| ... |
... |
@@ -33,55 +33,65 @@
|
| 33 |
33 |
#include <functional>
|
| 34 |
34 |
|
| 35 |
35 |
/// \ingroup graph_properties
|
| 36 |
36 |
/// \file
|
| 37 |
37 |
/// \brief Connectivity algorithms
|
| 38 |
38 |
///
|
| 39 |
39 |
/// Connectivity algorithms
|
| 40 |
40 |
|
| 41 |
41 |
namespace lemon {
|
| 42 |
42 |
|
| 43 |
43 |
/// \ingroup graph_properties
|
| 44 |
44 |
///
|
| 45 |
|
/// \brief Check whether the given undirected graph is connected.
|
|
45 |
/// \brief Check whether an undirected graph is connected.
|
| 46 |
46 |
///
|
| 47 |
|
/// Check whether the given undirected graph is connected.
|
| 48 |
|
/// \param graph The undirected graph.
|
| 49 |
|
/// \return \c true when there is path between any two nodes in the graph.
|
|
47 |
/// This function checks whether the given undirected graph is connected,
|
|
48 |
/// i.e. there is a path between any two nodes in the graph.
|
|
49 |
///
|
|
50 |
/// \return \c true if the graph is connected.
|
| 50 |
51 |
/// \note By definition, the empty graph is connected.
|
|
52 |
///
|
|
53 |
/// \see countConnectedComponents(), connectedComponents()
|
|
54 |
/// \see stronglyConnected()
|
| 51 |
55 |
template <typename Graph>
|
| 52 |
56 |
bool connected(const Graph& graph) {
|
| 53 |
57 |
checkConcept<concepts::Graph, Graph>();
|
| 54 |
58 |
typedef typename Graph::NodeIt NodeIt;
|
| 55 |
59 |
if (NodeIt(graph) == INVALID) return true;
|
| 56 |
60 |
Dfs<Graph> dfs(graph);
|
| 57 |
61 |
dfs.run(NodeIt(graph));
|
| 58 |
62 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 59 |
63 |
if (!dfs.reached(it)) {
|
| 60 |
64 |
return false;
|
| 61 |
65 |
}
|
| 62 |
66 |
}
|
| 63 |
67 |
return true;
|
| 64 |
68 |
}
|
| 65 |
69 |
|
| 66 |
70 |
/// \ingroup graph_properties
|
| 67 |
71 |
///
|
| 68 |
72 |
/// \brief Count the number of connected components of an undirected graph
|
| 69 |
73 |
///
|
| 70 |
|
/// Count the number of connected components of an undirected graph
|
|
74 |
/// This function counts the number of connected components of the given
|
|
75 |
/// undirected graph.
|
| 71 |
76 |
///
|
| 72 |
|
/// \param graph The graph. It must be undirected.
|
| 73 |
|
/// \return The number of components
|
|
77 |
/// The connected components are the classes of an equivalence relation
|
|
78 |
/// on the nodes of an undirected graph. Two nodes are in the same class
|
|
79 |
/// if they are connected with a path.
|
|
80 |
///
|
|
81 |
/// \return The number of connected components.
|
| 74 |
82 |
/// \note By definition, the empty graph consists
|
| 75 |
83 |
/// of zero connected components.
|
|
84 |
///
|
|
85 |
/// \see connected(), connectedComponents()
|
| 76 |
86 |
template <typename Graph>
|
| 77 |
87 |
int countConnectedComponents(const Graph &graph) {
|
| 78 |
88 |
checkConcept<concepts::Graph, Graph>();
|
| 79 |
89 |
typedef typename Graph::Node Node;
|
| 80 |
90 |
typedef typename Graph::Arc Arc;
|
| 81 |
91 |
|
| 82 |
92 |
typedef NullMap<Node, Arc> PredMap;
|
| 83 |
93 |
typedef NullMap<Node, int> DistMap;
|
| 84 |
94 |
|
| 85 |
95 |
int compNum = 0;
|
| 86 |
96 |
typename Bfs<Graph>::
|
| 87 |
97 |
template SetPredMap<PredMap>::
|
| ... |
... |
@@ -100,35 +110,44 @@
|
| 100 |
110 |
bfs.addSource(n);
|
| 101 |
111 |
bfs.start();
|
| 102 |
112 |
++compNum;
|
| 103 |
113 |
}
|
| 104 |
114 |
}
|
| 105 |
115 |
return compNum;
|
| 106 |
116 |
}
|
| 107 |
117 |
|
| 108 |
118 |
/// \ingroup graph_properties
|
| 109 |
119 |
///
|
| 110 |
120 |
/// \brief Find the connected components of an undirected graph
|
| 111 |
121 |
///
|
| 112 |
|
/// Find the connected components of an undirected graph.
|
|
122 |
/// This function finds the connected components of the given undirected
|
|
123 |
/// graph.
|
|
124 |
///
|
|
125 |
/// The connected components are the classes of an equivalence relation
|
|
126 |
/// on the nodes of an undirected graph. Two nodes are in the same class
|
|
127 |
/// if they are connected with a path.
|
| 113 |
128 |
///
|
| 114 |
129 |
/// \image html connected_components.png
|
| 115 |
130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth
|
| 116 |
131 |
///
|
| 117 |
|
/// \param graph The graph. It must be undirected.
|
|
132 |
/// \param graph The undirected graph.
|
| 118 |
133 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 119 |
|
/// the number of the connected components minus one. Each values of the map
|
| 120 |
|
/// will be set exactly once, the values of a certain component will be
|
|
134 |
/// the number of the connected components minus one. Each value of the map
|
|
135 |
/// will be set exactly once, and the values of a certain component will be
|
| 121 |
136 |
/// set continuously.
|
| 122 |
|
/// \return The number of components
|
|
137 |
/// \return The number of connected components.
|
|
138 |
/// \note By definition, the empty graph consists
|
|
139 |
/// of zero connected components.
|
|
140 |
///
|
|
141 |
/// \see connected(), countConnectedComponents()
|
| 123 |
142 |
template <class Graph, class NodeMap>
|
| 124 |
143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 125 |
144 |
checkConcept<concepts::Graph, Graph>();
|
| 126 |
145 |
typedef typename Graph::Node Node;
|
| 127 |
146 |
typedef typename Graph::Arc Arc;
|
| 128 |
147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 129 |
148 |
|
| 130 |
149 |
typedef NullMap<Node, Arc> PredMap;
|
| 131 |
150 |
typedef NullMap<Node, int> DistMap;
|
| 132 |
151 |
|
| 133 |
152 |
int compNum = 0;
|
| 134 |
153 |
typename Bfs<Graph>::
|
| ... |
... |
@@ -222,33 +241,35 @@
|
| 222 |
241 |
ArcMap& _cutMap;
|
| 223 |
242 |
int& _cutNum;
|
| 224 |
243 |
|
| 225 |
244 |
typename Digraph::template NodeMap<int> _compMap;
|
| 226 |
245 |
int _num;
|
| 227 |
246 |
};
|
| 228 |
247 |
|
| 229 |
248 |
}
|
| 230 |
249 |
|
| 231 |
250 |
|
| 232 |
251 |
/// \ingroup graph_properties
|
| 233 |
252 |
///
|
| 234 |
|
/// \brief Check whether the given directed graph is strongly connected.
|
|
253 |
/// \brief Check whether a directed graph is strongly connected.
|
| 235 |
254 |
///
|
| 236 |
|
/// Check whether the given directed graph is strongly connected. The
|
| 237 |
|
/// graph is strongly connected when any two nodes of the graph are
|
|
255 |
/// This function checks whether the given directed graph is strongly
|
|
256 |
/// connected, i.e. any two nodes of the digraph are
|
| 238 |
257 |
/// connected with directed paths in both direction.
|
| 239 |
|
/// \return \c false when the graph is not strongly connected.
|
| 240 |
|
/// \see connected
|
| 241 |
258 |
///
|
| 242 |
|
/// \note By definition, the empty graph is strongly connected.
|
|
259 |
/// \return \c true if the digraph is strongly connected.
