... | ... |
@@ -436,434 +436,449 @@ |
436 | 436 |
std::sqrt(double(_search_arc_num))), |
437 | 437 |
MIN_LIST_LENGTH ); |
438 | 438 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
439 | 439 |
MIN_MINOR_LIMIT ); |
440 | 440 |
_curr_length = _minor_count = 0; |
441 | 441 |
_candidates.resize(_list_length); |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
/// Find next entering arc |
445 | 445 |
bool findEnteringArc() { |
446 | 446 |
Cost min, c; |
447 | 447 |
int e; |
448 | 448 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
449 | 449 |
// Minor iteration: select the best eligible arc from the |
450 | 450 |
// current candidate list |
451 | 451 |
++_minor_count; |
452 | 452 |
min = 0; |
453 | 453 |
for (int i = 0; i < _curr_length; ++i) { |
454 | 454 |
e = _candidates[i]; |
455 | 455 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
456 | 456 |
if (c < min) { |
457 | 457 |
min = c; |
458 | 458 |
_in_arc = e; |
459 | 459 |
} |
460 | 460 |
else if (c >= 0) { |
461 | 461 |
_candidates[i--] = _candidates[--_curr_length]; |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
if (min < 0) return true; |
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
// Major iteration: build a new candidate list |
468 | 468 |
min = 0; |
469 | 469 |
_curr_length = 0; |
470 | 470 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
471 | 471 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
472 | 472 |
if (c < 0) { |
473 | 473 |
_candidates[_curr_length++] = e; |
474 | 474 |
if (c < min) { |
475 | 475 |
min = c; |
476 | 476 |
_in_arc = e; |
477 | 477 |
} |
478 | 478 |
if (_curr_length == _list_length) goto search_end; |
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
for (e = 0; e < _next_arc; ++e) { |
482 | 482 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
483 | 483 |
if (c < 0) { |
484 | 484 |
_candidates[_curr_length++] = e; |
485 | 485 |
if (c < min) { |
486 | 486 |
min = c; |
487 | 487 |
_in_arc = e; |
488 | 488 |
} |
489 | 489 |
if (_curr_length == _list_length) goto search_end; |
490 | 490 |
} |
491 | 491 |
} |
492 | 492 |
if (_curr_length == 0) return false; |
493 | 493 |
|
494 | 494 |
search_end: |
495 | 495 |
_minor_count = 1; |
496 | 496 |
_next_arc = e; |
497 | 497 |
return true; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
}; //class CandidateListPivotRule |
501 | 501 |
|
502 | 502 |
|
503 | 503 |
// Implementation of the Altering Candidate List pivot rule |
504 | 504 |
class AlteringListPivotRule |
505 | 505 |
{ |
506 | 506 |
private: |
507 | 507 |
|
508 | 508 |
// References to the NetworkSimplex class |
509 | 509 |
const IntVector &_source; |
510 | 510 |
const IntVector &_target; |
511 | 511 |
const CostVector &_cost; |
512 | 512 |
const IntVector &_state; |
513 | 513 |
const CostVector &_pi; |
514 | 514 |
int &_in_arc; |
515 | 515 |
int _search_arc_num; |
516 | 516 |
|
517 | 517 |
// Pivot rule data |
518 | 518 |
int _block_size, _head_length, _curr_length; |
519 | 519 |
int _next_arc; |
520 | 520 |
IntVector _candidates; |
521 | 521 |
CostVector _cand_cost; |
522 | 522 |
|
523 | 523 |
// Functor class to compare arcs during sort of the candidate list |
524 | 524 |
class SortFunc |
525 | 525 |
{ |
526 | 526 |
private: |
527 | 527 |
const CostVector &_map; |
528 | 528 |
public: |
529 | 529 |
SortFunc(const CostVector &map) : _map(map) {} |
530 | 530 |
bool operator()(int left, int right) { |
531 | 531 |
return _map[left] > _map[right]; |
532 | 532 |
} |
533 | 533 |
}; |
534 | 534 |
|
535 | 535 |
SortFunc _sort_func; |
536 | 536 |
|
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
// Constructor |
540 | 540 |
AlteringListPivotRule(NetworkSimplex &ns) : |
541 | 541 |
_source(ns._source), _target(ns._target), |
