| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <fstream> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/list_graph.h> |
| 23 | 23 |
#include <lemon/lgf_reader.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/network_simplex.h> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/concepts/digraph.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
|
| 30 | 30 |
#include "test_tools.h" |
| 31 | 31 |
|
| 32 | 32 |
using namespace lemon; |
| 33 | 33 |
|
| 34 | 34 |
char test_lgf[] = |
| 35 | 35 |
"@nodes\n" |
| 36 | 36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
| 37 | 37 |
" 1 20 27 0 20 30\n" |
| 38 | 38 |
" 2 -4 0 0 -8 -3\n" |
| 39 | 39 |
" 3 0 0 0 0 0\n" |
| 40 | 40 |
" 4 0 0 0 0 0\n" |
| 41 | 41 |
" 5 9 0 0 6 11\n" |
| 42 | 42 |
" 6 -6 0 0 -5 -6\n" |
| 43 | 43 |
" 7 0 0 0 0 0\n" |
| 44 | 44 |
" 8 0 0 0 0 3\n" |
| 45 | 45 |
" 9 3 0 0 0 0\n" |
| 46 | 46 |
" 10 -2 0 0 -7 -2\n" |
| 47 | 47 |
" 11 0 0 0 -10 0\n" |
| 48 | 48 |
" 12 -20 -27 0 -30 -20\n" |
| 49 | 49 |
"\n" |
| 50 | 50 |
"@arcs\n" |
| 51 | 51 |
" cost cap low1 low2\n" |
| 52 | 52 |
" 1 2 70 11 0 8\n" |
| 53 | 53 |
" 1 3 150 3 0 1\n" |
| 54 | 54 |
" 1 4 80 15 0 2\n" |
| 55 | 55 |
" 2 8 80 12 0 0\n" |
| 56 | 56 |
" 3 5 140 5 0 3\n" |
| 57 | 57 |
" 4 6 60 10 0 1\n" |
| 58 | 58 |
" 4 7 80 2 0 0\n" |
| 59 | 59 |
" 4 8 110 3 0 0\n" |
| 60 | 60 |
" 5 7 60 14 0 0\n" |
| 61 | 61 |
" 5 11 120 12 0 0\n" |
| 62 | 62 |
" 6 3 0 3 0 0\n" |
| 63 | 63 |
" 6 9 140 4 0 0\n" |
| 64 | 64 |
" 6 10 90 8 0 0\n" |
| 65 | 65 |
" 7 1 30 5 0 0\n" |
| 66 | 66 |
" 8 12 60 16 0 4\n" |
| 67 | 67 |
" 9 12 50 6 0 0\n" |
| 68 | 68 |
"10 12 70 13 0 5\n" |
| 69 | 69 |
"10 2 100 7 0 0\n" |
| 70 | 70 |
"10 7 60 10 0 0\n" |
| 71 | 71 |
"11 10 20 14 0 6\n" |
| 72 | 72 |
"12 11 30 10 0 0\n" |
| 73 | 73 |
"\n" |
| 74 | 74 |
"@attributes\n" |
| 75 | 75 |
"source 1\n" |
| 76 | 76 |
"target 12\n"; |
| 77 | 77 |
|
| 78 | 78 |
|
| 79 | 79 |
enum ProblemType {
|
| 80 | 80 |
EQ, |
| 81 | 81 |
GEQ, |
| 82 | 82 |
LEQ |
| 83 | 83 |
}; |
| 84 | 84 |
|
| 85 | 85 |
// Check the interface of an MCF algorithm |
| 86 | 86 |
template <typename GR, typename Flow, typename Cost> |
| 87 | 87 |
class McfClassConcept |
| 88 | 88 |
{
|
| 89 | 89 |
public: |
| 90 | 90 |
|
| 91 | 91 |
template <typename MCF> |
| 92 | 92 |
struct Constraints {
|
| 93 | 93 |
void constraints() {
|
| 94 | 94 |
checkConcept<concepts::Digraph, GR>(); |
| 95 | 95 |
|
| 96 | 96 |
MCF mcf(g); |
| 97 | 97 |
|
| 98 | 98 |
b = mcf.reset() |
| 99 | 99 |
.lowerMap(lower) |
| 100 | 100 |
.upperMap(upper) |
| 101 | 101 |
.capacityMap(upper) |
| 102 | 102 |
.boundMaps(lower, upper) |
| 103 | 103 |
.costMap(cost) |
| 104 | 104 |
.supplyMap(sup) |
| 105 | 105 |
.stSupply(n, n, k) |
| 106 | 106 |
.flowMap(flow) |
| 107 | 107 |
.potentialMap(pot) |
| 108 | 108 |
.run(); |
| 109 | 109 |
|
| 110 | 110 |
const MCF& const_mcf = mcf; |
| 111 | 111 |
|
| 112 | 112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
| 113 | 113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
| 114 | 114 |
|
| 115 | 115 |
v = const_mcf.totalCost(); |
| 116 | 116 |
double x = const_mcf.template totalCost<double>(); |
| 117 | 117 |
v = const_mcf.flow(a); |
| 118 | 118 |
v = const_mcf.potential(n); |
| 119 | 119 |
|
| 120 | 120 |
ignore_unused_variable_warning(fm); |
| 121 | 121 |
ignore_unused_variable_warning(pm); |
| 122 | 122 |
ignore_unused_variable_warning(x); |
| 123 | 123 |
} |
| 124 | 124 |
|
| 125 | 125 |
typedef typename GR::Node Node; |
| 126 | 126 |
typedef typename GR::Arc Arc; |
| 127 | 127 |
typedef concepts::ReadMap<Node, Flow> NM; |
| 128 | 128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
| 129 | 129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
| 130 | 130 |
|
| 131 | 131 |
const GR &g; |
| 132 | 132 |
const FAM &lower; |
| 133 | 133 |
const FAM &upper; |
| 134 | 134 |
const CAM &cost; |
| 135 | 135 |
const NM ⊃ |
| 136 | 136 |
const Node &n; |
| 137 | 137 |
const Arc &a; |
| 138 | 138 |
const Flow &k; |
| 139 | 139 |
Flow v; |
| 140 | 140 |
bool b; |
| 141 | 141 |
|
| 142 | 142 |
typename MCF::FlowMap &flow; |
| 143 | 143 |
typename MCF::PotentialMap &pot; |
| 144 | 144 |
}; |
| 145 | 145 |
|
| 146 | 146 |
}; |
| 147 | 147 |
|
| 148 | 148 |
|
| 149 | 149 |
// Check the feasibility of the given flow (primal soluiton) |
| 150 | 150 |
