
349 349
    ///\return The new node.
350 350
    Node addNode() { return Parent::addNode(); }
351 351

	
352 352
    ///Add a new arc to the digraph.
353 353

	
354 354
    ///This function adds a new arc to the digraph with source node \c s
355 355
    ///and target node \c t.
356 356
    ///\return The new arc.
357 357
    Arc addArc(Node s, Node t) {
358 358
      return Parent::addArc(s, t);
359 359
    }
360 360

	
361 361
    ///\brief Erase a node from the digraph.
362 362
    ///
363 363
    ///This function erases the given node from the digraph.
364 364
    void erase(Node n) { Parent::erase(n); }
365 365

	
366 366
    ///\brief Erase an arc from the digraph.
367 367
    ///
368 368
    ///This function erases the given arc from the digraph.
369 369
    void erase(Arc a) { Parent::erase(a); }
370 370

	
371 371
    /// Node validity check
372 372

	
373 373
    /// This function gives back \c true if the given node is valid,
374 374
    /// i.e. it is a real node of the digraph.
375 375
    ///
376 376
    /// \warning A removed node could become valid again if new nodes are
377 377
    /// added to the digraph.
378 378
    bool valid(Node n) const { return Parent::valid(n); }
379 379

	
380 380
    /// Arc validity check
381 381

	
382 382
    /// This function gives back \c true if the given arc is valid,
383 383
    /// i.e. it is a real arc of the digraph.
384 384
    ///
385 385
    /// \warning A removed arc could become valid again if new arcs are
386 386
    /// added to the digraph.
387 387
    bool valid(Arc a) const { return Parent::valid(a); }
388 388

	
389 389
    /// Change the target node of an arc
390 390

	
391 391
    /// This function changes the target node of the given arc \c a to \c n.
392 392
    ///
393 393
    ///\note \c ArcIt and \c OutArcIt iterators referencing the changed
394
    ///arc remain valid, however \c InArcIt iterators are invalidated.
394
    ///arc remain valid, but \c InArcIt iterators are invalidated.
395 395
    ///
396 396
    ///\warning This functionality cannot be used together with the Snapshot
397 397
    ///feature.
398 398
    void changeTarget(Arc a, Node n) {
399 399
      Parent::changeTarget(a,n);
400 400
    }
401 401
    /// Change the source node of an arc
402 402

	
403 403
    /// This function changes the source node of the given arc \c a to \c n.
404 404
    ///
405 405
    ///\note \c InArcIt iterators referencing the changed arc remain
406
    ///valid, however \c ArcIt and \c OutArcIt iterators are invalidated.
406
    ///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
407 407
    ///
408 408
    ///\warning This functionality cannot be used together with the Snapshot
409 409
    ///feature.
410 410
    void changeSource(Arc a, Node n) {
411 411
      Parent::changeSource(a,n);
412 412
    }
413 413

	
414 414
    /// Reverse the direction of an arc.
415 415

	
416 416
    /// This function reverses the direction of the given arc.
417 417
    ///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
418 418
    ///the changed arc are invalidated.
419 419
    ///
420 420
    ///\warning This functionality cannot be used together with the Snapshot
421 421
    ///feature.
422 422
    void reverseArc(Arc a) {
423 423
      Node t=target(a);
424 424
      changeTarget(a,source(a));
425 425
      changeSource(a,t);
426 426
    }
427 427

	
428 428
    ///Contract two nodes.
429 429

	
430 430
    ///This function contracts the given two nodes.
431 431
    ///Node \c v is removed, but instead of deleting its
432 432
    ///incident arcs, they are joined to node \c u.
433 433
    ///If the last parameter \c r is \c true (this is the default value),
434 434
    ///then the newly created loops are removed.
435 435
    ///
436 436
    ///\note The moved arcs are joined to node \c u using changeSource()
437 437
    ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
438 438
    ///invalidated for the outgoing arcs of node \c v and \c InArcIt
439 439
    ///iterators are invalidated for the incomming arcs of \c v.
440 440
    ///Moreover all iterators referencing node \c v or the removed 
441 441
    ///loops are also invalidated. Other iterators remain valid.
442 442
    ///
443 443
    ///\warning This functionality cannot be used together with the Snapshot
444 444
    ///feature.
445 445
    void contract(Node u, Node v, bool r = true)
446 446
    {
447 447
      for(OutArcIt e(*this,v);e!=INVALID;) {
448 448
        OutArcIt f=e;
449 449
        ++f;
450 450
        if(r && target(e)==u) erase(e);
451 451
        else changeSource(e,u);
452 452
        e=f;
453 453
      }
454 454
      for(InArcIt e(*this,v);e!=INVALID;) {
455 455
        InArcIt f=e;
456 456
        ++f;
457 457
        if(r && source(e)==u) erase(e);
458 458
        else changeTarget(e,u);
459 459
        e=f;
460 460
      }
461 461
      erase(v);
462 462
    }
463 463

	
464 464
    ///Split a node.
465 465

	
466 466
    ///This function splits the given node. First, a new node is added
467 467
    ///to the digraph, then the source of each outgoing arc of node \c n
468 468
    ///is moved to this new node.
469 469
    ///If the second parameter \c connect is \c true (this is the default
470 470
    ///value), then a new arc from node \c n to the newly created node
471 471
    ///is also added.
472 472
    ///\return The newly created node.
473 473
    ///
474 474
    ///\note All iterators remain valid.
475 475
    ///
476 476
    ///\warning This functionality cannot be used together with the
477 477
    ///Snapshot feature.
478 478
    Node split(Node n, bool connect = true) {
479 479
      Node b = addNode();
480 480
      nodes[b.id].first_out=nodes[n.id].first_out;
481 481
      nodes[n.id].first_out=-1;
482 482
      for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
483 483
        arcs[i].source=b.id;
484 484
      }
485 485
      if (connect) addArc(n,b);
486 486
      return b;
487 487
    }
488 488

	
489 489
    ///Split an arc.
490 490

	
491 491
    ///This function splits the given arc. First, a new node \c v is
492 492
    ///added to the digraph, then the target node of the original arc
493 493
    ///is set to \c v. Finally, an arc from \c v to the original target
494 494
    ///is added.
495 495
    ///\return The newly created node.
496 496
    ///
497 497
    ///\note \c InArcIt iterators referencing the original arc are
498 498
    ///invalidated. Other iterators remain valid.
499 499
    ///
500 500
    ///\warning This functionality cannot be used together with the
501 501
    ///Snapshot feature.
502 502
    Node split(Arc a) {
503 503
      Node v = addNode();
504 504
      addArc(v,target(a));
505 505
      changeTarget(a,v);
506 506
      return v;
507 507
    }
508 508

	
509 509
    ///Clear the digraph.
510 510

	
511 511
    ///This function erases all nodes and arcs from the digraph.
512 512
    ///
513 513
    void clear() {
514 514
      Parent::clear();
515 515
    }
516 516

	
517 517
    /// Reserve memory for nodes.
518 518

	
519 519
    /// Using this function, it is possible to avoid superfluous memory
520 520
    /// allocation: if you know that the digraph you want to build will
521 521
    /// be large (e.g. it will contain millions of nodes and/or arcs),
522 522
    /// then it is worth reserving space for this amount before starting
523 523
    /// to build the digraph.
524 524
    /// \sa reserveArc()
525 525
    void reserveNode(int n) { nodes.reserve(n); };
526 526

	
527 527
    /// Reserve memory for arcs.
528 528

	
529 529
    /// Using this function, it is possible to avoid superfluous memory
530 530
    /// allocation: if you know that the digraph you want to build will
531 531
    /// be large (e.g. it will contain millions of nodes and/or arcs),
532 532
    /// then it is worth reserving space for this amount before starting
533 533
    /// to build the digraph.
534 534
    /// \sa reserveNode()
535 535
    void reserveArc(int m) { arcs.reserve(m); };
536 536

	
537 537
    /// \brief Class to make a snapshot of the digraph and restore
538 538
    /// it later.
539 539
    ///
540 540
    /// Class to make a snapshot of the digraph and restore it later.
541 541
    ///
542 542
    /// The newly added nodes and arcs can be removed using the
543 543
    /// restore() function.
544 544
    ///
545 545
    /// \note After a state is restored, you cannot restore a later state, 
546 546
    /// i.e. you cannot add the removed nodes and arcs again using
547 547
    /// another Snapshot instance.
548 548
    ///
549 549
    /// \warning Node and arc deletions and other modifications (e.g.
550 550
    /// reversing, contracting, splitting arcs or nodes) cannot be
551 551
    /// restored. These events invalidate the snapshot.
552
    /// However the arcs and nodes that were added to the digraph after
552
    /// However, the arcs and nodes that were added to the digraph after
553 553
    /// making the current snapshot can be removed without invalidating it.
554 554
    class Snapshot {
555 555
    protected:
556 556

	
557 557
      typedef Parent::NodeNotifier NodeNotifier;
558 558

	
559 559
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
560 560
      public:
561 561

	
562 562
        NodeObserverProxy(Snapshot& _snapshot)
563 563
          : snapshot(_snapshot) {}
564 564

	
565 565
        using NodeNotifier::ObserverBase::attach;
566 566
        using NodeNotifier::ObserverBase::detach;
567 567
        using NodeNotifier::ObserverBase::attached;
568 568

	
569 569
      protected:
570 570

	
571 571
        virtual void add(const Node& node) {
572 572
          snapshot.addNode(node);
573 573
        }
574 574
        virtual void add(const std::vector<Node>& nodes) {
575 575
          for (int i = nodes.size() - 1; i >= 0; ++i) {
576 576
            snapshot.addNode(nodes[i]);
577 577
          }
578 578
        }
579 579
        virtual void erase(const Node& node) {
580 580
          snapshot.eraseNode(node);
581 581
        }
582 582
        virtual void erase(const std::vector<Node>& nodes) {
583 583
          for (int i = 0; i < int(nodes.size()); ++i) {
584 584
            snapshot.eraseNode(nodes[i]);
585 585
          }
586 586
        }
587 587
        virtual void build() {
588 588
          Node node;
589 589
          std::vector<Node> nodes;
590 590
          for (notifier()->first(node); node != INVALID;
591 591
               notifier()->next(node)) {
592 592
            nodes.push_back(node);
593 593
          }
594 594
          for (int i = nodes.size() - 1; i >= 0; --i) {
595 595
            snapshot.addNode(nodes[i]);
596 596
          }
597 597
        }
598 598
        virtual void clear() {
599 599
          Node node;
600 600
          for (notifier()->first(node); node != INVALID;
601 601
               notifier()->next(node)) {
602 602
            snapshot.eraseNode(node);
603 603
          }
604 604
        }
605 605

	
606 606
        Snapshot& snapshot;
607 607
      };
608 608

	
609 609
      class ArcObserverProxy : public ArcNotifier::ObserverBase {
610 610
      public:
611 611

	
612 612
        ArcObserverProxy(Snapshot& _snapshot)
613 613
          : snapshot(_snapshot) {}
614 614

	
615 615
        using ArcNotifier::ObserverBase::attach;
616 616
        using ArcNotifier::ObserverBase::detach;
617 617
        using ArcNotifier::ObserverBase::attached;
618 618

	
619 619
      protected:
620 620

	
621 621
        virtual void add(const Arc& arc) {
622 622
          snapshot.addArc(arc);
623 623
        }
624 624
        virtual void add(const std::vector<Arc>& arcs) {
625 625
          for (int i = arcs.size() - 1; i >= 0; ++i) {
626 626
            snapshot.addArc(arcs[i]);
627 627
          }
628 628
        }
629 629
        virtual void erase(const Arc& arc) {
630 630
          snapshot.eraseArc(arc);
631 631
        }
632 632
        virtual void erase(const std::vector<Arc>& arcs) {
633 633
          for (int i = 0; i < int(arcs.size()); ++i) {
634 634
            snapshot.eraseArc(arcs[i]);
635 635
          }
636 636
        }
637 637
        virtual void build() {
638 638
          Arc arc;
639 639
          std::vector<Arc> arcs;
640 640
          for (notifier()->first(arc); arc != INVALID;
641 641
               notifier()->next(arc)) {
642 642
            arcs.push_back(arc);
643 643
          }
644 644
          for (int i = arcs.size() - 1; i >= 0; --i) {
645 645
            snapshot.addArc(arcs[i]);
646 646
          }
647 647
        }
648 648
        virtual void clear() {
649 649
          Arc arc;
650 650
          for (notifier()->first(arc); arc != INVALID;
651 651
               notifier()->next(arc)) {
652 652
            snapshot.eraseArc(arc);
653 653
          }
654 654
        }
655 655

	
656 656
        Snapshot& snapshot;
657 657
      };
658 658

	
659 659
      ListDigraph *digraph;
660 660

	
661 661
      NodeObserverProxy node_observer_proxy;
662 662
      ArcObserverProxy arc_observer_proxy;
663 663

	
664 664
      std::list<Node> added_nodes;
665 665
      std::list<Arc> added_arcs;
666 666

	
667 667

	
668 668
      void addNode(const Node& node) {
669 669
        added_nodes.push_front(node);
670 670
      }
671 671
      void eraseNode(const Node& node) {
672 672
        std::list<Node>::iterator it =
673 673
          std::find(added_nodes.begin(), added_nodes.end(), node);
674 674
        if (it == added_nodes.end()) {
675 675
          clear();
676 676
          arc_observer_proxy.detach();
677 677
          throw NodeNotifier::ImmediateDetach();
678 678
        } else {
679 679
          added_nodes.erase(it);
680 680
        }
681 681
      }
682 682

	
683 683
      void addArc(const Arc& arc) {
684 684
        added_arcs.push_front(arc);
685 685
      }
686 686
      void eraseArc(const Arc& arc) {
687 687
        std::list<Arc>::iterator it =
688 688
          std::find(added_arcs.begin(), added_arcs.end(), arc);
689 689
        if (it == added_arcs.end()) {
690 690
          clear();
691 691
          node_observer_proxy.detach();
692 692
          throw ArcNotifier::ImmediateDetach();
693 693
        } else {
694 694
          added_arcs.erase(it);
695 695
        }
696 696
      }
697 697

	
698 698
      void attach(ListDigraph &_digraph) {
699 699
        digraph = &_digraph;
700 700
        node_observer_proxy.attach(digraph->notifier(Node()));
701 701
        arc_observer_proxy.attach(digraph->notifier(Arc()));
702 702
      }
703 703

	
704 704
      void detach() {
705 705
        node_observer_proxy.detach();
706 706
        arc_observer_proxy.detach();
707 707
      }
708 708

	
709 709
      bool attached() const {
710 710
        return node_observer_proxy.attached();
711 711
      }
712 712

	
713 713
      void clear() {
714 714
        added_nodes.clear();
715 715
        added_arcs.clear();
716 716
      }
717 717

	
718 718
    public:
719 719

	
720 720
      /// \brief Default constructor.
721 721
      ///
722 722
      /// Default constructor.
723 723
      /// You have to call save() to actually make a snapshot.
724 724
      Snapshot()
725 725
        : digraph(0), node_observer_proxy(*this),
726 726
          arc_observer_proxy(*this) {}
727 727

	
728 728
      /// \brief Constructor that immediately makes a snapshot.
729 729
      ///
730 730
      /// This constructor immediately makes a snapshot of the given digraph.
731 731
      Snapshot(ListDigraph &gr)
732 732
        : node_observer_proxy(*this),
733 733
          arc_observer_proxy(*this) {
734 734
        attach(gr);
735 735
      }
736 736

	
737 737
      /// \brief Make a snapshot.
738 738
      ///
739 739
      /// This function makes a snapshot of the given digraph.
740 740
      /// It can be called more than once. In case of a repeated
741 741
      /// call, the previous snapshot gets lost.
742 742
      void save(ListDigraph &gr) {
743 743
        if (attached()) {
744 744
          detach();
... ...
@@ -1078,469 +1078,469 @@
1078 1078
      first_free_node = n;
1079 1079
      nodes[n].prev = -2;
1080 1080
    }
1081 1081

	
1082 1082
    void erase(const Edge& edge) {
1083 1083
      int n = edge.id * 2;
1084 1084

	
1085 1085
      if (arcs[n].next_out != -1) {
1086 1086
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
1087 1087
      }
1088 1088

	
1089 1089
      if (arcs[n].prev_out != -1) {
1090 1090
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
1091 1091
      } else {
1092 1092
        nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
1093 1093
      }
1094 1094

	
1095 1095
      if (arcs[n | 1].next_out != -1) {
1096 1096
        arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
1097 1097
      }
1098 1098

	
1099 1099
      if (arcs[n | 1].prev_out != -1) {
1100 1100
        arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
1101 1101
      } else {
1102 1102
        nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
1103 1103
      }
1104 1104

	
1105 1105
      arcs[n].next_out = first_free_arc;
1106 1106
      first_free_arc = n;
1107 1107
      arcs[n].prev_out = -2;
1108 1108
      arcs[n | 1].prev_out = -2;
1109 1109

	
1110 1110
    }
1111 1111

	
1112 1112
    void clear() {
1113 1113
      arcs.clear();
1114 1114
      nodes.clear();
1115 1115
      first_node = first_free_node = first_free_arc = -1;
1116 1116
    }
1117 1117

	
1118 1118
  protected:
1119 1119

	
1120 1120
    void changeV(Edge e, Node n) {
1121 1121
      if(arcs[2 * e.id].next_out != -1) {
1122 1122
        arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
1123 1123
      }
1124 1124
      if(arcs[2 * e.id].prev_out != -1) {
1125 1125
        arcs[arcs[2 * e.id].prev_out].next_out =
1126 1126
          arcs[2 * e.id].next_out;
1127 1127
      } else {
1128 1128
        nodes[arcs[(2 * e.id) | 1].target].first_out =
1129 1129
          arcs[2 * e.id].next_out;
1130 1130
      }
1131 1131

	
1132 1132
      if (nodes[n.id].first_out != -1) {
1133 1133
        arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
1134 1134
      }
1135 1135
      arcs[(2 * e.id) | 1].target = n.id;
1136 1136
      arcs[2 * e.id].prev_out = -1;
1137 1137
      arcs[2 * e.id].next_out = nodes[n.id].first_out;
1138 1138
      nodes[n.id].first_out = 2 * e.id;
1139 1139
    }
1140 1140

	
1141 1141
    void changeU(Edge e, Node n) {
1142 1142
      if(arcs[(2 * e.id) | 1].next_out != -1) {
1143 1143
        arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
1144 1144
          arcs[(2 * e.id) | 1].prev_out;
1145 1145
      }
1146 1146
      if(arcs[(2 * e.id) | 1].prev_out != -1) {
1147 1147
        arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
1148 1148
          arcs[(2 * e.id) | 1].next_out;
1149 1149
      } else {
1150 1150
        nodes[arcs[2 * e.id].target].first_out =
1151 1151
          arcs[(2 * e.id) | 1].next_out;
1152 1152
      }
1153 1153

	
1154 1154
      if (nodes[n.id].first_out != -1) {
1155 1155
        arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
1156 1156
      }
1157 1157
      arcs[2 * e.id].target = n.id;
1158 1158
      arcs[(2 * e.id) | 1].prev_out = -1;
1159 1159
      arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
1160 1160
      nodes[n.id].first_out = ((2 * e.id) | 1);
1161 1161
    }
1162 1162

	
1163 1163
  };
1164 1164

	
1165 1165
  typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
1166 1166

	
1167 1167

	
1168 1168
  /// \addtogroup graphs
1169 1169
  /// @{
1170 1170

	
1171 1171
  ///A general undirected graph structure.
1172 1172

	
1173 1173
  ///\ref ListGraph is a versatile and fast undirected graph
1174 1174
  ///implementation based on linked lists that are stored in
1175 1175
  ///\c std::vector structures.
1176 1176
  ///
1177 1177
  ///This type fully conforms to the \ref concepts::Graph "Graph concept"
1178 1178
  ///and it also provides several useful additional functionalities.
1179 1179
  ///Most of its member functions and nested classes are documented
1180 1180
  ///only in the concept class.
1181 1181
  ///
1182 1182
  ///\sa concepts::Graph
1183 1183
  ///\sa ListDigraph
1184 1184
  class ListGraph : public ExtendedListGraphBase {
1185 1185
    typedef ExtendedListGraphBase Parent;
1186 1186

	
1187 1187
  private:
1188 1188
    /// Graphs are \e not copy constructible. Use GraphCopy instead.
1189 1189
    ListGraph(const ListGraph &) :ExtendedListGraphBase()  {};
1190 1190
    /// \brief Assignment of a graph to another one is \e not allowed.
1191 1191
    /// Use GraphCopy instead.
1192 1192
    void operator=(const ListGraph &) {}
1193 1193
  public:
1194 1194
    /// Constructor
1195 1195

	
1196 1196
    /// Constructor.
1197 1197
    ///
1198 1198
    ListGraph() {}
1199 1199

	
1200 1200
    typedef Parent::OutArcIt IncEdgeIt;
1201 1201

	
1202 1202
    /// \brief Add a new node to the graph.
1203 1203
    ///
1204 1204
    /// This function adds a new node to the graph.
1205 1205
    /// \return The new node.
1206 1206
    Node addNode() { return Parent::addNode(); }
1207 1207

	
1208 1208
    /// \brief Add a new edge to the graph.
1209 1209
    ///
1210 1210
    /// This function adds a new edge to the graph between nodes
1211 1211
    /// \c u and \c v with inherent orientation from node \c u to
1212 1212
    /// node \c v.
1213 1213
    /// \return The new edge.
1214 1214
    Edge addEdge(Node u, Node v) {
1215 1215
      return Parent::addEdge(u, v);
1216 1216
    }
1217 1217

	
1218 1218
    ///\brief Erase a node from the graph.
1219 1219
    ///
1220 1220
    /// This function erases the given node from the graph.
1221 1221
    void erase(Node n) { Parent::erase(n); }
1222 1222

