0
4
0
| ... | ... |
@@ -237,96 +237,114 @@ |
| 237 | 237 |
/// @} |
| 238 | 238 |
|
| 239 | 239 |
public: |
| 240 | 240 |
|
| 241 | 241 |
/// \brief Constructor. |
| 242 | 242 |
/// |
| 243 | 243 |
/// The constructor of the class. |
| 244 | 244 |
/// |
| 245 | 245 |
/// \param digraph The digraph the algorithm runs on. |
| 246 | 246 |
/// \param length The lengths (costs) of the arcs. |
| 247 | 247 |
HartmannOrlin( const Digraph &digraph, |
| 248 | 248 |
const LengthMap &length ) : |
| 249 | 249 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
| 250 | 250 |
_best_found(false), _best_length(0), _best_size(1), |
| 251 | 251 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
| 252 | 252 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
| 253 | 253 |
std::numeric_limits<LargeValue>::infinity() : |
| 254 | 254 |
std::numeric_limits<LargeValue>::max()) |
| 255 | 255 |
{}
|
| 256 | 256 |
|
| 257 | 257 |
/// Destructor. |
| 258 | 258 |
~HartmannOrlin() {
|
| 259 | 259 |
if (_local_path) delete _cycle_path; |
| 260 | 260 |
} |
| 261 | 261 |
|
| 262 | 262 |
/// \brief Set the path structure for storing the found cycle. |
| 263 | 263 |
/// |
| 264 | 264 |
/// This function sets an external path structure for storing the |
| 265 | 265 |
/// found cycle. |
| 266 | 266 |
/// |
| 267 | 267 |
/// If you don't call this function before calling \ref run() or |
| 268 | 268 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
| 269 | 269 |
/// structure. The destuctor deallocates this automatically |
| 270 | 270 |
/// allocated object, of course. |
| 271 | 271 |
/// |
| 272 | 272 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
| 273 | 273 |
/// "addFront()" function of the given path structure. |
| 274 | 274 |
/// |
| 275 | 275 |
/// \return <tt>(*this)</tt> |
| 276 | 276 |
HartmannOrlin& cycle(Path &path) {
|
| 277 | 277 |
if (_local_path) {
|
| 278 | 278 |
delete _cycle_path; |
| 279 | 279 |
_local_path = false; |
| 280 | 280 |
} |
| 281 | 281 |
_cycle_path = &path; |
| 282 | 282 |
return *this; |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 |
/// \brief Set the tolerance used by the algorithm. |
|
| 286 |
/// |
|
| 287 |
/// This function sets the tolerance object used by the algorithm. |
|
| 288 |
/// |
|
| 289 |
/// \return <tt>(*this)</tt> |
|
| 290 |
HartmannOrlin& tolerance(const Tolerance& tolerance) {
|
|
| 291 |
_tolerance = tolerance; |
|
| 292 |
return *this; |
|
| 293 |
} |
|
| 294 |
|
|
| 295 |
/// \brief Return a const reference to the tolerance. |
|
| 296 |
/// |
|
| 297 |
/// This function returns a const reference to the tolerance object |
|
| 298 |
/// used by the algorithm. |
|
| 299 |
const Tolerance& tolerance() const {
|
|
| 300 |
return _tolerance; |
|
| 301 |
} |
|
| 302 |
|
|
| 285 | 303 |
/// \name Execution control |
| 286 | 304 |
/// The simplest way to execute the algorithm is to call the \ref run() |
| 287 | 305 |
/// function.\n |
| 288 | 306 |
/// If you only need the minimum mean length, you may call |
| 289 | 307 |