542 | 542 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
543 | 543 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
544 | 544 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
545 | 545 |
{ |
546 | 546 |
// The main parameters of the pivot rule |
547 | 547 |
const double BLOCK_SIZE_FACTOR = 1.0; |
548 | 548 |
const int MIN_BLOCK_SIZE = 10; |
549 | 549 |
const double HEAD_LENGTH_FACTOR = 0.1; |
550 | 550 |
const int MIN_HEAD_LENGTH = 3; |
551 | 551 |
|
552 | 552 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
553 | 553 |
std::sqrt(double(_search_arc_num))), |
554 | 554 |
MIN_BLOCK_SIZE ); |
555 | 555 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
556 | 556 |
MIN_HEAD_LENGTH ); |
557 | 557 |
_candidates.resize(_head_length + _block_size); |
558 | 558 |
_curr_length = 0; |
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
// Find next entering arc |
562 | 562 |
bool findEnteringArc() { |
563 | 563 |
// Check the current candidate list |
564 | 564 |
int e; |
565 | 565 |
for (int i = 0; i < _curr_length; ++i) { |
566 | 566 |
e = _candidates[i]; |
567 | 567 |
_cand_cost[e] = _state[e] * |
568 | 568 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
569 | 569 |
if (_cand_cost[e] >= 0) { |
570 | 570 |
_candidates[i--] = _candidates[--_curr_length]; |
571 | 571 |
} |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
// Extend the list |
575 | 575 |
int cnt = _block_size; |
576 | 576 |
int limit = _head_length; |
577 | 577 |
|
578 | 578 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
579 | 579 |
_cand_cost[e] = _state[e] * |
580 | 580 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
581 | 581 |
if (_cand_cost[e] < 0) { |
582 | 582 |
_candidates[_curr_length++] = e; |
583 | 583 |
} |
584 | 584 |
if (--cnt == 0) { |
585 | 585 |
if (_curr_length > limit) goto search_end; |
586 | 586 |
limit = 0; |
587 | 587 |
cnt = _block_size; |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
for (e = 0; e < _next_arc; ++e) { |
591 | 591 |
_cand_cost[e] = _state[e] * |
592 | 592 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
593 | 593 |
if (_cand_cost[e] < 0) { |
594 | 594 |
_candidates[_curr_length++] = e; |
595 | 595 |
} |
596 | 596 |
if (--cnt == 0) { |
597 | 597 |
if (_curr_length > limit) goto search_end; |
598 | 598 |
limit = 0; |
599 | 599 |
cnt = _block_size; |
600 | 600 |
} |
601 | 601 |
} |
602 | 602 |
if (_curr_length == 0) return false; |
603 | 603 |
|
604 | 604 |
search_end: |
605 | 605 |
|
606 | 606 |
// Make heap of the candidate list (approximating a partial sort) |
607 | 607 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
608 | 608 |
_sort_func ); |
609 | 609 |
|
610 | 610 |
// Pop the first element of the heap |
611 | 611 |
_in_arc = _candidates[0]; |
612 | 612 |
_next_arc = e; |
613 | 613 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
614 | 614 |
_sort_func ); |
615 | 615 |
_curr_length = std::min(_head_length, _curr_length - 1); |
616 | 616 |
return true; |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
}; //class AlteringListPivotRule |
620 | 620 |
|
621 | 621 |
public: |
622 | 622 |
|
623 | 623 |
/// \brief Constructor. |
624 | 624 |
/// |
625 | 625 |
/// The constructor of the class. |
626 | 626 |
/// |
627 | 627 |
/// \param graph The digraph the algorithm runs on. |
628 |
|
|
628 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
629 |
/// mixed order in the internal data structure. |
|
630 |
/// In special cases, it could lead to better overall performance, |
|
631 |
/// but it is usually slower. Therefore it is disabled by default. |
|
632 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
629 | 633 |
_graph(graph), _node_id(graph), _arc_id(graph), |
630 | 634 |