	
1223 1223
    ///\brief Erase an edge from the graph.
1224 1224
    ///
1225 1225
    /// This function erases the given edge from the graph.
1226 1226
    void erase(Edge e) { Parent::erase(e); }
1227 1227
    /// Node validity check
1228 1228

	
1229 1229
    /// This function gives back \c true if the given node is valid,
1230 1230
    /// i.e. it is a real node of the graph.
1231 1231
    ///
1232 1232
    /// \warning A removed node could become valid again if new nodes are
1233 1233
    /// added to the graph.
1234 1234
    bool valid(Node n) const { return Parent::valid(n); }
1235 1235
    /// Edge validity check
1236 1236

	
1237 1237
    /// This function gives back \c true if the given edge is valid,
1238 1238
    /// i.e. it is a real edge of the graph.
1239 1239
    ///
1240 1240
    /// \warning A removed edge could become valid again if new edges are
1241 1241
    /// added to the graph.
1242 1242
    bool valid(Edge e) const { return Parent::valid(e); }
1243 1243
    /// Arc validity check
1244 1244

	
1245 1245
    /// This function gives back \c true if the given arc is valid,
1246 1246
    /// i.e. it is a real arc of the graph.
1247 1247
    ///
1248 1248
    /// \warning A removed arc could become valid again if new edges are
1249 1249
    /// added to the graph.
1250 1250
    bool valid(Arc a) const { return Parent::valid(a); }
1251 1251

	
1252 1252
    /// \brief Change the first node of an edge.
1253 1253
    ///
1254 1254
    /// This function changes the first node of the given edge \c e to \c n.
1255 1255
    ///
1256 1256
    ///\note \c EdgeIt and \c ArcIt iterators referencing the
1257 1257
    ///changed edge are invalidated and all other iterators whose
1258 1258
    ///base node is the changed node are also invalidated.
1259 1259
    ///
1260 1260
    ///\warning This functionality cannot be used together with the
1261 1261
    ///Snapshot feature.
1262 1262
    void changeU(Edge e, Node n) {
1263 1263
      Parent::changeU(e,n);
1264 1264
    }
1265 1265
    /// \brief Change the second node of an edge.
1266 1266
    ///
1267 1267
    /// This function changes the second node of the given edge \c e to \c n.
1268 1268
    ///
1269 1269
    ///\note \c EdgeIt iterators referencing the changed edge remain
1270
    ///valid, however \c ArcIt iterators referencing the changed edge and
1270
    ///valid, but \c ArcIt iterators referencing the changed edge and
1271 1271
    ///all other iterators whose base node is the changed node are also
1272 1272
    ///invalidated.
1273 1273
    ///
1274 1274
    ///\warning This functionality cannot be used together with the
1275 1275
    ///Snapshot feature.
1276 1276
    void changeV(Edge e, Node n) {
1277 1277
      Parent::changeV(e,n);
1278 1278
    }
1279 1279

	
1280 1280
    /// \brief Contract two nodes.
1281 1281
    ///
1282 1282
    /// This function contracts the given two nodes.
1283 1283
    /// Node \c b is removed, but instead of deleting
1284 1284
    /// its incident edges, they are joined to node \c a.
1285 1285
    /// If the last parameter \c r is \c true (this is the default value),
1286 1286
    /// then the newly created loops are removed.
1287 1287
    ///
1288 1288
    /// \note The moved edges are joined to node \c a using changeU()
1289 1289
    /// or changeV(), thus all edge and arc iterators whose base node is
1290 1290
    /// \c b are invalidated.
1291 1291
    /// Moreover all iterators referencing node \c b or the removed 
1292 1292
    /// loops are also invalidated. Other iterators remain valid.
1293 1293
    ///
1294 1294
    ///\warning This functionality cannot be used together with the
1295 1295
    ///Snapshot feature.
1296 1296
    void contract(Node a, Node b, bool r = true) {
1297 1297
      for(IncEdgeIt e(*this, b); e!=INVALID;) {
1298 1298
        IncEdgeIt f = e; ++f;
1299 1299
        if (r && runningNode(e) == a) {
1300 1300
          erase(e);
1301 1301
        } else if (u(e) == b) {
1302 1302
          changeU(e, a);
1303 1303
        } else {
1304 1304
          changeV(e, a);
1305 1305
        }
1306 1306
        e = f;
1307 1307
      }
1308 1308
      erase(b);
1309 1309
    }
1310 1310

	
1311 1311
    ///Clear the graph.
1312 1312

	
1313 1313
    ///This function erases all nodes and arcs from the graph.
1314 1314
    ///
1315 1315
    void clear() {
1316 1316
      Parent::clear();
1317 1317
    }
1318 1318

	
1319 1319
    /// Reserve memory for nodes.
1320 1320

	
1321 1321
    /// Using this function, it is possible to avoid superfluous memory
1322 1322
    /// allocation: if you know that the graph you want to build will
1323 1323
    /// be large (e.g. it will contain millions of nodes and/or edges),
1324 1324
    /// then it is worth reserving space for this amount before starting
1325 1325
    /// to build the graph.
1326 1326
    /// \sa reserveEdge()
1327 1327
    void reserveNode(int n) { nodes.reserve(n); };
1328 1328

	
1329 1329
    /// Reserve memory for edges.
1330 1330

	
1331 1331
    /// Using this function, it is possible to avoid superfluous memory
1332 1332
    /// allocation: if you know that the graph you want to build will
1333 1333
    /// be large (e.g. it will contain millions of nodes and/or edges),
1334 1334
    /// then it is worth reserving space for this amount before starting
1335 1335
    /// to build the graph.
1336 1336
    /// \sa reserveNode()
1337 1337
    void reserveEdge(int m) { arcs.reserve(2 * m); };
1338 1338

	
1339 1339
    /// \brief Class to make a snapshot of the graph and restore
1340 1340
    /// it later.
1341 1341
    ///
1342 1342
    /// Class to make a snapshot of the graph and restore it later.
1343 1343
    ///
1344 1344
    /// The newly added nodes and edges can be removed
1345 1345
    /// using the restore() function.
1346 1346
    ///
1347 1347
    /// \note After a state is restored, you cannot restore a later state, 
1348 1348
    /// i.e. you cannot add the removed nodes and edges again using
1349 1349
    /// another Snapshot instance.
1350 1350
    ///
1351 1351
    /// \warning Node and edge deletions and other modifications
1352 1352
    /// (e.g. changing the end-nodes of edges or contracting nodes)
1353 1353
    /// cannot be restored. These events invalidate the snapshot.
1354
    /// However the edges and nodes that were added to the graph after
1354
    /// However, the edges and nodes that were added to the graph after
1355 1355
    /// making the current snapshot can be removed without invalidating it.
1356 1356
    class Snapshot {
1357 1357
    protected:
1358 1358

	
1359 1359
      typedef Parent::NodeNotifier NodeNotifier;
1360 1360

	
1361 1361
      class NodeObserverProxy : public NodeNotifier::ObserverBase {
1362 1362
      public:
1363 1363

	
1364 1364
        NodeObserverProxy(Snapshot& _snapshot)
1365 1365
          : snapshot(_snapshot) {}
1366 1366

	
1367 1367
        using NodeNotifier::ObserverBase::attach;
1368 1368
        using NodeNotifier::ObserverBase::detach;
1369 1369
        using NodeNotifier::ObserverBase::attached;
1370 1370

	
1371 1371
      protected:
1372 1372

	
1373 1373
        virtual void add(const Node& node) {
1374 1374
          snapshot.addNode(node);
1375 1375
        }
1376 1376
        virtual void add(const std::vector<Node>& nodes) {
1377 1377
          for (int i = nodes.size() - 1; i >= 0; ++i) {
1378 1378
            snapshot.addNode(nodes[i]);
1379 1379
          }
1380 1380
        }
1381 1381
        virtual void erase(const Node& node) {
1382 1382
          snapshot.eraseNode(node);
1383 1383
        }
1384 1384
        virtual void erase(const std::vector<Node>& nodes) {
1385 1385
          for (int i = 0; i < int(nodes.size()); ++i) {
1386 1386
            snapshot.eraseNode(nodes[i]);
1387 1387
          }
1388 1388
        }
1389 1389
        virtual void build() {
1390 1390
          Node node;
1391 1391
          std::vector<Node> nodes;
1392 1392
          for (notifier()->first(node); node != INVALID;
1393 1393
               notifier()->next(node)) {
1394 1394
            nodes.push_back(node);
1395 1395
          }
1396 1396
          for (int i = nodes.size() - 1; i >= 0; --i) {
1397 1397
            snapshot.addNode(nodes[i]);
1398 1398
          }
1399 1399
        }
1400 1400
        virtual void clear() {
1401 1401
          Node node;
1402 1402
          for (notifier()->first(node); node != INVALID;
1403 1403
               notifier()->next(node)) {
1404 1404
            snapshot.eraseNode(node);
1405 1405
          }
1406 1406
        }
1407 1407

	
1408 1408
        Snapshot& snapshot;
1409 1409
      };
1410 1410

	
1411 1411
      class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
1412 1412
      public:
1413 1413

	
1414 1414
        EdgeObserverProxy(Snapshot& _snapshot)
1415 1415
          : snapshot(_snapshot) {}
1416 1416

	
1417 1417
        using EdgeNotifier::ObserverBase::attach;
1418 1418
        using EdgeNotifier::ObserverBase::detach;
1419 1419
        using EdgeNotifier::ObserverBase::attached;
1420 1420

	
1421 1421
      protected:
1422 1422

	
1423 1423
        virtual void add(const Edge& edge) {
1424 1424
          snapshot.addEdge(edge);
1425 1425
        }
1426 1426
        virtual void add(const std::vector<Edge>& edges) {
1427 1427
          for (int i = edges.size() - 1; i >= 0; ++i) {
1428 1428
            snapshot.addEdge(edges[i]);
1429 1429
          }
1430 1430
        }
1431 1431
        virtual void erase(const Edge& edge) {
1432 1432
          snapshot.eraseEdge(edge);
1433 1433
        }
1434 1434
        virtual void erase(const std::vector<Edge>& edges) {
1435 1435
          for (int i = 0; i < int(edges.size()); ++i) {
1436 1436
            snapshot.eraseEdge(edges[i]);
1437 1437
          }
1438 1438
        }
1439 1439
        virtual void build() {
1440 1440
          Edge edge;
1441 1441
          std::vector<Edge> edges;
1442 1442
          for (notifier()->first(edge); edge != INVALID;
1443 1443
               notifier()->next(edge)) {
1444 1444
            edges.push_back(edge);
1445 1445
          }
1446 1446
          for (int i = edges.size() - 1; i >= 0; --i) {
1447 1447
            snapshot.addEdge(edges[i]);
1448 1448
          }
1449 1449
        }
1450 1450
        virtual void clear() {
1451 1451
          Edge edge;
1452 1452
          for (notifier()->first(edge); edge != INVALID;
1453 1453
               notifier()->next(edge)) {
1454 1454
            snapshot.eraseEdge(edge);
1455 1455
          }
1456 1456
        }
1457 1457

	
1458 1458
        Snapshot& snapshot;
1459 1459
      };
1460 1460

	
1461 1461
      ListGraph *graph;
1462 1462

	
1463 1463
      NodeObserverProxy node_observer_proxy;
1464 1464
      EdgeObserverProxy edge_observer_proxy;
1465 1465

	
1466 1466
      std::list<Node> added_nodes;
1467 1467
      std::list<Edge> added_edges;
1468 1468

	
1469 1469

	
1470 1470
      void addNode(const Node& node) {
1471 1471
        added_nodes.push_front(node);
1472 1472
      }
1473 1473
      void eraseNode(const Node& node) {
1474 1474
        std::list<Node>::iterator it =
1475 1475
          std::find(added_nodes.begin(), added_nodes.end(), node);
1476 1476
        if (it == added_nodes.end()) {
1477 1477
          clear();
1478 1478
          edge_observer_proxy.detach();
1479 1479
          throw NodeNotifier::ImmediateDetach();
1480 1480
        } else {
1481 1481
          added_nodes.erase(it);
1482 1482
        }
1483 1483
      }
1484 1484

	
1485 1485
      void addEdge(const Edge& edge) {
1486 1486
        added_edges.push_front(edge);
1487 1487
      }
1488 1488
      void eraseEdge(const Edge& edge) {
1489 1489
        std::list<Edge>::iterator it =
1490 1490
          std::find(added_edges.begin(), added_edges.end(), edge);
1491 1491
        if (it == added_edges.end()) {
1492 1492
          clear();
1493 1493
          node_observer_proxy.detach();
1494 1494
          throw EdgeNotifier::ImmediateDetach();
1495 1495
        } else {
1496 1496
          added_edges.erase(it);
1497 1497
        }
1498 1498
      }
1499 1499

	
1500 1500
      void attach(ListGraph &_graph) {
1501 1501
        graph = &_graph;
1502 1502
        node_observer_proxy.attach(graph->notifier(Node()));
1503 1503
        edge_observer_proxy.attach(graph->notifier(Edge()));
1504 1504
      }
1505 1505

	
1506 1506
      void detach() {
1507 1507
        node_observer_proxy.detach();
1508 1508
        edge_observer_proxy.detach();
1509 1509
      }
1510 1510

	
1511 1511
      bool attached() const {
1512 1512
        return node_observer_proxy.attached();
1513 1513
      }
1514 1514

	
1515 1515
      void clear() {
1516 1516
        added_nodes.clear();
1517 1517
        added_edges.clear();
1518 1518
      }
1519 1519

	
1520 1520
    public:
1521 1521

	
1522 1522
      /// \brief Default constructor.
1523 1523
      ///
1524 1524
      /// Default constructor.
1525 1525
      /// You have to call save() to actually make a snapshot.
1526 1526
      Snapshot()
1527 1527
        : graph(0), node_observer_proxy(*this),
1528 1528
          edge_observer_proxy(*this) {}
1529 1529

	
1530 1530
      /// \brief Constructor that immediately makes a snapshot.
1531 1531
      ///
1532 1532
      /// This constructor immediately makes a snapshot of the given graph.
1533 1533
      Snapshot(ListGraph &gr)
1534 1534
        : node_observer_proxy(*this),
1535 1535
          edge_observer_proxy(*this) {
1536 1536
        attach(gr);
1537 1537
      }
1538 1538

	
1539 1539
      /// \brief Make a snapshot.
1540 1540
      ///
1541 1541
      /// This function makes a snapshot of the given graph.
1542 1542
      /// It can be called more than once. In case of a repeated
1543 1543
      /// call, the previous snapshot gets lost.
1544 1544
      void save(ListGraph &gr) {
1545 1545
        if (attached()) {
1546 1546
          detach();
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LP_BASE_H
20 20
#define LEMON_LP_BASE_H
21 21

	
22 22
#include<iostream>
23 23
#include<vector>
24 24
#include<map>
25 25
#include<limits>
26 26
#include<lemon/math.h>
27 27

	
28 28
#include<lemon/error.h>
29 29
#include<lemon/assert.h>
30 30

	
31 31
#include<lemon/core.h>
32 32
#include<lemon/bits/solver_bits.h>
33 33

	
34 34
///\file
35 35
///\brief The interface of the LP solver interface.
36 36
///\ingroup lp_group
37 37
namespace lemon {
38 38

	
39 39
  ///Common base class for LP and MIP solvers
40 40

	
41 41
  ///Usually this class is not used directly, please use one of the concrete
42 42
  ///implementations of the solver interface.
43 43
  ///\ingroup lp_group
44 44
  class LpBase {
45 45

	
46 46
  protected:
47 47

	
48 48
    _solver_bits::VarIndex rows;
49 49
    _solver_bits::VarIndex cols;
50 50

	
51 51
  public:
52 52

	
53 53
    ///Possible outcomes of an LP solving procedure
54 54
    enum SolveExitStatus {
55 55
      /// = 0. It means that the problem has been successfully solved: either
56 56
      ///an optimal solution has been found or infeasibility/unboundedness
57 57
      ///has been proved.
58 58
      SOLVED = 0,
59 59
      /// = 1. Any other case (including the case when some user specified
60 60
      ///limit has been exceeded).
61 61
      UNSOLVED = 1
62 62
    };
63 63

	
64 64
    ///Direction of the optimization
65 65
    enum Sense {
66 66
      /// Minimization
67 67
      MIN,
68 68
      /// Maximization
69 69
      MAX
70 70
    };
71 71

	
72 72
    ///Enum for \c messageLevel() parameter
73 73
    enum MessageLevel {
74 74
      /// No output (default value).
75 75
      MESSAGE_NOTHING,
76 76
      /// Error messages only.
77 77
      MESSAGE_ERROR,
78 78
      /// Warnings.
79 79
      MESSAGE_WARNING,
80 80
      /// Normal output.
81 81
      MESSAGE_NORMAL,
82 82
      /// Verbose output.
83 83
      MESSAGE_VERBOSE
84 84
    };
85 85
    
86 86

	
87 87
    ///The floating point type used by the solver
88 88
    typedef double Value;
89 89
    ///The infinity constant
90 90
    static const Value INF;
91 91
    ///The not a number constant
92 92
    static const Value NaN;
93 93

	
94 94
    friend class Col;
95 95
    friend class ColIt;
96 96
    friend class Row;
97 97
    friend class RowIt;
98 98

	
99 99
    ///Refer to a column of the LP.
100 100

	
101 101
    ///This type is used to refer to a column of the LP.
102 102
    ///
103 103
    ///Its value remains valid and correct even after the addition or erase of
104 104
    ///other columns.
105 105
    ///
106 106
    ///\note This class is similar to other Item types in LEMON, like
107 107
    ///Node and Arc types in digraph.
108 108
    class Col {
109 109
      friend class LpBase;
110 110
    protected:
111 111
      int _id;
112 112
      explicit Col(int id) : _id(id) {}
113 113
    public:
114 114
      typedef Value ExprValue;
115 115
      typedef True LpCol;
116 116
      /// Default constructor
117 117
      
118 118
      /// \warning The default constructor sets the Col to an
119 119
      /// undefined value.
120 120
      Col() {}
121 121
      /// Invalid constructor \& conversion.
122 122
      
123 123
      /// This constructor initializes the Col to be invalid.
124 124
      /// \sa Invalid for more details.      
125 125
      Col(const Invalid&) : _id(-1) {}
126 126
      /// Equality operator
127 127

	
128 128
      /// Two \ref Col "Col"s are equal if and only if they point to
129 129
      /// the same LP column or both are invalid.
130 130
      bool operator==(Col c) const  {return _id == c._id;}
131 131
      /// Inequality operator
132 132

	
133 133
      /// \sa operator==(Col c)
134 134
      ///
135 135
      bool operator!=(Col c) const  {return _id != c._id;}
136 136
      /// Artificial ordering operator.
137 137

	
138 138
      /// To allow the use of this object in std::map or similar
139 139
      /// associative container we require this.
140 140
      ///
141 141
      /// \note This operator only have to define some strict ordering of
142 142
      /// the items; this order has nothing to do with the iteration
143 143
      /// ordering of the items.
144 144
      bool operator<(Col c) const  {return _id < c._id;}
145 145
    };
146 146

	
147 147
    ///Iterator for iterate over the columns of an LP problem
148 148

	
149
    /// Its usage is quite simple, for example you can count the number
149
    /// Its usage is quite simple, for example, you can count the number
150 150
    /// of columns in an LP \c lp:
151 151
    ///\code
152 152
    /// int count=0;
153 153
    /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
154 154
    ///\endcode
155 155
    class ColIt : public Col {
156 156
      const LpBase *_solver;
157 157
    public:
158 158
      /// Default constructor
159 159
      
160 160
      /// \warning The default constructor sets the iterator
161 161
      /// to an undefined value.
162 162
      ColIt() {}
163 163
      /// Sets the iterator to the first Col
164 164
      
165 165
      /// Sets the iterator to the first Col.
166 166
      ///
167 167
      ColIt(const LpBase &solver) : _solver(&solver)
168 168
      {
169 169
        _solver->cols.firstItem(_id);
170 170
      }
171 171
      /// Invalid constructor \& conversion
172 172
      
173 173
      /// Initialize the iterator to be invalid.
174 174
      /// \sa Invalid for more details.
175 175
      ColIt(const Invalid&) : Col(INVALID) {}
176 176
      /// Next column
177 177
      
178 178
      /// Assign the iterator to the next column.
179 179
      ///
180 180
      ColIt &operator++()
181 181
      {
182 182
        _solver->cols.nextItem(_id);
183 183
        return *this;
184 184
      }
185 185
    };
186 186

	
187 187
    /// \brief Returns the ID of the column.
188 188
    static int id(const Col& col) { return col._id; }
189 189
    /// \brief Returns the column with the given ID.
190 190
    ///
191 191
    /// \pre The argument should be a valid column ID in the LP problem.
192 192
    static Col colFromId(int id) { return Col(id); }
193 193

	
194 194
    ///Refer to a row of the LP.
195 195

	
196 196
    ///This type is used to refer to a row of the LP.
197 197
    ///
198 198
    ///Its value remains valid and correct even after the addition or erase of
199 199
    ///other rows.
200 200
    ///
201 201
    ///\note This class is similar to other Item types in LEMON, like
202 202
    ///Node and Arc types in digraph.
203 203
    class Row {
204 204
      friend class LpBase;
205 205
    protected:
206 206
      int _id;
207 207
      explicit Row(int id) : _id(id) {}
208 208
    public:
209 209
      typedef Value ExprValue;
210 210
      typedef True LpRow;
211 211
      /// Default constructor
212 212
      
213 213
      /// \warning The default constructor sets the Row to an
214 214
      /// undefined value.
215 215
      Row() {}
216 216
      /// Invalid constructor \& conversion.
217 217
      
218 218
      /// This constructor initializes the Row to be invalid.
219 219
      /// \sa Invalid for more details.      
220 220
      Row(const Invalid&) : _id(-1) {}
221 221
      /// Equality operator
222 222

