1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
51 | 51 |
/// constraints. For more information see \ref SupplyType. |
52 | 52 |
/// |
53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
54 | 54 |
/// can be given using separate functions, and the algorithm can be |
55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
56 | 56 |
/// specified, then default values will be used. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
59 | 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
62 | 62 |
/// algorithm. By default it is the same as \c V. |
63 | 63 |
/// |
64 | 64 |
/// \warning Both value types must be signed and all input data must |
65 | 65 |
/// be integer. |
66 | 66 |
/// |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 | 69 |
/// by default. For more information see \ref PivotRule. |
70 | 70 |
template <typename GR, typename V = int, typename C = V> |
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The type of the flow amounts, capacity bounds and supply values |
76 | 76 |
typedef V Value; |
77 | 77 |
/// The type of the arc costs |
78 | 78 |
typedef C Cost; |
79 | 79 |
|
80 | 80 |
public: |
81 | 81 |
|
82 | 82 |
/// \brief Problem type constants for the \c run() function. |
83 | 83 |
/// |
84 | 84 |
/// Enum type containing the problem type constants that can be |
85 | 85 |
/// returned by the \ref run() function of the algorithm. |
86 | 86 |
enum ProblemType { |
87 | 87 |
/// The problem has no feasible solution (flow). |
88 | 88 |
INFEASIBLE, |
89 | 89 |
/// The problem has optimal solution (i.e. it is feasible and |
90 | 90 |
/// bounded), and the algorithm has found optimal flow and node |
91 | 91 |
/// potentials (primal and dual solutions). |
92 | 92 |
OPTIMAL, |
93 | 93 |
/// The objective function of the problem is unbounded, i.e. |
94 | 94 |
/// there is a directed cycle having negative total cost and |
95 | 95 |
/// infinite upper bound. |
96 | 96 |
UNBOUNDED |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
100 | 100 |
/// |
101 | 101 |
/// Enum type containing constants for selecting the supply type, |
102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
104 | 104 |
/// |
105 | 105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
106 | 106 |
/// selected using \ref supplyType(). |
107 | 107 |
/// The equality form is a special case of both supply types. |
108 | 108 |
enum SupplyType { |
109 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
110 | 110 |
/// supply/demand constraints in the definition of the problem. |
111 | 111 |
GEQ, |
112 | 112 |
/// This option means that there are <em>"less or equal"</em> |
113 | 113 |
/// supply/demand constraints in the definition of the problem. |
114 | 114 |
LEQ |
115 | 115 |
}; |
116 | 116 |
|
117 | 117 |
/// \brief Constants for selecting the pivot rule. |
118 | 118 |
/// |
119 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
120 | 120 |
/// the \ref run() function. |
121 | 121 |
/// |
122 | 122 |
/// \ref NetworkSimplex provides five different pivot rule |
123 | 123 |
/// implementations that significantly affect the running time |
124 | 124 |
/// of the algorithm. |
125 | 125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
126 | 126 |
/// proved to be the most efficient and the most robust on various |
127 | 127 |
/// test inputs according to our benchmark tests. |
128 | 128 |
/// However another pivot rule can be selected using the \ref run() |
129 | 129 |
/// function with the proper parameter. |
130 | 130 |
enum PivotRule { |
131 | 131 |
|
132 | 132 |
/// The First Eligible pivot rule. |
133 | 133 |
/// The next eligible arc is selected in a wraparound fashion |
134 | 134 |
/// in every iteration. |
135 | 135 |
FIRST_ELIGIBLE, |
136 | 136 |
|
137 | 137 |
/// The Best Eligible pivot rule. |
138 | 138 |
/// The best eligible arc is selected in every iteration. |
139 | 139 |
BEST_ELIGIBLE, |
140 | 140 |
|
141 | 141 |
/// The Block Search pivot rule. |
142 | 142 |
/// A specified number of arcs are examined in every iteration |
143 | 143 |
/// in a wraparound fashion and the best eligible arc is selected |
144 | 144 |
/// from this block. |
145 | 145 |
BLOCK_SEARCH, |
146 | 146 |
|
147 | 147 |
/// The Candidate List pivot rule. |
148 | 148 |
/// In a major iteration a candidate list is built from eligible arcs |
149 | 149 |
/// in a wraparound fashion and in the following minor iterations |
150 | 150 |
/// the best eligible arc is selected from this list. |
151 | 151 |
CANDIDATE_LIST, |
152 | 152 |
|
153 | 153 |
/// The Altering Candidate List pivot rule. |
154 | 154 |
/// It is a modified version of the Candidate List method. |
155 | 155 |
/// It keeps only the several best eligible arcs from the former |
156 | 156 |
/// candidate list and extends this list in every iteration. |
157 | 157 |
ALTERING_LIST |
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
private: |
161 | 161 |
|
162 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
163 | 163 |
|
164 | 164 |
typedef std::vector<Arc> ArcVector; |
165 | 165 |
typedef std::vector<Node> NodeVector; |
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<bool> BoolVector; |
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
172 | 172 |
enum ArcStateEnum { |
173 | 173 |
STATE_UPPER = -1, |
174 | 174 |
STATE_TREE = 0, |
175 | 175 |
STATE_LOWER = 1 |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
private: |
179 | 179 |
|
180 | 180 |
// Data related to the underlying digraph |
181 | 181 |
const GR &_graph; |
182 | 182 |
int _node_num; |
183 | 183 |
int _arc_num; |
184 | 184 |
int _all_arc_num; |
185 | 185 |
int _search_arc_num; |
186 | 186 |
|
187 | 187 |
// Parameters of the problem |
188 | 188 |
bool _have_lower; |
189 | 189 |
SupplyType _stype; |
190 | 190 |
Value _sum_supply; |
191 | 191 |
|
192 | 192 |
// Data structures for storing the digraph |
193 | 193 |
IntNodeMap _node_id; |
194 | 194 |
IntArcMap _arc_id; |
195 | 195 |
IntVector _source; |
196 | 196 |
IntVector _target; |
197 | 197 |
|
198 | 198 |
// Node and arc data |
199 | 199 |
ValueVector _lower; |
200 | 200 |
ValueVector _upper; |
201 | 201 |
ValueVector _cap; |
202 | 202 |
CostVector _cost; |
203 | 203 |
ValueVector _supply; |
204 | 204 |
ValueVector _flow; |
205 | 205 |
CostVector _pi; |
206 | 206 |
|
207 | 207 |
// Data for storing the spanning tree structure |
208 | 208 |
IntVector _parent; |
209 | 209 |
IntVector _pred; |
210 | 210 |
IntVector _thread; |
211 | 211 |
IntVector _rev_thread; |
212 | 212 |
IntVector _succ_num; |
213 | 213 |
IntVector _last_succ; |
214 | 214 |
IntVector _dirty_revs; |
215 | 215 |
BoolVector _forward; |
216 | 216 |
IntVector _state; |
217 | 217 |
int _root; |
218 | 218 |
|
219 | 219 |
// Temporary data used in the current pivot iteration |
220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
221 | 221 |
int first, second, right, last; |
222 | 222 |
int stem, par_stem, new_stem; |
223 | 223 |
Value delta; |
224 | 224 |
|
225 | 225 |
public: |
226 | 226 |
|