|
|
260 |
/// \note By definition, the empty digraph is strongly connected.
|
|
261 |
///
|
|
262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
|
|
263 |
/// \see connected()
|
| 243 |
264 |
template <typename Digraph>
|
| 244 |
265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 245 |
266 |
checkConcept<concepts::Digraph, Digraph>();
|
| 246 |
267 |
|
| 247 |
268 |
typedef typename Digraph::Node Node;
|
| 248 |
269 |
typedef typename Digraph::NodeIt NodeIt;
|
| 249 |
270 |
|
| 250 |
271 |
typename Digraph::Node source = NodeIt(digraph);
|
| 251 |
272 |
if (source == INVALID) return true;
|
| 252 |
273 |
|
| 253 |
274 |
using namespace _connectivity_bits;
|
| 254 |
275 |
|
| ... |
... |
@@ -261,55 +282,59 @@
|
| 261 |
282 |
dfs.start();
|
| 262 |
283 |
|
| 263 |
284 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 264 |
285 |
if (!dfs.reached(it)) {
|
| 265 |
286 |
return false;
|
| 266 |
287 |
}
|
| 267 |
288 |
}
|
| 268 |
289 |
|
| 269 |
290 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
| 270 |
291 |
typedef typename RDigraph::NodeIt RNodeIt;
|
| 271 |
292 |
RDigraph rdigraph(digraph);
|
| 272 |
293 |
|
| 273 |
|
typedef DfsVisitor<Digraph> RVisitor;
|
|
294 |
typedef DfsVisitor<RDigraph> RVisitor;
|
| 274 |
295 |
RVisitor rvisitor;
|
| 275 |
296 |
|
| 276 |
297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
| 277 |
298 |
rdfs.init();
|
| 278 |
299 |
rdfs.addSource(source);
|
| 279 |
300 |
rdfs.start();
|
| 280 |
301 |
|
| 281 |
302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 282 |
303 |
if (!rdfs.reached(it)) {
|
| 283 |
304 |
return false;
|
| 284 |
305 |
}
|
| 285 |
306 |
}
|
| 286 |
307 |
|
| 287 |
308 |
return true;
|
| 288 |
309 |
}
|
| 289 |
310 |
|
| 290 |
311 |
/// \ingroup graph_properties
|
| 291 |
312 |
///
|
| 292 |
|
/// \brief Count the strongly connected components of a directed graph
|
|
313 |
/// \brief Count the number of strongly connected components of a
|
|
314 |
/// directed graph
|
| 293 |
315 |
///
|
| 294 |
|
/// Count the strongly connected components of a directed graph.
|
|
316 |
/// This function counts the number of strongly connected components of
|
|
317 |
/// the given directed graph.
|
|
318 |
///
|
| 295 |
319 |
/// The strongly connected components are the classes of an
|
| 296 |
|
/// equivalence relation on the nodes of the graph. Two nodes are in
|
|
320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
| 297 |
321 |
/// the same class if they are connected with directed paths in both
|
| 298 |
322 |
/// direction.
|
| 299 |
323 |
///
|
| 300 |
|
/// \param digraph The graph.
|
| 301 |
|
/// \return The number of components
|
| 302 |
|
/// \note By definition, the empty graph has zero
|
|
324 |
/// \return The number of strongly connected components.
|
|
325 |
/// \note By definition, the empty digraph has zero
|
| 303 |
326 |
/// strongly connected components.
|
|
327 |
///
|
|
328 |
/// \see stronglyConnected(), stronglyConnectedComponents()
|
| 304 |
329 |
template <typename Digraph>
|
| 305 |
330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 306 |
331 |
checkConcept<concepts::Digraph, Digraph>();
|
| 307 |
332 |
|
| 308 |
333 |
using namespace _connectivity_bits;
|
| 309 |
334 |
|
| 310 |
335 |
typedef typename Digraph::Node Node;
|
| 311 |
336 |
typedef typename Digraph::Arc Arc;
|
| 312 |
337 |
typedef typename Digraph::NodeIt NodeIt;
|
| 313 |
338 |
typedef typename Digraph::ArcIt ArcIt;
|
| 314 |
339 |
|
| 315 |
340 |
typedef std::vector<Node> Container;
|
| ... |
... |
@@ -346,41 +371,47 @@
|
| 346 |
371 |
rdfs.addSource(*it);
|
| 347 |
372 |
rdfs.start();
|
| 348 |
373 |
++compNum;
|
| 349 |
374 |
}
|
| 350 |
375 |
}
|
| 351 |
376 |
return compNum;
|
| 352 |
377 |
}
|
| 353 |
378 |
|
| 354 |
379 |
/// \ingroup graph_properties
|
| 355 |
380 |
///
|
| 356 |
381 |
/// \brief Find the strongly connected components of a directed graph
|
| 357 |
382 |
///
|
| 358 |
|
/// Find the strongly connected components of a directed graph. The
|
| 359 |
|
/// strongly connected components are the classes of an equivalence
|
| 360 |
|
/// relation on the nodes of the graph. Two nodes are in
|
| 361 |
|
/// relationship when there are directed paths between them in both
|
| 362 |
|
/// direction. In addition, the numbering of components will satisfy
|
| 363 |
|
/// that there is no arc going from a higher numbered component to
|
| 364 |
|
/// a lower.
|
|
383 |
/// This function finds the strongly connected components of the given
|
|
384 |
/// directed graph. In addition, the numbering of the components will
|
|
385 |
/// satisfy that there is no arc going from a higher numbered component
|
|
386 |
/// to a lower one (i.e. it provides a topological order of the components).
|
|
387 |
///
|
|
388 |
/// The strongly connected components are the classes of an
|
|
389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
|
390 |
/// the same class if they are connected with directed paths in both
|
|
391 |
/// direction.
|
| 365 |
392 |
///
|
| 366 |
393 |
/// \image html strongly_connected_components.png
|
| 367 |
394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
|
| 368 |
395 |
///
|
| 369 |
396 |
/// \param digraph The digraph.
|
| 370 |
397 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 371 |
398 |
/// the number of the strongly connected components minus one. Each value
|
| 372 |
|
/// of the map will be set exactly once, the values of a certain component
|
| 373 |
|
/// will be set continuously.
|
| 374 |
|
/// \return The number of components
|
|
399 |
/// of the map will be set exactly once, and the values of a certain
|
|
400 |
/// component will be set continuously.
|
|
401 |
/// \return The number of strongly connected components.
|
|
402 |
/// \note By definition, the empty digraph has zero
|
|
403 |
/// strongly connected components.
|
|
404 |
///
|
|
405 |
/// \see stronglyConnected(), countStronglyConnectedComponents()
|
| 375 |
406 |
template <typename Digraph, typename NodeMap>
|
| 376 |
407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 377 |
408 |
checkConcept<concepts::Digraph, Digraph>();
|
| 378 |
409 |
typedef typename Digraph::Node Node;
|
| 379 |
410 |
typedef typename Digraph::NodeIt NodeIt;
|
| 380 |
411 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 381 |
412 |
|
| 382 |
413 |
using namespace _connectivity_bits;
|
| 383 |
414 |
|
| 384 |
415 |
typedef std::vector<Node> Container;
|
| 385 |
416 |
typedef typename Container::iterator Iterator;
|
| 386 |
417 |
|
| ... |
... |
@@ -415,72 +446,77 @@
|
| 415 |
446 |
rdfs.addSource(*it);
|
| 416 |
447 |
rdfs.start();
|
| 417 |
448 |
++compNum;
|
| 418 |
449 |
}
|
| 419 |
450 |
}
|
| 420 |
451 |
return compNum;
|
| 421 |
452 |
}
|
| 422 |
453 |
|
| 423 |
454 |
/// \ingroup graph_properties
|
| 424 |
455 |
///
|
| 425 |
456 |
/// \brief Find the cut arcs of the strongly connected components.
|
| 426 |
457 |
///
|
| 427 |
|
/// Find the cut arcs of the strongly connected components.
|
| 428 |
|
/// The strongly connected components are the classes of an equivalence
|
| 429 |
|
/// relation on the nodes of the graph. Two nodes are in relationship
|
| 430 |
|
/// when there are directed paths between them in both direction.