	
223 223
      /// Two \ref Row "Row"s are equal if and only if they point to
224 224
      /// the same LP row or both are invalid.
225 225
      bool operator==(Row r) const  {return _id == r._id;}
226 226
      /// Inequality operator
227 227
      
228 228
      /// \sa operator==(Row r)
229 229
      ///
230 230
      bool operator!=(Row r) const  {return _id != r._id;}
231 231
      /// Artificial ordering operator.
232 232

	
233 233
      /// To allow the use of this object in std::map or similar
234 234
      /// associative container we require this.
235 235
      ///
236 236
      /// \note This operator only have to define some strict ordering of
237 237
      /// the items; this order has nothing to do with the iteration
238 238
      /// ordering of the items.
239 239
      bool operator<(Row r) const  {return _id < r._id;}
240 240
    };
241 241

	
242 242
    ///Iterator for iterate over the rows of an LP problem
243 243

	
244
    /// Its usage is quite simple, for example you can count the number
244
    /// Its usage is quite simple, for example, you can count the number
245 245
    /// of rows in an LP \c lp:
246 246
    ///\code
247 247
    /// int count=0;
248 248
    /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
249 249
    ///\endcode
250 250
    class RowIt : public Row {
251 251
      const LpBase *_solver;
252 252
    public:
253 253
      /// Default constructor
254 254
      
255 255
      /// \warning The default constructor sets the iterator
256 256
      /// to an undefined value.
257 257
      RowIt() {}
258 258
      /// Sets the iterator to the first Row
259 259
      
260 260
      /// Sets the iterator to the first Row.
261 261
      ///
262 262
      RowIt(const LpBase &solver) : _solver(&solver)
263 263
      {
264 264
        _solver->rows.firstItem(_id);
265 265
      }
266 266
      /// Invalid constructor \& conversion
267 267
      
268 268
      /// Initialize the iterator to be invalid.
269 269
      /// \sa Invalid for more details.
270 270
      RowIt(const Invalid&) : Row(INVALID) {}
271 271
      /// Next row
272 272
      
273 273
      /// Assign the iterator to the next row.
274 274
      ///
275 275
      RowIt &operator++()
276 276
      {
277 277
        _solver->rows.nextItem(_id);
278 278
        return *this;
279 279
      }
280 280
    };
281 281

	
282 282
    /// \brief Returns the ID of the row.
283 283
    static int id(const Row& row) { return row._id; }
284 284
    /// \brief Returns the row with the given ID.
285 285
    ///
286 286
    /// \pre The argument should be a valid row ID in the LP problem.
287 287
    static Row rowFromId(int id) { return Row(id); }
288 288

	
289 289
  public:
290 290

	
291 291
    ///Linear expression of variables and a constant component
292 292

	
293 293
    ///This data structure stores a linear expression of the variables
294 294
    ///(\ref Col "Col"s) and also has a constant component.
295 295
    ///
296 296
    ///There are several ways to access and modify the contents of this
297 297
    ///container.
298 298
    ///\code
299 299
    ///e[v]=5;
300 300
    ///e[v]+=12;
301 301
    ///e.erase(v);
302 302
    ///\endcode
303 303
    ///or you can also iterate through its elements.
304 304
    ///\code
305 305
    ///double s=0;
306 306
    ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
307 307
    ///  s+=*i * primal(i);
308 308
    ///\endcode
309 309
    ///(This code computes the primal value of the expression).
310 310
    ///- Numbers (<tt>double</tt>'s)
311 311
    ///and variables (\ref Col "Col"s) directly convert to an
312 312
    ///\ref Expr and the usual linear operations are defined, so
313 313
    ///\code
314 314
    ///v+w
315 315
    ///2*v-3.12*(v-w/2)+2
316 316
    ///v*2.1+(3*v+(v*12+w+6)*3)/2
317 317
    ///\endcode
318 318
    ///are valid expressions.
319 319
    ///The usual assignment operations are also defined.
320 320
    ///\code
321 321
    ///e=v+w;
322 322
    ///e+=2*v-3.12*(v-w/2)+2;
323 323
    ///e*=3.4;
324 324
    ///e/=5;
325 325
    ///\endcode
326 326
    ///- The constant member can be set and read by dereference
327 327
    ///  operator (unary *)
328 328
    ///
329 329
    ///\code
330 330
    ///*e=12;
331 331
    ///double c=*e;
332 332
    ///\endcode
333 333
    ///
334 334
    ///\sa Constr
335 335
    class Expr {
336 336
      friend class LpBase;
337 337
    public:
338 338
      /// The key type of the expression
339 339
      typedef LpBase::Col Key;
340 340
      /// The value type of the expression
341 341
      typedef LpBase::Value Value;
342 342

	
343 343
    protected:
344 344
      Value const_comp;
345 345
      std::map<int, Value> comps;
346 346

	
347 347
    public:
348 348
      typedef True SolverExpr;
349 349
      /// Default constructor
350 350
      
351 351
      /// Construct an empty expression, the coefficients and
352 352
      /// the constant component are initialized to zero.
353 353
      Expr() : const_comp(0) {}
354 354
      /// Construct an expression from a column
355 355

	
356 356
      /// Construct an expression, which has a term with \c c variable
357 357
      /// and 1.0 coefficient.
358 358
      Expr(const Col &c) : const_comp(0) {
359 359
        typedef std::map<int, Value>::value_type pair_type;
360 360
        comps.insert(pair_type(id(c), 1));
361 361
      }
362 362
      /// Construct an expression from a constant
363 363

	
364 364
      /// Construct an expression, which's constant component is \c v.
365 365
      ///
366 366
      Expr(const Value &v) : const_comp(v) {}
367 367
      /// Returns the coefficient of the column
368 368
      Value operator[](const Col& c) const {
369 369
        std::map<int, Value>::const_iterator it=comps.find(id(c));
370 370
        if (it != comps.end()) {
371 371
          return it->second;
372 372
        } else {
373 373
          return 0;
374 374
        }
375 375
      }
376 376
      /// Returns the coefficient of the column
377 377
      Value& operator[](const Col& c) {
378 378
        return comps[id(c)];
379 379
      }
380 380
      /// Sets the coefficient of the column
381 381
      void set(const Col &c, const Value &v) {
382 382
        if (v != 0.0) {
383 383
          typedef std::map<int, Value>::value_type pair_type;
384 384
          comps.insert(pair_type(id(c), v));
385 385
        } else {
386 386
          comps.erase(id(c));
387 387
        }
388 388
      }
389 389
      /// Returns the constant component of the expression
390 390
      Value& operator*() { return const_comp; }
391 391
      /// Returns the constant component of the expression
392 392
      const Value& operator*() const { return const_comp; }
393 393
      /// \brief Removes the coefficients which's absolute value does
394 394
      /// not exceed \c epsilon. It also sets to zero the constant
395 395
      /// component, if it does not exceed epsilon in absolute value.
396 396
      void simplify(Value epsilon = 0.0) {
397 397
        std::map<int, Value>::iterator it=comps.begin();
398 398
        while (it != comps.end()) {
399 399
          std::map<int, Value>::iterator jt=it;
400 400
          ++jt;
401 401
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
402 402
          it=jt;
403 403
        }
404 404
        if (std::fabs(const_comp) <= epsilon) const_comp = 0;
405 405
      }
406 406

	
407 407
      void simplify(Value epsilon = 0.0) const {
408 408
        const_cast<Expr*>(this)->simplify(epsilon);
409 409
      }
410 410

	
411 411
      ///Sets all coefficients and the constant component to 0.
412 412
      void clear() {
413 413
        comps.clear();
414 414
        const_comp=0;
415 415
      }
416 416

	
417 417
      ///Compound assignment
418 418
      Expr &operator+=(const Expr &e) {
419 419
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
420 420
             it!=e.comps.end(); ++it)
421 421
          comps[it->first]+=it->second;
422 422
        const_comp+=e.const_comp;
423 423
        return *this;
424 424
      }
425 425
      ///Compound assignment
426 426
      Expr &operator-=(const Expr &e) {
427 427
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
428 428
             it!=e.comps.end(); ++it)
429 429
          comps[it->first]-=it->second;
430 430
        const_comp-=e.const_comp;
431 431
        return *this;
432 432
      }
433 433
      ///Multiply with a constant
434 434
      Expr &operator*=(const Value &v) {
435 435
        for (std::map<int, Value>::iterator it=comps.begin();
436 436
             it!=comps.end(); ++it)
Ignore white space 384 line context
... ...
@@ -41,505 +41,505 @@
41 41
  /// required by the map %concepts.
42 42
  template<typename K, typename V>
43 43
  class MapBase {
44 44
  public:
45 45
    /// \brief The key type of the map.
46 46
    typedef K Key;
47 47
    /// \brief The value type of the map.
48 48
    /// (The type of objects associated with the keys).
49 49
    typedef V Value;
50 50
  };
51 51

	
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map,
57 57
  /// but data written to it is not required (i.e. it will be sent to
58 58
  /// <tt>/dev/null</tt>).
59 59
  /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
60 60
  ///
61 61
  /// \sa ConstMap
62 62
  template<typename K, typename V>
63 63
  class NullMap : public MapBase<K, V> {
64 64
  public:
65 65
    ///\e
66 66
    typedef K Key;
67 67
    ///\e
68 68
    typedef V Value;
69 69

	
70 70
    /// Gives back a default constructed element.
71 71
    Value operator[](const Key&) const { return Value(); }
72 72
    /// Absorbs the value.
73 73
    void set(const Key&, const Value&) {}
74 74
  };
75 75

	
76 76
  /// Returns a \c NullMap class
77 77

	
78 78
  /// This function just returns a \c NullMap class.
79 79
  /// \relates NullMap
80 80
  template <typename K, typename V>
81 81
  NullMap<K, V> nullMap() {
82 82
    return NullMap<K, V>();
83 83
  }
84 84

	
85 85

	
86 86
  /// Constant map.
87 87

	
88 88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
89 89
  /// value to each key.
90 90
  ///
91 91
  /// In other aspects it is equivalent to \c NullMap.
92 92
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
93 93
  /// concept, but it absorbs the data written to it.
94 94
  ///
95 95
  /// The simplest way of using this map is through the constMap()
96 96
  /// function.
97 97
  ///
98 98
  /// \sa NullMap
99 99
  /// \sa IdentityMap
100 100
  template<typename K, typename V>
101 101
  class ConstMap : public MapBase<K, V> {
102 102
  private:
103 103
    V _value;
104 104
  public:
105 105
    ///\e
106 106
    typedef K Key;
107 107
    ///\e
108 108
    typedef V Value;
109 109

	
110 110
    /// Default constructor
111 111

	
112 112
    /// Default constructor.
113 113
    /// The value of the map will be default constructed.
114 114
    ConstMap() {}
115 115

	
116 116
    /// Constructor with specified initial value
117 117

	
118 118
    /// Constructor with specified initial value.
119 119
    /// \param v The initial value of the map.
120 120
    ConstMap(const Value &v) : _value(v) {}
121 121

	
122 122
    /// Gives back the specified value.
123 123
    Value operator[](const Key&) const { return _value; }
124 124

	
125 125
    /// Absorbs the value.
126 126
    void set(const Key&, const Value&) {}
127 127

	
128 128
    /// Sets the value that is assigned to each key.
129 129
    void setAll(const Value &v) {
130 130
      _value = v;
131 131
    }
132 132

	
133 133
    template<typename V1>
134 134
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
135 135
  };
136 136

	
137 137
  /// Returns a \c ConstMap class
138 138

	
139 139
  /// This function just returns a \c ConstMap class.
140 140
  /// \relates ConstMap
141 141
  template<typename K, typename V>
142 142
  inline ConstMap<K, V> constMap(const V &v) {
143 143
    return ConstMap<K, V>(v);
144 144
  }
145 145

	
146 146
  template<typename K, typename V>
147 147
  inline ConstMap<K, V> constMap() {
148 148
    return ConstMap<K, V>();
149 149
  }
150 150

	
151 151

	
152 152
  template<typename T, T v>
153 153
  struct Const {};
154 154

	
155 155
  /// Constant map with inlined constant value.
156 156

	
157 157
  /// This \ref concepts::ReadMap "readable map" assigns a specified
158 158
  /// value to each key.
159 159
  ///
160 160
  /// In other aspects it is equivalent to \c NullMap.
161 161
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
162 162
  /// concept, but it absorbs the data written to it.
163 163
  ///
164 164
  /// The simplest way of using this map is through the constMap()
165 165
  /// function.
166 166
  ///
167 167
  /// \sa NullMap
168 168
  /// \sa IdentityMap
169 169
  template<typename K, typename V, V v>
170 170
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
171 171
  public:
172 172
    ///\e
173 173
    typedef K Key;
174 174
    ///\e
175 175
    typedef V Value;
176 176

	
177 177
    /// Constructor.
178 178
    ConstMap() {}
179 179

	
180 180
    /// Gives back the specified value.
181 181
    Value operator[](const Key&) const { return v; }
182 182

	
183 183
    /// Absorbs the value.
184 184
    void set(const Key&, const Value&) {}
185 185
  };
186 186

	
187 187
  /// Returns a \c ConstMap class with inlined constant value
188 188

	
189 189
  /// This function just returns a \c ConstMap class with inlined
190 190
  /// constant value.
191 191
  /// \relates ConstMap
192 192
  template<typename K, typename V, V v>
193 193
  inline ConstMap<K, Const<V, v> > constMap() {
194 194
    return ConstMap<K, Const<V, v> >();
195 195
  }
196 196

	
197 197

	
198 198
  /// Identity map.
199 199

	
200 200
  /// This \ref concepts::ReadMap "read-only map" gives back the given
201 201
  /// key as value without any modification.
202 202
  ///
203 203
  /// \sa ConstMap
204 204
  template <typename T>
205 205
  class IdentityMap : public MapBase<T, T> {
206 206
  public:
207 207
    ///\e
208 208
    typedef T Key;
209 209
    ///\e
210 210
    typedef T Value;
211 211

	
212 212
    /// Gives back the given value without any modification.
213 213
    Value operator[](const Key &k) const {
214 214
      return k;
215 215
    }
216 216
  };
217 217

	
218 218
  /// Returns an \c IdentityMap class
219 219

	
220 220
  /// This function just returns an \c IdentityMap class.
221 221
  /// \relates IdentityMap
222 222
  template<typename T>
223 223
  inline IdentityMap<T> identityMap() {
224 224
    return IdentityMap<T>();
225 225
  }
226 226

	
227 227

	
228 228
  /// \brief Map for storing values for integer keys from the range
229 229
  /// <tt>[0..size-1]</tt>.
230 230
  ///
231 231
  /// This map is essentially a wrapper for \c std::vector. It assigns
232 232
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
233
  /// It can be used with some data structures, for example
234
  /// \c UnionFind, \c BinHeap, when the used items are small
233
  /// It can be used together with some data structures, e.g.
234
  /// heap types and \c UnionFind, when the used items are small
235 235
  /// integers. This map conforms to the \ref concepts::ReferenceMap
236
  /// "ReferenceMap" concept.
236
  /// "ReferenceMap" concept. 
237 237
  ///
238 238
  /// The simplest way of using this map is through the rangeMap()
239 239
  /// function.
240 240
  template <typename V>
241 241
  class RangeMap : public MapBase<int, V> {
242 242
    template <typename V1>
243 243
    friend class RangeMap;
244 244
  private:
245 245

	
246 246
    typedef std::vector<V> Vector;
247 247
    Vector _vector;
248 248

	
249 249
  public:
250 250

	
251 251
    /// Key type
252 252
    typedef int Key;
253 253
    /// Value type
254 254
    typedef V Value;
255 255
    /// Reference type
256 256
    typedef typename Vector::reference Reference;
257 257
    /// Const reference type
258 258
    typedef typename Vector::const_reference ConstReference;
259 259

	
260 260
    typedef True ReferenceMapTag;
261 261

	
262 262
  public:
263 263

	
264 264
    /// Constructor with specified default value.
265 265
    RangeMap(int size = 0, const Value &value = Value())
266 266
      : _vector(size, value) {}
267 267

	
268 268
    /// Constructs the map from an appropriate \c std::vector.
269 269
    template <typename V1>
270 270
    RangeMap(const std::vector<V1>& vector)
271 271
      : _vector(vector.begin(), vector.end()) {}
272 272

	
273 273
    /// Constructs the map from another \c RangeMap.
274 274
    template <typename V1>
275 275
    RangeMap(const RangeMap<V1> &c)
276 276
      : _vector(c._vector.begin(), c._vector.end()) {}
277 277

	
278 278
    /// Returns the size of the map.
279 279
    int size() {
280 280
      return _vector.size();
281 281
    }
282 282

	
283 283
    /// Resizes the map.
284 284

	
285 285
    /// Resizes the underlying \c std::vector container, so changes the
286 286
    /// keyset of the map.
287 287
    /// \param size The new size of the map. The new keyset will be the
288 288
    /// range <tt>[0..size-1]</tt>.
289 289
    /// \param value The default value to assign to the new keys.
290 290
    void resize(int size, const Value &value = Value()) {
291 291
      _vector.resize(size, value);
292 292
    }
293 293

	
294 294
  private:
295 295

	
296 296
    RangeMap& operator=(const RangeMap&);
297 297

	
298 298
  public:
299 299

	
300 300
    ///\e
301 301
    Reference operator[](const Key &k) {
302 302
      return _vector[k];
303 303
    }
304 304

	
305 305
    ///\e
306 306
    ConstReference operator[](const Key &k) const {
307 307
      return _vector[k];
308 308
    }
309 309

	
310 310
    ///\e
311 311
    void set(const Key &k, const Value &v) {
312 312
      _vector[k] = v;
313 313
    }
314 314
  };
315 315

	
316 316
  /// Returns a \c RangeMap class
317 317

	
318 318
  /// This function just returns a \c RangeMap class.
319 319
  /// \relates RangeMap
320 320
  template<typename V>
321 321
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
322 322
    return RangeMap<V>(size, value);
323 323
  }
324 324

	
325 325
  /// \brief Returns a \c RangeMap class created from an appropriate
326 326
  /// \c std::vector
327 327

	
328 328
  /// This function just returns a \c RangeMap class created from an
329 329
  /// appropriate \c std::vector.
330 330
  /// \relates RangeMap
331 331
  template<typename V>
332 332
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
333 333
    return RangeMap<V>(vector);
334 334
  }
335 335

	
336 336

	
337 337
  /// Map type based on \c std::map
338 338

	
339 339
  /// This map is essentially a wrapper for \c std::map with addition
340 340
  /// that you can specify a default value for the keys that are not
341 341
  /// stored actually. This value can be different from the default
342 342
  /// contructed value (i.e. \c %Value()).
343 343
  /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
344 344
  /// concept.
345 345
  ///
346 346
  /// This map is useful if a default value should be assigned to most of
347 347
  /// the keys and different values should be assigned only to a few
348 348
  /// keys (i.e. the map is "sparse").
349 349
  /// The name of this type also refers to this important usage.
350 350
  ///
351
  /// Apart form that this map can be used in many other cases since it
351
  /// Apart form that, this map can be used in many other cases since it
352 352
  /// is based on \c std::map, which is a general associative container.
353
  /// However keep in mind that it is usually not as efficient as other
353
  /// However, keep in mind that it is usually not as efficient as other
354 354
  /// maps.
355 355
  ///
356 356
  /// The simplest way of using this map is through the sparseMap()
357 357
  /// function.
358 358
  template <typename K, typename V, typename Comp = std::less<K> >
359 359
  class SparseMap : public MapBase<K, V> {
360 360
    template <typename K1, typename V1, typename C1>
361 361
    friend class SparseMap;
362 362
  public:
363 363

	
364 364
    /// Key type
365 365
    typedef K Key;
366 366
    /// Value type
367 367
    typedef V Value;
368 368
    /// Reference type
369 369
    typedef Value& Reference;
370 370
    /// Const reference type
371 371
    typedef const Value& ConstReference;
372 372

	
373 373
    typedef True ReferenceMapTag;
374 374

	
375 375
  private:
376 376

	
377 377
    typedef std::map<K, V, Comp> Map;
378 378
    Map _map;
379 379
    Value _value;
380 380

	
381 381
  public:
382 382

	
383 383
    /// \brief Constructor with specified default value.
384 384
    SparseMap(const Value &value = Value()) : _value(value) {}
385 385
    /// \brief Constructs the map from an appropriate \c std::map, and
386 386
    /// explicitly specifies a default value.
387 387
    template <typename V1, typename Comp1>
388 388
    SparseMap(const std::map<Key, V1, Comp1> &map,
389 389
              const Value &value = Value())
390 390
      : _map(map.begin(), map.end()), _value(value) {}
391 391

	
392 392
    /// \brief Constructs the map from another \c SparseMap.
393 393
    template<typename V1, typename Comp1>
394 394
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
395 395
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
396 396

	
397 397
  private:
398 398

	
399 399
    SparseMap& operator=(const SparseMap&);
400 400

	
401 401
  public:
402 402

	
403 403
    ///\e
404 404
    Reference operator[](const Key &k) {
405 405
      typename Map::iterator it = _map.lower_bound(k);
406 406
      if (it != _map.end() && !_map.key_comp()(k, it->first))
407 407
        return it->second;
408 408
      else
409 409
        return _map.insert(it, std::make_pair(k, _value))->second;
410 410
    }
411 411

	
412 412
    ///\e
413 413
    ConstReference operator[](const Key &k) const {
414 414
      typename Map::const_iterator it = _map.find(k);
415 415
      if (it != _map.end())
416 416
        return it->second;
417 417
      else
418 418
        return _value;
419 419
    }
420 420