227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 228 |
/// |
229 | 229 |
/// Constant for infinite upper bounds (capacities). |
230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 232 |
const Value INF; |
233 | 233 |
|
234 | 234 |
private: |
235 | 235 |
|
236 | 236 |
// Implementation of the First Eligible pivot rule |
237 | 237 |
class FirstEligiblePivotRule |
238 | 238 |
{ |
239 | 239 |
private: |
240 | 240 |
|
241 | 241 |
// References to the NetworkSimplex class |
242 | 242 |
const IntVector &_source; |
243 | 243 |
const IntVector &_target; |
244 | 244 |
const CostVector &_cost; |
245 | 245 |
const IntVector &_state; |
246 | 246 |
const CostVector &_pi; |
247 | 247 |
int &_in_arc; |
248 | 248 |
int _search_arc_num; |
249 | 249 |
|
250 | 250 |
// Pivot rule data |
251 | 251 |
int _next_arc; |
252 | 252 |
|
253 | 253 |
public: |
254 | 254 |
|
255 | 255 |
// Constructor |
256 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
257 | 257 |
_source(ns._source), _target(ns._target), |
258 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
259 | 259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
260 | 260 |
_next_arc(0) |
261 | 261 |
{} |
262 | 262 |
|
263 | 263 |
// Find next entering arc |
264 | 264 |
bool findEnteringArc() { |
265 | 265 |
Cost c; |
266 | 266 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
267 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
268 | 268 |
if (c < 0) { |
269 | 269 |
_in_arc = e; |
270 | 270 |
_next_arc = e + 1; |
271 | 271 |
return true; |
272 | 272 |
} |
273 | 273 |
} |
274 | 274 |
for (int e = 0; e < _next_arc; ++e) { |
275 | 275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
276 | 276 |
if (c < 0) { |
277 | 277 |
_in_arc = e; |
278 | 278 |
_next_arc = e + 1; |
279 | 279 |
return true; |
280 | 280 |
} |
281 | 281 |
} |
282 | 282 |
return false; |
283 | 283 |
} |
284 | 284 |
|
285 | 285 |
}; //class FirstEligiblePivotRule |
286 | 286 |
|
287 | 287 |
|
288 | 288 |
// Implementation of the Best Eligible pivot rule |
289 | 289 |
class BestEligiblePivotRule |
290 | 290 |
{ |
291 | 291 |
private: |
292 | 292 |
|
293 | 293 |
// References to the NetworkSimplex class |
294 | 294 |
const IntVector &_source; |
295 | 295 |
const IntVector &_target; |
296 | 296 |
const CostVector &_cost; |
297 | 297 |
const IntVector &_state; |
298 | 298 |
const CostVector &_pi; |
299 | 299 |
int &_in_arc; |
300 | 300 |
int _search_arc_num; |
301 | 301 |
|
302 | 302 |
public: |
303 | 303 |
|
304 | 304 |
// Constructor |
305 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
306 | 306 |
_source(ns._source), _target(ns._target), |
307 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
308 | 308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
309 | 309 |
{} |
310 | 310 |
|
311 | 311 |
// Find next entering arc |
312 | 312 |
bool findEnteringArc() { |
313 | 313 |
Cost c, min = 0; |
314 | 314 |
for (int e = 0; e < _search_arc_num; ++e) { |
315 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
316 | 316 |
if (c < min) { |
317 | 317 |
min = c; |
318 | 318 |
_in_arc = e; |
319 | 319 |
} |
320 | 320 |
} |
321 | 321 |
return min < 0; |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
}; //class BestEligiblePivotRule |
325 | 325 |
|
326 | 326 |
|
327 | 327 |
// Implementation of the Block Search pivot rule |
328 | 328 |
class BlockSearchPivotRule |
329 | 329 |
{ |
330 | 330 |
private: |
331 | 331 |
|
332 | 332 |
// References to the NetworkSimplex class |
333 | 333 |
const IntVector &_source; |
334 | 334 |
const IntVector &_target; |
335 | 335 |
const CostVector &_cost; |
336 | 336 |
const IntVector &_state; |
337 | 337 |
const CostVector &_pi; |
338 | 338 |
int &_in_arc; |
339 | 339 |
int _search_arc_num; |
340 | 340 |
|
341 | 341 |
// Pivot rule data |
342 | 342 |
int _block_size; |
343 | 343 |
int _next_arc; |
344 | 344 |
|
345 | 345 |
public: |
346 | 346 |
|
347 | 347 |
// Constructor |
348 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
349 | 349 |
_source(ns._source), _target(ns._target), |
350 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
351 | 351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
352 | 352 |
_next_arc(0) |
353 | 353 |
{ |
354 | 354 |
// The main parameters of the pivot rule |
355 | 355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
356 | 356 |
const int MIN_BLOCK_SIZE = 10; |
357 | 357 |
|
358 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
359 | 359 |
std::sqrt(double(_search_arc_num))), |
360 | 360 |
MIN_BLOCK_SIZE ); |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
// Find next entering arc |
364 | 364 |
bool findEnteringArc() { |
365 | 365 |
Cost c, min = 0; |
366 | 366 |
int cnt = _block_size; |
367 | 367 |
int e; |
368 | 368 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
369 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
370 | 370 |
if (c < min) { |
371 | 371 |
min = c; |
372 | 372 |
_in_arc = e; |
373 | 373 |
} |
374 | 374 |
if (--cnt == 0) { |
375 | 375 |
if (min < 0) goto search_end; |
376 | 376 |
cnt = _block_size; |
377 | 377 |
} |
378 | 378 |
} |
379 | 379 |
for (e = 0; e < _next_arc; ++e) { |
380 | 380 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
381 | 381 |
if (c < min) { |
382 | 382 |
min = c; |
383 | 383 |
_in_arc = e; |
384 | 384 |
} |
385 | 385 |
if (--cnt == 0) { |
386 | 386 |
if (min < 0) goto search_end; |
387 | 387 |
cnt = _block_size; |
388 | 388 |
} |
389 | 389 |
} |
390 | 390 |
if (min >= 0) return false; |
391 | 391 |
|
392 | 392 |
search_end: |
393 | 393 |
_next_arc = e; |
394 | 394 |
return true; |
395 | 395 |
} |
396 | 396 |
|
397 | 397 |
}; //class BlockSearchPivotRule |
398 | 398 |
|
399 | 399 |
|
400 | 400 |
// Implementation of the Candidate List pivot rule |
401 | 401 |
class CandidateListPivotRule |
402 | 402 |
{ |
403 | 403 |
private: |
404 | 404 |
|
405 | 405 |
// References to the NetworkSimplex class |
406 | 406 |
const IntVector &_source; |
407 | 407 |
const IntVector &_target; |
408 | 408 |
const CostVector &_cost; |
409 | 409 |
const IntVector &_state; |
410 | 410 |
const CostVector &_pi; |
411 | 411 |
int &_in_arc; |
412 | 412 |
int _search_arc_num; |
413 | 413 |
|
414 | 414 |
// Pivot rule data |
415 | 415 |
IntVector _candidates; |
416 | 416 |
int _list_length, _minor_limit; |
417 | 417 |
int _curr_length, _minor_count; |
418 | 418 |
int _next_arc; |
419 | 419 |
|
420 | 420 |
public: |
421 | 421 |
|
422 | 422 |
/// Constructor |
423 | 423 |
CandidateListPivotRule(NetworkSimplex &ns) : |
424 | 424 |
_source(ns._source), _target(ns._target), |
425 | 425 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
426 | 426 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
427 | 427 |
_next_arc(0) |
428 | 428 |
{ |
429 | 429 |
// The main parameters of the pivot rule |
430 | 430 |
const double LIST_LENGTH_FACTOR = 0.25; |
431 | 431 |
const int MIN_LIST_LENGTH = 10; |
432 | 432 |
const double MINOR_LIMIT_FACTOR = 0.1; |
433 | 433 |
const int MIN_MINOR_LIMIT = 3; |
434 | 434 |
|
435 | 435 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