/// \ref findMinMean(). |
| 290 | 308 |
|
| 291 | 309 |
/// @{
|
| 292 | 310 |
|
| 293 | 311 |
/// \brief Run the algorithm. |
| 294 | 312 |
/// |
| 295 | 313 |
/// This function runs the algorithm. |
| 296 | 314 |
/// It can be called more than once (e.g. if the underlying digraph |
| 297 | 315 |
/// and/or the arc lengths have been modified). |
| 298 | 316 |
/// |
| 299 | 317 |
/// \return \c true if a directed cycle exists in the digraph. |
| 300 | 318 |
/// |
| 301 | 319 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
| 302 | 320 |
/// \code |
| 303 | 321 |
/// return mmc.findMinMean() && mmc.findCycle(); |
| 304 | 322 |
/// \endcode |
| 305 | 323 |
bool run() {
|
| 306 | 324 |
return findMinMean() && findCycle(); |
| 307 | 325 |
} |
| 308 | 326 |
|
| 309 | 327 |
/// \brief Find the minimum cycle mean. |
| 310 | 328 |
/// |
| 311 | 329 |
/// This function finds the minimum mean length of the directed |
| 312 | 330 |
/// cycles in the digraph. |
| 313 | 331 |
/// |
| 314 | 332 |
/// \return \c true if a directed cycle exists in the digraph. |
| 315 | 333 |
bool findMinMean() {
|
| 316 | 334 |
// Initialization and find strongly connected components |
| 317 | 335 |
init(); |
| 318 | 336 |
findComponents(); |
| 319 | 337 |
|
| 320 | 338 |
// Find the minimum cycle mean in the components |
| 321 | 339 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
| 322 | 340 |
if (!initComponent(comp)) continue; |
| 323 | 341 |
processRounds(); |
| 324 | 342 |
|
| 325 | 343 |
// Update the best cycle (global minimum mean cycle) |
| 326 | 344 |
if ( _curr_found && (!_best_found || |
| 327 | 345 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
| 328 | 346 |
_best_found = true; |
| 329 | 347 |
_best_length = _curr_length; |
| 330 | 348 |
_best_size = _curr_size; |
| 331 | 349 |
_best_node = _curr_node; |
| 332 | 350 |
_best_level = _curr_level; |
| ... | ... |
@@ -228,96 +228,114 @@ |
| 228 | 228 |
|
| 229 | 229 |
public: |
| 230 | 230 |
|
| 231 | 231 |
/// \brief Constructor. |
| 232 | 232 |
/// |
| 233 | 233 |
/// The constructor of the class. |
| 234 | 234 |
/// |
| 235 | 235 |
/// \param digraph The digraph the algorithm runs on. |
| 236 | 236 |
/// \param length The lengths (costs) of the arcs. |
| 237 | 237 |
Howard( const Digraph &digraph, |
| 238 | 238 |
const LengthMap &length ) : |
| 239 | 239 |
_gr(digraph), _length(length), _best_found(false), |
| 240 | 240 |
_best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
| 241 | 241 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
| 242 | 242 |
_comp(digraph), _in_arcs(digraph), |
| 243 | 243 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
| 244 | 244 |
std::numeric_limits<LargeValue>::infinity() : |
| 245 | 245 |
std::numeric_limits<LargeValue>::max()) |
| 246 | 246 |
{}
|
| 247 | 247 |
|
| 248 | 248 |
/// Destructor. |
| 249 | 249 |
~Howard() {
|
| 250 | 250 |
if (_local_path) delete _cycle_path; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
/// \brief Set the path structure for storing the found cycle. |