	
421 421
    ///\e
422 422
    void set(const Key &k, const Value &v) {
423 423
      typename Map::iterator it = _map.lower_bound(k);
424 424
      if (it != _map.end() && !_map.key_comp()(k, it->first))
425 425
        it->second = v;
426 426
      else
427 427
        _map.insert(it, std::make_pair(k, v));
428 428
    }
429 429

	
430 430
    ///\e
431 431
    void setAll(const Value &v) {
432 432
      _value = v;
433 433
      _map.clear();
434 434
    }
435 435
  };
436 436

	
437 437
  /// Returns a \c SparseMap class
438 438

	
439 439
  /// This function just returns a \c SparseMap class with specified
440 440
  /// default value.
441 441
  /// \relates SparseMap
442 442
  template<typename K, typename V, typename Compare>
443 443
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
444 444
    return SparseMap<K, V, Compare>(value);
445 445
  }
446 446

	
447 447
  template<typename K, typename V>
448 448
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
449 449
    return SparseMap<K, V, std::less<K> >(value);
450 450
  }
451 451

	
452 452
  /// \brief Returns a \c SparseMap class created from an appropriate
453 453
  /// \c std::map
454 454

	
455 455
  /// This function just returns a \c SparseMap class created from an
456 456
  /// appropriate \c std::map.
457 457
  /// \relates SparseMap
458 458
  template<typename K, typename V, typename Compare>
459 459
  inline SparseMap<K, V, Compare>
460 460
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
461 461
  {
462 462
    return SparseMap<K, V, Compare>(map, value);
463 463
  }
464 464

	
465 465
  /// @}
466 466

	
467 467
  /// \addtogroup map_adaptors
468 468
  /// @{
469 469

	
470 470
  /// Composition of two maps
471 471

	
472 472
  /// This \ref concepts::ReadMap "read-only map" returns the
473 473
  /// composition of two given maps. That is to say, if \c m1 is of
474 474
  /// type \c M1 and \c m2 is of \c M2, then for
475 475
  /// \code
476 476
  ///   ComposeMap<M1, M2> cm(m1,m2);
477 477
  /// \endcode
478 478
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
479 479
  ///
480 480
  /// The \c Key type of the map is inherited from \c M2 and the
481 481
  /// \c Value type is from \c M1.
482 482
  /// \c M2::Value must be convertible to \c M1::Key.
483 483
  ///
484 484
  /// The simplest way of using this map is through the composeMap()
485 485
  /// function.
486 486
  ///
487 487
  /// \sa CombineMap
488 488
  template <typename M1, typename M2>
489 489
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
490 490
    const M1 &_m1;
491 491
    const M2 &_m2;
492 492
  public:
493 493
    ///\e
494 494
    typedef typename M2::Key Key;
495 495
    ///\e
496 496
    typedef typename M1::Value Value;
497 497

	
498 498
    /// Constructor
499 499
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
500 500

	
501 501
    ///\e
502 502
    typename MapTraits<M1>::ConstReturnValue
503 503
    operator[](const Key &k) const { return _m1[_m2[k]]; }
504 504
  };
505 505

	
506 506
  /// Returns a \c ComposeMap class
507 507

	
508 508
  /// This function just returns a \c ComposeMap class.
509 509
  ///
510 510
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
511 511
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
512 512
  /// will be equal to <tt>m1[m2[x]]</tt>.
513 513
  ///
514 514
  /// \relates ComposeMap
515 515
  template <typename M1, typename M2>
516 516
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
517 517
    return ComposeMap<M1, M2>(m1, m2);
518 518
  }
519 519

	
520 520

	
521 521
  /// Combination of two maps using an STL (binary) functor.
522 522

	
523 523
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
524 524
  /// binary functor and returns the combination of the two given maps
525 525
  /// using the functor.
526 526
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
527 527
  /// and \c f is of \c F, then for
528 528
  /// \code
529 529
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
530 530
  /// \endcode
531 531
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
532 532
  ///
533 533
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
534 534
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
535 535
  /// \c M2::Value and \c M1::Value must be convertible to the
536 536
  /// corresponding input parameter of \c F and the return type of \c F
537 537
  /// must be convertible to \c V.
538 538
  ///
539 539
  /// The simplest way of using this map is through the combineMap()
540 540
  /// function.
541 541
  ///
542 542
  /// \sa ComposeMap
543 543
  template<typename M1, typename M2, typename F,
544 544
           typename V = typename F::result_type>
545 545
  class CombineMap : public MapBase<typename M1::Key, V> {
... ...
@@ -1596,522 +1596,522 @@
1596 1596
  }
1597 1597

	
1598 1598

	
1599 1599
  /// Combination of two maps using the \c == operator
1600 1600

	
1601 1601
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1602 1602
  /// the keys for which the corresponding values of the two maps are
1603 1603
  /// equal.
1604 1604
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1605 1605
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1606 1606
  ///
1607 1607
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1608 1608
  /// \code
1609 1609
  ///   EqualMap<M1,M2> em(m1,m2);
1610 1610
  /// \endcode
1611 1611
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1612 1612
  ///
1613 1613
  /// The simplest way of using this map is through the equalMap()
1614 1614
  /// function.
1615 1615
  ///
1616 1616
  /// \sa LessMap
1617 1617
  template<typename M1, typename M2>
1618 1618
  class EqualMap : public MapBase<typename M1::Key, bool> {
1619 1619
    const M1 &_m1;
1620 1620
    const M2 &_m2;
1621 1621
  public:
1622 1622
    ///\e
1623 1623
    typedef typename M1::Key Key;
1624 1624
    ///\e
1625 1625
    typedef bool Value;
1626 1626

	
1627 1627
    /// Constructor
1628 1628
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1629 1629
    ///\e
1630 1630
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1631 1631
  };
1632 1632

	
1633 1633
  /// Returns an \c EqualMap class
1634 1634

	
1635 1635
  /// This function just returns an \c EqualMap class.
1636 1636
  ///
1637 1637
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1638 1638
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1639 1639
  /// <tt>m1[x]==m2[x]</tt>.
1640 1640
  ///
1641 1641
  /// \relates EqualMap
1642 1642
  template<typename M1, typename M2>
1643 1643
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1644 1644
    return EqualMap<M1, M2>(m1,m2);
1645 1645
  }
1646 1646

	
1647 1647

	
1648 1648
  /// Combination of two maps using the \c < operator
1649 1649

	
1650 1650
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1651 1651
  /// the keys for which the corresponding value of the first map is
1652 1652
  /// less then the value of the second map.
1653 1653
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1654 1654
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1655 1655
  ///
1656 1656
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1657 1657
  /// \code
1658 1658
  ///   LessMap<M1,M2> lm(m1,m2);
1659 1659
  /// \endcode
1660 1660
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1661 1661
  ///
1662 1662
  /// The simplest way of using this map is through the lessMap()
1663 1663
  /// function.
1664 1664
  ///
1665 1665
  /// \sa EqualMap
1666 1666
  template<typename M1, typename M2>
1667 1667
  class LessMap : public MapBase<typename M1::Key, bool> {
1668 1668
    const M1 &_m1;
1669 1669
    const M2 &_m2;
1670 1670
  public:
1671 1671
    ///\e
1672 1672
    typedef typename M1::Key Key;
1673 1673
    ///\e
1674 1674
    typedef bool Value;
1675 1675

	
1676 1676
    /// Constructor
1677 1677
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1678 1678
    ///\e
1679 1679
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1680 1680
  };
1681 1681

	
1682 1682
  /// Returns an \c LessMap class
1683 1683

	
1684 1684
  /// This function just returns an \c LessMap class.
1685 1685
  ///
1686 1686
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1687 1687
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1688 1688
  /// <tt>m1[x]<m2[x]</tt>.
1689 1689
  ///
1690 1690
  /// \relates LessMap
1691 1691
  template<typename M1, typename M2>
1692 1692
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1693 1693
    return LessMap<M1, M2>(m1,m2);
1694 1694
  }
1695 1695

	
1696 1696
  namespace _maps_bits {
1697 1697

	
1698 1698
    template <typename _Iterator, typename Enable = void>
1699 1699
    struct IteratorTraits {
1700 1700
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1701 1701
    };
1702 1702

	
1703 1703
    template <typename _Iterator>
1704 1704
    struct IteratorTraits<_Iterator,
1705 1705
      typename exists<typename _Iterator::container_type>::type>
1706 1706
    {
1707 1707
      typedef typename _Iterator::container_type::value_type Value;
1708 1708
    };
1709 1709

	
1710 1710
  }
1711 1711

	
1712 1712
  /// @}
1713 1713

	
1714 1714
  /// \addtogroup maps
1715 1715
  /// @{
1716 1716

	
1717 1717
  /// \brief Writable bool map for logging each \c true assigned element
1718 1718
  ///
1719 1719
  /// A \ref concepts::WriteMap "writable" bool map for logging
1720 1720
  /// each \c true assigned element, i.e it copies subsequently each
1721 1721
  /// keys set to \c true to the given iterator.
1722 1722
  /// The most important usage of it is storing certain nodes or arcs
1723 1723
  /// that were marked \c true by an algorithm.
1724 1724
  ///
1725 1725
  /// There are several algorithms that provide solutions through bool
1726 1726
  /// maps and most of them assign \c true at most once for each key.
1727 1727
  /// In these cases it is a natural request to store each \c true
1728 1728
  /// assigned elements (in order of the assignment), which can be
1729 1729
  /// easily done with LoggerBoolMap.
1730 1730
  ///
1731 1731
  /// The simplest way of using this map is through the loggerBoolMap()
1732 1732
  /// function.
1733 1733
  ///
1734 1734
  /// \tparam IT The type of the iterator.
1735 1735
  /// \tparam KEY The key type of the map. The default value set
1736 1736
  /// according to the iterator type should work in most cases.
1737 1737
  ///
1738 1738
  /// \note The container of the iterator must contain enough space
1739 1739
  /// for the elements or the iterator should be an inserter iterator.
1740 1740
#ifdef DOXYGEN
1741 1741
  template <typename IT, typename KEY>
1742 1742
#else
1743 1743
  template <typename IT,
1744 1744
            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
1745 1745
#endif
1746 1746
  class LoggerBoolMap : public MapBase<KEY, bool> {
1747 1747
  public:
1748 1748

	
1749 1749
    ///\e
1750 1750
    typedef KEY Key;
1751 1751
    ///\e
1752 1752
    typedef bool Value;
1753 1753
    ///\e
1754 1754
    typedef IT Iterator;
1755 1755

	
1756 1756
    /// Constructor
1757 1757
    LoggerBoolMap(Iterator it)
1758 1758
      : _begin(it), _end(it) {}
1759 1759

	
1760 1760
    /// Gives back the given iterator set for the first key
1761 1761
    Iterator begin() const {
1762 1762
      return _begin;
1763 1763
    }
1764 1764

	
1765 1765
    /// Gives back the the 'after the last' iterator
1766 1766
    Iterator end() const {
1767 1767
      return _end;
1768 1768
    }
1769 1769

	
1770 1770
    /// The set function of the map
1771 1771
    void set(const Key& key, Value value) {
1772 1772
      if (value) {
1773 1773
        *_end++ = key;
1774 1774
      }
1775 1775
    }
1776 1776

	
1777 1777
  private:
1778 1778
    Iterator _begin;
1779 1779
    Iterator _end;
1780 1780
  };
1781 1781

	
1782 1782
  /// Returns a \c LoggerBoolMap class
1783 1783

	
1784 1784
  /// This function just returns a \c LoggerBoolMap class.
1785 1785
  ///
1786 1786
  /// The most important usage of it is storing certain nodes or arcs
1787 1787
  /// that were marked \c true by an algorithm.
1788
  /// For example it makes easier to store the nodes in the processing
1788
  /// For example, it makes easier to store the nodes in the processing
1789 1789
  /// order of Dfs algorithm, as the following examples show.
1790 1790
  /// \code
1791 1791
  ///   std::vector<Node> v;
1792 1792
  ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
1793 1793
  /// \endcode
1794 1794
  /// \code
1795 1795
  ///   std::vector<Node> v(countNodes(g));
1796 1796
  ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
1797 1797
  /// \endcode
1798 1798
  ///
1799 1799
  /// \note The container of the iterator must contain enough space
1800 1800
  /// for the elements or the iterator should be an inserter iterator.
1801 1801
  ///
1802 1802
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1803
  /// it cannot be used when a readable map is needed, for example as
1803
  /// it cannot be used when a readable map is needed, for example, as
1804 1804
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1805 1805
  ///
1806 1806
  /// \relates LoggerBoolMap
1807 1807
  template<typename Iterator>
1808 1808
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1809 1809
    return LoggerBoolMap<Iterator>(it);
1810 1810
  }
1811 1811

	
1812 1812
  /// @}
1813 1813

	
1814 1814
  /// \addtogroup graph_maps
1815 1815
  /// @{
1816 1816

	
1817 1817
  /// \brief Provides an immutable and unique id for each item in a graph.
1818 1818
  ///
1819 1819
  /// IdMap provides a unique and immutable id for each item of the
1820 1820
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1821 1821
  ///  - \b unique: different items get different ids,
1822 1822
  ///  - \b immutable: the id of an item does not change (even if you
1823 1823
  ///    delete other nodes).
1824 1824
  ///
1825 1825
  /// Using this map you get access (i.e. can read) the inner id values of
1826 1826
  /// the items stored in the graph, which is returned by the \c id()
1827 1827
  /// function of the graph. This map can be inverted with its member
1828 1828
  /// class \c InverseMap or with the \c operator()() member.
1829 1829
  ///
1830 1830
  /// \tparam GR The graph type.
1831 1831
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1832 1832
  /// \c GR::Edge).
1833 1833
  ///
1834 1834
  /// \see RangeIdMap
1835 1835
  template <typename GR, typename K>
1836 1836
  class IdMap : public MapBase<K, int> {
1837 1837
  public:
1838 1838
    /// The graph type of IdMap.
1839 1839
    typedef GR Graph;
1840 1840
    typedef GR Digraph;
1841 1841
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1842 1842
    typedef K Item;
1843 1843
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1844 1844
    typedef K Key;
1845 1845
    /// The value type of IdMap.
1846 1846
    typedef int Value;
1847 1847

	
1848 1848
    /// \brief Constructor.
1849 1849
    ///
1850 1850
    /// Constructor of the map.
1851 1851
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1852 1852

	
1853 1853
    /// \brief Gives back the \e id of the item.
1854 1854
    ///
1855 1855
    /// Gives back the immutable and unique \e id of the item.
1856 1856
    int operator[](const Item& item) const { return _graph->id(item);}
1857 1857

	
1858 1858
    /// \brief Gives back the \e item by its id.
1859 1859
    ///
1860 1860
    /// Gives back the \e item by its id.
1861 1861
    Item operator()(int id) { return _graph->fromId(id, Item()); }
1862 1862

	
1863 1863
  private:
1864 1864
    const Graph* _graph;
1865 1865

	
1866 1866
  public:
1867 1867

	
1868 1868
    /// \brief The inverse map type of IdMap.
1869 1869
    ///
1870 1870
    /// The inverse map type of IdMap. The subscript operator gives back
1871 1871
    /// an item by its id.
1872 1872
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1873 1873
    /// \see inverse()
1874 1874
    class InverseMap {
1875 1875
    public:
1876 1876

	
1877 1877
      /// \brief Constructor.
1878 1878
      ///
1879 1879
      /// Constructor for creating an id-to-item map.
1880 1880
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1881 1881

	
1882 1882
      /// \brief Constructor.
1883 1883
      ///
1884 1884
      /// Constructor for creating an id-to-item map.
1885 1885
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1886 1886

	
1887 1887
      /// \brief Gives back an item by its id.
1888 1888
      ///
1889 1889
      /// Gives back an item by its id.
1890 1890
      Item operator[](int id) const { return _graph->fromId(id, Item());}
1891 1891

	
1892 1892
    private:
1893 1893
      const Graph* _graph;
1894 1894
    };
1895 1895

	
1896 1896
    /// \brief Gives back the inverse of the map.
1897 1897
    ///
1898 1898
    /// Gives back the inverse of the IdMap.
1899 1899
    InverseMap inverse() const { return InverseMap(*_graph);}
1900 1900
  };
1901 1901

	
1902 1902
  /// \brief Returns an \c IdMap class.
1903 1903
  ///
1904 1904
  /// This function just returns an \c IdMap class.
1905 1905
  /// \relates IdMap
1906 1906
  template <typename K, typename GR>
1907 1907
  inline IdMap<GR, K> idMap(const GR& graph) {
1908 1908
    return IdMap<GR, K>(graph);
1909 1909
  }
1910 1910

	
1911 1911
  /// \brief General cross reference graph map type.
1912 1912

	
1913 1913
  /// This class provides simple invertable graph maps.
1914 1914
  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1915 1915
  /// and if a key is set to a new value, then stores it in the inverse map.
1916 1916
  /// The graph items can be accessed by their values either using
1917 1917
  /// \c InverseMap or \c operator()(), and the values of the map can be
1918 1918
  /// accessed with an STL compatible forward iterator (\c ValueIt).
1919 1919
  /// 
1920 1920
  /// This map is intended to be used when all associated values are
1921 1921
  /// different (the map is actually invertable) or there are only a few
1922 1922
  /// items with the same value.
1923 1923
  /// Otherwise consider to use \c IterableValueMap, which is more 
1924 1924
  /// suitable and more efficient for such cases. It provides iterators
1925
  /// to traverse the items with the same associated value, however
1925
  /// to traverse the items with the same associated value, but
1926 1926
  /// it does not have \c InverseMap.
1927 1927
  ///
1928 1928
  /// This type is not reference map, so it cannot be modified with
1929 1929
  /// the subscript operator.
1930 1930
  ///
1931 1931
  /// \tparam GR The graph type.
1932 1932
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1933 1933
  /// \c GR::Edge).
1934 1934
  /// \tparam V The value type of the map.
1935 1935
  ///
1936 1936
  /// \see IterableValueMap
1937 1937
  template <typename GR, typename K, typename V>
1938 1938
  class CrossRefMap
1939 1939
    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1940 1940
  private:
1941 1941

	
1942 1942
    typedef typename ItemSetTraits<GR, K>::
1943 1943
      template Map<V>::Type Map;
1944 1944

	
1945 1945
    typedef std::multimap<V, K> Container;
1946 1946
    Container _inv_map;
1947 1947

	
1948 1948
  public:
1949 1949

	
1950 1950
    /// The graph type of CrossRefMap.
1951 1951
    typedef GR Graph;
1952 1952
    typedef GR Digraph;
1953 1953
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1954 1954
    typedef K Item;
1955 1955
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1956 1956
    typedef K Key;
1957 1957
    /// The value type of CrossRefMap.
1958 1958
    typedef V Value;
1959 1959

	
1960 1960
    /// \brief Constructor.
1961 1961
    ///
1962 1962
    /// Construct a new CrossRefMap for the given graph.
1963 1963
    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
1964 1964

	
1965 1965
    /// \brief Forward iterator for values.
1966 1966
    ///
1967 1967
    /// This iterator is an STL compatible forward
1968 1968
    /// iterator on the values of the map. The values can
1969 1969
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1970 1970
    /// They are considered with multiplicity, so each value is
1971 1971
    /// traversed for each item it is assigned to.
1972 1972
    class ValueIt
1973 1973
      : public std::iterator<std::forward_iterator_tag, Value> {
1974 1974
      friend class CrossRefMap;
1975 1975
    private:
1976 1976
      ValueIt(typename Container::const_iterator _it)
1977 1977
        : it(_it) {}
1978 1978
    public:
1979 1979

	
1980 1980
      /// Constructor
1981 1981
      ValueIt() {}
1982 1982

	
1983 1983
      /// \e
1984 1984
      ValueIt& operator++() { ++it; return *this; }
1985 1985
      /// \e
1986 1986
      ValueIt operator++(int) {
1987 1987
        ValueIt tmp(*this);
1988 1988
        operator++();
1989 1989
        return tmp;
1990 1990
      }
1991 1991

	
1992 1992
      /// \e
1993 1993
      const Value& operator*() const { return it->first; }
1994 1994
      /// \e
1995 1995
      const Value* operator->() const { return &(it->first); }
1996 1996

	
1997 1997
      /// \e
1998 1998
      bool operator==(ValueIt jt) const { return it == jt.it; }
1999 1999
      /// \e
2000 2000
      bool operator!=(ValueIt jt) const { return it != jt.it; }
2001 2001

	
2002 2002
    private:
2003 2003
      typename Container::const_iterator it;
2004 2004
    };
2005 2005
    
2006 2006
    /// Alias for \c ValueIt
2007 2007
    typedef ValueIt ValueIterator;
2008 2008

	
2009 2009
    /// \brief Returns an iterator to the first value.
2010 2010
    ///
2011 2011
    /// Returns an STL compatible iterator to the
2012 2012
    /// first value of the map. The values of the
2013 2013
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2014 2014
    /// range.
2015 2015
    ValueIt beginValue() const {
2016 2016
      return ValueIt(_inv_map.begin());
2017 2017
    }
2018 2018

	
2019 2019
    /// \brief Returns an iterator after the last value.
2020 2020
    ///
2021 2021
    /// Returns an STL compatible iterator after the
2022 2022
    /// last value of the map. The values of the
2023 2023
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2024 2024
    /// range.
2025 2025
    ValueIt endValue() const {
2026 2026
      return ValueIt(_inv_map.end());
2027 2027
    }
2028 2028

	
2029 2029
    /// \brief Sets the value associated with the given key.
2030 2030
    ///
2031 2031
    /// Sets the value associated with the given key.
2032 2032
    void set(const Key& key, const Value& val) {
2033 2033
      Value oldval = Map::operator[](key);
2034 2034
      typename Container::iterator it;
2035 2035
      for (it = _inv_map.equal_range(oldval).first;
2036 2036
           it != _inv_map.equal_range(oldval).second; ++it) {
2037 2037
        if (it->second == key) {
2038 2038
          _inv_map.erase(it);
2039 2039
          break;
2040 2040
        }
2041 2041
      }
2042 2042
      _inv_map.insert(std::make_pair(val, key));
2043 2043
      Map::set(key, val);
2044 2044
    }
2045 2045