INF(std::numeric_limits<Value>::has_infinity ? |
631 | 635 |
std::numeric_limits<Value>::infinity() : |
632 | 636 |
std::numeric_limits<Value>::max()) |
633 | 637 |
{ |
634 | 638 |
// Check the value types |
635 | 639 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
636 | 640 |
"The flow type of NetworkSimplex must be signed"); |
637 | 641 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
638 | 642 |
"The cost type of NetworkSimplex must be signed"); |
639 | 643 |
|
640 | 644 |
// Resize vectors |
641 | 645 |
_node_num = countNodes(_graph); |
642 | 646 |
_arc_num = countArcs(_graph); |
643 | 647 |
int all_node_num = _node_num + 1; |
644 | 648 |
int max_arc_num = _arc_num + 2 * _node_num; |
645 | 649 |
|
646 | 650 |
_source.resize(max_arc_num); |
647 | 651 |
_target.resize(max_arc_num); |
648 | 652 |
|
649 | 653 |
_lower.resize(_arc_num); |
650 | 654 |
_upper.resize(_arc_num); |
651 | 655 |
_cap.resize(max_arc_num); |
652 | 656 |
_cost.resize(max_arc_num); |
653 | 657 |
_supply.resize(all_node_num); |
654 | 658 |
_flow.resize(max_arc_num); |
655 | 659 |
_pi.resize(all_node_num); |
656 | 660 |
|
657 | 661 |
_parent.resize(all_node_num); |
658 | 662 |
_pred.resize(all_node_num); |
659 | 663 |
_forward.resize(all_node_num); |
660 | 664 |
_thread.resize(all_node_num); |
661 | 665 |
_rev_thread.resize(all_node_num); |
662 | 666 |
_succ_num.resize(all_node_num); |
663 | 667 |
_last_succ.resize(all_node_num); |
664 | 668 |
_state.resize(max_arc_num); |
665 | 669 |
|
666 |
// Copy the graph |
|
670 |
// Copy the graph |
|
667 | 671 |
int i = 0; |
668 | 672 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
669 | 673 |
_node_id[n] = i; |
670 | 674 |
} |
671 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
672 |
i = 0; |
|
673 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
674 |
_arc_id[a] = i; |
|
675 |
_source[i] = _node_id[_graph.source(a)]; |
|
676 |
_target[i] = _node_id[_graph.target(a)]; |
|
677 |
|
|
675 |
if (arc_mixing) { |
|
676 |
// Store the arcs in a mixed order |
|
677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
678 |
int i = 0, j = 0; |
|
679 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
680 |
_arc_id[a] = i; |
|
681 |
_source[i] = _node_id[_graph.source(a)]; |
|
682 |
_target[i] = _node_id[_graph.target(a)]; |
|
683 |
if ((i += k) >= _arc_num) i = ++j; |
|
684 |
} |
|
685 |
} else { |
|
686 |
// Store the arcs in the original order |
|
687 |
int i = 0; |
|
688 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|
689 |
_arc_id[a] = i; |
|
690 |
_source[i] = _node_id[_graph.source(a)]; |
|
691 |
_target[i] = _node_id[_graph.target(a)]; |
|
692 |
} |
|
678 | 693 |
} |
679 | 694 |
|
680 | 695 |
// Initialize maps |
681 | 696 |
for (int i = 0; i != _node_num; ++i) { |
682 | 697 |
_supply[i] = 0; |
683 | 698 |
} |
684 | 699 |
for (int i = 0; i != _arc_num; ++i) { |
685 | 700 |
_lower[i] = 0; |
686 | 701 |
_upper[i] = INF; |
687 | 702 |
_cost[i] = 1; |
688 | 703 |
} |
689 | 704 |
_have_lower = false; |
690 | 705 |
_stype = GEQ; |
691 | 706 |
} |
692 | 707 |
|
693 | 708 |
/// \name Parameters |
694 | 709 |
/// The parameters of the algorithm can be specified using these |
695 | 710 |
/// functions. |
696 | 711 |
|
697 | 712 |
/// @{ |
698 | 713 |
|
699 | 714 |
/// \brief Set the lower bounds on the arcs. |
700 | 715 |
/// |
701 | 716 |
/// This function sets the lower bounds on the arcs. |
702 | 717 |
/// If it is not used before calling \ref run(), the lower bounds |
703 | 718 |
/// will be set to zero on all arcs. |
704 | 719 |
/// |
705 | 720 |
/// \param map An arc map storing the lower bounds. |
706 | 721 |
/// Its \c Value type must be convertible to the \c Value type |
707 | 722 |
/// of the algorithm. |
708 | 723 |
