gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Pareto and Weibull random distributions
0 1 0
default
1 file changed with 28 insertions and 1 deletions:
↑ Collapse diff ↑
Ignore white space 192 line context
... ...
@@ -644,207 +644,234 @@
644 644
    template <typename Number>
645 645
    Number integer(Number a, Number b) {
646 646
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
647 647
    }
648 648

	
649 649
    /// \brief Returns a random integer from a range
650 650
    ///
651 651
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
652 652
    template <typename Number>
653 653
    Number operator[](Number b) {
654 654
      return _random_bits::Mapping<Number, Word>::map(core, b);
655 655
    }
656 656

	
657 657
    /// \brief Returns a random non-negative integer
658 658
    ///
659 659
    /// It returns a random non-negative integer uniformly from the
660 660
    /// whole range of the current \c Number type.  The default result
661 661
    /// type of this function is unsigned int.
662 662
    template <typename Number>
663 663
    Number uinteger() {
664 664
      return _random_bits::IntConversion<Number, Word>::convert(core);
665 665
    }
666 666

	
667 667
    unsigned int uinteger() {
668 668
      return uinteger<unsigned int>();
669 669
    }
670 670

	
671 671
    /// \brief Returns a random integer
672 672
    ///
673 673
    /// It returns a random integer uniformly from the whole range of
674 674
    /// the current \c Number type. The default result type of this
675 675
    /// function is int.
676 676
    template <typename Number>
677 677
    Number integer() {
678 678
      static const int nb = std::numeric_limits<Number>::digits + 
679 679
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
680 680
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
681 681
    }
682 682

	
683 683
    int integer() {
684 684
      return integer<int>();
685 685
    }
686 686
    
687 687
    /// \brief Returns a random bool
688 688
    ///
689 689
    /// It returns a random bool. The generator holds a buffer for
690 690
    /// random bits. Every time when it become empty the generator makes
691 691
    /// a new random word and fill the buffer up.
692 692
    bool boolean() {
693 693
      return bool_producer.convert(core);
694 694
    }
695 695

	
696 696
    ///\name Nonuniform distributions
697 697
    ///
698 698
    
699 699
    ///@{
700 700
    
701 701
    /// \brief Returns a random bool
702 702
    ///
703 703
    /// It returns a random bool with given probability of true result
704 704
    bool boolean(double p) {
705 705
      return operator()() < p;
706 706
    }
707 707

	
708 708
    /// Standard Gauss distribution
709 709

	
710 710
    /// Standard Gauss distribution.
711 711
    /// \note The Cartesian form of the Box-Muller
712 712
    /// transformation is used to generate a random normal distribution.
713 713
    /// \todo Consider using the "ziggurat" method instead.
714 714
    double gauss() 
715 715
    {
716 716
      double V1,V2,S;
717 717
      do {
718 718
	V1=2*real<double>()-1;
719 719
	V2=2*real<double>()-1;
720 720
	S=V1*V1+V2*V2;
721 721
      } while(S>=1);
722 722
      return std::sqrt(-2*std::log(S)/S)*V1;
723 723
    }
724 724
    /// Gauss distribution with given mean and standard deviation
725 725

	
726 726
    /// \sa gauss()
727 727
    ///
728 728
    double gauss(double mean,double std_dev)
729 729
    {
730 730
      return gauss()*std_dev+mean;
731 731
    }
732 732

	
733 733
    /// Exponential distribution with given mean
734 734

	
735 735
    /// This function generates an exponential distribution random number
736 736
    /// with mean <tt>1/lambda</tt>.
737 737
    ///
738 738
    double exponential(double lambda=1.0)
739 739
    {
740
      return -std::log(real<double>())/lambda;
740
      return -std::log(1.0-real<double>())/lambda;
741 741
    }
742 742

	
743 743
    /// Gamma distribution with given integer shape
744 744

	
745 745
    /// This function generates a gamma distribution random number.
746 746
    /// 
747 747
    ///\param k shape parameter (<tt>k>0</tt> integer)
748 748
    double gamma(int k) 
749 749
    {
750 750
      double s = 0;
751 751
      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
752 752
      return s;
753 753
    }
754 754
    