436 | 436 |
std::sqrt(double(_search_arc_num))), |
437 | 437 |
MIN_LIST_LENGTH ); |
438 | 438 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
439 | 439 |
MIN_MINOR_LIMIT ); |
440 | 440 |
_curr_length = _minor_count = 0; |
441 | 441 |
_candidates.resize(_list_length); |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
/// Find next entering arc |
445 | 445 |
bool findEnteringArc() { |
446 | 446 |
Cost min, c; |
447 | 447 |
int e; |
448 | 448 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
449 | 449 |
// Minor iteration: select the best eligible arc from the |
450 | 450 |
// current candidate list |
451 | 451 |
++_minor_count; |
452 | 452 |
min = 0; |
453 | 453 |
for (int i = 0; i < _curr_length; ++i) { |
454 | 454 |
e = _candidates[i]; |
455 | 455 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
456 | 456 |
if (c < min) { |
457 | 457 |
min = c; |
458 | 458 |
_in_arc = e; |
459 | 459 |
} |
460 | 460 |
else if (c >= 0) { |
461 | 461 |
_candidates[i--] = _candidates[--_curr_length]; |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
if (min < 0) return true; |
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
// Major iteration: build a new candidate list |
468 | 468 |
min = 0; |
469 | 469 |
_curr_length = 0; |
470 | 470 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
471 | 471 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
472 | 472 |
if (c < 0) { |
473 | 473 |
_candidates[_curr_length++] = e; |
474 | 474 |
if (c < min) { |
475 | 475 |
min = c; |
476 | 476 |
_in_arc = e; |
477 | 477 |
} |
478 | 478 |
if (_curr_length == _list_length) goto search_end; |
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
for (e = 0; e < _next_arc; ++e) { |
482 | 482 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
483 | 483 |
if (c < 0) { |
484 | 484 |
_candidates[_curr_length++] = e; |
485 | 485 |
if (c < min) { |
486 | 486 |
min = c; |
487 | 487 |
_in_arc = e; |
488 | 488 |
} |
489 | 489 |
if (_curr_length == _list_length) goto search_end; |
490 | 490 |
} |
491 | 491 |
} |
492 | 492 |
if (_curr_length == 0) return false; |
493 | 493 |
|
494 | 494 |
search_end: |
495 | 495 |
_minor_count = 1; |
496 | 496 |
_next_arc = e; |
497 | 497 |
return true; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
}; //class CandidateListPivotRule |
501 | 501 |
|
502 | 502 |
|
503 | 503 |
// Implementation of the Altering Candidate List pivot rule |
504 | 504 |
class AlteringListPivotRule |
505 | 505 |
{ |
506 | 506 |
private: |
507 | 507 |
|
508 | 508 |
// References to the NetworkSimplex class |
509 | 509 |
const IntVector &_source; |
510 | 510 |
const IntVector &_target; |
511 | 511 |
const CostVector &_cost; |
512 | 512 |
const IntVector &_state; |
513 | 513 |
const CostVector &_pi; |
514 | 514 |
int &_in_arc; |
515 | 515 |
int _search_arc_num; |
516 | 516 |
|
517 | 517 |
// Pivot rule data |
518 | 518 |
int _block_size, _head_length, _curr_length; |
519 | 519 |
int _next_arc; |
520 | 520 |
IntVector _candidates; |
521 | 521 |
CostVector _cand_cost; |
522 | 522 |
|
523 | 523 |
// Functor class to compare arcs during sort of the candidate list |
524 | 524 |
class SortFunc |
525 | 525 |
{ |
526 | 526 |
private: |
527 | 527 |
const CostVector &_map; |
528 | 528 |
public: |
529 | 529 |
SortFunc(const CostVector &map) : _map(map) {} |
530 | 530 |
bool operator()(int left, int right) { |
531 | 531 |
return _map[left] > _map[right]; |
532 | 532 |
} |
533 | 533 |
}; |
534 | 534 |
|
535 | 535 |
SortFunc _sort_func; |
536 | 536 |
|
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
// Constructor |
540 | 540 |
AlteringListPivotRule(NetworkSimplex &ns) : |
541 | 541 |
_source(ns._source), _target(ns._target), |
542 | 542 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
543 | 543 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
544 | 544 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
545 | 545 |
{ |
546 | 546 |
// The main parameters of the pivot rule |
547 | 547 |
const double BLOCK_SIZE_FACTOR = 1.0; |
548 | 548 |
const int MIN_BLOCK_SIZE = 10; |
549 | 549 |
const double HEAD_LENGTH_FACTOR = 0.1; |
550 | 550 |
const int MIN_HEAD_LENGTH = 3; |
551 | 551 |
|
552 | 552 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
553 | 553 |
std::sqrt(double(_search_arc_num))), |
554 | 554 |
MIN_BLOCK_SIZE ); |
555 | 555 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
556 | 556 |
MIN_HEAD_LENGTH ); |
557 | 557 |
_candidates.resize(_head_length + _block_size); |
558 | 558 |
_curr_length = 0; |
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
// Find next entering arc |
562 | 562 |
bool findEnteringArc() { |
563 | 563 |
// Check the current candidate list |
564 | 564 |
int e; |
565 | 565 |
for (int i = 0; i < _curr_length; ++i) { |
566 | 566 |
e = _candidates[i]; |
567 | 567 |
_cand_cost[e] = _state[e] * |
568 | 568 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
569 | 569 |
if (_cand_cost[e] >= 0) { |
570 | 570 |
_candidates[i--] = _candidates[--_curr_length]; |
571 | 571 |
} |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
// Extend the list |
575 | 575 |
int cnt = _block_size; |
576 | 576 |
int limit = _head_length; |
577 | 577 |
|
578 | 578 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
579 | 579 |
_cand_cost[e] = _state[e] * |
580 | 580 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
581 | 581 |
if (_cand_cost[e] < 0) { |
582 | 582 |
_candidates[_curr_length++] = e; |
583 | 583 |
} |
584 | 584 |
if (--cnt == 0) { |
585 | 585 |
if (_curr_length > limit) goto search_end; |
586 | 586 |
limit = 0; |
587 | 587 |
cnt = _block_size; |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
for (e = 0; e < _next_arc; ++e) { |
591 | 591 |
_cand_cost[e] = _state[e] * |
592 | 592 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
593 | 593 |
if (_cand_cost[e] < 0) { |
594 | 594 |
_candidates[_curr_length++] = e; |
595 | 595 |
} |
596 | 596 |
if (--cnt == 0) { |
597 | 597 |
if (_curr_length > limit) goto search_end; |
598 | 598 |
limit = 0; |
599 | 599 |
cnt = _block_size; |
600 | 600 |
} |
601 | 601 |
} |
602 | 602 |
if (_curr_length == 0) return false; |
603 | 603 |
|
604 | 604 |
search_end: |
605 | 605 |
|
606 | 606 |
// Make heap of the candidate list (approximating a partial sort) |
607 | 607 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
608 | 608 |
_sort_func ); |
609 | 609 |
|
610 | 610 |
// Pop the first element of the heap |
611 | 611 |
_in_arc = _candidates[0]; |
612 | 612 |
_next_arc = e; |
613 | 613 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
614 | 614 |
_sort_func ); |
615 | 615 |
_curr_length = std::min(_head_length, _curr_length - 1); |
616 | 616 |
return true; |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
}; //class AlteringListPivotRule |
620 | 620 |
|
621 | 621 |
public: |
622 | 622 |
|
623 | 623 |
/// \brief Constructor. |
624 | 624 |
/// |
625 | 625 |
/// The constructor of the class. |
626 | 626 |
/// |
627 | 627 |