/// |
709 | 724 |
/// \return <tt>(*this)</tt> |
710 | 725 |
template <typename LowerMap> |
711 | 726 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
712 | 727 |
_have_lower = true; |
713 | 728 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
714 | 729 |
_lower[_arc_id[a]] = map[a]; |
715 | 730 |
} |
716 | 731 |
return *this; |
717 | 732 |
} |
718 | 733 |
|
719 | 734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
720 | 735 |
/// |
721 | 736 |
/// This function sets the upper bounds (capacities) on the arcs. |
722 | 737 |
/// If it is not used before calling \ref run(), the upper bounds |
723 | 738 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
724 | 739 |
/// unbounded from above on each arc). |
725 | 740 |
/// |
726 | 741 |
/// \param map An arc map storing the upper bounds. |
727 | 742 |
/// Its \c Value type must be convertible to the \c Value type |
728 | 743 |
/// of the algorithm. |
729 | 744 |
/// |
730 | 745 |
/// \return <tt>(*this)</tt> |
731 | 746 |
template<typename UpperMap> |
732 | 747 |
NetworkSimplex& upperMap(const UpperMap& map) { |
733 | 748 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
734 | 749 |
_upper[_arc_id[a]] = map[a]; |
735 | 750 |
} |
736 | 751 |
return *this; |
737 | 752 |
} |
738 | 753 |
|
739 | 754 |
/// \brief Set the costs of the arcs. |
740 | 755 |
/// |
741 | 756 |
/// This function sets the costs of the arcs. |
742 | 757 |
/// If it is not used before calling \ref run(), the costs |
743 | 758 |
/// will be set to \c 1 on all arcs. |
744 | 759 |
/// |
745 | 760 |
/// \param map An arc map storing the costs. |
746 | 761 |
/// Its \c Value type must be convertible to the \c Cost type |
747 | 762 |
/// of the algorithm. |
748 | 763 |
/// |
749 | 764 |
/// \return <tt>(*this)</tt> |
750 | 765 |
template<typename CostMap> |
751 | 766 |
NetworkSimplex& costMap(const CostMap& map) { |
752 | 767 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
753 | 768 |
_cost[_arc_id[a]] = map[a]; |
754 | 769 |
} |
755 | 770 |
return *this; |
756 | 771 |
} |
757 | 772 |
|
758 | 773 |
/// \brief Set the supply values of the nodes. |
759 | 774 |
/// |
760 | 775 |
/// This function sets the supply values of the nodes. |
761 | 776 |
/// If neither this function nor \ref stSupply() is used before |
762 | 777 |
/// calling \ref run(), the supply of each node will be set to zero. |
763 | 778 |
/// (It makes sense only if non-zero lower bounds are given.) |
764 | 779 |
/// |
765 | 780 |
/// \param map A node map storing the supply values. |
766 | 781 |
/// Its \c Value type must be convertible to the \c Value type |
767 | 782 |
/// of the algorithm. |
768 | 783 |
/// |
769 | 784 |
/// \return <tt>(*this)</tt> |
770 | 785 |
template<typename SupplyMap> |
771 | 786 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
772 | 787 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
773 | 788 |
_supply[_node_id[n]] = map[n]; |
774 | 789 |
} |
775 | 790 |
return *this; |
776 | 791 |
} |
777 | 792 |
|
778 | 793 |
/// \brief Set single source and target nodes and a supply value. |
779 | 794 |
/// |
780 | 795 |
/// This function sets a single source node and a single target node |
781 | 796 |
/// and the required flow value. |
782 | 797 |
/// If neither this function nor \ref supplyMap() is used before |
783 | 798 |
/// calling \ref run(), the supply of each node will be set to zero. |
784 | 799 |
/// (It makes sense only if non-zero lower bounds are given.) |
785 | 800 |
/// |
786 | 801 |
/// Using this function has the same effect as using \ref supplyMap() |
787 | 802 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
788 | 803 |
/// assigned to \c t and all other nodes have zero supply value. |
789 | 804 |
/// |