| 254 | 254 |
/// |
| 255 | 255 |
/// This function sets an external path structure for storing the |
| 256 | 256 |
/// found cycle. |
| 257 | 257 |
/// |
| 258 | 258 |
/// If you don't call this function before calling \ref run() or |
| 259 | 259 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
| 260 | 260 |
/// structure. The destuctor deallocates this automatically |
| 261 | 261 |
/// allocated object, of course. |
| 262 | 262 |
/// |
| 263 | 263 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
| 264 | 264 |
/// "addBack()" function of the given path structure. |
| 265 | 265 |
/// |
| 266 | 266 |
/// \return <tt>(*this)</tt> |
| 267 | 267 |
Howard& cycle(Path &path) {
|
| 268 | 268 |
if (_local_path) {
|
| 269 | 269 |
delete _cycle_path; |
| 270 | 270 |
_local_path = false; |
| 271 | 271 |
} |
| 272 | 272 |
_cycle_path = &path; |
| 273 | 273 |
return *this; |
| 274 | 274 |
} |
| 275 | 275 |
|
| 276 |
/// \brief Set the tolerance used by the algorithm. |
|
| 277 |
/// |
|
| 278 |
/// This function sets the tolerance object used by the algorithm. |
|
| 279 |
/// |
|
| 280 |
/// \return <tt>(*this)</tt> |
|
| 281 |
Howard& tolerance(const Tolerance& tolerance) {
|
|
| 282 |
_tolerance = tolerance; |
|
| 283 |
return *this; |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Return a const reference to the tolerance. |
|
| 287 |
/// |
|
| 288 |
/// This function returns a const reference to the tolerance object |
|
| 289 |
/// used by the algorithm. |
|
| 290 |
const Tolerance& tolerance() const {
|
|
| 291 |
return _tolerance; |
|
| 292 |
} |
|
| 293 |
|
|
| 276 | 294 |
/// \name Execution control |
| 277 | 295 |
/// The simplest way to execute the algorithm is to call the \ref run() |
| 278 | 296 |
/// function.\n |
| 279 | 297 |
/// If you only need the minimum mean length, you may call |
| 280 | 298 |
/// \ref findMinMean(). |
| 281 | 299 |
|
| 282 | 300 |
/// @{
|
| 283 | 301 |
|
| 284 | 302 |
/// \brief Run the algorithm. |
| 285 | 303 |
/// |
| 286 | 304 |
/// This function runs the algorithm. |
| 287 | 305 |
/// It can be called more than once (e.g. if the underlying digraph |
| 288 | 306 |
/// and/or the arc lengths have been modified). |
| 289 | 307 |
/// |
| 290 | 308 |
/// \return \c true if a directed cycle exists in the digraph. |
| 291 | 309 |
/// |
| 292 | 310 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
| 293 | 311 |
/// \code |
| 294 | 312 |
/// return mmc.findMinMean() && mmc.findCycle(); |
| 295 | 313 |
/// \endcode |
| 296 | 314 |
bool run() {
|
| 297 | 315 |
return findMinMean() && findCycle(); |
| 298 | 316 |
} |
| 299 | 317 |
|
| 300 | 318 |
/// \brief Find the minimum cycle mean. |
| 301 | 319 |
/// |
| 302 | 320 |
/// This function finds the minimum mean length of the directed |
| 303 | 321 |
/// cycles in the digraph. |
| 304 | 322 |
/// |
| 305 | 323 |
/// \return \c true if a directed cycle exists in the digraph. |
| 306 | 324 |
bool findMinMean() {
|
| 307 | 325 |
// Initialize and find strongly connected components |