/// \param graph The digraph the algorithm runs on. |
628 |
|
|
628 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
|
629 |
/// mixed order in the internal data structure. |
|
630 |
/// In special cases, it could lead to better overall performance, |
|
631 |
/// but it is usually slower. Therefore it is disabled by default. |
|
632 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|
629 | 633 |
_graph(graph), _node_id(graph), _arc_id(graph), |
630 | 634 |
INF(std::numeric_limits<Value>::has_infinity ? |
631 | 635 |
std::numeric_limits<Value>::infinity() : |
632 | 636 |
std::numeric_limits<Value>::max()) |
633 | 637 |
{ |
634 | 638 |
// Check the value types |
635 | 639 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
636 | 640 |
"The flow type of NetworkSimplex must be signed"); |
637 | 641 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
638 | 642 |
"The cost type of NetworkSimplex must be signed"); |
639 | 643 |
|
640 | 644 |
// Resize vectors |
641 | 645 |
_node_num = countNodes(_graph); |
642 | 646 |
_arc_num = countArcs(_graph); |
643 | 647 |
int all_node_num = _node_num + 1; |
644 | 648 |
int max_arc_num = _arc_num + 2 * _node_num; |
645 | 649 |
|
646 | 650 |
_source.resize(max_arc_num); |
647 | 651 |
_target.resize(max_arc_num); |
648 | 652 |
|
649 | 653 |
_lower.resize(_arc_num); |
650 | 654 |
_upper.resize(_arc_num); |
651 | 655 |
_cap.resize(max_arc_num); |
652 | 656 |
_cost.resize(max_arc_num); |
653 | 657 |
_supply.resize(all_node_num); |
654 | 658 |
_flow.resize(max_arc_num); |
655 | 659 |
_pi.resize(all_node_num); |
656 | 660 |
|
657 | 661 |
_parent.resize(all_node_num); |
658 | 662 |
_pred.resize(all_node_num); |
659 | 663 |
_forward.resize(all_node_num); |
660 | 664 |
_thread.resize(all_node_num); |
661 | 665 |
_rev_thread.resize(all_node_num); |
662 | 666 |
_succ_num.resize(all_node_num); |
663 | 667 |
_last_succ.resize(all_node_num); |
664 | 668 |
_state.resize(max_arc_num); |
665 | 669 |
|
666 |
// Copy the graph |
|
670 |
// Copy the graph |
|
667 | 671 |
int i = 0; |
668 | 672 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
669 | 673 |
_node_id[n] = i; |
670 | 674 |
} |
675 |
if (arc_mixing) { |
|
676 |
// Store the arcs in a mixed order |
|
671 | 677 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
672 |
i = 0; |
|
678 |
int i = 0, j = 0; |
|
673 | 679 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
674 | 680 |
_arc_id[a] = i; |
675 | 681 |
_source[i] = _node_id[_graph.source(a)]; |
676 | 682 |
_target[i] = _node_id[_graph.target(a)]; |
677 |
if ((i += k) >= _arc_num) i = |
|
683 |
if ((i += k) >= _arc_num) i = ++j; |
|
684 |
} |
|
685 |
} else { |
|
686 |
// Store the arcs in the original order |
|
687 |
int i = 0; |
|
688 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|
689 |
_arc_id[a] = i; |
|
690 |
_source[i] = _node_id[_graph.source(a)]; |
|
691 |
_target[i] = _node_id[_graph.target(a)]; |
|
692 |
} |
|
678 | 693 |
} |
679 | 694 |
|
680 | 695 |
// Initialize maps |
681 | 696 |
for (int i = 0; i != _node_num; ++i) { |
682 | 697 |
_supply[i] = 0; |
683 | 698 |
} |
684 | 699 |
for (int i = 0; i != _arc_num; ++i) { |
685 | 700 |
_lower[i] = 0; |
686 | 701 |
_upper[i] = INF; |
687 | 702 |
_cost[i] = 1; |
688 | 703 |
} |
689 | 704 |
_have_lower = false; |
690 | 705 |
_stype = GEQ; |
691 | 706 |
} |
692 | 707 |
|
693 | 708 |
/// \name Parameters |
694 | 709 |
/// The parameters of the algorithm can be specified using these |
695 | 710 |
/// functions. |
696 | 711 |
|
697 | 712 |
/// @{ |
698 | 713 |
|
699 | 714 |
/// \brief Set the lower bounds on the arcs. |
700 | 715 |
/// |
701 | 716 |
/// This function sets the lower bounds on the arcs. |
702 | 717 |
/// If it is not used before calling \ref run(), the lower bounds |
703 | 718 |
/// will be set to zero on all arcs. |
704 | 719 |
/// |
705 | 720 |
/// \param map An arc map storing the lower bounds. |
706 | 721 |
/// Its \c Value type must be convertible to the \c Value type |
707 | 722 |
/// of the algorithm. |
708 | 723 |
/// |
709 | 724 |
/// \return <tt>(*this)</tt> |
710 | 725 |
template <typename LowerMap> |
711 | 726 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
712 | 727 |
_have_lower = true; |
713 | 728 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
714 | 729 |
_lower[_arc_id[a]] = map[a]; |
715 | 730 |
} |
716 | 731 |
return *this; |
717 | 732 |
} |
718 | 733 |
|
719 | 734 |
/// \brief Set the upper bounds (capacities) on the arcs. |
720 | 735 |
/// |
721 | 736 |
/// This function sets the upper bounds (capacities) on the arcs. |
722 | 737 |
/// If it is not used before calling \ref run(), the upper bounds |
723 | 738 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
724 | 739 |
/// unbounded from above on each arc). |
725 | 740 |
/// |
726 | 741 |
/// \param map An arc map storing the upper bounds. |
727 | 742 |
/// Its \c Value type must be convertible to the \c Value type |
728 | 743 |
/// of the algorithm. |
729 | 744 |
/// |
730 | 745 |
/// \return <tt>(*this)</tt> |
731 | 746 |
template<typename UpperMap> |
732 | 747 |
NetworkSimplex& upperMap(const UpperMap& map) { |
733 | 748 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
734 | 749 |
_upper[_arc_id[a]] = map[a]; |
735 | 750 |
} |
736 | 751 |
return *this; |
737 | 752 |
} |
738 | 753 |
|
739 | 754 |
/// \brief Set the costs of the arcs. |
740 | 755 |
/// |
741 | 756 |
/// This function sets the costs of the arcs. |
742 | 757 |
/// If it is not used before calling \ref run(), the costs |
743 | 758 |
/// will be set to \c 1 on all arcs. |
744 | 759 |
/// |
745 | 760 |
/// \param map An arc map storing the costs. |
746 | 761 |
/// Its \c Value type must be convertible to the \c Cost type |
747 | 762 |
/// of the algorithm. |
748 | 763 |
/// |
749 | 764 |
/// \return <tt>(*this)</tt> |
750 | 765 |
template<typename CostMap> |
751 | 766 |
NetworkSimplex& costMap(const CostMap& map) { |
752 | 767 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
753 | 768 |
_cost[_arc_id[a]] = map[a]; |
754 | 769 |
} |
755 | 770 |
return *this; |
756 | 771 |
} |
757 | 772 |
|
758 | 773 |
/// \brief Set the supply values of the nodes. |
759 | 774 |
/// |
760 | 775 |
/// This function sets the supply values of the nodes. |
761 | 776 |
/// If neither this function nor \ref stSupply() is used before |
762 | 777 |
/// calling \ref run(), the supply of each node will be set to zero. |
763 | 778 |
/// (It makes sense only if non-zero lower bounds are given.) |
764 | 779 |
/// |
765 | 780 |
/// \param map A node map storing the supply values. |
766 | 781 |
/// Its \c Value type must be convertible to the \c Value type |
767 | 782 |
/// of the algorithm. |
768 | 783 |
/// |
769 | 784 |
/// \return <tt>(*this)</tt> |
770 | 785 |
template<typename SupplyMap> |
771 | 786 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
772 | 787 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
773 | 788 |
_supply[_node_id[n]] = map[n]; |
774 | 789 |
} |
775 | 790 |
return *this; |
776 | 791 |
} |
777 | 792 |
|