|
|
458 |
/// This function finds the cut arcs of the strongly connected components
|
|
459 |
/// of the given digraph.
|
|
460 |
///
|
|
461 |
/// The strongly connected components are the classes of an
|
|
462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in
|
|
463 |
/// the same class if they are connected with directed paths in both
|
|
464 |
/// direction.
|
| 431 |
465 |
/// The strongly connected components are separated by the cut arcs.
|
| 432 |
466 |
///
|
| 433 |
|
/// \param graph The graph.
|
| 434 |
|
/// \retval cutMap A writable node map. The values will be set true when the
|
| 435 |
|
/// arc is a cut arc.
|
|
467 |
/// \param digraph The digraph.
|
|
468 |
/// \retval cutMap A writable arc map. The values will be set to \c true
|
|
469 |
/// for the cut arcs (exactly once for each cut arc), and will not be
|
|
470 |
/// changed for other arcs.
|
|
471 |
/// \return The number of cut arcs.
|
| 436 |
472 |
///
|
| 437 |
|
/// \return The number of cut arcs
|
|
473 |
/// \see stronglyConnected(), stronglyConnectedComponents()
|
| 438 |
474 |
template <typename Digraph, typename ArcMap>
|
| 439 |
|
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
|
|
475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
|
| 440 |
476 |
checkConcept<concepts::Digraph, Digraph>();
|
| 441 |
477 |
typedef typename Digraph::Node Node;
|
| 442 |
478 |
typedef typename Digraph::Arc Arc;
|
| 443 |
479 |
typedef typename Digraph::NodeIt NodeIt;
|
| 444 |
480 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
|
| 445 |
481 |
|
| 446 |
482 |
using namespace _connectivity_bits;
|
| 447 |
483 |
|
| 448 |
484 |
typedef std::vector<Node> Container;
|
| 449 |
485 |
typedef typename Container::iterator Iterator;
|
| 450 |
486 |
|
| 451 |
|
Container nodes(countNodes(graph));
|
|
487 |
Container nodes(countNodes(digraph));
|
| 452 |
488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
| 453 |
489 |
Visitor visitor(nodes.begin());
|
| 454 |
490 |
|
| 455 |
|
DfsVisit<Digraph, Visitor> dfs(graph, visitor);
|
|
491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
| 456 |
492 |
dfs.init();
|
| 457 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
493 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 458 |
494 |
if (!dfs.reached(it)) {
|
| 459 |
495 |
dfs.addSource(it);
|
| 460 |
496 |
dfs.start();
|
| 461 |
497 |
}
|
| 462 |
498 |
}
|
| 463 |
499 |
|
| 464 |
500 |
typedef typename Container::reverse_iterator RIterator;
|
| 465 |
501 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
| 466 |
502 |
|
| 467 |
|
RDigraph rgraph(graph);
|
|
503 |
RDigraph rdigraph(digraph);
|
| 468 |
504 |
|
| 469 |
505 |
int cutNum = 0;
|
| 470 |
506 |
|
| 471 |
507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
|
| 472 |
|
RVisitor rvisitor(rgraph, cutMap, cutNum);
|
|
508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum);
|
| 473 |
509 |
|
| 474 |
|
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
|
|
510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
| 475 |
511 |
|
| 476 |
512 |
rdfs.init();
|
| 477 |
513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 478 |
514 |
if (!rdfs.reached(*it)) {
|
| 479 |
515 |
rdfs.addSource(*it);
|
| 480 |
516 |
rdfs.start();
|
| 481 |
517 |
}
|
| 482 |
518 |
}
|
| 483 |
519 |
return cutNum;
|
| 484 |
520 |
}
|
| 485 |
521 |
|
| 486 |
522 |
namespace _connectivity_bits {
|
| ... |
... |
@@ -697,48 +733,53 @@
|
| 697 |
733 |
std::stack<Edge> _edgeStack;
|
| 698 |
734 |
int _num;
|
| 699 |
735 |
bool rootCut;
|
| 700 |
736 |
};
|
| 701 |
737 |
|
| 702 |
738 |
}
|
| 703 |
739 |
|
| 704 |
740 |
template <typename Graph>
|
| 705 |
741 |
int countBiNodeConnectedComponents(const Graph& graph);
|
| 706 |
742 |
|
| 707 |
743 |
/// \ingroup graph_properties
|
| 708 |
744 |
///
|
| 709 |
|
/// \brief Checks the graph is bi-node-connected.
|
|
745 |
/// \brief Check whether an undirected graph is bi-node-connected.
|
| 710 |
746 |
///
|
| 711 |
|
/// This function checks that the undirected graph is bi-node-connected
|
| 712 |
|
/// graph. The graph is bi-node-connected if any two undirected edge is
|
| 713 |
|
/// on same circle.
|
|
747 |
/// This function checks whether the given undirected graph is
|
|
748 |
/// bi-node-connected, i.e. any two edges are on same circle.
|
| 714 |
749 |
///
|
| 715 |
|
/// \param graph The graph.
|
| 716 |
|
/// \return \c true when the graph bi-node-connected.
|
|
750 |
/// \return \c true if the graph bi-node-connected.
|
|
751 |
/// \note By definition, the empty graph is bi-node-connected.
|
|
752 |
///
|
|
753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
|
| 717 |
754 |
template <typename Graph>
|
| 718 |
755 |
bool biNodeConnected(const Graph& graph) {
|
| 719 |
756 |
return countBiNodeConnectedComponents(graph) <= 1;
|
| 720 |
757 |
}
|
| 721 |
758 |
|
| 722 |
759 |
/// \ingroup graph_properties
|
| 723 |
760 |
///
|
| 724 |
|
/// \brief Count the biconnected components.
|
|
761 |
/// \brief Count the number of bi-node-connected components of an
|
|
762 |
/// undirected graph.
|
| 725 |
763 |
///
|
| 726 |
|
/// This function finds the bi-node-connected components in an undirected
|
| 727 |
|
/// graph. The biconnected components are the classes of an equivalence
|
| 728 |
|
/// relation on the undirected edges. Two undirected edge is in relationship
|
| 729 |
|
/// when they are on same circle.
|
|
764 |
/// This function counts the number of bi-node-connected components of
|
|
765 |
/// the given undirected graph.
|
| 730 |
766 |
///
|
| 731 |
|
/// \param graph The graph.
|
| 732 |
|
/// \return The number of components.
|
|
767 |
/// The bi-node-connected components are the classes of an equivalence
|
|
768 |
/// relation on the edges of a undirected graph. Two edges are in the
|
|
769 |
/// same class if they are on same circle.
|
|
770 |
///
|
|
771 |
/// \return The number of bi-node-connected components.
|
|
772 |
///
|
|
773 |
/// \see biNodeConnected(), biNodeConnectedComponents()
|
| 733 |
774 |
template <typename Graph>
|
| 734 |
775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 735 |
776 |
checkConcept<concepts::Graph, Graph>();
|
| 736 |
777 |
typedef typename Graph::NodeIt NodeIt;
|
| 737 |
778 |
|
| 738 |
779 |
using namespace _connectivity_bits;
|
| 739 |
780 |
|
| 740 |
781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
|
| 741 |
782 |
|
| 742 |
783 |
int compNum = 0;
|
| 743 |
784 |
Visitor visitor(graph, compNum);
|
| 744 |
785 |
|
| ... |
... |
@@ -747,40 +788,44 @@
|
| 747 |
788 |
|
| 748 |
789 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 749 |
790 |
if (!dfs.reached(it)) {
|
| 750 |
791 |
dfs.addSource(it);
|
| 751 |
792 |
dfs.start();
|
| 752 |
793 |
}
|
| 753 |
794 |
}
|
| 754 |
795 |
return compNum;
|
| 755 |
796 |
}
|
| 756 |
797 |
|
| 757 |
798 |
/// \ingroup graph_properties
|
| 758 |
799 |
///
|
| 759 |
|
/// \brief Find the bi-node-connected components.
|
|
800 |
/// \brief Find the bi-node-connected components of an undirected graph.