| 308 | 326 |
init(); |
| 309 | 327 |
findComponents(); |
| 310 | 328 |
|
| 311 | 329 |
// Find the minimum cycle mean in the components |
| 312 | 330 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
| 313 | 331 |
// Find the minimum mean cycle in the current component |
| 314 | 332 |
if (!buildPolicyGraph(comp)) continue; |
| 315 | 333 |
while (true) {
|
| 316 | 334 |
findPolicyCycle(); |
| 317 | 335 |
if (!computeNodeDistances()) break; |
| 318 | 336 |
} |
| 319 | 337 |
// Update the best cycle (global minimum mean cycle) |
| 320 | 338 |
if ( _curr_found && (!_best_found || |
| 321 | 339 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
| 322 | 340 |
_best_found = true; |
| 323 | 341 |
_best_length = _curr_length; |
| ... | ... |
@@ -233,96 +233,114 @@ |
| 233 | 233 |
/// @} |
| 234 | 234 |
|
| 235 | 235 |
public: |
| 236 | 236 |
|
| 237 | 237 |
/// \brief Constructor. |
| 238 | 238 |
/// |
| 239 | 239 |
/// The constructor of the class. |
| 240 | 240 |
/// |
| 241 | 241 |
/// \param digraph The digraph the algorithm runs on. |
| 242 | 242 |
/// \param length The lengths (costs) of the arcs. |
| 243 | 243 |
Karp( const Digraph &digraph, |
| 244 | 244 |
const LengthMap &length ) : |
| 245 | 245 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
| 246 | 246 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
| 247 | 247 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
| 248 | 248 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
| 249 | 249 |
std::numeric_limits<LargeValue>::infinity() : |
| 250 | 250 |
std::numeric_limits<LargeValue>::max()) |
| 251 | 251 |
{}
|
| 252 | 252 |
|
| 253 | 253 |
/// Destructor. |
| 254 | 254 |
~Karp() {
|
| 255 | 255 |
if (_local_path) delete _cycle_path; |
| 256 | 256 |
} |
| 257 | 257 |
|
| 258 | 258 |
/// \brief Set the path structure for storing the found cycle. |
| 259 | 259 |
/// |
| 260 | 260 |
/// This function sets an external path structure for storing the |
| 261 | 261 |
/// found cycle. |
| 262 | 262 |
/// |
| 263 | 263 |
/// If you don't call this function before calling \ref run() or |
| 264 | 264 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
| 265 | 265 |
/// structure. The destuctor deallocates this automatically |
| 266 | 266 |
/// allocated object, of course. |
| 267 | 267 |
/// |
| 268 | 268 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
| 269 | 269 |
/// "addFront()" function of the given path structure. |
| 270 | 270 |
/// |
| 271 | 271 |
/// \return <tt>(*this)</tt> |
| 272 | 272 |
Karp& cycle(Path &path) {
|
| 273 | 273 |
if (_local_path) {
|
| 274 | 274 |
delete _cycle_path; |
| 275 | 275 |
_local_path = false; |
| 276 | 276 |
} |
| 277 | 277 |
_cycle_path = &path; |
| 278 | 278 |
return *this; |
| 279 | 279 |
} |
| 280 | 280 |
|
| 281 |
/// \brief Set the tolerance used by the algorithm. |
|
| 282 |
/// |
|
| 283 |
/// This function sets the tolerance object used by the algorithm. |
|
| 284 |
/// |
|
| 285 |
/// \return <tt>(*this)</tt> |
|
| 286 |