778 | 793 |
/// \brief Set single source and target nodes and a supply value. |
779 | 794 |
/// |
780 | 795 |
/// This function sets a single source node and a single target node |
781 | 796 |
/// and the required flow value. |
782 | 797 |
/// If neither this function nor \ref supplyMap() is used before |
783 | 798 |
/// calling \ref run(), the supply of each node will be set to zero. |
784 | 799 |
/// (It makes sense only if non-zero lower bounds are given.) |
785 | 800 |
/// |
786 | 801 |
/// Using this function has the same effect as using \ref supplyMap() |
787 | 802 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
788 | 803 |
/// assigned to \c t and all other nodes have zero supply value. |
789 | 804 |
/// |
790 | 805 |
/// \param s The source node. |
791 | 806 |
/// \param t The target node. |
792 | 807 |
/// \param k The required amount of flow from node \c s to node \c t |
793 | 808 |
/// (i.e. the supply of \c s and the demand of \c t). |
794 | 809 |
/// |
795 | 810 |
/// \return <tt>(*this)</tt> |
796 | 811 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
797 | 812 |
for (int i = 0; i != _node_num; ++i) { |
798 | 813 |
_supply[i] = 0; |
799 | 814 |
} |
800 | 815 |
_supply[_node_id[s]] = k; |
801 | 816 |
_supply[_node_id[t]] = -k; |
802 | 817 |
return *this; |
803 | 818 |
} |
804 | 819 |
|
805 | 820 |
/// \brief Set the type of the supply constraints. |
806 | 821 |
/// |
807 | 822 |
/// This function sets the type of the supply/demand constraints. |
808 | 823 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
809 | 824 |
/// type will be used. |
810 | 825 |
/// |
811 | 826 |
/// For more information see \ref SupplyType. |
812 | 827 |
/// |
813 | 828 |
/// \return <tt>(*this)</tt> |
814 | 829 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
815 | 830 |
_stype = supply_type; |
816 | 831 |
return *this; |
817 | 832 |
} |
818 | 833 |
|
819 | 834 |
/// @} |
820 | 835 |
|
821 | 836 |
/// \name Execution Control |
822 | 837 |
/// The algorithm can be executed using \ref run(). |
823 | 838 |
|
824 | 839 |
/// @{ |
825 | 840 |
|
826 | 841 |
/// \brief Run the algorithm. |
827 | 842 |
/// |
828 | 843 |
/// This function runs the algorithm. |
829 | 844 |
/// The paramters can be specified using functions \ref lowerMap(), |
830 | 845 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
831 | 846 |
/// \ref supplyType(). |
832 | 847 |
/// For example, |
833 | 848 |
/// \code |
834 | 849 |
/// NetworkSimplex<ListDigraph> ns(graph); |
835 | 850 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
836 | 851 |
/// .supplyMap(sup).run(); |
837 | 852 |
/// \endcode |
838 | 853 |
/// |
839 | 854 |
/// This function can be called more than once. All the parameters |
840 | 855 |
/// that have been given are kept for the next call, unless |
841 | 856 |
/// \ref reset() is called, thus only the modified parameters |
842 | 857 |
/// have to be set again. See \ref reset() for examples. |
843 | 858 |
/// However the underlying digraph must not be modified after this |
844 | 859 |
/// class have been constructed, since it copies and extends the graph. |
845 | 860 |
/// |
846 | 861 |
/// \param pivot_rule The pivot rule that will be used during the |
847 | 862 |
/// algorithm. For more information see \ref PivotRule. |
848 | 863 |
/// |
849 | 864 |
/// \return \c INFEASIBLE if no feasible flow exists, |
850 | 865 |
/// \n \c OPTIMAL if the problem has optimal solution |
851 | 866 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
852 | 867 |
/// optimal flow and node potentials (primal and dual solutions), |
853 | 868 |
/// \n \c UNBOUNDED if the objective function of the problem is |
854 | 869 |
/// unbounded, i.e. there is a directed cycle having negative total |
855 | 870 |
/// cost and infinite upper bound. |
856 | 871 |
/// |
857 | 872 |
/// \see ProblemType, PivotRule |
858 | 873 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
859 | 874 |
if (!init()) return INFEASIBLE; |
860 | 875 |
return start(pivot_rule); |
861 | 876 |
} |
862 | 877 |
|
863 | 878 |
/// \brief Reset all the parameters that have been given before. |
864 | 879 |
/// |
865 | 880 |
/// This function resets all the paramaters that have been given |
866 | 881 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
867 | 882 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
868 | 883 |
/// |
869 | 884 |
/// It is useful for multiple run() calls. If this function is not |
870 | 885 |
/// used, all the parameters given before are kept for the next |
871 | 886 |
/// \ref run() call. |
872 | 887 |
/// However the underlying digraph must not be modified after this |
873 | 888 |
/// class have been constructed, since it copies and extends the graph. |
874 | 889 |
/// |
875 | 890 |
/// For example, |
876 | 891 |
/// \code |
877 | 892 |
/// NetworkSimplex<ListDigraph> ns(graph); |
878 | 893 |
/// |
879 | 894 |
/// // First run |
880 | 895 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
881 | 896 |
/// .supplyMap(sup).run(); |
882 | 897 |
/// |
883 | 898 |
/// // Run again with modified cost map (reset() is not called, |
884 | 899 |
/// // so only the cost map have to be set again) |
885 | 900 |
/// cost[e] += 100; |
886 | 901 |
/// ns.costMap(cost).run(); |
887 | 902 |
/// |
888 | 903 |
/// // Run again from scratch using reset() |
889 | 904 |
/// // (the lower bounds will be set to zero on all arcs) |
890 | 905 |
/// ns.reset(); |
891 | 906 |
/// ns.upperMap(capacity).costMap(cost) |
892 | 907 |
/// .supplyMap(sup).run(); |
893 | 908 |
/// \endcode |
894 | 909 |
/// |
895 | 910 |
/// \return <tt>(*this)</tt> |
896 | 911 |
NetworkSimplex& reset() { |
897 | 912 |
for (int i = 0; i != _node_num; ++i) { |
898 | 913 |
_supply[i] = 0; |
899 | 914 |
} |
900 | 915 |
for (int i = 0; i != _arc_num; ++i) { |
901 | 916 |
_lower[i] = 0; |
902 | 917 |
_upper[i] = INF; |
903 | 918 |
_cost[i] = 1; |
904 | 919 |
} |
905 | 920 |
_have_lower = false; |
906 | 921 |
_stype = GEQ; |
907 | 922 |
return *this; |
908 | 923 |
} |
909 | 924 |
|
910 | 925 |
/// @} |
911 | 926 |
|
912 | 927 |
/// \name Query Functions |
913 | 928 |
/// The results of the algorithm can be obtained using these |
914 | 929 |
/// functions.\n |
915 | 930 |
/// The \ref run() function must be called before using them. |
916 | 931 |
|
917 | 932 |
/// @{ |
918 | 933 |
|
919 | 934 |
/// \brief Return the total cost of the found flow. |
920 | 935 |
/// |
921 | 936 |
/// This function returns the total cost of the found flow. |
922 | 937 |
/// Its complexity is O(e). |
923 | 938 |
/// |
924 | 939 |
/// \note The return type of the function can be specified as a |
925 | 940 |
/// template parameter. For example, |
926 | 941 |
/// \code |
927 | 942 |
/// ns.totalCost<double>(); |
928 | 943 |
/// \endcode |
929 | 944 |
/// It is useful if the total cost cannot be stored in the \c Cost |
930 | 945 |
/// type of the algorithm, which is the default return type of the |
931 | 946 |
/// function. |
932 | 947 |
/// |
933 | 948 |