|
| 760 |
801 |
///
|
| 761 |
|
/// This function finds the bi-node-connected components in an undirected
|
| 762 |
|
/// graph. The bi-node-connected components are the classes of an equivalence
|
| 763 |
|
/// relation on the undirected edges. Two undirected edge are in relationship
|
| 764 |
|
/// when they are on same circle.
|
|
802 |
/// This function finds the bi-node-connected components of the given
|
|
803 |
/// undirected graph.
|
|
804 |
///
|
|
805 |
/// The bi-node-connected components are the classes of an equivalence
|
|
806 |
/// relation on the edges of a undirected graph. Two edges are in the
|
|
807 |
/// same class if they are on same circle.
|
| 765 |
808 |
///
|
| 766 |
809 |
/// \image html node_biconnected_components.png
|
| 767 |
810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
|
| 768 |
811 |
///
|
| 769 |
|
/// \param graph The graph.
|
| 770 |
|
/// \retval compMap A writable uedge map. The values will be set from 0
|
| 771 |
|
/// to the number of the biconnected components minus one. Each values
|
| 772 |
|
/// of the map will be set exactly once, the values of a certain component
|
| 773 |
|
/// will be set continuously.
|
| 774 |
|
/// \return The number of components.
|
|
812 |
/// \param graph The undirected graph.
|
|
813 |
/// \retval compMap A writable edge map. The values will be set from 0
|
|
814 |
/// to the number of the bi-node-connected components minus one. Each
|
|
815 |
/// value of the map will be set exactly once, and the values of a
|
|
816 |
/// certain component will be set continuously.
|
|
817 |
/// \return The number of bi-node-connected components.
|
|
818 |
///
|
|
819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents()
|
| 775 |
820 |
template <typename Graph, typename EdgeMap>
|
| 776 |
821 |
int biNodeConnectedComponents(const Graph& graph,
|
| 777 |
822 |
EdgeMap& compMap) {
|
| 778 |
823 |
checkConcept<concepts::Graph, Graph>();
|
| 779 |
824 |
typedef typename Graph::NodeIt NodeIt;
|
| 780 |
825 |
typedef typename Graph::Edge Edge;
|
| 781 |
826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
|
| 782 |
827 |
|
| 783 |
828 |
using namespace _connectivity_bits;
|
| 784 |
829 |
|
| 785 |
830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
|
| 786 |
831 |
|
| ... |
... |
@@ -792,36 +837,43 @@
|
| 792 |
837 |
|
| 793 |
838 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 794 |
839 |
if (!dfs.reached(it)) {
|
| 795 |
840 |
dfs.addSource(it);
|
| 796 |
841 |
dfs.start();
|
| 797 |
842 |
}
|
| 798 |
843 |
}
|
| 799 |
844 |
return compNum;
|
| 800 |
845 |
}
|
| 801 |
846 |
|
| 802 |
847 |
/// \ingroup graph_properties
|
| 803 |
848 |
///
|
| 804 |
|
/// \brief Find the bi-node-connected cut nodes.
|
|
849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph.
|
| 805 |
850 |
///
|
| 806 |
|
/// This function finds the bi-node-connected cut nodes in an undirected
|
| 807 |
|
/// graph. The bi-node-connected components are the classes of an equivalence
|
| 808 |
|
/// relation on the undirected edges. Two undirected edges are in
|
| 809 |
|
/// relationship when they are on same circle. The biconnected components
|
| 810 |
|
/// are separted by nodes which are the cut nodes of the components.
|
|
851 |
/// This function finds the bi-node-connected cut nodes in the given
|
|
852 |
/// undirected graph.
|
| 811 |
853 |
///
|
| 812 |
|
/// \param graph The graph.
|
| 813 |
|
/// \retval cutMap A writable edge map. The values will be set true when
|
| 814 |
|
/// the node separate two or more components.
|
|
854 |
/// The bi-node-connected components are the classes of an equivalence
|
|
855 |
/// relation on the edges of a undirected graph. Two edges are in the
|
|
856 |
/// same class if they are on same circle.
|
|
857 |
/// The bi-node-connected components are separted by the cut nodes of
|
|
858 |
/// the components.
|
|
859 |
///
|
|
860 |
/// \param graph The undirected graph.
|
|
861 |
/// \retval cutMap A writable node map. The values will be set to
|
|
862 |
/// \c true for the nodes that separate two or more components
|
|
863 |
/// (exactly once for each cut node), and will not be changed for
|
|
864 |
/// other nodes.
|
| 815 |
865 |
/// \return The number of the cut nodes.
|
|
866 |
///
|
|
867 |
/// \see biNodeConnected(), biNodeConnectedComponents()
|
| 816 |
868 |
template <typename Graph, typename NodeMap>
|
| 817 |
869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 818 |
870 |
checkConcept<concepts::Graph, Graph>();
|
| 819 |
871 |
typedef typename Graph::Node Node;
|
| 820 |
872 |
typedef typename Graph::NodeIt NodeIt;
|
| 821 |
873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
|
| 822 |
874 |
|
| 823 |
875 |
using namespace _connectivity_bits;
|
| 824 |
876 |
|
| 825 |
877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
|
| 826 |
878 |
|
| 827 |
879 |
int cutNum = 0;
|
| ... |
... |
@@ -1022,48 +1074,55 @@
|
| 1022 |
1074 |
typename Digraph::template NodeMap<int> _numMap;
|
| 1023 |
1075 |
typename Digraph::template NodeMap<int> _retMap;
|
| 1024 |
1076 |
typename Digraph::template NodeMap<Arc> _predMap;
|
| 1025 |
1077 |
int _num;
|
| 1026 |
1078 |
};
|
| 1027 |
1079 |
}
|
| 1028 |
1080 |
|
| 1029 |
1081 |
template <typename Graph>
|
| 1030 |
1082 |
int countBiEdgeConnectedComponents(const Graph& graph);
|
| 1031 |
1083 |
|
| 1032 |
1084 |
/// \ingroup graph_properties
|
| 1033 |
1085 |
///
|
| 1034 |
|
/// \brief Checks that the graph is bi-edge-connected.
|
|
1086 |
/// \brief Check whether an undirected graph is bi-edge-connected.
|
| 1035 |
1087 |
///
|
| 1036 |
|
/// This function checks that the graph is bi-edge-connected. The undirected
|
| 1037 |
|
/// graph is bi-edge-connected when any two nodes are connected with two
|
| 1038 |
|
/// edge-disjoint paths.
|
|
1088 |
/// This function checks whether the given undirected graph is
|
|
1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least
|
|
1090 |
/// two edge-disjoint paths.
|
| 1039 |
1091 |
///
|
| 1040 |
|
/// \param graph The undirected graph.
|
| 1041 |
|
/// \return The number of components.
|
|
1092 |
/// \return \c true if the graph is bi-edge-connected.
|
|
1093 |
/// \note By definition, the empty graph is bi-edge-connected.
|
|
1094 |
///
|
|
1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents()
|
| 1042 |
1096 |
template <typename Graph>
|
| 1043 |
1097 |
bool biEdgeConnected(const Graph& graph) {
|
| 1044 |
1098 |
return countBiEdgeConnectedComponents(graph) <= 1;
|
| 1045 |
1099 |
}
|
| 1046 |
1100 |
|
| 1047 |
1101 |
/// \ingroup graph_properties
|
| 1048 |
1102 |
///
|
| 1049 |
|
/// \brief Count the bi-edge-connected components.
|
|
1103 |
/// \brief Count the number of bi-edge-connected components of an
|
|
1104 |
/// undirected graph.
|
| 1050 |
1105 |
///
|
| 1051 |
|
/// This function count the bi-edge-connected components in an undirected
|
| 1052 |
|
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1053 |
|
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1054 |
|
/// connected with at least two edge-disjoint paths.
|
|
1106 |
/// This function counts the number of bi-edge-connected components of
|
|
1107 |
/// the given undirected graph.
|
| 1055 |
1108 |
///
|
| 1056 |
|
/// \param graph The undirected graph.