	
2046 2046
    /// \brief Returns the value associated with the given key.
2047 2047
    ///
2048 2048
    /// Returns the value associated with the given key.
2049 2049
    typename MapTraits<Map>::ConstReturnValue
2050 2050
    operator[](const Key& key) const {
2051 2051
      return Map::operator[](key);
2052 2052
    }
2053 2053

	
2054 2054
    /// \brief Gives back an item by its value.
2055 2055
    ///
2056 2056
    /// This function gives back an item that is assigned to
2057 2057
    /// the given value or \c INVALID if no such item exists.
2058 2058
    /// If there are more items with the same associated value,
2059 2059
    /// only one of them is returned.
2060 2060
    Key operator()(const Value& val) const {
2061 2061
      typename Container::const_iterator it = _inv_map.find(val);
2062 2062
      return it != _inv_map.end() ? it->second : INVALID;
2063 2063
    }
2064 2064
    
2065 2065
    /// \brief Returns the number of items with the given value.
2066 2066
    ///
2067 2067
    /// This function returns the number of items with the given value
2068 2068
    /// associated with it.
2069 2069
    int count(const Value &val) const {
2070 2070
      return _inv_map.count(val);
2071 2071
    }
2072 2072

	
2073 2073
  protected:
2074 2074

	
2075 2075
    /// \brief Erase the key from the map and the inverse map.
2076 2076
    ///
2077 2077
    /// Erase the key from the map and the inverse map. It is called by the
2078 2078
    /// \c AlterationNotifier.
2079 2079
    virtual void erase(const Key& key) {
2080 2080
      Value val = Map::operator[](key);
2081 2081
      typename Container::iterator it;
2082 2082
      for (it = _inv_map.equal_range(val).first;
2083 2083
           it != _inv_map.equal_range(val).second; ++it) {
2084 2084
        if (it->second == key) {
2085 2085
          _inv_map.erase(it);
2086 2086
          break;
2087 2087
        }
2088 2088
      }
2089 2089
      Map::erase(key);
2090 2090
    }
2091 2091

	
2092 2092
    /// \brief Erase more keys from the map and the inverse map.
2093 2093
    ///
2094 2094
    /// Erase more keys from the map and the inverse map. It is called by the
2095 2095
    /// \c AlterationNotifier.
2096 2096
    virtual void erase(const std::vector<Key>& keys) {
2097 2097
      for (int i = 0; i < int(keys.size()); ++i) {
2098 2098
        Value val = Map::operator[](keys[i]);
2099 2099
        typename Container::iterator it;
2100 2100
        for (it = _inv_map.equal_range(val).first;
2101 2101
             it != _inv_map.equal_range(val).second; ++it) {
2102 2102
          if (it->second == keys[i]) {
2103 2103
            _inv_map.erase(it);
2104 2104
            break;
2105 2105
          }
2106 2106
        }
2107 2107
      }
2108 2108
      Map::erase(keys);
2109 2109
    }
2110 2110

	
2111 2111
    /// \brief Clear the keys from the map and the inverse map.
2112 2112
    ///
2113 2113
    /// Clear the keys from the map and the inverse map. It is called by the
2114 2114
    /// \c AlterationNotifier.
2115 2115
    virtual void clear() {
2116 2116
      _inv_map.clear();
2117 2117
      Map::clear();
... ...
@@ -3277,494 +3277,494 @@
3277 3277
    virtual void build() {
3278 3278
      Parent::build();
3279 3279
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3280 3280
        lace(it);
3281 3281
      }
3282 3282
    }
3283 3283

	
3284 3284
    virtual void clear() {
3285 3285
      _first.clear();
3286 3286
      Parent::clear();
3287 3287
    }
3288 3288

	
3289 3289
  private:
3290 3290
    std::map<Value, Key> _first;
3291 3291
  };
3292 3292

	
3293 3293
  /// \brief Map of the source nodes of arcs in a digraph.
3294 3294
  ///
3295 3295
  /// SourceMap provides access for the source node of each arc in a digraph,
3296 3296
  /// which is returned by the \c source() function of the digraph.
3297 3297
  /// \tparam GR The digraph type.
3298 3298
  /// \see TargetMap
3299 3299
  template <typename GR>
3300 3300
  class SourceMap {
3301 3301
  public:
3302 3302

	
3303 3303
    /// The key type (the \c Arc type of the digraph).
3304 3304
    typedef typename GR::Arc Key;
3305 3305
    /// The value type (the \c Node type of the digraph).
3306 3306
    typedef typename GR::Node Value;
3307 3307

	
3308 3308
    /// \brief Constructor
3309 3309
    ///
3310 3310
    /// Constructor.
3311 3311
    /// \param digraph The digraph that the map belongs to.
3312 3312
    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
3313 3313

	
3314 3314
    /// \brief Returns the source node of the given arc.
3315 3315
    ///
3316 3316
    /// Returns the source node of the given arc.
3317 3317
    Value operator[](const Key& arc) const {
3318 3318
      return _graph.source(arc);
3319 3319
    }
3320 3320

	
3321 3321
  private:
3322 3322
    const GR& _graph;
3323 3323
  };
3324 3324

	
3325 3325
  /// \brief Returns a \c SourceMap class.
3326 3326
  ///
3327 3327
  /// This function just returns an \c SourceMap class.
3328 3328
  /// \relates SourceMap
3329 3329
  template <typename GR>
3330 3330
  inline SourceMap<GR> sourceMap(const GR& graph) {
3331 3331
    return SourceMap<GR>(graph);
3332 3332
  }
3333 3333

	
3334 3334
  /// \brief Map of the target nodes of arcs in a digraph.
3335 3335
  ///
3336 3336
  /// TargetMap provides access for the target node of each arc in a digraph,
3337 3337
  /// which is returned by the \c target() function of the digraph.
3338 3338
  /// \tparam GR The digraph type.
3339 3339
  /// \see SourceMap
3340 3340
  template <typename GR>
3341 3341
  class TargetMap {
3342 3342
  public:
3343 3343

	
3344 3344
    /// The key type (the \c Arc type of the digraph).
3345 3345
    typedef typename GR::Arc Key;
3346 3346
    /// The value type (the \c Node type of the digraph).
3347 3347
    typedef typename GR::Node Value;
3348 3348

	
3349 3349
    /// \brief Constructor
3350 3350
    ///
3351 3351
    /// Constructor.
3352 3352
    /// \param digraph The digraph that the map belongs to.
3353 3353
    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
3354 3354

	
3355 3355
    /// \brief Returns the target node of the given arc.
3356 3356
    ///
3357 3357
    /// Returns the target node of the given arc.
3358 3358
    Value operator[](const Key& e) const {
3359 3359
      return _graph.target(e);
3360 3360
    }
3361 3361

	
3362 3362
  private:
3363 3363
    const GR& _graph;
3364 3364
  };
3365 3365

	
3366 3366
  /// \brief Returns a \c TargetMap class.
3367 3367
  ///
3368 3368
  /// This function just returns a \c TargetMap class.
3369 3369
  /// \relates TargetMap
3370 3370
  template <typename GR>
3371 3371
  inline TargetMap<GR> targetMap(const GR& graph) {
3372 3372
    return TargetMap<GR>(graph);
3373 3373
  }
3374 3374

	
3375 3375
  /// \brief Map of the "forward" directed arc view of edges in a graph.
3376 3376
  ///
3377 3377
  /// ForwardMap provides access for the "forward" directed arc view of
3378 3378
  /// each edge in a graph, which is returned by the \c direct() function
3379 3379
  /// of the graph with \c true parameter.
3380 3380
  /// \tparam GR The graph type.
3381 3381
  /// \see BackwardMap
3382 3382
  template <typename GR>
3383 3383
  class ForwardMap {
3384 3384
  public:
3385 3385

	
3386 3386
    /// The key type (the \c Edge type of the digraph).
3387 3387
    typedef typename GR::Edge Key;
3388 3388
    /// The value type (the \c Arc type of the digraph).
3389 3389
    typedef typename GR::Arc Value;
3390 3390

	
3391 3391
    /// \brief Constructor
3392 3392
    ///
3393 3393
    /// Constructor.
3394 3394
    /// \param graph The graph that the map belongs to.
3395 3395
    explicit ForwardMap(const GR& graph) : _graph(graph) {}
3396 3396

	
3397 3397
    /// \brief Returns the "forward" directed arc view of the given edge.
3398 3398
    ///
3399 3399
    /// Returns the "forward" directed arc view of the given edge.
3400 3400
    Value operator[](const Key& key) const {
3401 3401
      return _graph.direct(key, true);
3402 3402
    }
3403 3403

	
3404 3404
  private:
3405 3405
    const GR& _graph;
3406 3406
  };
3407 3407

	
3408 3408
  /// \brief Returns a \c ForwardMap class.
3409 3409
  ///
3410 3410
  /// This function just returns an \c ForwardMap class.
3411 3411
  /// \relates ForwardMap
3412 3412
  template <typename GR>
3413 3413
  inline ForwardMap<GR> forwardMap(const GR& graph) {
3414 3414
    return ForwardMap<GR>(graph);
3415 3415
  }
3416 3416

	
3417 3417
  /// \brief Map of the "backward" directed arc view of edges in a graph.
3418 3418
  ///
3419 3419
  /// BackwardMap provides access for the "backward" directed arc view of
3420 3420
  /// each edge in a graph, which is returned by the \c direct() function
3421 3421
  /// of the graph with \c false parameter.
3422 3422
  /// \tparam GR The graph type.
3423 3423
  /// \see ForwardMap
3424 3424
  template <typename GR>
3425 3425
  class BackwardMap {
3426 3426
  public:
3427 3427

	
3428 3428
    /// The key type (the \c Edge type of the digraph).
3429 3429
    typedef typename GR::Edge Key;
3430 3430
    /// The value type (the \c Arc type of the digraph).
3431 3431
    typedef typename GR::Arc Value;
3432 3432

	
3433 3433
    /// \brief Constructor
3434 3434
    ///
3435 3435
    /// Constructor.
3436 3436
    /// \param graph The graph that the map belongs to.
3437 3437
    explicit BackwardMap(const GR& graph) : _graph(graph) {}
3438 3438

	
3439 3439
    /// \brief Returns the "backward" directed arc view of the given edge.
3440 3440
    ///
3441 3441
    /// Returns the "backward" directed arc view of the given edge.
3442 3442
    Value operator[](const Key& key) const {
3443 3443
      return _graph.direct(key, false);
3444 3444
    }
3445 3445

	
3446 3446
  private:
3447 3447
    const GR& _graph;
3448 3448
  };
3449 3449

	
3450 3450
  /// \brief Returns a \c BackwardMap class
3451 3451

	
3452 3452
  /// This function just returns a \c BackwardMap class.
3453 3453
  /// \relates BackwardMap
3454 3454
  template <typename GR>
3455 3455
  inline BackwardMap<GR> backwardMap(const GR& graph) {
3456 3456
    return BackwardMap<GR>(graph);
3457 3457
  }
3458 3458

	
3459 3459
  /// \brief Map of the in-degrees of nodes in a digraph.
3460 3460
  ///
3461 3461
  /// This map returns the in-degree of a node. Once it is constructed,
3462 3462
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3463 3463
  /// in constant time. On the other hand, the values are updated automatically
3464 3464
  /// whenever the digraph changes.
3465 3465
  ///
3466 3466
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3467 3467
  /// may provide alternative ways to modify the digraph.
3468 3468
  /// The correct behavior of InDegMap is not guarantied if these additional
3469
  /// features are used. For example the functions
3469
  /// features are used. For example, the functions
3470 3470
  /// \ref ListDigraph::changeSource() "changeSource()",
3471 3471
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3472 3472
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3473 3473
  /// of \ref ListDigraph will \e not update the degree values correctly.
3474 3474
  ///
3475 3475
  /// \sa OutDegMap
3476 3476
  template <typename GR>
3477 3477
  class InDegMap
3478 3478
    : protected ItemSetTraits<GR, typename GR::Arc>
3479 3479
      ::ItemNotifier::ObserverBase {
3480 3480

	
3481 3481
  public:
3482 3482

	
3483 3483
    /// The graph type of InDegMap
3484 3484
    typedef GR Graph;
3485 3485
    typedef GR Digraph;
3486 3486
    /// The key type
3487 3487
    typedef typename Digraph::Node Key;
3488 3488
    /// The value type
3489 3489
    typedef int Value;
3490 3490

	
3491 3491
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3492 3492
    ::ItemNotifier::ObserverBase Parent;
3493 3493

	
3494 3494
  private:
3495 3495

	
3496 3496
    class AutoNodeMap
3497 3497
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3498 3498
    public:
3499 3499

	
3500 3500
      typedef typename ItemSetTraits<Digraph, Key>::
3501 3501
      template Map<int>::Type Parent;
3502 3502

	
3503 3503
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3504 3504

	
3505 3505
      virtual void add(const Key& key) {
3506 3506
        Parent::add(key);
3507 3507
        Parent::set(key, 0);
3508 3508
      }
3509 3509

	
3510 3510
      virtual void add(const std::vector<Key>& keys) {
3511 3511
        Parent::add(keys);
3512 3512
        for (int i = 0; i < int(keys.size()); ++i) {
3513 3513
          Parent::set(keys[i], 0);
3514 3514
        }
3515 3515
      }
3516 3516

	
3517 3517
      virtual void build() {
3518 3518
        Parent::build();
3519 3519
        Key it;
3520 3520
        typename Parent::Notifier* nf = Parent::notifier();
3521 3521
        for (nf->first(it); it != INVALID; nf->next(it)) {
3522 3522
          Parent::set(it, 0);
3523 3523
        }
3524 3524
      }
3525 3525
    };
3526 3526

	
3527 3527
  public:
3528 3528

	
3529 3529
    /// \brief Constructor.
3530 3530
    ///
3531 3531
    /// Constructor for creating an in-degree map.
3532 3532
    explicit InDegMap(const Digraph& graph)
3533 3533
      : _digraph(graph), _deg(graph) {
3534 3534
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3535 3535

	
3536 3536
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3537 3537
        _deg[it] = countInArcs(_digraph, it);
3538 3538
      }
3539 3539
    }
3540 3540

	
3541 3541
    /// \brief Gives back the in-degree of a Node.
3542 3542
    ///
3543 3543
    /// Gives back the in-degree of a Node.
3544 3544
    int operator[](const Key& key) const {
3545 3545
      return _deg[key];
3546 3546
    }
3547 3547

	
3548 3548
  protected:
3549 3549

	
3550 3550
    typedef typename Digraph::Arc Arc;
3551 3551

	
3552 3552
    virtual void add(const Arc& arc) {
3553 3553
      ++_deg[_digraph.target(arc)];
3554 3554
    }
3555 3555

	
3556 3556
    virtual void add(const std::vector<Arc>& arcs) {
3557 3557
      for (int i = 0; i < int(arcs.size()); ++i) {
3558 3558
        ++_deg[_digraph.target(arcs[i])];
3559 3559
      }
3560 3560
    }
3561 3561

	
3562 3562
    virtual void erase(const Arc& arc) {
3563 3563
      --_deg[_digraph.target(arc)];
3564 3564
    }
3565 3565

	
3566 3566
    virtual void erase(const std::vector<Arc>& arcs) {
3567 3567
      for (int i = 0; i < int(arcs.size()); ++i) {
3568 3568
        --_deg[_digraph.target(arcs[i])];
3569 3569
      }
3570 3570
    }
3571 3571

	
3572 3572
    virtual void build() {
3573 3573
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3574 3574
        _deg[it] = countInArcs(_digraph, it);
3575 3575
      }
3576 3576
    }
3577 3577

	
3578 3578
    virtual void clear() {
3579 3579
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3580 3580
        _deg[it] = 0;
3581 3581
      }
3582 3582
    }
3583 3583
  private:
3584 3584

	
3585 3585
    const Digraph& _digraph;
3586 3586
    AutoNodeMap _deg;
3587 3587
  };
3588 3588

	
3589 3589
  /// \brief Map of the out-degrees of nodes in a digraph.
3590 3590
  ///
3591 3591
  /// This map returns the out-degree of a node. Once it is constructed,
3592 3592
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3593 3593
  /// in constant time. On the other hand, the values are updated automatically
3594 3594
  /// whenever the digraph changes.
3595 3595
  ///
3596 3596
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3597 3597
  /// may provide alternative ways to modify the digraph.
3598 3598
  /// The correct behavior of OutDegMap is not guarantied if these additional
3599
  /// features are used. For example the functions
3599
  /// features are used. For example, the functions
3600 3600
  /// \ref ListDigraph::changeSource() "changeSource()",
3601 3601
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3602 3602
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3603 3603
  /// of \ref ListDigraph will \e not update the degree values correctly.
3604 3604
  ///
3605 3605
  /// \sa InDegMap
3606 3606
  template <typename GR>
3607 3607
  class OutDegMap
3608 3608
    : protected ItemSetTraits<GR, typename GR::Arc>
3609 3609
      ::ItemNotifier::ObserverBase {
3610 3610

	
3611 3611
  public:
3612 3612

	
3613 3613
    /// The graph type of OutDegMap
3614 3614
    typedef GR Graph;
3615 3615
    typedef GR Digraph;
3616 3616
    /// The key type
3617 3617
    typedef typename Digraph::Node Key;
3618 3618
    /// The value type
3619 3619
    typedef int Value;
3620 3620

	
3621 3621
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3622 3622
    ::ItemNotifier::ObserverBase Parent;
3623 3623

	
3624 3624
  private:
3625 3625

	
3626 3626
    class AutoNodeMap
3627 3627
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3628 3628
    public:
3629 3629

	
3630 3630
      typedef typename ItemSetTraits<Digraph, Key>::
3631 3631
      template Map<int>::Type Parent;
3632 3632

	
3633 3633
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3634 3634

	
3635 3635
      virtual void add(const Key& key) {
3636 3636
        Parent::add(key);
3637 3637
        Parent::set(key, 0);
3638 3638
      }
3639 3639
      virtual void add(const std::vector<Key>& keys) {
3640 3640
        Parent::add(keys);
3641 3641
        for (int i = 0; i < int(keys.size()); ++i) {
3642 3642
          Parent::set(keys[i], 0);
3643 3643
        }
3644 3644
      }
3645 3645
      virtual void build() {
3646 3646
        Parent::build();
3647 3647
        Key it;
3648 3648
        typename Parent::Notifier* nf = Parent::notifier();
3649 3649
        for (nf->first(it); it != INVALID; nf->next(it)) {
3650 3650
          Parent::set(it, 0);
3651 3651
        }
3652 3652
      }
3653 3653
    };
3654 3654

	
3655 3655
  public:
3656 3656

	
3657 3657
    /// \brief Constructor.
3658 3658
    ///
3659 3659
    /// Constructor for creating an out-degree map.
3660 3660
    explicit OutDegMap(const Digraph& graph)
3661 3661
      : _digraph(graph), _deg(graph) {
3662 3662
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3663 3663

	
3664 3664
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3665 3665
        _deg[it] = countOutArcs(_digraph, it);
3666 3666
      }
3667 3667
    }
3668 3668

	
3669 3669
    /// \brief Gives back the out-degree of a Node.
3670 3670
    ///
3671 3671
    /// Gives back the out-degree of a Node.
3672 3672
    int operator[](const Key& key) const {
3673 3673
      return _deg[key];
3674 3674
    }
3675 3675

	
3676 3676
  protected:
3677 3677

	
3678 3678
    typedef typename Digraph::Arc Arc;
3679 3679

	
3680 3680
    virtual void add(const Arc& arc) {
3681 3681
      ++_deg[_digraph.source(arc)];
3682 3682
    }
3683 3683

	
3684 3684
    virtual void add(const std::vector<Arc>& arcs) {
3685 3685
      for (int i = 0; i < int(arcs.size()); ++i) {
3686 3686
        ++_deg[_digraph.source(arcs[i])];
3687 3687
      }
3688 3688
    }
3689 3689

	
3690 3690
    virtual void erase(const Arc& arc) {
3691 3691
      --_deg[_digraph.source(arc)];
3692 3692
    }
3693 3693

	
3694 3694
    virtual void erase(const std::vector<Arc>& arcs) {
3695 3695
      for (int i = 0; i < int(arcs.size()); ++i) {
3696 3696
        --_deg[_digraph.source(arcs[i])];
3697 3697
      }
3698 3698
    }
3699 3699

	
3700 3700
    virtual void build() {
3701 3701
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3702 3702
        _deg[it] = countOutArcs(_digraph, it);
3703 3703
      }
3704 3704
    }
3705 3705

	
3706 3706
    virtual void clear() {
3707 3707
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3708 3708
        _deg[it] = 0;
3709 3709
      }
3710 3710
    }
3711 3711
  private:
3712 3712

	
3713 3713
    const Digraph& _digraph;
3714 3714
    AutoNodeMap _deg;
3715 3715
  };
3716 3716

	
3717 3717
  /// \brief Potential difference map
3718 3718
  ///
3719 3719
  /// PotentialDifferenceMap returns the difference between the potentials of
3720 3720
  /// the source and target nodes of each arc in a digraph, i.e. it returns
3721 3721
  /// \code
3722 3722
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3723 3723
  /// \endcode
3724 3724
  /// \tparam GR The digraph type.
3725 3725
  /// \tparam POT A node map storing the potentials.
3726 3726
  template <typename GR, typename POT>
3727 3727
  class PotentialDifferenceMap {
3728 3728
  public:
3729 3729
    /// Key type
3730 3730
    typedef typename GR::Arc Key;
3731 3731
    /// Value type
3732 3732
    typedef typename POT::Value Value;
3733 3733