755 755
    /// Gamma distribution with given shape and scale parameter
756 756

	
757 757
    /// This function generates a gamma distribution random number.
758 758
    /// 
759 759
    ///\param k shape parameter (<tt>k>0</tt>)
760 760
    ///\param theta scale parameter
761 761
    ///
762 762
    double gamma(double k,double theta=1.0)
763 763
    {
764 764
      double xi,nu;
765 765
      const double delta = k-std::floor(k);
766 766
      const double v0=M_E/(M_E-delta);
767 767
      do {
768 768
	double V0=1.0-real<double>();
769 769
	double V1=1.0-real<double>();
770 770
	double V2=1.0-real<double>();
771 771
	if(V2<=v0) 
772 772
	  {
773 773
	    xi=std::pow(V1,1.0/delta);
774 774
	    nu=V0*std::pow(xi,delta-1.0);
775 775
	  }
776 776
	else 
777 777
	  {
778 778
	    xi=1.0-std::log(V1);
779 779
	    nu=V0*std::exp(-xi);
780 780
	  }
781 781
      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
782 782
      return theta*(xi-gamma(int(std::floor(k))));
783 783
    }
784 784
    
785
    /// Weibull distribution
786

	
787
    /// This function generates a Weibull distribution random number.
788
    /// 
789
    ///\param k shape parameter (<tt>k>0</tt>)
790
    ///\param lambda scale parameter (<tt>lambda>0</tt>)
791
    ///
792
    double weibull(double k,double lambda)
793
    {
794
      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
795
    }  
796
      
797
    /// Pareto distribution
798

	
799
    /// This function generates a Pareto distribution random number.
800
    /// 
801
    ///\param x_min location parameter (<tt>x_min>0</tt>)
802
    ///\param k shape parameter (<tt>k>0</tt>)
803
    ///
804
    ///\warning This function used inverse transform sampling, therefore may
805
    ///suffer from numerical unstability.
806
    ///
807
    ///\todo Implement a numerically stable method
808
    double pareto(double x_min,double k)
809
    {
810
      return x_min*pow(1.0-real<double>(),1.0/k);
811
    }  
785 812
      
786 813
    ///@}
787 814
    
788 815
    ///\name Two dimensional distributions
789 816
    ///
790 817

	
791 818
    ///@{
792 819
    
793 820
    /// Uniform distribution on the full unit circle.
794 821
    dim2::Point<double> disc() 
795 822
    {
796 823
      double V1,V2;
797 824
      do {
798 825
	V1=2*real<double>()-1;
799 826
	V2=2*real<double>()-1;
800 827
	
801 828
      } while(V1*V1+V2*V2>=1);
802 829
      return dim2::Point<double>(V1,V2);
803 830
    }
804 831
    /// A kind of two dimensional Gauss distribution
805 832

	
806 833
    /// This function provides a turning symmetric two-dimensional distribution.
807 834
    /// Both coordinates are of standard normal distribution, but they are not
808 835
    /// independent.
809 836
    ///
810 837
    /// \note The coordinates are the two random variables provided by
811 838
    /// the Box-Muller method.
812 839
    dim2::Point<double> gauss2()
813 840
    {
814 841
      double V1,V2,S;
815 842
      do {
816 843
	V1=2*real<double>()-1;
817 844
	V2=2*real<double>()-1;
818 845
	S=V1*V1+V2*V2;
819 846
      } while(S>=1);
820 847
      double W=std::sqrt(-2*std::log(S)/S);
821 848
      return dim2::Point<double>(W*V1,W*V2);
822 849
    }
823 850
    /// A kind of two dimensional exponential distribution
824 851

	
825 852
    /// This function provides a turning symmetric two-dimensional distribution.
826 853
    /// The x-coordinate is of conditionally exponential distribution
827 854
    /// with the condition that x is positive and y=0. If x is negative and 
828 855
    /// y=0 then, -x is of exponential distribution. The same is true for the
829 856
    /// y-coordinate.
830 857
    dim2::Point<double> exponential2() 
831 858
    {
832 859
      double V1,V2,S;
833 860
      do {
834 861
	V1=2*real<double>()-1;
835 862
	V2=2*real<double>()-1;
836 863
	S=V1*V1+V2*V2;
837 864
      } while(S>=1);
838 865
      double W=-std::log(S)/S;
839 866
      return dim2::Point<double>(W*V1,W*V2);
840 867
    }
841 868

	
842 869
    ///@}    
843 870
  };
844 871

	
845 872

	
846 873
  extern Random rnd;
847 874

	
848 875
}
849 876

	
850 877
#endif
0 comments (0 inline)