|
| 1057 |
|
/// \return The number of components.
|
|
1109 |
/// The bi-edge-connected components are the classes of an equivalence
|
|
1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
|
1111 |
/// same class if they are connected with at least two edge-disjoint
|
|
1112 |
/// paths.
|
|
1113 |
///
|
|
1114 |
/// \return The number of bi-edge-connected components.
|
|
1115 |
///
|
|
1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents()
|
| 1058 |
1117 |
template <typename Graph>
|
| 1059 |
1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1060 |
1119 |
checkConcept<concepts::Graph, Graph>();
|
| 1061 |
1120 |
typedef typename Graph::NodeIt NodeIt;
|
| 1062 |
1121 |
|
| 1063 |
1122 |
using namespace _connectivity_bits;
|
| 1064 |
1123 |
|
| 1065 |
1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
|
| 1066 |
1125 |
|
| 1067 |
1126 |
int compNum = 0;
|
| 1068 |
1127 |
Visitor visitor(graph, compNum);
|
| 1069 |
1128 |
|
| ... |
... |
@@ -1072,40 +1131,45 @@
|
| 1072 |
1131 |
|
| 1073 |
1132 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1074 |
1133 |
if (!dfs.reached(it)) {
|
| 1075 |
1134 |
dfs.addSource(it);
|
| 1076 |
1135 |
dfs.start();
|
| 1077 |
1136 |
}
|
| 1078 |
1137 |
}
|
| 1079 |
1138 |
return compNum;
|
| 1080 |
1139 |
}
|
| 1081 |
1140 |
|
| 1082 |
1141 |
/// \ingroup graph_properties
|
| 1083 |
1142 |
///
|
| 1084 |
|
/// \brief Find the bi-edge-connected components.
|
|
1143 |
/// \brief Find the bi-edge-connected components of an undirected graph.
|
| 1085 |
1144 |
///
|
| 1086 |
|
/// This function finds the bi-edge-connected components in an undirected
|
| 1087 |
|
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1088 |
|
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1089 |
|
/// connected at least two edge-disjoint paths.
|
|
1145 |
/// This function finds the bi-edge-connected components of the given
|
|
1146 |
/// undirected graph.
|
|
1147 |
///
|
|
1148 |
/// The bi-edge-connected components are the classes of an equivalence
|
|
1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
|
1150 |
/// same class if they are connected with at least two edge-disjoint
|
|
1151 |
/// paths.
|
| 1090 |
1152 |
///
|
| 1091 |
1153 |
/// \image html edge_biconnected_components.png
|
| 1092 |
1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
|
| 1093 |
1155 |
///
|
| 1094 |
|
/// \param graph The graph.
|
|
1156 |
/// \param graph The undirected graph.
|
| 1095 |
1157 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 1096 |
|
/// the number of the biconnected components minus one. Each values
|
| 1097 |
|
/// of the map will be set exactly once, the values of a certain component
|
| 1098 |
|
/// will be set continuously.
|
| 1099 |
|
/// \return The number of components.
|
|
1158 |
/// the number of the bi-edge-connected components minus one. Each value
|
|
1159 |
/// of the map will be set exactly once, and the values of a certain
|
|
1160 |
/// component will be set continuously.
|
|
1161 |
/// \return The number of bi-edge-connected components.
|
|
1162 |
///
|
|
1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents()
|
| 1100 |
1164 |
template <typename Graph, typename NodeMap>
|
| 1101 |
1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1102 |
1166 |
checkConcept<concepts::Graph, Graph>();
|
| 1103 |
1167 |
typedef typename Graph::NodeIt NodeIt;
|
| 1104 |
1168 |
typedef typename Graph::Node Node;
|
| 1105 |
1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 1106 |
1170 |
|
| 1107 |
1171 |
using namespace _connectivity_bits;
|
| 1108 |
1172 |
|
| 1109 |
1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
|
| 1110 |
1174 |
|
| 1111 |
1175 |
int compNum = 0;
|
| ... |
... |
@@ -1116,37 +1180,43 @@
|
| 1116 |
1180 |
|
| 1117 |
1181 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1118 |
1182 |
if (!dfs.reached(it)) {
|
| 1119 |
1183 |
dfs.addSource(it);
|
| 1120 |
1184 |
dfs.start();
|
| 1121 |
1185 |
}
|
| 1122 |
1186 |
}
|
| 1123 |
1187 |
return compNum;
|
| 1124 |
1188 |
}
|
| 1125 |
1189 |
|
| 1126 |
1190 |
/// \ingroup graph_properties
|
| 1127 |
1191 |
///
|
| 1128 |
|
/// \brief Find the bi-edge-connected cut edges.
|
|
1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph.
|
| 1129 |
1193 |
///
|
| 1130 |
|
/// This function finds the bi-edge-connected components in an undirected
|
| 1131 |
|
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1132 |
|
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1133 |
|
/// connected with at least two edge-disjoint paths. The bi-edge-connected
|
| 1134 |
|
/// components are separted by edges which are the cut edges of the
|
| 1135 |
|
/// components.
|
|
1194 |
/// This function finds the bi-edge-connected cut edges in the given
|
|
1195 |
/// undirected graph.
|
| 1136 |
1196 |
///
|
| 1137 |
|
/// \param graph The graph.
|
| 1138 |
|
/// \retval cutMap A writable node map. The values will be set true when the
|
| 1139 |
|
/// edge is a cut edge.
|
|
1197 |
/// The bi-edge-connected components are the classes of an equivalence
|
|
1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the
|
|
1199 |
/// same class if they are connected with at least two edge-disjoint
|
|
1200 |
/// paths.
|
|
1201 |
/// The bi-edge-connected components are separted by the cut edges of
|
|
1202 |
/// the components.
|
|
1203 |
///
|
|
1204 |
/// \param graph The undirected graph.
|
|
1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true
|
|
1206 |
/// for the cut edges (exactly once for each cut edge), and will not be
|
|
1207 |
/// changed for other edges.
|
| 1140 |
1208 |
/// \return The number of cut edges.
|
|
1209 |
///
|
|
1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents()
|
| 1141 |
1211 |
template <typename Graph, typename EdgeMap>
|
| 1142 |
1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1143 |
1213 |
checkConcept<concepts::Graph, Graph>();
|
| 1144 |
1214 |
typedef typename Graph::NodeIt NodeIt;
|
| 1145 |
1215 |
typedef typename Graph::Edge Edge;
|
| 1146 |
1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
|
| 1147 |
1217 |
|
| 1148 |
1218 |
using namespace _connectivity_bits;
|
| 1149 |
1219 |
|
| 1150 |
1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
|
| 1151 |
1221 |
|
| 1152 |
1222 |
int cutNum = 0;
|
| ... |
... |
@@ -1180,77 +1250,120 @@
|
| 1180 |
1250 |
_order.set(node, --_num);
|
| 1181 |
1251 |
}
|
| 1182 |
1252 |
|
| 1183 |
1253 |
private:
|
| 1184 |
1254 |
IntNodeMap& _order;
|
| 1185 |
1255 |
int _num;
|
| 1186 |
1256 |
};
|
| 1187 |
1257 |
|
| 1188 |
1258 |
}
|
| 1189 |
1259 |
|
| 1190 |
1260 |
/// \ingroup graph_properties
|
| 1191 |
1261 |
///
|
|
1262 |
/// \brief Check whether a digraph is DAG.
|
|
1263 |
///
|
|
1264 |
/// This function checks whether the given digraph is DAG, i.e.
|
|
1265 |
/// \e Directed \e Acyclic \e Graph.
|
|
1266 |
/// \return \c true if there is no directed cycle in the digraph.