790 | 805 |
/// \param s The source node. |
791 | 806 |
/// \param t The target node. |
792 | 807 |
/// \param k The required amount of flow from node \c s to node \c t |
793 | 808 |
/// (i.e. the supply of \c s and the demand of \c t). |
794 | 809 |
/// |
795 | 810 |
/// \return <tt>(*this)</tt> |
796 | 811 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
797 | 812 |
for (int i = 0; i != _node_num; ++i) { |
798 | 813 |
_supply[i] = 0; |
799 | 814 |
} |
800 | 815 |
_supply[_node_id[s]] = k; |
801 | 816 |
_supply[_node_id[t]] = -k; |
802 | 817 |
return *this; |
803 | 818 |
} |
804 | 819 |
|
805 | 820 |
/// \brief Set the type of the supply constraints. |
806 | 821 |
/// |
807 | 822 |
/// This function sets the type of the supply/demand constraints. |
808 | 823 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
809 | 824 |
/// type will be used. |
810 | 825 |
/// |
811 | 826 |
/// For more information see \ref SupplyType. |
812 | 827 |
/// |
813 | 828 |
/// \return <tt>(*this)</tt> |
814 | 829 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
815 | 830 |
_stype = supply_type; |
816 | 831 |
return *this; |
817 | 832 |
} |
818 | 833 |
|
819 | 834 |
/// @} |
820 | 835 |
|
821 | 836 |
/// \name Execution Control |
822 | 837 |
/// The algorithm can be executed using \ref run(). |
823 | 838 |
|
824 | 839 |
/// @{ |
825 | 840 |
|
826 | 841 |
/// \brief Run the algorithm. |
827 | 842 |
/// |
828 | 843 |
/// This function runs the algorithm. |
829 | 844 |
/// The paramters can be specified using functions \ref lowerMap(), |
830 | 845 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
831 | 846 |
/// \ref supplyType(). |
832 | 847 |
/// For example, |
833 | 848 |
/// \code |
834 | 849 |
/// NetworkSimplex<ListDigraph> ns(graph); |
835 | 850 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
836 | 851 |
/// .supplyMap(sup).run(); |
837 | 852 |
/// \endcode |
838 | 853 |
/// |
839 | 854 |
/// This function can be called more than once. All the parameters |
840 | 855 |
/// that have been given are kept for the next call, unless |
841 | 856 |
/// \ref reset() is called, thus only the modified parameters |
842 | 857 |
/// have to be set again. See \ref reset() for examples. |
843 | 858 |
/// However the underlying digraph must not be modified after this |
844 | 859 |
/// class have been constructed, since it copies and extends the graph. |
845 | 860 |
/// |
846 | 861 |
/// \param pivot_rule The pivot rule that will be used during the |
847 | 862 |
/// algorithm. For more information see \ref PivotRule. |
848 | 863 |
/// |
849 | 864 |
/// \return \c INFEASIBLE if no feasible flow exists, |
850 | 865 |
/// \n \c OPTIMAL if the problem has optimal solution |
851 | 866 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
852 | 867 |
/// optimal flow and node potentials (primal and dual solutions), |
853 | 868 |
/// \n \c UNBOUNDED if the objective function of the problem is |
854 | 869 |
/// unbounded, i.e. there is a directed cycle having negative total |
855 | 870 |
/// cost and infinite upper bound. |
856 | 871 |
/// |
857 | 872 |
/// \see ProblemType, PivotRule |
858 | 873 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
859 | 874 |
if (!init()) return INFEASIBLE; |
860 | 875 |
return start(pivot_rule); |
861 | 876 |
} |
862 | 877 |
|
863 | 878 |
/// \brief Reset all the parameters that have been given before. |
864 | 879 |
/// |
865 | 880 |
/// This function resets all the paramaters that have been given |
866 | 881 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
867 | 882 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
868 | 883 |
/// |
869 | 884 |
/// It is useful for multiple run() calls. If this function is not |
0 comments (0 inline)