template < typename GR, typename LM, typename UM, |
| 151 | 151 |
typename SM, typename FM > |
| 152 | 152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
| 153 | 153 |
const SM& supply, const FM& flow, |
| 154 | 154 |
ProblemType type = EQ ) |
| 155 | 155 |
{
|
| 156 | 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 157 | 157 |
|
| 158 | 158 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
| 159 | 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
| 160 | 160 |
} |
| 161 | 161 |
|
| 162 | 162 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
| 163 | 163 |
typename SM::Value sum = 0; |
| 164 | 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 165 | 165 |
sum += flow[e]; |
| 166 | 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 167 | 167 |
sum -= flow[e]; |
| 168 | 168 |
bool b = (type == EQ && sum == supply[n]) || |
| 169 | 169 |
(type == GEQ && sum >= supply[n]) || |
| 170 | 170 |
(type == LEQ && sum <= supply[n]); |
| 171 | 171 |
if (!b) return false; |
| 172 | 172 |
} |
| 173 | 173 |
|
| 174 | 174 |
return true; |
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 | 177 |
// Check the feasibility of the given potentials (dual soluiton) |
| 178 | 178 |
// using the "Complementary Slackness" optimality condition |
| 179 | 179 |
template < typename GR, typename LM, typename UM, |
| 180 | 180 |
typename CM, typename SM, typename FM, typename PM > |
| 181 | 181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
| 182 | 182 |
const CM& cost, const SM& supply, const FM& flow, |
| 183 | 183 |
const PM& pi ) |
| 184 | 184 |
{
|
| 185 | 185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 186 | 186 |
|
| 187 | 187 |
bool opt = true; |
| 188 | 188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
| 189 | 189 |
typename CM::Value red_cost = |
| 190 | 190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
| 191 | 191 |
opt = red_cost == 0 || |
| 192 | 192 |
(red_cost > 0 && flow[e] == lower[e]) || |
| 193 | 193 |
(red_cost < 0 && flow[e] == upper[e]); |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) {
|
| 197 | 197 |
typename SM::Value sum = 0; |
| 198 | 198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
| 199 | 199 |
sum += flow[e]; |
| 200 | 200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
| 201 | 201 |
sum -= flow[e]; |
| 202 | 202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
| 203 | 203 |
} |
| 204 | 204 |
|
| 205 | 205 |
return opt; |
| 206 | 206 |
} |
| 207 | 207 |
|
| 208 | 208 |
// Run a minimum cost flow algorithm and check the results |
| 209 | 209 |
template < typename MCF, typename GR, |
| 210 | 210 |
typename LM, typename UM, |
| 211 | 211 |
typename CM, typename SM > |
| 212 | 212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
| 213 | 213 |
const GR& gr, const LM& lower, const UM& upper, |
| 214 | 214 |
const CM& cost, const SM& supply, |
| 215 | 215 |
bool result, typename CM::Value total, |
| 216 | 216 |
const std::string &test_id = "", |
| 217 | 217 |
ProblemType type = EQ ) |
| 218 | 218 |
{
|
| 219 | 219 |
check(mcf_result == result, "Wrong result " + test_id); |
| 220 | 220 |
if (result) {
|
| 221 | 221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
| 222 | 222 |
"The flow is not feasible " + test_id); |
| 223 | 223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
| 224 | 224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
| 225 | 225 |
mcf.potentialMap()), |
| 226 | 226 |
"Wrong potentials " + test_id); |
| 227 | 227 |
} |
| 228 | 228 |
} |
| 229 | 229 |
|
| 230 | 230 |
int main() |
| 231 | 231 |
{
|
| 232 | 232 |
// Check the interfaces |
| 233 | 233 |
{
|
| 234 | 234 |
typedef int Flow; |
| 235 | 235 |
typedef int Cost; |
| 236 |
// TODO: This typedef should be enabled if the standard maps are |
|
| 237 |
// reference maps in the graph concepts (See #190). |
|
| 238 |
/**/ |
|
| 239 |
//typedef concepts::Digraph GR; |
|
| 240 |
typedef ListDigraph GR; |
|
| 241 |
/**/ |
|
| 236 |
typedef concepts::Digraph GR; |
|
| 242 | 237 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
| 243 | 238 |
NetworkSimplex<GR, Flow, Cost> >(); |
| 244 | 239 |
} |
| 245 | 240 |
|
| 246 | 241 |
// Run various MCF tests |
| 247 | 242 |
typedef ListDigraph Digraph; |
| 248 | 243 |
DIGRAPH_TYPEDEFS(ListDigraph); |
| 249 | 244 |
|
| 250 | 245 |
// Read the test digraph |