	
3734 3734
    /// \brief Constructor
3735 3735
    ///
3736 3736
    /// Contructor of the map.
3737 3737
    explicit PotentialDifferenceMap(const GR& gr,
3738 3738
                                    const POT& potential)
3739 3739
      : _digraph(gr), _potential(potential) {}
3740 3740

	
3741 3741
    /// \brief Returns the potential difference for the given arc.
3742 3742
    ///
3743 3743
    /// Returns the potential difference for the given arc, i.e.
3744 3744
    /// \code
3745 3745
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3746 3746
    /// \endcode
3747 3747
    Value operator[](const Key& arc) const {
3748 3748
      return _potential[_digraph.target(arc)] -
3749 3749
        _potential[_digraph.source(arc)];
3750 3750
    }
3751 3751

	
3752 3752
  private:
3753 3753
    const GR& _digraph;
3754 3754
    const POT& _potential;
3755 3755
  };
3756 3756

	
3757 3757
  /// \brief Returns a PotentialDifferenceMap.
3758 3758
  ///
3759 3759
  /// This function just returns a PotentialDifferenceMap.
3760 3760
  /// \relates PotentialDifferenceMap
3761 3761
  template <typename GR, typename POT>
3762 3762
  PotentialDifferenceMap<GR, POT>
3763 3763
  potentialDifferenceMap(const GR& gr, const POT& potential) {
3764 3764
    return PotentialDifferenceMap<GR, POT>(gr, potential);
3765 3765
  }
3766 3766

	
3767 3767
  /// @}
3768 3768
}
3769 3769

	
3770 3770
#endif // LEMON_MAPS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <algorithm>
30 30

	
31 31
#include <lemon/core.h>
32 32
#include <lemon/math.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup min_cost_flow_algs
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 43
  /// for finding a \ref min_cost_flow "minimum cost flow".
44 44
  /// This algorithm is a specialized version of the linear programming
45 45
  /// simplex method directly for the minimum cost flow problem.
46 46
  /// It is one of the most efficient solution methods.
47 47
  ///
48 48
  /// In general this class is the fastest implementation available
49 49
  /// in LEMON for the minimum cost flow problem.
50 50
  /// Moreover it supports both directions of the supply/demand inequality
51
  /// constraints. For more information see \ref SupplyType.
51
  /// constraints. For more information, see \ref SupplyType.
52 52
  ///
53 53
  /// Most of the parameters of the problem (except for the digraph)
54 54
  /// can be given using separate functions, and the algorithm can be
55 55
  /// executed using the \ref run() function. If some parameters are not
56 56
  /// specified, then default values will be used.
57 57
  ///
58 58
  /// \tparam GR The digraph type the algorithm runs on.
59 59
  /// \tparam V The value type used for flow amounts, capacity bounds
60
  /// and supply values in the algorithm. By default it is \c int.
60
  /// and supply values in the algorithm. By default, it is \c int.
61 61
  /// \tparam C The value type used for costs and potentials in the
62
  /// algorithm. By default it is the same as \c V.
62
  /// algorithm. By default, it is the same as \c V.
63 63
  ///
64 64
  /// \warning Both value types must be signed and all input data must
65 65
  /// be integer.
66 66
  ///
67 67
  /// \note %NetworkSimplex provides five different pivot rule
68 68
  /// implementations, from which the most efficient one is used
69
  /// by default. For more information see \ref PivotRule.
69
  /// by default. For more information, see \ref PivotRule.
70 70
  template <typename GR, typename V = int, typename C = V>
71 71
  class NetworkSimplex
72 72
  {
73 73
  public:
74 74

	
75 75
    /// The type of the flow amounts, capacity bounds and supply values
76 76
    typedef V Value;
77 77
    /// The type of the arc costs
78 78
    typedef C Cost;
79 79

	
80 80
  public:
81 81

	
82 82
    /// \brief Problem type constants for the \c run() function.
83 83
    ///
84 84
    /// Enum type containing the problem type constants that can be
85 85
    /// returned by the \ref run() function of the algorithm.
86 86
    enum ProblemType {
87 87
      /// The problem has no feasible solution (flow).
88 88
      INFEASIBLE,
89 89
      /// The problem has optimal solution (i.e. it is feasible and
90 90
      /// bounded), and the algorithm has found optimal flow and node
91 91
      /// potentials (primal and dual solutions).
92 92
      OPTIMAL,
93 93
      /// The objective function of the problem is unbounded, i.e.
94 94
      /// there is a directed cycle having negative total cost and
95 95
      /// infinite upper bound.
96 96
      UNBOUNDED
97 97
    };
98 98
    
99 99
    /// \brief Constants for selecting the type of the supply constraints.
100 100
    ///
101 101
    /// Enum type containing constants for selecting the supply type,
102 102
    /// i.e. the direction of the inequalities in the supply/demand
103 103
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
104 104
    ///
105 105
    /// The default supply type is \c GEQ, the \c LEQ type can be
106 106
    /// selected using \ref supplyType().
107 107
    /// The equality form is a special case of both supply types.
108 108
    enum SupplyType {
109 109
      /// This option means that there are <em>"greater or equal"</em>
110 110
      /// supply/demand constraints in the definition of the problem.
111 111
      GEQ,
112 112
      /// This option means that there are <em>"less or equal"</em>
113 113
      /// supply/demand constraints in the definition of the problem.
114 114
      LEQ
115 115
    };
116 116
    
117 117
    /// \brief Constants for selecting the pivot rule.
118 118
    ///
119 119
    /// Enum type containing constants for selecting the pivot rule for
120 120
    /// the \ref run() function.
121 121
    ///
122 122
    /// \ref NetworkSimplex provides five different pivot rule
123 123
    /// implementations that significantly affect the running time
124 124
    /// of the algorithm.
125
    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
125
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
126 126
    /// proved to be the most efficient and the most robust on various
127 127
    /// test inputs according to our benchmark tests.
128
    /// However another pivot rule can be selected using the \ref run()
128
    /// However, another pivot rule can be selected using the \ref run()
129 129
    /// function with the proper parameter.
130 130
    enum PivotRule {
131 131

	
132
      /// The First Eligible pivot rule.
132
      /// The \e First \e Eligible pivot rule.
133 133
      /// The next eligible arc is selected in a wraparound fashion
134 134
      /// in every iteration.
135 135
      FIRST_ELIGIBLE,
136 136

	
137
      /// The Best Eligible pivot rule.
137
      /// The \e Best \e Eligible pivot rule.
138 138
      /// The best eligible arc is selected in every iteration.
139 139
      BEST_ELIGIBLE,
140 140

	
141
      /// The Block Search pivot rule.
141
      /// The \e Block \e Search pivot rule.
142 142
      /// A specified number of arcs are examined in every iteration
143 143
      /// in a wraparound fashion and the best eligible arc is selected
144 144
      /// from this block.
145 145
      BLOCK_SEARCH,
146 146

	
147
      /// The Candidate List pivot rule.
147
      /// The \e Candidate \e List pivot rule.
148 148
      /// In a major iteration a candidate list is built from eligible arcs
149 149
      /// in a wraparound fashion and in the following minor iterations
150 150
      /// the best eligible arc is selected from this list.
151 151
      CANDIDATE_LIST,
152 152

	
153
      /// The Altering Candidate List pivot rule.
153
      /// The \e Altering \e Candidate \e List pivot rule.
154 154
      /// It is a modified version of the Candidate List method.
155 155
      /// It keeps only the several best eligible arcs from the former
156 156
      /// candidate list and extends this list in every iteration.
157 157
      ALTERING_LIST
158 158
    };
159 159
    
160 160
  private:
161 161

	
162 162
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
163 163

	
164 164
    typedef std::vector<int> IntVector;
165 165
    typedef std::vector<bool> BoolVector;
166 166
    typedef std::vector<Value> ValueVector;
167 167
    typedef std::vector<Cost> CostVector;
168 168

	
169 169
    // State constants for arcs
170 170
    enum ArcStateEnum {
171 171
      STATE_UPPER = -1,
172 172
      STATE_TREE  =  0,
173 173
      STATE_LOWER =  1
174 174
    };
175 175

	
176 176
  private:
177 177

	
178 178
    // Data related to the underlying digraph
179 179
    const GR &_graph;
180 180
    int _node_num;
181 181
    int _arc_num;
182 182
    int _all_arc_num;
183 183
    int _search_arc_num;
184 184

	
185 185
    // Parameters of the problem
186 186
    bool _have_lower;
187 187
    SupplyType _stype;
188 188
    Value _sum_supply;
189 189

	
190 190
    // Data structures for storing the digraph
191 191
    IntNodeMap _node_id;
192 192
    IntArcMap _arc_id;
193 193
    IntVector _source;
194 194
    IntVector _target;
195 195

	
196 196
    // Node and arc data
197 197
    ValueVector _lower;
198 198
    ValueVector _upper;
199 199
    ValueVector _cap;
200 200
    CostVector _cost;
201 201
    ValueVector _supply;
202 202
    ValueVector _flow;
203 203
    CostVector _pi;
204 204

	
205 205
    // Data for storing the spanning tree structure
206 206
    IntVector _parent;
207 207
    IntVector _pred;
208 208
    IntVector _thread;
209 209
    IntVector _rev_thread;
210 210
    IntVector _succ_num;
211 211
    IntVector _last_succ;
212 212
    IntVector _dirty_revs;
213 213
    BoolVector _forward;
214 214
    IntVector _state;
215 215
    int _root;
216 216

	
217 217
    // Temporary data used in the current pivot iteration
218 218
    int in_arc, join, u_in, v_in, u_out, v_out;
219 219
    int first, second, right, last;
220 220
    int stem, par_stem, new_stem;
221 221
    Value delta;
222 222

	
223 223
  public:
224 224
  
225 225
    /// \brief Constant for infinite upper bounds (capacities).
226 226
    ///
227 227
    /// Constant for infinite upper bounds (capacities).
228 228
    /// It is \c std::numeric_limits<Value>::infinity() if available,
229 229
    /// \c std::numeric_limits<Value>::max() otherwise.
230 230
    const Value INF;
231 231

	
232 232
  private:
233 233

	
234 234
    // Implementation of the First Eligible pivot rule
235 235
    class FirstEligiblePivotRule
236 236
    {
237 237
    private:
238 238

	
239 239
      // References to the NetworkSimplex class
240 240
      const IntVector  &_source;
241 241
      const IntVector  &_target;
242 242
      const CostVector &_cost;
243 243
      const IntVector  &_state;
244 244
      const CostVector &_pi;
245 245
      int &_in_arc;
246 246
      int _search_arc_num;
247 247

	
248 248
      // Pivot rule data
249 249
      int _next_arc;
250 250

	
251 251
    public:
252 252

	
253 253
      // Constructor
254 254
      FirstEligiblePivotRule(NetworkSimplex &ns) :
255 255
        _source(ns._source), _target(ns._target),
256 256
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
257 257
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
258 258
        _next_arc(0)
259 259
      {}
260 260

	
261 261
      // Find next entering arc
262 262
      bool findEnteringArc() {
263 263
        Cost c;
264 264
        for (int e = _next_arc; e < _search_arc_num; ++e) {
265 265
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
266 266
          if (c < 0) {
267 267
            _in_arc = e;
268 268
            _next_arc = e + 1;
269 269
            return true;
270 270
          }
271 271
        }
272 272
        for (int e = 0; e < _next_arc; ++e) {
273 273
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
274 274
          if (c < 0) {
275 275
            _in_arc = e;
276 276
            _next_arc = e + 1;
277 277
            return true;
278 278
          }
279 279
        }
280 280
        return false;
281 281
      }
282 282

	
283 283
    }; //class FirstEligiblePivotRule
284 284

	
285 285

	
286 286
    // Implementation of the Best Eligible pivot rule
287 287
    class BestEligiblePivotRule
288 288
    {
289 289
    private:
290 290

	
291 291
      // References to the NetworkSimplex class
292 292
      const IntVector  &_source;
293 293
      const IntVector  &_target;
294 294
      const CostVector &_cost;
295 295
      const IntVector  &_state;
296 296
      const CostVector &_pi;
297 297
      int &_in_arc;
298 298
      int _search_arc_num;
299 299

	
300 300
    public:
301 301

	
302 302
      // Constructor
303 303
      BestEligiblePivotRule(NetworkSimplex &ns) :
304 304
        _source(ns._source), _target(ns._target),
305 305
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
306 306
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
307 307
      {}
308 308

	
309 309
      // Find next entering arc
310 310
      bool findEnteringArc() {
311 311
        Cost c, min = 0;
312 312
        for (int e = 0; e < _search_arc_num; ++e) {
313 313
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
314 314
          if (c < min) {
315 315
            min = c;
316 316
            _in_arc = e;
317 317
          }
318 318
        }
319 319
        return min < 0;
320 320
      }
321 321

	
322 322
    }; //class BestEligiblePivotRule
323 323

	
324 324

	
325 325
    // Implementation of the Block Search pivot rule
326 326
    class BlockSearchPivotRule
327 327
    {
328 328
    private:
329 329

	
330 330
      // References to the NetworkSimplex class
331 331
      const IntVector  &_source;
332 332
      const IntVector  &_target;
333 333
      const CostVector &_cost;
334 334
      const IntVector  &_state;
335 335
      const CostVector &_pi;
336 336
      int &_in_arc;
337 337
      int _search_arc_num;
338 338

	
339 339
      // Pivot rule data
340 340
      int _block_size;
341 341
      int _next_arc;
342 342

	
343 343
    public:
344 344

	
345 345
      // Constructor
... ...
@@ -621,446 +621,446 @@
621 621
    /// \brief Constructor.
622 622
    ///
623 623
    /// The constructor of the class.
624 624
    ///
625 625
    /// \param graph The digraph the algorithm runs on.
626 626
    /// \param arc_mixing Indicate if the arcs have to be stored in a
627 627
    /// mixed order in the internal data structure. 
628 628
    /// In special cases, it could lead to better overall performance,
629 629
    /// but it is usually slower. Therefore it is disabled by default.
630 630
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
631 631
      _graph(graph), _node_id(graph), _arc_id(graph),
632 632
      INF(std::numeric_limits<Value>::has_infinity ?
633 633
          std::numeric_limits<Value>::infinity() :
634 634
          std::numeric_limits<Value>::max())
635 635
    {
636 636
      // Check the value types
637 637
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
638 638
        "The flow type of NetworkSimplex must be signed");
639 639
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
640 640
        "The cost type of NetworkSimplex must be signed");
641 641
        
642 642
      // Resize vectors
643 643
      _node_num = countNodes(_graph);
644 644
      _arc_num = countArcs(_graph);
645 645
      int all_node_num = _node_num + 1;
646 646
      int max_arc_num = _arc_num + 2 * _node_num;
647 647

	
648 648
      _source.resize(max_arc_num);
649 649
      _target.resize(max_arc_num);
650 650

	
651 651
      _lower.resize(_arc_num);
652 652
      _upper.resize(_arc_num);
653 653
      _cap.resize(max_arc_num);
654 654
      _cost.resize(max_arc_num);
655 655
      _supply.resize(all_node_num);
656 656
      _flow.resize(max_arc_num);
657 657
      _pi.resize(all_node_num);
658 658

	
659 659
      _parent.resize(all_node_num);
660 660
      _pred.resize(all_node_num);
661 661
      _forward.resize(all_node_num);
662 662
      _thread.resize(all_node_num);
663 663
      _rev_thread.resize(all_node_num);
664 664
      _succ_num.resize(all_node_num);
665 665
      _last_succ.resize(all_node_num);
666 666
      _state.resize(max_arc_num);
667 667

	
668 668
      // Copy the graph
669 669
      int i = 0;
670 670
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
671 671
        _node_id[n] = i;
672 672
      }
673 673
      if (arc_mixing) {
674 674
        // Store the arcs in a mixed order
675 675
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
676 676
        int i = 0, j = 0;
677 677
        for (ArcIt a(_graph); a != INVALID; ++a) {
678 678
          _arc_id[a] = i;
679 679
          _source[i] = _node_id[_graph.source(a)];
680 680
          _target[i] = _node_id[_graph.target(a)];
681 681
          if ((i += k) >= _arc_num) i = ++j;
682 682
        }
683 683
      } else {
684 684
        // Store the arcs in the original order
685 685
        int i = 0;
686 686
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
687 687
          _arc_id[a] = i;
688 688
          _source[i] = _node_id[_graph.source(a)];
689 689
          _target[i] = _node_id[_graph.target(a)];
690 690
        }
691 691
      }
692 692
      
693 693
      // Reset parameters
694 694
      reset();
695 695
    }
696 696

	
697 697
    /// \name Parameters
698 698
    /// The parameters of the algorithm can be specified using these
699 699
    /// functions.
700 700

	
701 701
    /// @{
702 702

	
703 703
    /// \brief Set the lower bounds on the arcs.
704 704
    ///
705 705
    /// This function sets the lower bounds on the arcs.
706 706
    /// If it is not used before calling \ref run(), the lower bounds
707 707
    /// will be set to zero on all arcs.
708 708
    ///
709 709
    /// \param map An arc map storing the lower bounds.
710 710
    /// Its \c Value type must be convertible to the \c Value type
711 711
    /// of the algorithm.
712 712
    ///
713 713
    /// \return <tt>(*this)</tt>
714 714
    template <typename LowerMap>
715 715
    NetworkSimplex& lowerMap(const LowerMap& map) {
716 716
      _have_lower = true;
717 717
      for (ArcIt a(_graph); a != INVALID; ++a) {
718 718
        _lower[_arc_id[a]] = map[a];
719 719
      }
720 720
      return *this;
721 721
    }
722 722

	
723 723
    /// \brief Set the upper bounds (capacities) on the arcs.
724 724
    ///
725 725
    /// This function sets the upper bounds (capacities) on the arcs.
726 726
    /// If it is not used before calling \ref run(), the upper bounds
727 727
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
728 728
    /// unbounded from above on each arc).
729 729
    ///
730 730
    /// \param map An arc map storing the upper bounds.
731 731
    /// Its \c Value type must be convertible to the \c Value type
732 732
    /// of the algorithm.
733 733
    ///
734 734
    /// \return <tt>(*this)</tt>
735 735
    template<typename UpperMap>
736 736
    NetworkSimplex& upperMap(const UpperMap& map) {
737 737
      for (ArcIt a(_graph); a != INVALID; ++a) {
738 738
        _upper[_arc_id[a]] = map[a];
739 739
      }
740 740
      return *this;
741 741
    }
742 742

	
743 743
    /// \brief Set the costs of the arcs.
744 744
    ///
745 745
    /// This function sets the costs of the arcs.
746 746
    /// If it is not used before calling \ref run(), the costs
747 747
    /// will be set to \c 1 on all arcs.
748 748
    ///
749 749
    /// \param map An arc map storing the costs.
750 750
    /// Its \c Value type must be convertible to the \c Cost type
751 751
    /// of the algorithm.
752 752
    ///
753 753
    /// \return <tt>(*this)</tt>
754 754
    template<typename CostMap>
755 755
    NetworkSimplex& costMap(const CostMap& map) {
756 756
      for (ArcIt a(_graph); a != INVALID; ++a) {
757 757
        _cost[_arc_id[a]] = map[a];
758 758
      }
759 759
      return *this;
760 760
    }
761 761

	
762 762
    /// \brief Set the supply values of the nodes.
763 763
    ///
764 764
    /// This function sets the supply values of the nodes.
765 765
    /// If neither this function nor \ref stSupply() is used before
766 766
    /// calling \ref run(), the supply of each node will be set to zero.
767 767
    ///
768 768
    /// \param map A node map storing the supply values.
769 769
    /// Its \c Value type must be convertible to the \c Value type
770 770
    /// of the algorithm.
771 771
    ///
772 772
    /// \return <tt>(*this)</tt>
773 773
    template<typename SupplyMap>
774 774
    NetworkSimplex& supplyMap(const SupplyMap& map) {
775 775
      for (NodeIt n(_graph); n != INVALID; ++n) {
776 776
        _supply[_node_id[n]] = map[n];
777 777
      }
778 778
      return *this;
779 779
    }
780 780

	
781 781
    /// \brief Set single source and target nodes and a supply value.
782 782
    ///
783 783
    /// This function sets a single source node and a single target node
784 784
    /// and the required flow value.
785 785
    /// If neither this function nor \ref supplyMap() is used before
786 786
    /// calling \ref run(), the supply of each node will be set to zero.
787 787
    ///
788 788
    /// Using this function has the same effect as using \ref supplyMap()
789 789
    /// with such a map in which \c k is assigned to \c s, \c -k is
790 790
    /// assigned to \c t and all other nodes have zero supply value.
791 791
    ///
792 792
    /// \param s The source node.
793 793
    /// \param t The target node.
794 794
    /// \param k The required amount of flow from node \c s to node \c t
795 795
    /// (i.e. the supply of \c s and the demand of \c t).
796 796
    ///
797 797
    /// \return <tt>(*this)</tt>
798 798
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
799 799
      for (int i = 0; i != _node_num; ++i) {
800 800
        _supply[i] = 0;
801 801
      }
802 802
      _supply[_node_id[s]] =  k;
803 803
      _supply[_node_id[t]] = -k;
804 804
      return *this;
805 805
    }
806 806
    
807 807
    /// \brief Set the type of the supply constraints.
808 808
    ///
809 809
    /// This function sets the type of the supply/demand constraints.
810 810
    /// If it is not used before calling \ref run(), the \ref GEQ supply
811 811
    /// type will be used.
812 812
    ///
813
    /// For more information see \ref SupplyType.
813
    /// For more information, see \ref SupplyType.
814 814
    ///
815 815
    /// \return <tt>(*this)</tt>
816 816
    NetworkSimplex& supplyType(SupplyType supply_type) {
817 817
      _stype = supply_type;
818 818
      return *this;
819 819
    }
820 820

	
821 821
    /// @}
822 822

	
823 823
    /// \name Execution Control
824 824
    /// The algorithm can be executed using \ref run().
825 825