|
|
1267 |
/// \see acyclic()
|
|
1268 |
template <typename Digraph>
|
|
1269 |
bool dag(const Digraph& digraph) {
|
|
1270 |
|
|
1271 |
checkConcept<concepts::Digraph, Digraph>();
|
|
1272 |
|
|
1273 |
typedef typename Digraph::Node Node;
|
|
1274 |
typedef typename Digraph::NodeIt NodeIt;
|
|
1275 |
typedef typename Digraph::Arc Arc;
|
|
1276 |
|
|
1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
|
|
1278 |
|
|
1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
|
|
1280 |
Create dfs(digraph);
|
|
1281 |
|
|
1282 |
ProcessedMap processed(digraph);
|
|
1283 |
dfs.processedMap(processed);
|
|
1284 |
|
|
1285 |
dfs.init();
|
|
1286 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
1287 |
if (!dfs.reached(it)) {
|
|
1288 |
dfs.addSource(it);
|
|
1289 |
while (!dfs.emptyQueue()) {
|
|
1290 |
Arc arc = dfs.nextArc();
|
|
1291 |
Node target = digraph.target(arc);
|
|
1292 |
if (dfs.reached(target) && !processed[target]) {
|
|
1293 |
return false;
|
|
1294 |
}
|
|
1295 |
dfs.processNextArc();
|
|
1296 |
}
|
|
1297 |
}
|
|
1298 |
}
|
|
1299 |
return true;
|
|
1300 |
}
|
|
1301 |
|
|
1302 |
/// \ingroup graph_properties
|
|
1303 |
///
|
| 1192 |
1304 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
| 1193 |
1305 |
///
|
| 1194 |
|
/// Sort the nodes of a DAG into topolgical order.
|
|
1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG)
|
|
1307 |
/// into topolgical order.
|
| 1195 |
1308 |
///
|
| 1196 |
|
/// \param graph The graph. It must be directed and acyclic.
|
|
1309 |
/// \param digraph The digraph, which must be DAG.
|
| 1197 |
1310 |
/// \retval order A writable node map. The values will be set from 0 to
|
| 1198 |
|
/// the number of the nodes in the graph minus one. Each values of the map
|
| 1199 |
|
/// will be set exactly once, the values will be set descending order.
|
|
1311 |
/// the number of the nodes in the digraph minus one. Each value of the
|
|
1312 |
/// map will be set exactly once, and the values will be set descending
|
|
1313 |
/// order.
|
| 1200 |
1314 |
///
|
| 1201 |
|
/// \see checkedTopologicalSort
|
| 1202 |
|
/// \see dag
|
|
1315 |
/// \see dag(), checkedTopologicalSort()
|
| 1203 |
1316 |
template <typename Digraph, typename NodeMap>
|
| 1204 |
|
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
|
1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1205 |
1318 |
using namespace _connectivity_bits;
|
| 1206 |
1319 |
|
| 1207 |
1320 |
checkConcept<concepts::Digraph, Digraph>();
|
| 1208 |
1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
|
| 1209 |
1322 |
|
| 1210 |
1323 |
typedef typename Digraph::Node Node;
|
| 1211 |
1324 |
typedef typename Digraph::NodeIt NodeIt;
|
| 1212 |
1325 |
typedef typename Digraph::Arc Arc;
|
| 1213 |
1326 |
|
| 1214 |
1327 |
TopologicalSortVisitor<Digraph, NodeMap>
|
| 1215 |
|
visitor(order, countNodes(graph));
|
|
1328 |
visitor(order, countNodes(digraph));
|
| 1216 |
1329 |
|
| 1217 |
1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
| 1218 |
|
dfs(graph, visitor);
|
|
1331 |
dfs(digraph, visitor);
|
| 1219 |
1332 |
|
| 1220 |
1333 |
dfs.init();
|
| 1221 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1222 |
1335 |
if (!dfs.reached(it)) {
|
| 1223 |
1336 |
dfs.addSource(it);
|
| 1224 |
1337 |
dfs.start();
|
| 1225 |
1338 |
}
|
| 1226 |
1339 |
}
|
| 1227 |
1340 |
}
|
| 1228 |
1341 |
|
| 1229 |
1342 |
/// \ingroup graph_properties
|
| 1230 |
1343 |
///
|
| 1231 |
1344 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
| 1232 |
1345 |
///
|
| 1233 |
|
/// Sort the nodes of a DAG into topolgical order. It also checks
|
| 1234 |
|
/// that the given graph is DAG.
|
|
1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG)
|
|
1347 |
/// into topolgical order and also checks whether the given digraph
|
|
1348 |
/// is DAG.
|
| 1235 |
1349 |
///
|
| 1236 |
|
/// \param digraph The graph. It must be directed and acyclic.
|
| 1237 |
|
/// \retval order A readable - writable node map. The values will be set
|
| 1238 |
|
/// from 0 to the number of the nodes in the graph minus one. Each values
|
| 1239 |
|
/// of the map will be set exactly once, the values will be set descending
|
| 1240 |
|
/// order.
|
| 1241 |
|
/// \return \c false when the graph is not DAG.
|
|
1350 |
/// \param digraph The digraph.
|
|
1351 |
/// \retval order A readable and writable node map. The values will be
|
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one.
|
|
1353 |
/// Each value of the map will be set exactly once, and the values will
|
|
1354 |
/// be set descending order.
|
|
1355 |
/// \return \c false if the digraph is not DAG.
|
| 1242 |
1356 |
///
|
| 1243 |
|
/// \see topologicalSort
|
| 1244 |
|
/// \see dag
|
|
1357 |
/// \see dag(), topologicalSort()
|
| 1245 |
1358 |
template <typename Digraph, typename NodeMap>
|
| 1246 |
1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1247 |
1360 |
using namespace _connectivity_bits;
|
| 1248 |
1361 |
|
| 1249 |
1362 |
checkConcept<concepts::Digraph, Digraph>();
|
| 1250 |
1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
|
| 1251 |
1364 |
NodeMap>();
|
| 1252 |
1365 |
|
| 1253 |
1366 |
typedef typename Digraph::Node Node;
|
| 1254 |
1367 |
typedef typename Digraph::NodeIt NodeIt;
|
| 1255 |
1368 |
typedef typename Digraph::Arc Arc;
|
| 1256 |
1369 |
|
| ... |
... |
@@ -1274,120 +1387,78 @@
|
| 1274 |
1387 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1275 |
1388 |
return false;
|
| 1276 |
1389 |
}
|
| 1277 |
1390 |
dfs.processNextArc();
|
| 1278 |
1391 |
}
|
| 1279 |
1392 |
}
|
| 1280 |
1393 |
}
|
| 1281 |
1394 |
return true;
|
| 1282 |
1395 |
}
|
| 1283 |
1396 |
|
| 1284 |
1397 |
/// \ingroup graph_properties
|
| 1285 |
1398 |
///
|
| 1286 |
|
/// \brief Check that the given directed graph is a DAG.
|
|
1399 |
/// \brief Check whether an undirected graph is acyclic.
|
| 1287 |
1400 |
///
|
| 1288 |
|
/// Check that the given directed graph is a DAG. The DAG is
|
| 1289 |
|
/// an Directed Acyclic Digraph.
|
| 1290 |
|
/// \return \c false when the graph is not DAG.
|
| 1291 |
|
/// \see acyclic
|
| 1292 |
|
template <typename Digraph>
|
| 1293 |
|
bool dag(const Digraph& digraph) {
|
| 1294 |
|
|
| 1295 |
|
checkConcept<concepts::Digraph, Digraph>();
|
| 1296 |
|
|
| 1297 |
|
typedef typename Digraph::Node Node;
|
| 1298 |
|
typedef typename Digraph::NodeIt NodeIt;
|
| 1299 |
|
typedef typename Digraph::Arc Arc;
|
| 1300 |
|
|
| 1301 |
|
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
|
| 1302 |
|
|
| 1303 |
|
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
|
| 1304 |
|
Create dfs(digraph);
|
| 1305 |
|
|
| 1306 |
|
ProcessedMap processed(digraph);
|
| 1307 |
|
dfs.processedMap(processed);
|
| 1308 |
|
|
| 1309 |
|
dfs.init();
|
| 1310 |
|
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1311 |
|
if (!dfs.reached(it)) {
|
| 1312 |
|
dfs.addSource(it);
|
| 1313 |
|
while (!dfs.emptyQueue()) {
|
| 1314 |
|
Arc edge = dfs.nextArc();
|
| 1315 |
|
Node target = digraph.target(edge);
|
| 1316 |
|
if (dfs.reached(target) && !processed[target]) {
|
| 1317 |
|
return false;
|
| 1318 |
|
}
|
| 1319 |
|
dfs.processNextArc();
|
| 1320 |
|
}
|
| 1321 |
|
}
|
| 1322 |
|
}
|
| 1323 |
|
return true;
|
| 1324 |
|
}
|
| 1325 |
|
|
| 1326 |
|
/// \ingroup graph_properties
|
| 1327 |
|
///
|
| 1328 |
|
/// \brief Check that the given undirected graph is acyclic.