| 251 | 246 |
Digraph gr; |
| 252 | 247 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
| 253 | 248 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
| 254 | 249 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
| 255 | 250 |
Node v, w; |
| 256 | 251 |
|
| 257 | 252 |
std::istringstream input(test_lgf); |
| 258 | 253 |
DigraphReader<Digraph>(gr, input) |
| 259 | 254 |
.arcMap("cost", c)
|
| 260 | 255 |
.arcMap("cap", u)
|
| 261 | 256 |
.arcMap("low1", l1)
|
| 262 | 257 |
.arcMap("low2", l2)
|
| 263 | 258 |
.nodeMap("sup1", s1)
|
| 264 | 259 |
.nodeMap("sup2", s2)
|
| 265 | 260 |
.nodeMap("sup3", s3)
|
| 266 | 261 |
.nodeMap("sup4", s4)
|
| 267 | 262 |
.nodeMap("sup5", s5)
|
| 268 | 263 |
.node("source", v)
|
| 269 | 264 |
.node("target", w)
|
| 270 | 265 |
.run(); |
| 271 | 266 |
|
| 272 | 267 |
// A. Test NetworkSimplex with the default pivot rule |
| 273 | 268 |
{
|
| 274 | 269 |
NetworkSimplex<Digraph> mcf(gr); |
| 275 | 270 |
|
| 276 | 271 |
// Check the equality form |
| 277 | 272 |
mcf.upperMap(u).costMap(c); |
| 278 | 273 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 279 | 274 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
| 280 | 275 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 281 | 276 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
| 282 | 277 |
mcf.lowerMap(l2); |
| 283 | 278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 284 | 279 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
| 285 | 280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
| 286 | 281 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
| 287 | 282 |
mcf.reset(); |
| 288 | 283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
| 289 | 284 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
| 290 | 285 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
| 291 | 286 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
| 292 | 287 |
mcf.reset(); |
| 293 | 288 |
checkMcf(mcf, mcf.run(), |
| 294 | 289 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
| 295 | 290 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
| 296 | 291 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
| 297 | 292 |
|
| 298 | 293 |
// Check the GEQ form |
| 299 | 294 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
| 300 | 295 |
checkMcf(mcf, mcf.run(), |
| 301 | 296 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
| 302 | 297 |
mcf.problemType(mcf.GEQ); |
| 303 | 298 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 304 | 299 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
| 305 | 300 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
| 306 | 301 |
checkMcf(mcf, mcf.run(), |
| 307 | 302 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
| 308 | 303 |
|
| 309 | 304 |
// Check the LEQ form |
| 310 | 305 |
mcf.reset().problemType(mcf.LEQ); |
| 311 | 306 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
| 312 | 307 |
checkMcf(mcf, mcf.run(), |
| 313 | 308 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
| 314 | 309 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
| 315 | 310 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
| 316 | 311 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
| 317 | 312 |
checkMcf(mcf, mcf.run(), |
| 318 | 313 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
| 319 | 314 |
} |
| 320 | 315 |
|
| 321 | 316 |
// B. Test NetworkSimplex with each pivot rule |
| 322 | 317 |
{
|
| 323 | 318 |
NetworkSimplex<Digraph> mcf(gr); |
| 324 | 319 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
| 325 | 320 |
|
| 326 | 321 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
| 327 | 322 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
| 328 | 323 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
| 329 | 324 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
| 330 | 325 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
| 331 | 326 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
| 332 | 327 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
| 333 | 328 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
| 334 | 329 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
| 335 | 330 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
| 336 | 331 |
} |
| 337 | 332 |
|
| 338 | 333 |
return 0; |
| 339 | 334 |
} |
0 comments (0 inline)