	
826 826
    /// @{
827 827

	
828 828
    /// \brief Run the algorithm.
829 829
    ///
830 830
    /// This function runs the algorithm.
831 831
    /// The paramters can be specified using functions \ref lowerMap(),
832 832
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
833 833
    /// \ref supplyType().
834 834
    /// For example,
835 835
    /// \code
836 836
    ///   NetworkSimplex<ListDigraph> ns(graph);
837 837
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
838 838
    ///     .supplyMap(sup).run();
839 839
    /// \endcode
840 840
    ///
841 841
    /// This function can be called more than once. All the parameters
842 842
    /// that have been given are kept for the next call, unless
843 843
    /// \ref reset() is called, thus only the modified parameters
844 844
    /// have to be set again. See \ref reset() for examples.
845
    /// However the underlying digraph must not be modified after this
845
    /// However, the underlying digraph must not be modified after this
846 846
    /// class have been constructed, since it copies and extends the graph.
847 847
    ///
848 848
    /// \param pivot_rule The pivot rule that will be used during the
849
    /// algorithm. For more information see \ref PivotRule.
849
    /// algorithm. For more information, see \ref PivotRule.
850 850
    ///
851 851
    /// \return \c INFEASIBLE if no feasible flow exists,
852 852
    /// \n \c OPTIMAL if the problem has optimal solution
853 853
    /// (i.e. it is feasible and bounded), and the algorithm has found
854 854
    /// optimal flow and node potentials (primal and dual solutions),
855 855
    /// \n \c UNBOUNDED if the objective function of the problem is
856 856
    /// unbounded, i.e. there is a directed cycle having negative total
857 857
    /// cost and infinite upper bound.
858 858
    ///
859 859
    /// \see ProblemType, PivotRule
860 860
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
861 861
      if (!init()) return INFEASIBLE;
862 862
      return start(pivot_rule);
863 863
    }
864 864

	
865 865
    /// \brief Reset all the parameters that have been given before.
866 866
    ///
867 867
    /// This function resets all the paramaters that have been given
868 868
    /// before using functions \ref lowerMap(), \ref upperMap(),
869 869
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
870 870
    ///
871 871
    /// It is useful for multiple run() calls. If this function is not
872 872
    /// used, all the parameters given before are kept for the next
873 873
    /// \ref run() call.
874
    /// However the underlying digraph must not be modified after this
874
    /// However, the underlying digraph must not be modified after this
875 875
    /// class have been constructed, since it copies and extends the graph.
876 876
    ///
877 877
    /// For example,
878 878
    /// \code
879 879
    ///   NetworkSimplex<ListDigraph> ns(graph);
880 880
    ///
881 881
    ///   // First run
882 882
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
883 883
    ///     .supplyMap(sup).run();
884 884
    ///
885 885
    ///   // Run again with modified cost map (reset() is not called,
886 886
    ///   // so only the cost map have to be set again)
887 887
    ///   cost[e] += 100;
888 888
    ///   ns.costMap(cost).run();
889 889
    ///
890 890
    ///   // Run again from scratch using reset()
891 891
    ///   // (the lower bounds will be set to zero on all arcs)
892 892
    ///   ns.reset();
893 893
    ///   ns.upperMap(capacity).costMap(cost)
894 894
    ///     .supplyMap(sup).run();
895 895
    /// \endcode
896 896
    ///
897 897
    /// \return <tt>(*this)</tt>
898 898
    NetworkSimplex& reset() {
899 899
      for (int i = 0; i != _node_num; ++i) {
900 900
        _supply[i] = 0;
901 901
      }
902 902
      for (int i = 0; i != _arc_num; ++i) {
903 903
        _lower[i] = 0;
904 904
        _upper[i] = INF;
905 905
        _cost[i] = 1;
906 906
      }
907 907
      _have_lower = false;
908 908
      _stype = GEQ;
909 909
      return *this;
910 910
    }
911 911

	
912 912
    /// @}
913 913

	
914 914
    /// \name Query Functions
915 915
    /// The results of the algorithm can be obtained using these
916 916
    /// functions.\n
917 917
    /// The \ref run() function must be called before using them.
918 918

	
919 919
    /// @{
920 920

	
921 921
    /// \brief Return the total cost of the found flow.
922 922
    ///
923 923
    /// This function returns the total cost of the found flow.
924 924
    /// Its complexity is O(e).
925 925
    ///
926 926
    /// \note The return type of the function can be specified as a
927 927
    /// template parameter. For example,
928 928
    /// \code
929 929
    ///   ns.totalCost<double>();
930 930
    /// \endcode
931 931
    /// It is useful if the total cost cannot be stored in the \c Cost
932 932
    /// type of the algorithm, which is the default return type of the
933 933
    /// function.
934 934
    ///
935 935
    /// \pre \ref run() must be called before using this function.
936 936
    template <typename Number>
937 937
    Number totalCost() const {
938 938
      Number c = 0;
939 939
      for (ArcIt a(_graph); a != INVALID; ++a) {
940 940
        int i = _arc_id[a];
941 941
        c += Number(_flow[i]) * Number(_cost[i]);
942 942
      }
943 943
      return c;
944 944
    }
945 945

	
946 946
#ifndef DOXYGEN
947 947
    Cost totalCost() const {
948 948
      return totalCost<Cost>();
949 949
    }
950 950
#endif
951 951

	
952 952
    /// \brief Return the flow on the given arc.
953 953
    ///
954 954
    /// This function returns the flow on the given arc.
955 955
    ///
956 956
    /// \pre \ref run() must be called before using this function.
957 957
    Value flow(const Arc& a) const {
958 958
      return _flow[_arc_id[a]];
959 959
    }
960 960

	
961 961
    /// \brief Return the flow map (the primal solution).
962 962
    ///
963 963
    /// This function copies the flow value on each arc into the given
964 964
    /// map. The \c Value type of the algorithm must be convertible to
965 965
    /// the \c Value type of the map.
966 966
    ///
967 967
    /// \pre \ref run() must be called before using this function.
968 968
    template <typename FlowMap>
969 969
    void flowMap(FlowMap &map) const {
970 970
      for (ArcIt a(_graph); a != INVALID; ++a) {
971 971
        map.set(a, _flow[_arc_id[a]]);
972 972
      }
973 973
    }
974 974

	
975 975
    /// \brief Return the potential (dual value) of the given node.
976 976
    ///
977 977
    /// This function returns the potential (dual value) of the
978 978
    /// given node.
979 979
    ///
980 980
    /// \pre \ref run() must be called before using this function.
981 981
    Cost potential(const Node& n) const {
982 982
      return _pi[_node_id[n]];
983 983
    }
984 984

	
985 985
    /// \brief Return the potential map (the dual solution).
986 986
    ///
987 987
    /// This function copies the potential (dual value) of each node
988 988
    /// into the given map.
989 989
    /// The \c Cost type of the algorithm must be convertible to the
990 990
    /// \c Value type of the map.
991 991
    ///
992 992
    /// \pre \ref run() must be called before using this function.
993 993
    template <typename PotentialMap>
994 994
    void potentialMap(PotentialMap &map) const {
995 995
      for (NodeIt n(_graph); n != INVALID; ++n) {
996 996
        map.set(n, _pi[_node_id[n]]);
997 997
      }
998 998
    }
999 999

	
1000 1000
    /// @}
1001 1001

	
1002 1002
  private:
1003 1003

	
1004 1004
    // Initialize internal data structures
1005 1005
    bool init() {
1006 1006
      if (_node_num == 0) return false;
1007 1007

	
1008 1008
      // Check the sum of supply values
1009 1009
      _sum_supply = 0;
1010 1010
      for (int i = 0; i != _node_num; ++i) {
1011 1011
        _sum_supply += _supply[i];
1012 1012
      }
1013 1013
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
1014 1014
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
1015 1015

	
1016 1016
      // Remove non-zero lower bounds
1017 1017
      if (_have_lower) {
1018 1018
        for (int i = 0; i != _arc_num; ++i) {
1019 1019
          Value c = _lower[i];
1020 1020
          if (c >= 0) {
1021 1021
            _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1022 1022
          } else {
1023 1023
            _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1024 1024
          }
1025 1025
          _supply[_source[i]] -= c;
1026 1026
          _supply[_target[i]] += c;
1027 1027
        }
1028 1028
      } else {
1029 1029
        for (int i = 0; i != _arc_num; ++i) {
1030 1030
          _cap[i] = _upper[i];
1031 1031
        }
1032 1032
      }
1033 1033

	
1034 1034
      // Initialize artifical cost
1035 1035
      Cost ART_COST;
1036 1036
      if (std::numeric_limits<Cost>::is_exact) {
1037 1037
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1038 1038
      } else {
1039 1039
        ART_COST = std::numeric_limits<Cost>::min();
1040 1040
        for (int i = 0; i != _arc_num; ++i) {
1041 1041
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
1042 1042
        }
1043 1043
        ART_COST = (ART_COST + 1) * _node_num;
1044 1044
      }
1045 1045

	
1046 1046
      // Initialize arc maps
1047 1047
      for (int i = 0; i != _arc_num; ++i) {
1048 1048
        _flow[i] = 0;
1049 1049
        _state[i] = STATE_LOWER;
1050 1050
      }
1051 1051
      
1052 1052
      // Set data for the artificial root node
1053 1053
      _root = _node_num;
1054 1054
      _parent[_root] = -1;
1055 1055
      _pred[_root] = -1;
1056 1056
      _thread[_root] = 0;
1057 1057
      _rev_thread[0] = _root;
1058 1058
      _succ_num[_root] = _node_num + 1;
1059 1059
      _last_succ[_root] = _root - 1;
1060 1060
      _supply[_root] = -_sum_supply;
1061 1061
      _pi[_root] = 0;
1062 1062

	
1063 1063
      // Add artificial arcs and initialize the spanning tree data structure
1064 1064
      if (_sum_supply == 0) {
1065 1065
        // EQ supply constraints
1066 1066
        _search_arc_num = _arc_num;
Ignore white space 6 line context
... ...
@@ -75,385 +75,385 @@
75 75
#ifdef DOXYGEN
76 76
    typedef lemon::Elevator<GR, GR::Node> Elevator;
77 77
#else
78 78
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
79 79
#endif
80 80

	
81 81
    /// \brief Instantiates an Elevator.
82 82
    ///
83 83
    /// This function instantiates an \ref Elevator.
84 84
    /// \param digraph The digraph for which we would like to define
85 85
    /// the elevator.
86 86
    /// \param max_level The maximum level of the elevator.
87 87
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
88 88
      return new Elevator(digraph, max_level);
89 89
    }
90 90

	
91 91
    /// \brief The tolerance used by the algorithm
92 92
    ///
93 93
    /// The tolerance used by the algorithm to handle inexact computation.
94 94
    typedef lemon::Tolerance<Value> Tolerance;
95 95

	
96 96
  };
97 97

	
98 98

	
99 99
  /// \ingroup max_flow
100 100
  ///
101 101
  /// \brief %Preflow algorithm class.
102 102
  ///
103 103
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
104 104
  /// \e push-relabel algorithm producing a \ref max_flow
105 105
  /// "flow of maximum value" in a digraph.
106 106
  /// The preflow algorithms are the fastest known maximum
107 107
  /// flow algorithms. The current implementation uses a mixture of the
108 108
  /// \e "highest label" and the \e "bound decrease" heuristics.
109 109
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
110 110
  ///
111 111
  /// The algorithm consists of two phases. After the first phase
112 112
  /// the maximum flow value and the minimum cut is obtained. The
113 113
  /// second phase constructs a feasible maximum flow on each arc.
114 114
  ///
115 115
  /// \tparam GR The type of the digraph the algorithm runs on.
116 116
  /// \tparam CAP The type of the capacity map. The default map
117 117
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
118 118
#ifdef DOXYGEN
119 119
  template <typename GR, typename CAP, typename TR>
120 120
#else
121 121
  template <typename GR,
122 122
            typename CAP = typename GR::template ArcMap<int>,
123 123
            typename TR = PreflowDefaultTraits<GR, CAP> >
124 124
#endif
125 125
  class Preflow {
126 126
  public:
127 127

	
128 128
    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
129 129
    typedef TR Traits;
130 130
    ///The type of the digraph the algorithm runs on.
131 131
    typedef typename Traits::Digraph Digraph;
132 132
    ///The type of the capacity map.
133 133
    typedef typename Traits::CapacityMap CapacityMap;
134 134
    ///The type of the flow values.
135 135
    typedef typename Traits::Value Value;
136 136

	
137 137
    ///The type of the flow map.
138 138
    typedef typename Traits::FlowMap FlowMap;
139 139
    ///The type of the elevator.
140 140
    typedef typename Traits::Elevator Elevator;
141 141
    ///The type of the tolerance.
142 142
    typedef typename Traits::Tolerance Tolerance;
143 143

	
144 144
  private:
145 145

	
146 146
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
147 147

	
148 148
    const Digraph& _graph;
149 149
    const CapacityMap* _capacity;
150 150

	
151 151
    int _node_num;
152 152

	
153 153
    Node _source, _target;
154 154

	
155 155
    FlowMap* _flow;
156 156
    bool _local_flow;
157 157

	
158 158
    Elevator* _level;
159 159
    bool _local_level;
160 160

	
161 161
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
162 162
    ExcessMap* _excess;
163 163

	
164 164
    Tolerance _tolerance;
165 165

	
166 166
    bool _phase;
167 167

	
168 168

	
169 169
    void createStructures() {
170 170
      _node_num = countNodes(_graph);
171 171

	
172 172
      if (!_flow) {
173 173
        _flow = Traits::createFlowMap(_graph);
174 174
        _local_flow = true;
175 175
      }
176 176
      if (!_level) {
177 177
        _level = Traits::createElevator(_graph, _node_num);
178 178
        _local_level = true;
179 179
      }
180 180
      if (!_excess) {
181 181
        _excess = new ExcessMap(_graph);
182 182
      }
183 183
    }
184 184

	
185 185
    void destroyStructures() {
186 186
      if (_local_flow) {
187 187
        delete _flow;
188 188
      }
189 189
      if (_local_level) {
190 190
        delete _level;
191 191
      }
192 192
      if (_excess) {
193 193
        delete _excess;
194 194
      }
195 195
    }
196 196

	
197 197
  public:
198 198

	
199 199
    typedef Preflow Create;
200 200

	
201 201
    ///\name Named Template Parameters
202 202

	
203 203
    ///@{
204 204

	
205 205
    template <typename T>
206 206
    struct SetFlowMapTraits : public Traits {
207 207
      typedef T FlowMap;
208 208
      static FlowMap *createFlowMap(const Digraph&) {
209 209
        LEMON_ASSERT(false, "FlowMap is not initialized");
210 210
        return 0; // ignore warnings
211 211
      }
212 212
    };
213 213

	
214 214
    /// \brief \ref named-templ-param "Named parameter" for setting
215 215
    /// FlowMap type
216 216
    ///
217 217
    /// \ref named-templ-param "Named parameter" for setting FlowMap
218 218
    /// type.
219 219
    template <typename T>
220 220
    struct SetFlowMap
221 221
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
222 222
      typedef Preflow<Digraph, CapacityMap,
223 223
                      SetFlowMapTraits<T> > Create;
224 224
    };
225 225

	
226 226
    template <typename T>
227 227
    struct SetElevatorTraits : public Traits {
228 228
      typedef T Elevator;
229 229
      static Elevator *createElevator(const Digraph&, int) {
230 230
        LEMON_ASSERT(false, "Elevator is not initialized");
231 231
        return 0; // ignore warnings
232 232
      }
233 233
    };
234 234

	
235 235
    /// \brief \ref named-templ-param "Named parameter" for setting
236 236
    /// Elevator type
237 237
    ///
238 238
    /// \ref named-templ-param "Named parameter" for setting Elevator
239 239
    /// type. If this named parameter is used, then an external
240 240
    /// elevator object must be passed to the algorithm using the
241 241
    /// \ref elevator(Elevator&) "elevator()" function before calling
242 242
    /// \ref run() or \ref init().
243 243
    /// \sa SetStandardElevator
244 244
    template <typename T>
245 245
    struct SetElevator
246 246
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
247 247
      typedef Preflow<Digraph, CapacityMap,
248 248
                      SetElevatorTraits<T> > Create;
249 249
    };
250 250

	
251 251
    template <typename T>
252 252
    struct SetStandardElevatorTraits : public Traits {
253 253
      typedef T Elevator;
254 254
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
255 255
        return new Elevator(digraph, max_level);
256 256
      }
257 257
    };
258 258

	
259 259
    /// \brief \ref named-templ-param "Named parameter" for setting
260 260
    /// Elevator type with automatic allocation
261 261
    ///
262 262
    /// \ref named-templ-param "Named parameter" for setting Elevator
263 263
    /// type with automatic allocation.
264 264
    /// The Elevator should have standard constructor interface to be
265 265
    /// able to automatically created by the algorithm (i.e. the
266 266
    /// digraph and the maximum level should be passed to it).
267
    /// However an external elevator object could also be passed to the
267
    /// However, an external elevator object could also be passed to the
268 268
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
269 269
    /// before calling \ref run() or \ref init().
270 270
    /// \sa SetElevator
271 271
    template <typename T>
272 272
    struct SetStandardElevator
273 273
      : public Preflow<Digraph, CapacityMap,
274 274
                       SetStandardElevatorTraits<T> > {
275 275
      typedef Preflow<Digraph, CapacityMap,
276 276
                      SetStandardElevatorTraits<T> > Create;
277 277
    };
278 278

	
279 279
    /// @}
280 280

	
281 281
  protected:
282 282

	
283 283
    Preflow() {}
284 284

	
285 285
  public:
286 286

	
287 287

	
288 288
    /// \brief The constructor of the class.
289 289
    ///
290 290
    /// The constructor of the class.
291 291
    /// \param digraph The digraph the algorithm runs on.
292 292
    /// \param capacity The capacity of the arcs.
293 293
    /// \param source The source node.
294 294
    /// \param target The target node.
295 295
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
296 296
            Node source, Node target)
297 297
      : _graph(digraph), _capacity(&capacity),
298 298
        _node_num(0), _source(source), _target(target),
299 299
        _flow(0), _local_flow(false),
300 300
        _level(0), _local_level(false),
301 301
        _excess(0), _tolerance(), _phase() {}
302 302

	
303 303
    /// \brief Destructor.
304 304
    ///
305 305
    /// Destructor.
306 306
    ~Preflow() {
307 307
      destroyStructures();
308 308
    }
309 309

	
310 310
    /// \brief Sets the capacity map.
311 311
    ///
312 312
    /// Sets the capacity map.
313 313
    /// \return <tt>(*this)</tt>
314 314
    Preflow& capacityMap(const CapacityMap& map) {
315 315
      _capacity = &map;
316 316
      return *this;
317 317
    }
318 318

	
319 319
    /// \brief Sets the flow map.
320 320
    ///
321 321
    /// Sets the flow map.
322 322
    /// If you don't use this function before calling \ref run() or
323 323
    /// \ref init(), an instance will be allocated automatically.
324 324
    /// The destructor deallocates this automatically allocated map,
325 325
    /// of course.
326 326
    /// \return <tt>(*this)</tt>
327 327
    Preflow& flowMap(FlowMap& map) {
328 328
      if (_local_flow) {
329 329
        delete _flow;
330 330
        _local_flow = false;
331 331
      }
332 332
      _flow = &map;
333 333
      return *this;
334 334
    }
335 335

	
336 336
    /// \brief Sets the source node.
337 337
    ///
338 338
    /// Sets the source node.
339 339
    /// \return <tt>(*this)</tt>
340 340
    Preflow& source(const Node& node) {
341 341
      _source = node;
342 342
      return *this;
343 343
    }
344 344

	
345 345
    /// \brief Sets the target node.
346 346
    ///
347 347
    /// Sets the target node.
348 348
    /// \return <tt>(*this)</tt>
349 349
    Preflow& target(const Node& node) {
350 350
      _target = node;
351 351
      return *this;
352 352
    }
353 353

	
354 354
    /// \brief Sets the elevator used by algorithm.
355 355
    ///
356 356
    /// Sets the elevator used by algorithm.
357 357
    /// If you don't use this function before calling \ref run() or
358 358
    /// \ref init(), an instance will be allocated automatically.
359 359
    /// The destructor deallocates this automatically allocated elevator,
360 360
    /// of course.
361 361
    /// \return <tt>(*this)</tt>
362 362
    Preflow& elevator(Elevator& elevator) {
363 363
      if (_local_level) {
364 364
        delete _level;
365 365
        _local_level = false;
366 366
      }
367 367
      _level = &elevator;
368 368
      return *this;
369 369
    }
370 370

	
371 371
    /// \brief Returns a const reference to the elevator.
372 372
    ///
373 373
    /// Returns a const reference to the elevator.
374 374
    ///
375 375
    /// \pre Either \ref run() or \ref init() must be called before
376 376
    /// using this function.
377 377
    const Elevator& elevator() const {
378 378
      return *_level;
379 379
    }
380 380

	
381 381
    /// \brief Sets the tolerance used by the algorithm.
382 382
    ///
383 383
    /// Sets the tolerance object used by the algorithm.
384 384
    /// \return <tt>(*this)</tt>
385 385
    Preflow& tolerance(const Tolerance& tolerance) {
386 386
      _tolerance = tolerance;
387 387
      return *this;
388 388
    }
389 389

	
390 390
    /// \brief Returns a const reference to the tolerance.
391 391
    ///
392 392
    /// Returns a const reference to the tolerance object used by
393 393
    /// the algorithm.
394 394
    const Tolerance& tolerance() const {
395 395
      return _tolerance;
396 396
    }
397 397

	
398 398
    /// \name Execution Control
399 399
    /// The simplest way to execute the preflow algorithm is to use
400 400
    /// \ref run() or \ref runMinCut().\n
401 401
    /// If you need better control on the initial solution or the execution,
402 402
    /// you have to call one of the \ref init() functions first, then
403 403
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
404 404