Karp& tolerance(const Tolerance& tolerance) {
|
|
| 287 |
_tolerance = tolerance; |
|
| 288 |
return *this; |
|
| 289 |
} |
|
| 290 |
|
|
| 291 |
/// \brief Return a const reference to the tolerance. |
|
| 292 |
/// |
|
| 293 |
/// This function returns a const reference to the tolerance object |
|
| 294 |
/// used by the algorithm. |
|
| 295 |
const Tolerance& tolerance() const {
|
|
| 296 |
return _tolerance; |
|
| 297 |
} |
|
| 298 |
|
|
| 281 | 299 |
/// \name Execution control |
| 282 | 300 |
/// The simplest way to execute the algorithm is to call the \ref run() |
| 283 | 301 |
/// function.\n |
| 284 | 302 |
/// If you only need the minimum mean length, you may call |
| 285 | 303 |
/// \ref findMinMean(). |
| 286 | 304 |
|
| 287 | 305 |
/// @{
|
| 288 | 306 |
|
| 289 | 307 |
/// \brief Run the algorithm. |
| 290 | 308 |
/// |
| 291 | 309 |
/// This function runs the algorithm. |
| 292 | 310 |
/// It can be called more than once (e.g. if the underlying digraph |
| 293 | 311 |
/// and/or the arc lengths have been modified). |
| 294 | 312 |
/// |
| 295 | 313 |
/// \return \c true if a directed cycle exists in the digraph. |
| 296 | 314 |
/// |
| 297 | 315 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
| 298 | 316 |
/// \code |
| 299 | 317 |
/// return mmc.findMinMean() && mmc.findCycle(); |
| 300 | 318 |
/// \endcode |
| 301 | 319 |
bool run() {
|
| 302 | 320 |
return findMinMean() && findCycle(); |
| 303 | 321 |
} |
| 304 | 322 |
|
| 305 | 323 |
/// \brief Find the minimum cycle mean. |
| 306 | 324 |
/// |
| 307 | 325 |
/// This function finds the minimum mean length of the directed |
| 308 | 326 |
/// cycles in the digraph. |
| 309 | 327 |
/// |
| 310 | 328 |
/// \return \c true if a directed cycle exists in the digraph. |
| 311 | 329 |
bool findMinMean() {
|
| 312 | 330 |
// Initialization and find strongly connected components |
| 313 | 331 |
init(); |
| 314 | 332 |
findComponents(); |
| 315 | 333 |
|
| 316 | 334 |
// Find the minimum cycle mean in the components |
| 317 | 335 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
| 318 | 336 |
if (!initComponent(comp)) continue; |
| 319 | 337 |
processRounds(); |
| 320 | 338 |
updateMinMean(); |
| 321 | 339 |
} |
| 322 | 340 |
return (_cycle_node != INVALID); |
| 323 | 341 |
} |
| 324 | 342 |
|
| 325 | 343 |
/// \brief Find a minimum mean directed cycle. |
| 326 | 344 |
/// |
| 327 | 345 |
/// This function finds a directed cycle of minimum mean length |
| 328 | 346 |
/// in the digraph using the data computed by findMinMean(). |
| ... | ... |
@@ -33,96 +33,99 @@ |
| 33 | 33 |
|
| 34 | 34 |
using namespace lemon; |
| 35 | 35 |
|
| 36 | 36 |
char test_lgf[] = |
| 37 | 37 |
"@nodes\n" |
| 38 | 38 |
"label\n" |
| 39 | 39 |
"1\n" |
| 40 | 40 |
"2\n" |
| 41 | 41 |
"3\n" |
| 42 | 42 |
"4\n" |
| 43 | 43 |
"5\n" |
| 44 | 44 |
"6\n" |
| 45 | 45 |
"7\n" |
| 46 | 46 |
"@arcs\n" |
| 47 | 47 |
" len1 len2 len3 len4 c1 c2 c3 c4\n" |
| 48 | 48 |
"1 2 1 1 1 1 0 0 0 0\n" |
| 49 | 49 |
"2 4 5 5 5 5 1 0 0 0\n" |
| 50 | 50 |
"2 3 8 8 8 8 0 0 0 0\n" |