|
| 1329 |
|
///
|
| 1330 |
|
/// Check that the given undirected graph acyclic.
|
| 1331 |
|
/// \param graph The undirected graph.
|
| 1332 |
|
/// \return \c true when there is no circle in the graph.
|
| 1333 |
|
/// \see dag
|
|
1401 |
/// This function checks whether the given undirected graph is acyclic.
|
|
1402 |
/// \return \c true if there is no cycle in the graph.
|
|
1403 |
/// \see dag()
|
| 1334 |
1404 |
template <typename Graph>
|
| 1335 |
1405 |
bool acyclic(const Graph& graph) {
|
| 1336 |
1406 |
checkConcept<concepts::Graph, Graph>();
|
| 1337 |
1407 |
typedef typename Graph::Node Node;
|
| 1338 |
1408 |
typedef typename Graph::NodeIt NodeIt;
|
| 1339 |
1409 |
typedef typename Graph::Arc Arc;
|
| 1340 |
1410 |
Dfs<Graph> dfs(graph);
|
| 1341 |
1411 |
dfs.init();
|
| 1342 |
1412 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1343 |
1413 |
if (!dfs.reached(it)) {
|
| 1344 |
1414 |
dfs.addSource(it);
|
| 1345 |
1415 |
while (!dfs.emptyQueue()) {
|
| 1346 |
|
Arc edge = dfs.nextArc();
|
| 1347 |
|
Node source = graph.source(edge);
|
| 1348 |
|
Node target = graph.target(edge);
|
|
1416 |
Arc arc = dfs.nextArc();
|
|
1417 |
Node source = graph.source(arc);
|
|
1418 |
Node target = graph.target(arc);
|
| 1349 |
1419 |
if (dfs.reached(target) &&
|
| 1350 |
|
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
|
1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
| 1351 |
1421 |
return false;
|
| 1352 |
1422 |
}
|
| 1353 |
1423 |
dfs.processNextArc();
|
| 1354 |
1424 |
}
|
| 1355 |
1425 |
}
|
| 1356 |
1426 |
}
|
| 1357 |
1427 |
return true;
|
| 1358 |
1428 |
}
|
| 1359 |
1429 |
|
| 1360 |
1430 |
/// \ingroup graph_properties
|
| 1361 |
1431 |
///
|
| 1362 |
|
/// \brief Check that the given undirected graph is tree.
|
|
1432 |
/// \brief Check whether an undirected graph is tree.
|
| 1363 |
1433 |
///
|
| 1364 |
|
/// Check that the given undirected graph is tree.
|
| 1365 |
|
/// \param graph The undirected graph.
|
| 1366 |
|
/// \return \c true when the graph is acyclic and connected.
|
|
1434 |
/// This function checks whether the given undirected graph is tree.
|
|
1435 |
/// \return \c true if the graph is acyclic and connected.
|
|
1436 |
/// \see acyclic(), connected()
|
| 1367 |
1437 |
template <typename Graph>
|
| 1368 |
1438 |
bool tree(const Graph& graph) {
|
| 1369 |
1439 |
checkConcept<concepts::Graph, Graph>();
|
| 1370 |
1440 |
typedef typename Graph::Node Node;
|
| 1371 |
1441 |
typedef typename Graph::NodeIt NodeIt;
|
| 1372 |
1442 |
typedef typename Graph::Arc Arc;
|
|
1443 |
if (NodeIt(graph) == INVALID) return true;
|
| 1373 |
1444 |
Dfs<Graph> dfs(graph);
|
| 1374 |
1445 |
dfs.init();
|
| 1375 |
1446 |
dfs.addSource(NodeIt(graph));
|
| 1376 |
1447 |
while (!dfs.emptyQueue()) {
|
| 1377 |
|
Arc edge = dfs.nextArc();
|
| 1378 |
|
Node source = graph.source(edge);
|
| 1379 |
|
Node target = graph.target(edge);
|
|
1448 |
Arc arc = dfs.nextArc();
|
|
1449 |
Node source = graph.source(arc);
|
|
1450 |
Node target = graph.target(arc);
|
| 1380 |
1451 |
if (dfs.reached(target) &&
|
| 1381 |
|
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
|
1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
| 1382 |
1453 |
return false;
|
| 1383 |
1454 |
}
|
| 1384 |
1455 |
dfs.processNextArc();
|
| 1385 |
1456 |
}
|
| 1386 |
1457 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1387 |
1458 |
if (!dfs.reached(it)) {
|
| 1388 |
1459 |
return false;
|
| 1389 |
1460 |
}
|
| 1390 |
1461 |
}
|
| 1391 |
1462 |
return true;
|
| 1392 |
1463 |
}
|
| 1393 |
1464 |
|
| ... |
... |
@@ -1442,33 +1513,32 @@
|
| 1442 |
1513 |
}
|
| 1443 |
1514 |
|
| 1444 |
1515 |
private:
|
| 1445 |
1516 |
|
| 1446 |
1517 |
const Digraph& _graph;
|
| 1447 |
1518 |
PartMap& _part;
|
| 1448 |
1519 |
bool& _bipartite;
|
| 1449 |
1520 |
};
|
| 1450 |
1521 |
}
|
| 1451 |
1522 |
|
| 1452 |
1523 |
/// \ingroup graph_properties
|
| 1453 |
1524 |
///
|
| 1454 |
|
/// \brief Check if the given undirected graph is bipartite or not
|
|
1525 |
/// \brief Check whether an undirected graph is bipartite.
|
| 1455 |
1526 |
///
|
| 1456 |
|
/// The function checks if the given undirected \c graph graph is bipartite
|
| 1457 |
|
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
| 1458 |
|
/// \param graph The undirected graph.
|
| 1459 |
|
/// \return \c true if \c graph is bipartite, \c false otherwise.
|
| 1460 |
|
/// \sa bipartitePartitions
|
|
1527 |
/// The function checks whether the given undirected graph is bipartite.
|
|
1528 |
/// \return \c true if the graph is bipartite.
|
|
1529 |
///
|
|
1530 |
/// \see bipartitePartitions()
|
| 1461 |
1531 |
template<typename Graph>
|
| 1462 |
|
inline bool bipartite(const Graph &graph){
|
|
1532 |
bool bipartite(const Graph &graph){
|
| 1463 |
1533 |
using namespace _connectivity_bits;
|
| 1464 |
1534 |
|
| 1465 |
1535 |
checkConcept<concepts::Graph, Graph>();
|
| 1466 |
1536 |
|
| 1467 |
1537 |
typedef typename Graph::NodeIt NodeIt;
|
| 1468 |
1538 |
typedef typename Graph::ArcIt ArcIt;
|
| 1469 |
1539 |
|
| 1470 |
1540 |
bool bipartite = true;
|
| 1471 |
1541 |
|
| 1472 |
1542 |
BipartiteVisitor<Graph>
|
| 1473 |
1543 |
visitor(graph, bipartite);
|
| 1474 |
1544 |
BfsVisit<Graph, BipartiteVisitor<Graph> >
|
| ... |
... |
@@ -1479,109 +1549,117 @@
|
| 1479 |
1549 |
bfs.addSource(it);
|
| 1480 |
1550 |
while (!bfs.emptyQueue()) {
|
| 1481 |
1551 |
bfs.processNextNode();
|
| 1482 |
1552 |
if (!bipartite) return false;
|
| 1483 |
1553 |
}
|
| 1484 |
1554 |
}
|
| 1485 |
1555 |
}
|
| 1486 |
1556 |
return true;
|
| 1487 |
1557 |
}
|
| 1488 |
1558 |
|
| 1489 |
1559 |
/// \ingroup graph_properties
|
| 1490 |
1560 |
///
|
| 1491 |
|
/// \brief Check if the given undirected graph is bipartite or not
|
|
1561 |
/// \brief Find the bipartite partitions of an undirected graph.