/// \pre \ref run() must be called before using this function. |
934 | 949 |
template <typename Number> |
935 | 950 |
Number totalCost() const { |
936 | 951 |
Number c = 0; |
937 | 952 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
938 | 953 |
int i = _arc_id[a]; |
939 | 954 |
c += Number(_flow[i]) * Number(_cost[i]); |
940 | 955 |
} |
941 | 956 |
return c; |
942 | 957 |
} |
943 | 958 |
|
944 | 959 |
#ifndef DOXYGEN |
945 | 960 |
Cost totalCost() const { |
946 | 961 |
return totalCost<Cost>(); |
947 | 962 |
} |
948 | 963 |
#endif |
949 | 964 |
|
950 | 965 |
/// \brief Return the flow on the given arc. |
951 | 966 |
/// |
952 | 967 |
/// This function returns the flow on the given arc. |
953 | 968 |
/// |
954 | 969 |
/// \pre \ref run() must be called before using this function. |
955 | 970 |
Value flow(const Arc& a) const { |
956 | 971 |
return _flow[_arc_id[a]]; |
957 | 972 |
} |
958 | 973 |
|
959 | 974 |
/// \brief Return the flow map (the primal solution). |
960 | 975 |
/// |
961 | 976 |
/// This function copies the flow value on each arc into the given |
962 | 977 |
/// map. The \c Value type of the algorithm must be convertible to |
963 | 978 |
/// the \c Value type of the map. |
964 | 979 |
/// |
965 | 980 |
/// \pre \ref run() must be called before using this function. |
966 | 981 |
template <typename FlowMap> |
967 | 982 |
void flowMap(FlowMap &map) const { |
968 | 983 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
969 | 984 |
map.set(a, _flow[_arc_id[a]]); |
970 | 985 |
} |
971 | 986 |
} |
972 | 987 |
|
973 | 988 |
/// \brief Return the potential (dual value) of the given node. |
974 | 989 |
/// |
975 | 990 |
/// This function returns the potential (dual value) of the |
976 | 991 |
/// given node. |
977 | 992 |
/// |
978 | 993 |
/// \pre \ref run() must be called before using this function. |
979 | 994 |
Cost potential(const Node& n) const { |
980 | 995 |
return _pi[_node_id[n]]; |
981 | 996 |
} |
982 | 997 |
|
983 | 998 |
/// \brief Return the potential map (the dual solution). |
984 | 999 |
/// |
985 | 1000 |
/// This function copies the potential (dual value) of each node |
986 | 1001 |
/// into the given map. |
987 | 1002 |
/// The \c Cost type of the algorithm must be convertible to the |
988 | 1003 |
/// \c Value type of the map. |
989 | 1004 |
/// |
990 | 1005 |
/// \pre \ref run() must be called before using this function. |
991 | 1006 |
template <typename PotentialMap> |
992 | 1007 |
void potentialMap(PotentialMap &map) const { |
993 | 1008 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
994 | 1009 |
map.set(n, _pi[_node_id[n]]); |
995 | 1010 |
} |
996 | 1011 |
} |
997 | 1012 |
|
998 | 1013 |
/// @} |
999 | 1014 |
|
1000 | 1015 |
private: |
1001 | 1016 |
|
1002 | 1017 |
// Initialize internal data structures |
1003 | 1018 |
bool init() { |
1004 | 1019 |
if (_node_num == 0) return false; |
1005 | 1020 |
|
1006 | 1021 |
// Check the sum of supply values |
1007 | 1022 |
_sum_supply = 0; |
1008 | 1023 |
for (int i = 0; i != _node_num; ++i) { |
1009 | 1024 |
_sum_supply += _supply[i]; |
1010 | 1025 |
} |
1011 | 1026 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1012 | 1027 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1013 | 1028 |
|
1014 | 1029 |
// Remove non-zero lower bounds |
1015 | 1030 |
if (_have_lower) { |
1016 | 1031 |
for (int i = 0; i != _arc_num; ++i) { |
1017 | 1032 |
Value c = _lower[i]; |
1018 | 1033 |
if (c >= 0) { |
1019 | 1034 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
1020 | 1035 |
} else { |
1021 | 1036 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
1022 | 1037 |
} |
1023 | 1038 |
_supply[_source[i]] -= c; |
1024 | 1039 |
_supply[_target[i]] += c; |
1025 | 1040 |
} |
1026 | 1041 |
} else { |
1027 | 1042 |
for (int i = 0; i != _arc_num; ++i) { |
1028 | 1043 |
_cap[i] = _upper[i]; |
1029 | 1044 |
} |
1030 | 1045 |
} |
1031 | 1046 |
|
1032 | 1047 |
// Initialize artifical cost |
1033 | 1048 |
Cost ART_COST; |
1034 | 1049 |
if (std::numeric_limits<Cost>::is_exact) { |
1035 | 1050 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1036 | 1051 |
} else { |
1037 | 1052 |
ART_COST = std::numeric_limits<Cost>::min(); |
1038 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1039 | 1054 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1040 | 1055 |
} |
1041 | 1056 |
ART_COST = (ART_COST + 1) * _node_num; |
1042 | 1057 |
} |
1043 | 1058 |
|
1044 | 1059 |
// Initialize arc maps |
1045 | 1060 |
for (int i = 0; i != _arc_num; ++i) { |
1046 | 1061 |
_flow[i] = 0; |
1047 | 1062 |
_state[i] = STATE_LOWER; |
1048 | 1063 |
} |
1049 | 1064 |
|
1050 | 1065 |
// Set data for the artificial root node |
1051 | 1066 |
_root = _node_num; |
1052 | 1067 |
_parent[_root] = -1; |
1053 | 1068 |
_pred[_root] = -1; |
1054 | 1069 |
_thread[_root] = 0; |
1055 | 1070 |
_rev_thread[0] = _root; |
1056 | 1071 |
_succ_num[_root] = _node_num + 1; |
1057 | 1072 |
_last_succ[_root] = _root - 1; |
1058 | 1073 |
_supply[_root] = -_sum_supply; |
1059 | 1074 |
_pi[_root] = 0; |
1060 | 1075 |
|
1061 | 1076 |
// Add artificial arcs and initialize the spanning tree data structure |
1062 | 1077 |
if (_sum_supply == 0) { |
1063 | 1078 |
// EQ supply constraints |
1064 | 1079 |
_search_arc_num = _arc_num; |
1065 | 1080 |
_all_arc_num = _arc_num + _node_num; |
1066 | 1081 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1067 | 1082 |
_parent[u] = _root; |
1068 | 1083 |
_pred[u] = e; |
1069 | 1084 |
_thread[u] = u + 1; |
1070 | 1085 |
_rev_thread[u + 1] = u; |
1071 | 1086 |
_succ_num[u] = 1; |
1072 | 1087 |
_last_succ[u] = u; |
1073 | 1088 |
_cap[e] = INF; |
1074 | 1089 |
_state[e] = STATE_TREE; |
1075 | 1090 |
if (_supply[u] >= 0) { |
1076 | 1091 |
_forward[u] = true; |
1077 | 1092 |
_pi[u] = 0; |
1078 | 1093 |
_source[e] = u; |
1079 | 1094 |
_target[e] = _root; |
1080 | 1095 |
_flow[e] = _supply[u]; |
1081 | 1096 |
_cost[e] = 0; |
1082 | 1097 |
} else { |
1083 | 1098 |
_forward[u] = false; |
1084 | 1099 |
_pi[u] = ART_COST; |
1085 | 1100 |
_source[e] = _root; |
1086 | 1101 |
_target[e] = u; |
1087 | 1102 |
_flow[e] = -_supply[u]; |
1088 | 1103 |
_cost[e] = ART_COST; |
1089 | 1104 |
} |
1090 | 1105 |
} |
1091 | 1106 |
} |
1092 | 1107 |
else if (_sum_supply > 0) { |
1093 | 1108 |
// LEQ supply constraints |
1094 | 1109 |
_search_arc_num = _arc_num + _node_num; |
1095 | 1110 |
int f = _arc_num + _node_num; |
1096 | 1111 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1097 | 1112 |
_parent[u] = _root; |
1098 | 1113 |
_thread[u] = u + 1; |
1099 | 1114 |
_rev_thread[u + 1] = u; |
1100 | 1115 |
_succ_num[u] = 1; |
1101 | 1116 |
_last_succ[u] = u; |
1102 | 1117 |
if (_supply[u] >= 0) { |
1103 | 1118 |
_forward[u] = true; |
1104 | 1119 |
_pi[u] = 0; |
1105 | 1120 |
_pred[u] = e; |
1106 | 1121 |
_source[e] = u; |
1107 | 1122 |
_target[e] = _root; |
1108 | 1123 |
_cap[e] = INF; |
1109 | 1124 |
_flow[e] = _supply[u]; |
1110 | 1125 |
_cost[e] = 0; |
1111 | 1126 |
_state[e] = STATE_TREE; |
1112 | 1127 |
} else { |
1113 | 1128 |
_forward[u] = false; |