| 51 | 51 |
"3 2 -2 0 0 0 1 0 0 0\n" |
| 52 | 52 |
"3 4 4 4 4 4 0 0 0 0\n" |
| 53 | 53 |
"3 7 -4 -4 -4 -4 0 0 0 0\n" |
| 54 | 54 |
"4 1 2 2 2 2 0 0 0 0\n" |
| 55 | 55 |
"4 3 3 3 3 3 1 0 0 0\n" |
| 56 | 56 |
"4 4 3 3 0 0 0 0 1 0\n" |
| 57 | 57 |
"5 2 4 4 4 4 0 0 0 0\n" |
| 58 | 58 |
"5 6 3 3 3 3 0 1 0 0\n" |
| 59 | 59 |
"6 5 2 2 2 2 0 1 0 0\n" |
| 60 | 60 |
"6 4 -1 -1 -1 -1 0 0 0 0\n" |
| 61 | 61 |
"6 7 1 1 1 1 0 0 0 0\n" |
| 62 | 62 |
"7 7 4 4 4 -1 0 0 0 1\n"; |
| 63 | 63 |
|
| 64 | 64 |
|
| 65 | 65 |
// Check the interface of an MMC algorithm |
| 66 | 66 |
template <typename GR, typename Value> |
| 67 | 67 |
struct MmcClassConcept |
| 68 | 68 |
{
|
| 69 | 69 |
template <typename MMC> |
| 70 | 70 |
struct Constraints {
|
| 71 | 71 |
void constraints() {
|
| 72 | 72 |
const Constraints& me = *this; |
| 73 | 73 |
|
| 74 | 74 |
typedef typename MMC |
| 75 | 75 |
::template SetPath<ListPath<GR> > |
| 76 | 76 |
::template SetLargeValue<Value> |
| 77 | 77 |
::Create MmcAlg; |
| 78 | 78 |
MmcAlg mmc(me.g, me.length); |
| 79 | 79 |
const MmcAlg& const_mmc = mmc; |
| 80 | 80 |
|
| 81 |
typename MmcAlg::Tolerance tol = const_mmc.tolerance(); |
|
| 82 |
mmc.tolerance(tol); |
|
| 83 |
|
|
| 81 | 84 |
b = mmc.cycle(p).run(); |
| 82 | 85 |
b = mmc.findMinMean(); |
| 83 | 86 |
b = mmc.findCycle(); |
| 84 | 87 |
|
| 85 | 88 |
v = const_mmc.cycleLength(); |
| 86 | 89 |
i = const_mmc.cycleArcNum(); |
| 87 | 90 |
d = const_mmc.cycleMean(); |
| 88 | 91 |
p = const_mmc.cycle(); |
| 89 | 92 |
} |
| 90 | 93 |
|
| 91 | 94 |
typedef concepts::ReadMap<typename GR::Arc, Value> LM; |
| 92 | 95 |
|
| 93 | 96 |
GR g; |
| 94 | 97 |
LM length; |
| 95 | 98 |
ListPath<GR> p; |
| 96 | 99 |
Value v; |
| 97 | 100 |
int i; |
| 98 | 101 |
double d; |
| 99 | 102 |
bool b; |
| 100 | 103 |
}; |
| 101 | 104 |
}; |
| 102 | 105 |
|
| 103 | 106 |
// Perform a test with the given parameters |
| 104 | 107 |
template <typename MMC> |
| 105 | 108 |
void checkMmcAlg(const SmartDigraph& gr, |
| 106 | 109 |
const SmartDigraph::ArcMap<int>& lm, |
| 107 | 110 |
const SmartDigraph::ArcMap<int>& cm, |
| 108 | 111 |
int length, int size) {
|
| 109 | 112 |
MMC alg(gr, lm); |
| 110 | 113 |
alg.findMinMean(); |
| 111 | 114 |
check(alg.cycleMean() == static_cast<double>(length) / size, |
| 112 | 115 |
"Wrong cycle mean"); |
| 113 | 116 |
alg.findCycle(); |
| 114 | 117 |
check(alg.cycleLength() == length && alg.cycleArcNum() == size, |
| 115 | 118 |
"Wrong path"); |
| 116 | 119 |
SmartDigraph::ArcMap<int> cycle(gr, 0); |
| 117 | 120 |
for (typename MMC::Path::ArcIt a(alg.cycle()); a != INVALID; ++a) {
|
| 118 | 121 |
++cycle[a]; |
| 119 | 122 |
} |
| 120 | 123 |
for (SmartDigraph::ArcIt a(gr); a != INVALID; ++a) {
|
| 121 | 124 |
check(cm[a] == cycle[a], "Wrong path"); |
| 122 | 125 |
} |
| 123 | 126 |
} |
| 124 | 127 |
|
| 125 | 128 |
// Class for comparing types |
| 126 | 129 |
template <typename T1, typename T2> |
| 127 | 130 |
struct IsSameType {
|
| 128 | 131 |
static const int result = 0; |
0 comments (0 inline)