|
| 1492 |
1562 |
///
|
| 1493 |
|
/// The function checks if the given undirected graph is bipartite
|
| 1494 |
|
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
| 1495 |
|
/// During the execution, the \c partMap will be set as the two
|
| 1496 |
|
/// partitions of the graph.
|
|
1563 |
/// This function checks whether the given undirected graph is bipartite
|
|
1564 |
/// and gives back the bipartite partitions.
|
| 1497 |
1565 |
///
|
| 1498 |
1566 |
/// \image html bipartite_partitions.png
|
| 1499 |
1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth
|
| 1500 |
1568 |
///
|
| 1501 |
1569 |
/// \param graph The undirected graph.
|
| 1502 |
|
/// \retval partMap A writable bool map of nodes. It will be set as the
|
| 1503 |
|
/// two partitions of the graph.
|
| 1504 |
|
/// \return \c true if \c graph is bipartite, \c false otherwise.
|
|
1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value
|
|
1571 |
/// type. The values will be set to \c true for one component and
|
|
1572 |
/// \c false for the other one.
|
|
1573 |
/// \return \c true if the graph is bipartite, \c false otherwise.
|
|
1574 |
///
|
|
1575 |
/// \see bipartite()
|
| 1505 |
1576 |
template<typename Graph, typename NodeMap>
|
| 1506 |
|
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
|
1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
| 1507 |
1578 |
using namespace _connectivity_bits;
|
| 1508 |
1579 |
|
| 1509 |
1580 |
checkConcept<concepts::Graph, Graph>();
|
|
1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>();
|
| 1510 |
1582 |
|
| 1511 |
1583 |
typedef typename Graph::Node Node;
|
| 1512 |
1584 |
typedef typename Graph::NodeIt NodeIt;
|
| 1513 |
1585 |
typedef typename Graph::ArcIt ArcIt;
|
| 1514 |
1586 |
|
| 1515 |
1587 |
bool bipartite = true;
|
| 1516 |
1588 |
|
| 1517 |
1589 |
BipartitePartitionsVisitor<Graph, NodeMap>
|
| 1518 |
1590 |
visitor(graph, partMap, bipartite);
|
| 1519 |
1591 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
|
| 1520 |
1592 |
bfs(graph, visitor);
|
| 1521 |
1593 |
bfs.init();
|
| 1522 |
1594 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1523 |
1595 |
if(!bfs.reached(it)){
|
| 1524 |
1596 |
bfs.addSource(it);
|
| 1525 |
1597 |
while (!bfs.emptyQueue()) {
|
| 1526 |
1598 |
bfs.processNextNode();
|
| 1527 |
1599 |
if (!bipartite) return false;
|
| 1528 |
1600 |
}
|
| 1529 |
1601 |
}
|
| 1530 |
1602 |
}
|
| 1531 |
1603 |
return true;
|
| 1532 |
1604 |
}
|
| 1533 |
1605 |
|
| 1534 |
|
/// \brief Returns true when there are not loop edges in the graph.
|
|
1606 |
/// \ingroup graph_properties
|
| 1535 |
1607 |
///
|
| 1536 |
|
/// Returns true when there are not loop edges in the graph.
|
| 1537 |
|
template <typename Digraph>
|
| 1538 |
|
bool loopFree(const Digraph& digraph) {
|
| 1539 |
|
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
| 1540 |
|
if (digraph.source(it) == digraph.target(it)) return false;
|
|
1608 |
/// \brief Check whether the given graph contains no loop arcs/edges.
|
|
1609 |
///
|
|
1610 |
/// This function returns \c true if there are no loop arcs/edges in
|
|
1611 |
/// the given graph. It works for both directed and undirected graphs.
|
|
1612 |
template <typename Graph>
|
|
1613 |
bool loopFree(const Graph& graph) {
|
|
1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
|
|
1615 |
if (graph.source(it) == graph.target(it)) return false;
|
| 1541 |
1616 |
}
|
| 1542 |
1617 |
return true;
|
| 1543 |
1618 |
}
|
| 1544 |
1619 |
|
| 1545 |
|
/// \brief Returns true when there are not parallel edges in the graph.
|
|
1620 |
/// \ingroup graph_properties
|
| 1546 |
1621 |
///
|
| 1547 |
|
/// Returns true when there are not parallel edges in the graph.
|
| 1548 |
|
template <typename Digraph>
|
| 1549 |
|
bool parallelFree(const Digraph& digraph) {
|
| 1550 |
|
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
| 1551 |
|
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 1552 |
|
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1553 |
|
if (reached[digraph.target(a)]) return false;
|
| 1554 |
|
reached.set(digraph.target(a), true);
|
|
1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges.
|
|
1623 |
///
|
|
1624 |
/// This function returns \c true if there are no parallel arcs/edges in
|
|
1625 |
/// the given graph. It works for both directed and undirected graphs.
|
|
1626 |
template <typename Graph>
|
|
1627 |
bool parallelFree(const Graph& graph) {
|
|
1628 |
typename Graph::template NodeMap<int> reached(graph, 0);
|
|
1629 |
int cnt = 1;
|
|
1630 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
1631 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
|
1632 |
if (reached[graph.target(a)] == cnt) return false;
|
|
1633 |
reached[graph.target(a)] = cnt;
|
| 1555 |
1634 |
}
|
| 1556 |
|
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1557 |
|
reached.set(digraph.target(a), false);
|
| 1558 |
|
}
|
|
1635 |
++cnt;
|
| 1559 |
1636 |
}
|
| 1560 |
1637 |
return true;
|
| 1561 |
1638 |
}
|
| 1562 |
1639 |
|
| 1563 |
|
/// \brief Returns true when there are not loop edges and parallel
|
| 1564 |
|
/// edges in the graph.
|
|
1640 |
/// \ingroup graph_properties
|
| 1565 |
1641 |
///
|
| 1566 |
|
/// Returns true when there are not loop edges and parallel edges in
|
| 1567 |
|
/// the graph.
|
| 1568 |
|
template <typename Digraph>
|
| 1569 |
|
bool simpleDigraph(const Digraph& digraph) {
|
| 1570 |
|
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
| 1571 |
|
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 1572 |
|
reached.set(n, true);
|
| 1573 |
|
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1574 |
|
if (reached[digraph.target(a)]) return false;
|
| 1575 |
|
reached.set(digraph.target(a), true);
|
|
1642 |
/// \brief Check whether the given graph is simple.
|
|
1643 |
///
|
|
1644 |
/// This function returns \c true if the given graph is simple, i.e.
|
|
1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges.
|
|
1646 |
/// The function works for both directed and undirected graphs.
|
|
1647 |
/// \see loopFree(), parallelFree()
|
|
1648 |
template <typename Graph>
|
|
1649 |
bool simpleGraph(const Graph& graph) {
|
|
1650 |
typename Graph::template NodeMap<int> reached(graph, 0);
|
|
1651 |
int cnt = 1;
|
|
1652 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
1653 |
reached[n] = cnt;
|
|
1654 |
for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) {
|
|
1655 |
if (reached[graph.target(a)] == cnt) return false;
|
|
1656 |
reached[graph.target(a)] = cnt;
|
| 1576 |
1657 |
}
|
| 1577 |
|
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1578 |
|
reached.set(digraph.target(a), false);
|
| 1579 |
|
}
|
| 1580 |
|
reached.set(n, false);
|
|
1658 |
++cnt;
|
| 1581 |
1659 |
}
|
| 1582 |
1660 |
return true;
|
| 1583 |
1661 |
}
|
| 1584 |
1662 |
|
| 1585 |
1663 |
} //namespace lemon
|
| 1586 |
1664 |
|
| 1587 |
1665 |
#endif //LEMON_CONNECTIVITY_H
|