1114 | 1129 |
_pi[u] = ART_COST; |
1115 | 1130 |
_pred[u] = f; |
1116 | 1131 |
_source[f] = _root; |
1117 | 1132 |
_target[f] = u; |
1118 | 1133 |
_cap[f] = INF; |
1119 | 1134 |
_flow[f] = -_supply[u]; |
1120 | 1135 |
_cost[f] = ART_COST; |
1121 | 1136 |
_state[f] = STATE_TREE; |
1122 | 1137 |
_source[e] = u; |
1123 | 1138 |
_target[e] = _root; |
1124 | 1139 |
_cap[e] = INF; |
1125 | 1140 |
_flow[e] = 0; |
1126 | 1141 |
_cost[e] = 0; |
1127 | 1142 |
_state[e] = STATE_LOWER; |
1128 | 1143 |
++f; |
1129 | 1144 |
} |
1130 | 1145 |
} |
1131 | 1146 |
_all_arc_num = f; |
1132 | 1147 |
} |
1133 | 1148 |
else { |
1134 | 1149 |
// GEQ supply constraints |
1135 | 1150 |
_search_arc_num = _arc_num + _node_num; |
1136 | 1151 |
int f = _arc_num + _node_num; |
1137 | 1152 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1138 | 1153 |
_parent[u] = _root; |
1139 | 1154 |
_thread[u] = u + 1; |
1140 | 1155 |
_rev_thread[u + 1] = u; |
1141 | 1156 |
_succ_num[u] = 1; |
1142 | 1157 |
_last_succ[u] = u; |
1143 | 1158 |
if (_supply[u] <= 0) { |
1144 | 1159 |
_forward[u] = false; |
1145 | 1160 |
_pi[u] = 0; |
1146 | 1161 |
_pred[u] = e; |
1147 | 1162 |
_source[e] = _root; |
1148 | 1163 |
_target[e] = u; |
1149 | 1164 |
_cap[e] = INF; |
1150 | 1165 |
_flow[e] = -_supply[u]; |
1151 | 1166 |
_cost[e] = 0; |
1152 | 1167 |
_state[e] = STATE_TREE; |
1153 | 1168 |
} else { |
1154 | 1169 |
_forward[u] = true; |
1155 | 1170 |
_pi[u] = -ART_COST; |
1156 | 1171 |
_pred[u] = f; |
1157 | 1172 |
_source[f] = u; |
1158 | 1173 |
_target[f] = _root; |
1159 | 1174 |
_cap[f] = INF; |
1160 | 1175 |
_flow[f] = _supply[u]; |
1161 | 1176 |
_state[f] = STATE_TREE; |
1162 | 1177 |
_cost[f] = ART_COST; |
1163 | 1178 |
_source[e] = _root; |
1164 | 1179 |
_target[e] = u; |
1165 | 1180 |
_cap[e] = INF; |
1166 | 1181 |
_flow[e] = 0; |
1167 | 1182 |
_cost[e] = 0; |
1168 | 1183 |
_state[e] = STATE_LOWER; |
1169 | 1184 |
++f; |
1170 | 1185 |
} |
1171 | 1186 |
} |
1172 | 1187 |
_all_arc_num = f; |
1173 | 1188 |
} |
1174 | 1189 |
|
1175 | 1190 |
return true; |
1176 | 1191 |
} |
1177 | 1192 |
|
1178 | 1193 |
// Find the join node |
1179 | 1194 |
void findJoinNode() { |
1180 | 1195 |
int u = _source[in_arc]; |
1181 | 1196 |
int v = _target[in_arc]; |
1182 | 1197 |
while (u != v) { |
1183 | 1198 |
if (_succ_num[u] < _succ_num[v]) { |
1184 | 1199 |
u = _parent[u]; |
1185 | 1200 |
} else { |
1186 | 1201 |
v = _parent[v]; |
1187 | 1202 |
} |
1188 | 1203 |
} |
1189 | 1204 |
join = u; |
1190 | 1205 |
} |
1191 | 1206 |
|
1192 | 1207 |
// Find the leaving arc of the cycle and returns true if the |
1193 | 1208 |
// leaving arc is not the same as the entering arc |
1194 | 1209 |
bool findLeavingArc() { |
1195 | 1210 |
// Initialize first and second nodes according to the direction |
1196 | 1211 |
// of the cycle |
1197 | 1212 |
if (_state[in_arc] == STATE_LOWER) { |
1198 | 1213 |
first = _source[in_arc]; |
1199 | 1214 |
second = _target[in_arc]; |
1200 | 1215 |
} else { |
1201 | 1216 |
first = _target[in_arc]; |
1202 | 1217 |
second = _source[in_arc]; |
1203 | 1218 |
} |
1204 | 1219 |
delta = _cap[in_arc]; |
1205 | 1220 |
int result = 0; |
1206 | 1221 |
Value d; |
1207 | 1222 |
int e; |
1208 | 1223 |
|
1209 | 1224 |
// Search the cycle along the path form the first node to the root |
1210 | 1225 |
for (int u = first; u != join; u = _parent[u]) { |
1211 | 1226 |
e = _pred[u]; |
1212 | 1227 |
d = _forward[u] ? |
1213 | 1228 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
1214 | 1229 |
if (d < delta) { |
1215 | 1230 |
delta = d; |
1216 | 1231 |
u_out = u; |
1217 | 1232 |
result = 1; |
1218 | 1233 |
} |
1219 | 1234 |
} |
1220 | 1235 |
// Search the cycle along the path form the second node to the root |
1221 | 1236 |
for (int u = second; u != join; u = _parent[u]) { |
1222 | 1237 |
e = _pred[u]; |
1223 | 1238 |
d = _forward[u] ? |
1224 | 1239 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
1225 | 1240 |
if (d <= delta) { |
1226 | 1241 |
delta = d; |
1227 | 1242 |
u_out = u; |
1228 | 1243 |
result = 2; |
1229 | 1244 |
} |
1230 | 1245 |
} |
1231 | 1246 |
|
1232 | 1247 |
if (result == 1) { |
1233 | 1248 |
u_in = first; |
1234 | 1249 |
v_in = second; |
1235 | 1250 |
} else { |
1236 | 1251 |
u_in = second; |
1237 | 1252 |
v_in = first; |
1238 | 1253 |
} |
1239 | 1254 |
return result != 0; |
1240 | 1255 |
} |
1241 | 1256 |
|
1242 | 1257 |
// Change _flow and _state vectors |
1243 | 1258 |
void changeFlow(bool change) { |
1244 | 1259 |
// Augment along the cycle |
1245 | 1260 |
if (delta > 0) { |
1246 | 1261 |
Value val = _state[in_arc] * delta; |
1247 | 1262 |
_flow[in_arc] += val; |
1248 | 1263 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1249 | 1264 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1250 | 1265 |
} |
1251 | 1266 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1252 | 1267 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1253 | 1268 |
} |
1254 | 1269 |
} |
1255 | 1270 |
// Update the state of the entering and leaving arcs |
1256 | 1271 |
if (change) { |
1257 | 1272 |
_state[in_arc] = STATE_TREE; |
1258 | 1273 |
_state[_pred[u_out]] = |
1259 | 1274 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1260 | 1275 |
} else { |
1261 | 1276 |
_state[in_arc] = -_state[in_arc]; |
1262 | 1277 |
} |
1263 | 1278 |
} |
1264 | 1279 |
|
1265 | 1280 |
// Update the tree structure |
1266 | 1281 |
void updateTreeStructure() { |
1267 | 1282 |
int u, w; |
1268 | 1283 |
int old_rev_thread = _rev_thread[u_out]; |
1269 | 1284 |
int old_succ_num = _succ_num[u_out]; |
1270 | 1285 |
int old_last_succ = _last_succ[u_out]; |
1271 | 1286 |
v_out = _parent[u_out]; |
1272 | 1287 |
|
1273 | 1288 |
u = _last_succ[u_in]; // the last successor of u_in |
1274 | 1289 |
right = _thread[u]; // the node after it |
1275 | 1290 |
|
1276 | 1291 |
// Handle the case when old_rev_thread equals to v_in |
1277 | 1292 |
// (it also means that join and v_out coincide) |
1278 | 1293 |
if (old_rev_thread == v_in) { |
1279 | 1294 |
last = _thread[_last_succ[u_out]]; |
1280 | 1295 |
} else { |
1281 | 1296 |
last = _thread[v_in]; |
1282 | 1297 |
} |
1283 | 1298 |
|
1284 | 1299 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1285 | 1300 |
// between u_in and u_out, whose parent have to be changed) |
1286 | 1301 |
_thread[v_in] = stem = u_in; |
1287 | 1302 |
_dirty_revs.clear(); |
1288 | 1303 |
_dirty_revs.push_back(v_in); |
1289 | 1304 |
par_stem = v_in; |
1290 | 1305 |
while (stem != u_out) { |
1291 | 1306 |
// Insert the next stem node into the thread list |
1292 | 1307 |
new_stem = _parent[stem]; |
1293 | 1308 |
_thread[u] = new_stem; |
1294 | 1309 |
_dirty_revs.push_back(u); |
1295 | 1310 |
|
1296 | 1311 |
// Remove the subtree of stem from the thread list |
1297 | 1312 |
w = _rev_thread[stem]; |
1298 | 1313 |
_thread[w] = right; |
1299 | 1314 |
_rev_thread[right] = w; |
1300 | 1315 |
|
1301 | 1316 |
// Change the parent node and shift stem nodes |
1302 | 1317 |
_parent[stem] = par_stem; |
1303 | 1318 |
par_stem = stem; |