	
405 405
    ///@{
406 406

	
407 407
    /// \brief Initializes the internal data structures.
408 408
    ///
409 409
    /// Initializes the internal data structures and sets the initial
410 410
    /// flow to zero on each arc.
411 411
    void init() {
412 412
      createStructures();
413 413

	
414 414
      _phase = true;
415 415
      for (NodeIt n(_graph); n != INVALID; ++n) {
416 416
        (*_excess)[n] = 0;
417 417
      }
418 418

	
419 419
      for (ArcIt e(_graph); e != INVALID; ++e) {
420 420
        _flow->set(e, 0);
421 421
      }
422 422

	
423 423
      typename Digraph::template NodeMap<bool> reached(_graph, false);
424 424

	
425 425
      _level->initStart();
426 426
      _level->initAddItem(_target);
427 427

	
428 428
      std::vector<Node> queue;
429 429
      reached[_source] = true;
430 430

	
431 431
      queue.push_back(_target);
432 432
      reached[_target] = true;
433 433
      while (!queue.empty()) {
434 434
        _level->initNewLevel();
435 435
        std::vector<Node> nqueue;
436 436
        for (int i = 0; i < int(queue.size()); ++i) {
437 437
          Node n = queue[i];
438 438
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
439 439
            Node u = _graph.source(e);
440 440
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
441 441
              reached[u] = true;
442 442
              _level->initAddItem(u);
443 443
              nqueue.push_back(u);
444 444
            }
445 445
          }
446 446
        }
447 447
        queue.swap(nqueue);
448 448
      }
449 449
      _level->initFinish();
450 450

	
451 451
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
452 452
        if (_tolerance.positive((*_capacity)[e])) {
453 453
          Node u = _graph.target(e);
454 454
          if ((*_level)[u] == _level->maxLevel()) continue;
455 455
          _flow->set(e, (*_capacity)[e]);
456 456
          (*_excess)[u] += (*_capacity)[e];
457 457
          if (u != _target && !_level->active(u)) {
458 458
            _level->activate(u);
459 459
          }
Ignore white space 6 line context
... ...
@@ -186,367 +186,367 @@
186 186

	
187 187
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
188 188
    ///
189 189
    double cUserTime() const
190 190
    {
191 191
      return cutime;
192 192
    }
193 193
    ///Gives back the user time of the process' children
194 194

	
195 195
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
196 196
    ///
197 197
    double cSystemTime() const
198 198
    {
199 199
      return cstime;
200 200
    }
201 201
    ///Gives back the real time
202 202
    double realTime() const {return rtime;}
203 203
  };
204 204

	
205 205
  inline TimeStamp operator*(double b,const TimeStamp &t)
206 206
  {
207 207
    return t*b;
208 208
  }
209 209

	
210 210
  ///Prints the time counters
211 211

	
212 212
  ///Prints the time counters in the following form:
213 213
  ///
214 214
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
215 215
  ///
216 216
  /// where the values are the
217 217
  /// \li \c u: user cpu time,
218 218
  /// \li \c s: system cpu time,
219 219
  /// \li \c cu: user cpu time of children,
220 220
  /// \li \c cs: system cpu time of children,
221 221
  /// \li \c real: real time.
222 222
  /// \relates TimeStamp
223 223
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
224 224
  /// calculated.
225 225
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
226 226
  {
227 227
    os << "u: " << t.userTime() <<
228 228
      "s, s: " << t.systemTime() <<
229 229
      "s, cu: " << t.cUserTime() <<
230 230
      "s, cs: " << t.cSystemTime() <<
231 231
      "s, real: " << t.realTime() << "s";
232 232
    return os;
233 233
  }
234 234

	
235 235
  ///Class for measuring the cpu time and real time usage of the process
236 236

	
237 237
  ///Class for measuring the cpu time and real time usage of the process.
238 238
  ///It is quite easy-to-use, here is a short example.
239 239
  ///\code
240 240
  /// #include<lemon/time_measure.h>
241 241
  /// #include<iostream>
242 242
  ///
243 243
  /// int main()
244 244
  /// {
245 245
  ///
246 246
  ///   ...
247 247
  ///
248 248
  ///   Timer t;
249 249
  ///   doSomething();
250 250
  ///   std::cout << t << '\n';
251 251
  ///   t.restart();
252 252
  ///   doSomethingElse();
253 253
  ///   std::cout << t << '\n';
254 254
  ///
255 255
  ///   ...
256 256
  ///
257 257
  /// }
258 258
  ///\endcode
259 259
  ///
260 260
  ///The \ref Timer can also be \ref stop() "stopped" and
261 261
  ///\ref start() "started" again, so it is possible to compute collected
262 262
  ///running times.
263 263
  ///
264 264
  ///\warning Depending on the operation system and its actual configuration
265 265
  ///the time counters have a certain (10ms on a typical Linux system)
266 266
  ///granularity.
267 267
  ///Therefore this tool is not appropriate to measure very short times.
268 268
  ///Also, if you start and stop the timer very frequently, it could lead to
269 269
  ///distorted results.
270 270
  ///
271 271
  ///\note If you want to measure the running time of the execution of a certain
272 272
  ///function, consider the usage of \ref TimeReport instead.
273 273
  ///
274 274
  ///\sa TimeReport
275 275
  class Timer
276 276
  {
277 277
    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
278 278
    TimeStamp start_time; //This is the relativ start-time if the timer
279 279
                          //is _running, the collected _running time otherwise.
280 280

	
281 281
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
282 282

	
283 283
  public:
284 284
    ///Constructor.
285 285

	
286 286
    ///\param run indicates whether or not the timer starts immediately.
287 287
    ///
288 288
    Timer(bool run=true) :_running(run) {_reset();}
289 289

	
290 290
    ///\name Control the State of the Timer
291 291
    ///Basically a Timer can be either running or stopped,
292 292
    ///but it provides a bit finer control on the execution.
293 293
    ///The \ref lemon::Timer "Timer" also counts the number of
294 294
    ///\ref lemon::Timer::start() "start()" executions, and it stops
295 295
    ///only after the same amount (or more) \ref lemon::Timer::stop()
296 296
    ///"stop()"s. This can be useful e.g. to compute the running time
297 297
    ///of recursive functions.
298 298

	
299 299
    ///@{
300 300

	
301 301
    ///Reset and stop the time counters
302 302

	
303 303
    ///This function resets and stops the time counters
304 304
    ///\sa restart()
305 305
    void reset()
306 306
    {
307 307
      _running=0;
308 308
      _reset();
309 309
    }
310 310

	
311 311
    ///Start the time counters
312 312

	
313 313
    ///This function starts the time counters.
314 314
    ///
315 315
    ///If the timer is started more than ones, it will remain running
316 316
    ///until the same amount of \ref stop() is called.
317 317
    ///\sa stop()
318 318
    void start()
319 319
    {
320 320
      if(_running) _running++;
321 321
      else {
322 322
        _running=1;
323 323
        TimeStamp t;
324 324
        t.stamp();
325 325
        start_time=t-start_time;
326 326
      }
327 327
    }
328 328

	
329 329

	
330 330
    ///Stop the time counters
331 331

	
332 332
    ///This function stops the time counters. If start() was executed more than
333 333
    ///once, then the same number of stop() execution is necessary the really
334 334
    ///stop the timer.
335 335
    ///
336 336
    ///\sa halt()
337 337
    ///\sa start()
338 338
    ///\sa restart()
339 339
    ///\sa reset()
340 340

	
341 341
    void stop()
342 342
    {
343 343
      if(_running && !--_running) {
344 344
        TimeStamp t;
345 345
        t.stamp();
346 346
        start_time=t-start_time;
347 347
      }
348 348
    }
349 349

	
350 350
    ///Halt (i.e stop immediately) the time counters
351 351

	
352 352
    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
353 353
    ///is a faster
354 354
    ///equivalent of the following.
355 355
    ///\code
356 356
    ///  while(t.running()) t.stop()
357 357
    ///\endcode
358 358
    ///
359 359
    ///
360 360
    ///\sa stop()
361 361
    ///\sa restart()
362 362
    ///\sa reset()
363 363

	
364 364
    void halt()
365 365
    {
366 366
      if(_running) {
367 367
        _running=0;
368 368
        TimeStamp t;
369 369
        t.stamp();
370 370
        start_time=t-start_time;
371 371
      }
372 372
    }
373 373

	
374 374
    ///Returns the running state of the timer
375 375

	
376 376
    ///This function returns the number of stop() exections that is
377 377
    ///necessary to really stop the timer.
378
    ///For example the timer
378
    ///For example, the timer
379 379
    ///is running if and only if the return value is \c true
380 380
    ///(i.e. greater than
381 381
    ///zero).
382 382
    int running()  { return _running; }
383 383

	
384 384

	
385 385
    ///Restart the time counters
386 386

	
387 387
    ///This function is a shorthand for
388 388
    ///a reset() and a start() calls.
389 389
    ///
390 390
    void restart()
391 391
    {
392 392
      reset();
393 393
      start();
394 394
    }
395 395

	
396 396
    ///@}
397 397

	
398 398
    ///\name Query Functions for the Ellapsed Time
399 399

	
400 400
    ///@{
401 401

	
402 402
    ///Gives back the ellapsed user time of the process
403 403
    double userTime() const
404 404
    {
405 405
      return operator TimeStamp().userTime();
406 406
    }
407 407
    ///Gives back the ellapsed system time of the process
408 408
    double systemTime() const
409 409
    {
410 410
      return operator TimeStamp().systemTime();
411 411
    }
412 412
    ///Gives back the ellapsed user time of the process' children
413 413

	
414 414
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
415 415
    ///
416 416
    double cUserTime() const
417 417
    {
418 418
      return operator TimeStamp().cUserTime();
419 419
    }
420 420
    ///Gives back the ellapsed user time of the process' children
421 421

	
422 422
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
423 423
    ///
424 424
    double cSystemTime() const
425 425
    {
426 426
      return operator TimeStamp().cSystemTime();
427 427
    }
428 428
    ///Gives back the ellapsed real time
429 429
    double realTime() const
430 430
    {
431 431
      return operator TimeStamp().realTime();
432 432
    }
433 433
    ///Computes the ellapsed time
434 434

	
435 435
    ///This conversion computes the ellapsed time, therefore you can print
436 436
    ///the ellapsed time like this.
437 437
    ///\code
438 438
    ///  Timer t;
439 439
    ///  doSomething();
440 440
    ///  std::cout << t << '\n';
441 441
    ///\endcode
442 442
    operator TimeStamp () const
443 443
    {
444 444
      TimeStamp t;
445 445
      t.stamp();
446 446
      return _running?t-start_time:start_time;
447 447
    }
448 448

	
449 449

	
450 450
    ///@}
451 451
  };
452 452

	
453 453
  ///Same as Timer but prints a report on destruction.
454 454

	
455 455
  ///Same as \ref Timer but prints a report on destruction.
456 456
  ///This example shows its usage.
457 457
  ///\code
458 458
  ///  void myAlg(ListGraph &g,int n)
459 459
  ///  {
460 460
  ///    TimeReport tr("Running time of myAlg: ");
461 461
  ///    ... //Here comes the algorithm
462 462
  ///  }
463 463
  ///\endcode
464 464
  ///
465 465
  ///\sa Timer
466 466
  ///\sa NoTimeReport
467 467
  class TimeReport : public Timer
468 468
  {
469 469
    std::string _title;
470 470
    std::ostream &_os;
471 471
  public:
472 472
    ///Constructor
473 473

	
474 474
    ///Constructor.
475 475
    ///\param title This text will be printed before the ellapsed time.
476 476
    ///\param os The stream to print the report to.
477 477
    ///\param run Sets whether the timer should start immediately.
478 478
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
479 479
      : Timer(run), _title(title), _os(os){}
480 480
    ///Destructor that prints the ellapsed time
481 481
    ~TimeReport()
482 482
    {
483 483
      _os << _title << *this << std::endl;
484 484
    }
485 485
  };
486 486

	
487 487
  ///'Do nothing' version of TimeReport
488 488

	
489 489
  ///\sa TimeReport
490 490
  ///
491 491
  class NoTimeReport
492 492
  {
493 493
  public:
494 494
    ///\e
495 495
    NoTimeReport(std::string,std::ostream &,bool) {}
496 496
    ///\e
497 497
    NoTimeReport(std::string,std::ostream &) {}
498 498
    ///\e
499 499
    NoTimeReport(std::string) {}
500 500
    ///\e Do nothing.
501 501
    ~NoTimeReport() {}
502 502

	
503 503
    operator TimeStamp () const { return TimeStamp(); }
504 504
    void reset() {}
505 505
    void start() {}
506 506
    void stop() {}
507 507
    void halt() {}
508 508
    int running() { return 0; }
509 509
    void restart() {}
510 510
    double userTime() const { return 0; }
511 511
    double systemTime() const { return 0; }
512 512
    double cUserTime() const { return 0; }
513 513
    double cSystemTime() const { return 0; }
514 514
    double realTime() const { return 0; }
515 515
  };
516 516

	
517 517
  ///Tool to measure the running time more exactly.
518 518

	
519 519
  ///This function calls \c f several times and returns the average
520 520
  ///running time. The number of the executions will be choosen in such a way
521 521
  ///that the full real running time will be roughly between \c min_time
522 522
  ///and <tt>2*min_time</tt>.
523 523
  ///\param f the function object to be measured.
524 524
  ///\param min_time the minimum total running time.
525 525
  ///\retval num if it is not \c NULL, then the actual
526 526
  ///        number of execution of \c f will be written into <tt>*num</tt>.
527 527
  ///\retval full_time if it is not \c NULL, then the actual
528 528
  ///        total running time will be written into <tt>*full_time</tt>.
529 529
  ///\return The average running time of \c f.
530 530

	
531 531
  template<class F>
532 532
  TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
533 533
                            TimeStamp *full_time=NULL)
534 534
  {
535 535
    TimeStamp full;
536 536
    unsigned int total=0;
537 537
    Timer t;
538 538
    for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
539 539
      for(;total<tn;total++) f();
540 540
      full=t;
541 541
    }
542 542
    if(num) *num=total;
543 543
    if(full_time) *full_time=full;
544 544
    return full/total;
545 545
  }
546 546

	
547 547
  /// @}
548 548

	
549 549

	
550 550
} //namespace lemon
551 551

	
552 552
#endif //LEMON_TIME_MEASURE_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_UNION_FIND_H
20 20
#define LEMON_UNION_FIND_H
21 21

	
22 22
//!\ingroup auxdat
23 23
//!\file
24 24
//!\brief Union-Find data structures.
25 25
//!
26 26

	
27 27
#include <vector>
28 28
#include <list>
29 29
#include <utility>
30 30
#include <algorithm>
31 31
#include <functional>
32 32

	
33 33
#include <lemon/core.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \ingroup auxdat
38 38
  ///
39 39
  /// \brief A \e Union-Find data structure implementation
40 40
  ///
41 41
  /// The class implements the \e Union-Find data structure.
42 42
  /// The union operation uses rank heuristic, while
43 43
  /// the find operation uses path compression.
44 44
  /// This is a very simple but efficient implementation, providing
45 45
  /// only four methods: join (union), find, insert and size.
46
  /// For more features see the \ref UnionFindEnum class.
46
  /// For more features, see the \ref UnionFindEnum class.
47 47
  ///
48 48
  /// It is primarily used in Kruskal algorithm for finding minimal
49 49
  /// cost spanning tree in a graph.
50 50
  /// \sa kruskal()
51 51
  ///
52 52
  /// \pre You need to add all the elements by the \ref insert()
53 53
  /// method.
54 54
  template <typename IM>
55 55
  class UnionFind {
56 56
  public:
57 57

	
58 58
    ///\e
59 59
    typedef IM ItemIntMap;
60 60
    ///\e
61 61
    typedef typename ItemIntMap::Key Item;
62 62

	
63 63
  private:
64 64
    // If the items vector stores negative value for an item then
65 65
    // that item is root item and it has -items[it] component size.
66 66
    // Else the items[it] contains the index of the parent.
67 67
    std::vector<int> items;
68 68
    ItemIntMap& index;
69 69

	
70 70
    bool rep(int idx) const {
71 71
      return items[idx] < 0;
72 72
    }
73 73

	
74 74
    int repIndex(int idx) const {
75 75
      int k = idx;
76 76
      while (!rep(k)) {
77 77
        k = items[k] ;
78 78
      }
79 79
      while (idx != k) {
80 80
        int next = items[idx];
81 81
        const_cast<int&>(items[idx]) = k;
82 82
        idx = next;
83 83
      }
84 84
      return k;
85 85
    }
86 86

	
87 87
  public:
88 88

	
89 89
    /// \brief Constructor
90 90
    ///
91 91
    /// Constructor of the UnionFind class. You should give an item to
92 92
    /// integer map which will be used from the data structure. If you
93 93
    /// modify directly this map that may cause segmentation fault,
94 94
    /// invalid data structure, or infinite loop when you use again
95 95
    /// the union-find.
96 96
    UnionFind(ItemIntMap& m) : index(m) {}
97 97

	
98 98
    /// \brief Returns the index of the element's component.
99 99
    ///
100 100
    /// The method returns the index of the element's component.
101 101
    /// This is an integer between zero and the number of inserted elements.
102 102
    ///
103 103
    int find(const Item& a) {
104 104
      return repIndex(index[a]);
105 105
    }
106 106

	
107 107
    /// \brief Clears the union-find data structure
108 108
    ///
109 109
    /// Erase each item from the data structure.
110 110
    void clear() {
111 111
      items.clear();
112 112
    }
113 113

	
114 114
    /// \brief Inserts a new element into the structure.
115 115
    ///
116 116
    /// This method inserts a new element into the data structure.
117 117
    ///
118 118
    /// The method returns the index of the new component.
119 119
    int insert(const Item& a) {
120 120
      int n = items.size();
121 121
      items.push_back(-1);
122 122
      index.set(a,n);
123 123
      return n;
124 124
    }
125 125

	
126 126
    /// \brief Joining the components of element \e a and element \e b.
127 127
    ///
128 128
    /// This is the \e union operation of the Union-Find structure.
129 129
    /// Joins the component of element \e a and component of
130 130
    /// element \e b. If \e a and \e b are in the same component then
131 131
    /// it returns false otherwise it returns true.
132 132
    bool join(const Item& a, const Item& b) {
133 133
      int ka = repIndex(index[a]);
134 134
      int kb = repIndex(index[b]);
135 135

	
136 136
      if ( ka == kb )
137 137
        return false;
138 138

	
139 139
      if (items[ka] < items[kb]) {
140 140
        items[ka] += items[kb];
141 141
        items[kb] = ka;
142 142
      } else {
143 143
        items[kb] += items[ka];
144 144
        items[ka] = kb;
145 145
      }
146 146
      return true;
147 147
    }
148 148

	
149 149
    /// \brief Returns the size of the component of element \e a.
150 150
    ///
151 151
    /// Returns the size of the component of element \e a.
152 152
    int size(const Item& a) {
153 153
      int k = repIndex(index[a]);
154 154
      return - items[k];
155 155
    }
156 156

	
157 157
  };
158 158

	
159 159
  /// \ingroup auxdat
160 160
  ///
161 161
  /// \brief A \e Union-Find data structure implementation which
162 162
  /// is able to enumerate the components.
163 163
  ///
164 164
  /// The class implements a \e Union-Find data structure
165 165
  /// which is able to enumerate the components and the items in
166 166
  /// a component. If you don't need this feature then perhaps it's
167 167
  /// better to use the \ref UnionFind class which is more efficient.
168 168
  ///
169 169
  /// The union operation uses rank heuristic, while
170 170
  /// the find operation uses path compression.
171 171
  ///
172 172
  /// \pre You need to add all the elements by the \ref insert()
173 173
  /// method.
174 174
  ///
175 175
  template <typename IM>
176 176
  class UnionFindEnum {
177 177
  public:
178 178

	
179 179
    ///\e
180 180
    typedef IM ItemIntMap;
181 181
    ///\e
182 182
    typedef typename ItemIntMap::Key Item;
183 183

	
184 184
  private:
185 185

	
186 186
    ItemIntMap& index;
187 187

	
188 188
    // If the parent stores negative value for an item then that item
189 189
    // is root item and it has ~(items[it].parent) component id.  Else
190 190
    // the items[it].parent contains the index of the parent.
191 191
    //
192 192
    // The \c next and \c prev provides the double-linked
193 193
    // cyclic list of one component's items.
194 194
    struct ItemT {
195 195
      int parent;
196 196
      Item item;
197 197

	
198 198
      int next, prev;
199 199
    };
200 200

	
201 201
    std::vector<ItemT> items;
202 202
    int firstFreeItem;
203 203

	
204 204
    struct ClassT {
205 205
      int size;
206 206
      int firstItem;
207 207
      int next, prev;
208 208
    };
209 209

	
210 210
    std::vector<ClassT> classes;
211 211
    int firstClass, firstFreeClass;
212 212

	
213 213
    int newClass() {
214 214
      if (firstFreeClass == -1) {
215 215
        int cdx = classes.size();
216 216
        classes.push_back(ClassT());
217 217
        return cdx;
218 218
      } else {
219 219
        int cdx = firstFreeClass;
220 220
        firstFreeClass = classes[firstFreeClass].next;
221 221
        return cdx;
222 222
      }
223 223
    }
224 224

	
225 225
    int newItem() {
226 226
      if (firstFreeItem == -1) {
227 227
        int idx = items.size();
228 228
        items.push_back(ItemT());
229 229
        return idx;
230 230
      } else {
231 231
        int idx = firstFreeItem;
232 232
        firstFreeItem = items[firstFreeItem].next;
233 233
        return idx;
234 234
      }
235 235
    }
236 236

	
237 237

	
238 238
    bool rep(int idx) const {
0 comments (0 inline)