1304 | 1319 |
stem = new_stem; |
1305 | 1320 |
|
1306 | 1321 |
// Update u and right |
1307 | 1322 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1308 | 1323 |
_rev_thread[par_stem] : _last_succ[stem]; |
1309 | 1324 |
right = _thread[u]; |
1310 | 1325 |
} |
1311 | 1326 |
_parent[u_out] = par_stem; |
1312 | 1327 |
_thread[u] = last; |
1313 | 1328 |
_rev_thread[last] = u; |
1314 | 1329 |
_last_succ[u_out] = u; |
1315 | 1330 |
|
1316 | 1331 |
// Remove the subtree of u_out from the thread list except for |
1317 | 1332 |
// the case when old_rev_thread equals to v_in |
1318 | 1333 |
// (it also means that join and v_out coincide) |
1319 | 1334 |
if (old_rev_thread != v_in) { |
1320 | 1335 |
_thread[old_rev_thread] = right; |
1321 | 1336 |
_rev_thread[right] = old_rev_thread; |
1322 | 1337 |
} |
1323 | 1338 |
|
1324 | 1339 |
// Update _rev_thread using the new _thread values |
1325 | 1340 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1326 | 1341 |
u = _dirty_revs[i]; |
1327 | 1342 |
_rev_thread[_thread[u]] = u; |
1328 | 1343 |
} |
1329 | 1344 |
|
1330 | 1345 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1331 | 1346 |
// stem nodes from u_out to u_in |
1332 | 1347 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1333 | 1348 |
u = u_out; |
1334 | 1349 |
while (u != u_in) { |
1335 | 1350 |
w = _parent[u]; |
1336 | 1351 |
_pred[u] = _pred[w]; |
1337 | 1352 |
_forward[u] = !_forward[w]; |
1338 | 1353 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1339 | 1354 |
_succ_num[u] = tmp_sc; |
1340 | 1355 |
_last_succ[w] = tmp_ls; |
1341 | 1356 |
u = w; |
1342 | 1357 |
} |
1343 | 1358 |
_pred[u_in] = in_arc; |
1344 | 1359 |
_forward[u_in] = (u_in == _source[in_arc]); |
1345 | 1360 |
_succ_num[u_in] = old_succ_num; |
1346 | 1361 |
|
1347 | 1362 |
// Set limits for updating _last_succ form v_in and v_out |
1348 | 1363 |
// towards the root |
1349 | 1364 |
int up_limit_in = -1; |
1350 | 1365 |
int up_limit_out = -1; |
1351 | 1366 |
if (_last_succ[join] == v_in) { |
1352 | 1367 |
up_limit_out = join; |
1353 | 1368 |
} else { |
1354 | 1369 |
up_limit_in = join; |
1355 | 1370 |
} |
1356 | 1371 |
|
1357 | 1372 |
// Update _last_succ from v_in towards the root |
1358 | 1373 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1359 | 1374 |
u = _parent[u]) { |
1360 | 1375 |
_last_succ[u] = _last_succ[u_out]; |
1361 | 1376 |
} |
1362 | 1377 |
// Update _last_succ from v_out towards the root |
1363 | 1378 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1364 | 1379 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1365 | 1380 |
u = _parent[u]) { |
1366 | 1381 |
_last_succ[u] = old_rev_thread; |
1367 | 1382 |
} |
1368 | 1383 |
} else { |
1369 | 1384 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1370 | 1385 |
u = _parent[u]) { |
1371 | 1386 |
_last_succ[u] = _last_succ[u_out]; |
1372 | 1387 |
} |
1373 | 1388 |
} |
1374 | 1389 |
|
1375 | 1390 |
// Update _succ_num from v_in to join |
1376 | 1391 |
for (u = v_in; u != join; u = _parent[u]) { |
1377 | 1392 |
_succ_num[u] += old_succ_num; |
1378 | 1393 |
} |
1379 | 1394 |
// Update _succ_num from v_out to join |
1380 | 1395 |
for (u = v_out; u != join; u = _parent[u]) { |
1381 | 1396 |
_succ_num[u] -= old_succ_num; |
1382 | 1397 |
} |
1383 | 1398 |
} |
1384 | 1399 |
|
1385 | 1400 |
// Update potentials |
1386 | 1401 |
void updatePotential() { |
1387 | 1402 |
Cost sigma = _forward[u_in] ? |
1388 | 1403 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1389 | 1404 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1390 | 1405 |
// Update potentials in the subtree, which has been moved |
1391 | 1406 |
int end = _thread[_last_succ[u_in]]; |
1392 | 1407 |
for (int u = u_in; u != end; u = _thread[u]) { |
1393 | 1408 |
_pi[u] += sigma; |
1394 | 1409 |
} |
1395 | 1410 |
} |
1396 | 1411 |
|
1397 | 1412 |
// Execute the algorithm |
1398 | 1413 |
ProblemType start(PivotRule pivot_rule) { |
1399 | 1414 |
// Select the pivot rule implementation |
1400 | 1415 |
switch (pivot_rule) { |
1401 | 1416 |
case FIRST_ELIGIBLE: |
1402 | 1417 |
return start<FirstEligiblePivotRule>(); |
1403 | 1418 |
case BEST_ELIGIBLE: |
1404 | 1419 |
return start<BestEligiblePivotRule>(); |
1405 | 1420 |
case BLOCK_SEARCH: |
1406 | 1421 |
return start<BlockSearchPivotRule>(); |
1407 | 1422 |
case CANDIDATE_LIST: |
1408 | 1423 |
return start<CandidateListPivotRule>(); |
1409 | 1424 |
case ALTERING_LIST: |
1410 | 1425 |
return start<AlteringListPivotRule>(); |
1411 | 1426 |
} |
1412 | 1427 |
return INFEASIBLE; // avoid warning |
1413 | 1428 |
} |
1414 | 1429 |
|
1415 | 1430 |
template <typename PivotRuleImpl> |
1416 | 1431 |
ProblemType start() { |
1417 | 1432 |
PivotRuleImpl pivot(*this); |
1418 | 1433 |
|
1419 | 1434 |
// Execute the Network Simplex algorithm |
1420 | 1435 |
while (pivot.findEnteringArc()) { |
1421 | 1436 |
findJoinNode(); |
1422 | 1437 |
bool change = findLeavingArc(); |
1423 | 1438 |
if (delta >= INF) return UNBOUNDED; |
1424 | 1439 |
changeFlow(change); |
1425 | 1440 |
if (change) { |
1426 | 1441 |
updateTreeStructure(); |
1427 | 1442 |
updatePotential(); |
1428 | 1443 |
} |
1429 | 1444 |
} |
1430 | 1445 |
|
1431 | 1446 |
// Check feasibility |
1432 | 1447 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1433 | 1448 |
if (_flow[e] != 0) return INFEASIBLE; |
1434 | 1449 |
} |
1435 | 1450 |
|
1436 | 1451 |
// Transform the solution and the supply map to the original form |
1437 | 1452 |
if (_have_lower) { |
1438 | 1453 |
for (int i = 0; i != _arc_num; ++i) { |
1439 | 1454 |
Value c = _lower[i]; |
1440 | 1455 |
if (c != 0) { |
1441 | 1456 |
_flow[i] += c; |
1442 | 1457 |
_supply[_source[i]] += c; |
1443 | 1458 |
_supply[_target[i]] -= c; |
1444 | 1459 |
} |
1445 | 1460 |
} |
1446 | 1461 |
} |
1447 | 1462 |
|
1448 | 1463 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1449 | 1464 |
// optimality conditions |
1450 | 1465 |
if (_sum_supply == 0) { |
1451 | 1466 |
if (_stype == GEQ) { |
1452 | 1467 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
1453 | 1468 |
for (int i = 0; i != _node_num; ++i) { |
1454 | 1469 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1455 | 1470 |
} |
1456 | 1471 |
if (max_pot > 0) { |
1457 | 1472 |
for (int i = 0; i != _node_num; ++i) |
1458 | 1473 |
_pi[i] -= max_pot; |
1459 | 1474 |
} |
1460 | 1475 |
} else { |
1461 | 1476 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1462 | 1477 |
for (int i = 0; i != _node_num; ++i) { |
1463 | 1478 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1464 | 1479 |
} |
1465 | 1480 |
if (min_pot < 0) { |
1466 | 1481 |
for (int i = 0; i != _node_num; ++i) |
1467 | 1482 |
_pi[i] -= min_pot; |
1468 | 1483 |
} |
1469 | 1484 |
} |
1470 | 1485 |
} |
1471 | 1486 |
|
1472 | 1487 |
return OPTIMAL; |
1473 | 1488 |
} |
1474 | 1489 |
|
1475 | 1490 |
}; //class NetworkSimplex |
1476 | 1491 |
|
1477 | 1492 |
///@} |
1478 | 1493 |
|
1479 | 1494 |
} //namespace lemon |
1480 | 1495 |
|
1481 | 1496 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)