gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix the doc in CapacityScaling: cost can be real numbers (#261)
0 1 0
default
1 file changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 4096 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CAPACITY_SCALING_H
20 20
#define LEMON_CAPACITY_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/bin_heap.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \brief Default traits class of CapacityScaling algorithm.
35 35
  ///
36 36
  /// Default traits class of CapacityScaling algorithm.
37 37
  /// \tparam GR Digraph type.
38 38
  /// \tparam V The number type used for flow amounts, capacity bounds
39 39
  /// and supply values. By default it is \c int.
40 40
  /// \tparam C The number type used for costs and potentials.
41 41
  /// By default it is the same as \c V.
42 42
  template <typename GR, typename V = int, typename C = V>
43 43
  struct CapacityScalingDefaultTraits
44 44
  {
45 45
    /// The type of the digraph
46 46
    typedef GR Digraph;
47 47
    /// The type of the flow amounts, capacity bounds and supply values
48 48
    typedef V Value;
49 49
    /// The type of the arc costs
50 50
    typedef C Cost;
51 51

	
52 52
    /// \brief The type of the heap used for internal Dijkstra computations.
53 53
    ///
54 54
    /// The type of the heap used for internal Dijkstra computations.
55 55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 56
    /// its priority type must be \c Cost and its cross reference type
57 57
    /// must be \ref RangeMap "RangeMap<int>".
58 58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
59 59
  };
60 60

	
61 61
  /// \addtogroup min_cost_flow_algs
62 62
  /// @{
63 63

	
64 64
  /// \brief Implementation of the Capacity Scaling algorithm for
65 65
  /// finding a \ref min_cost_flow "minimum cost flow".
66 66
  ///
67 67
  /// \ref CapacityScaling implements the capacity scaling version
68 68
  /// of the successive shortest path algorithm for finding a
69 69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 70
  /// \ref edmondskarp72theoretical. It is an efficient dual
71 71
  /// solution method.
72 72
  ///
73 73
  /// Most of the parameters of the problem (except for the digraph)
74 74
  /// can be given using separate functions, and the algorithm can be
75 75
  /// executed using the \ref run() function. If some parameters are not
76 76
  /// specified, then default values will be used.
77 77
  ///
78 78
  /// \tparam GR The digraph type the algorithm runs on.
79 79
  /// \tparam V The number type used for flow amounts, capacity bounds
80 80
  /// and supply values in the algorithm. By default, it is \c int.
81 81
  /// \tparam C The number type used for costs and potentials in the
82 82
  /// algorithm. By default, it is the same as \c V.
83 83
  /// \tparam TR The traits class that defines various types used by the
84 84
  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 85
  /// "CapacityScalingDefaultTraits<GR, V, C>".
86 86
  /// In most cases, this parameter should not be set directly,
87 87
  /// consider to use the named template parameters instead.
88 88
  ///
89 89
  /// \warning Both \c V and \c C must be signed number types.
90
  /// \warning All input data (capacities, supply values, and costs) must
91
  /// be integer.
90
  /// \warning Capacity bounds and supply values must be integer, but
91
  /// arc costs can be arbitrary real numbers.
92 92
  /// \warning This algorithm does not support negative costs for
93 93
  /// arcs having infinite upper bound.
94 94
#ifdef DOXYGEN
95 95
  template <typename GR, typename V, typename C, typename TR>
96 96
#else
97 97
  template < typename GR, typename V = int, typename C = V,
98 98
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
99 99
#endif
100 100
  class CapacityScaling
101 101
  {
102 102
  public:
103 103

	
104 104
    /// The type of the digraph
105 105
    typedef typename TR::Digraph Digraph;
106 106
    /// The type of the flow amounts, capacity bounds and supply values
107 107
    typedef typename TR::Value Value;
108 108
    /// The type of the arc costs
109 109
    typedef typename TR::Cost Cost;
110 110

	
111 111
    /// The type of the heap used for internal Dijkstra computations
112 112
    typedef typename TR::Heap Heap;
113 113

	
114 114
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
115 115
    typedef TR Traits;
116 116

	
117 117
  public:
118 118

	
119 119
    /// \brief Problem type constants for the \c run() function.
120 120
    ///
121 121
    /// Enum type containing the problem type constants that can be
122 122
    /// returned by the \ref run() function of the algorithm.
123 123
    enum ProblemType {
124 124
      /// The problem has no feasible solution (flow).
125 125
      INFEASIBLE,
126 126
      /// The problem has optimal solution (i.e. it is feasible and
127 127
      /// bounded), and the algorithm has found optimal flow and node
128 128
      /// potentials (primal and dual solutions).
129 129
      OPTIMAL,
130 130
      /// The digraph contains an arc of negative cost and infinite
131 131
      /// upper bound. It means that the objective function is unbounded
132 132
      /// on that arc, however, note that it could actually be bounded
133 133
      /// over the feasible flows, but this algroithm cannot handle
134 134
      /// these cases.
135 135
      UNBOUNDED
136 136
    };
137 137

	
138 138
  private:
139 139

	
140 140
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141 141

	
142 142
    typedef std::vector<int> IntVector;
143 143
    typedef std::vector<Value> ValueVector;
144 144
    typedef std::vector<Cost> CostVector;
145 145
    typedef std::vector<char> BoolVector;
146 146
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
147 147

	
148 148
  private:
149 149

	
150 150
    // Data related to the underlying digraph
151 151
    const GR &_graph;
152 152
    int _node_num;
153 153
    int _arc_num;
154 154
    int _res_arc_num;
155 155
    int _root;
156 156

	
157 157
    // Parameters of the problem
158 158
    bool _have_lower;
159 159
    Value _sum_supply;
160 160

	
161 161
    // Data structures for storing the digraph
162 162
    IntNodeMap _node_id;
163 163
    IntArcMap _arc_idf;
164 164
    IntArcMap _arc_idb;
165 165
    IntVector _first_out;
166 166
    BoolVector _forward;
167 167
    IntVector _source;
168 168
    IntVector _target;
169 169
    IntVector _reverse;
170 170

	
171 171
    // Node and arc data
172 172
    ValueVector _lower;
173 173
    ValueVector _upper;
174 174
    CostVector _cost;
175 175
    ValueVector _supply;
176 176

	
177 177
    ValueVector _res_cap;
178 178
    CostVector _pi;
179 179
    ValueVector _excess;
180 180
    IntVector _excess_nodes;
181 181
    IntVector _deficit_nodes;
182 182

	
183 183
    Value _delta;
184 184
    int _factor;
185 185
    IntVector _pred;
186 186

	
187 187
  public:
188 188

	
189 189
    /// \brief Constant for infinite upper bounds (capacities).
190 190
    ///
191 191
    /// Constant for infinite upper bounds (capacities).
192 192
    /// It is \c std::numeric_limits<Value>::infinity() if available,
193 193
    /// \c std::numeric_limits<Value>::max() otherwise.
194 194
    const Value INF;
195 195

	
196 196
  private:
197 197

	
198 198
    // Special implementation of the Dijkstra algorithm for finding
199 199
    // shortest paths in the residual network of the digraph with
200 200
    // respect to the reduced arc costs and modifying the node
201 201
    // potentials according to the found distance labels.
202 202
    class ResidualDijkstra
203 203
    {
204 204
    private:
205 205

	
206 206
      int _node_num;
207 207
      bool _geq;
208 208
      const IntVector &_first_out;
209 209
      const IntVector &_target;
210 210
      const CostVector &_cost;
211 211
      const ValueVector &_res_cap;
212 212
      const ValueVector &_excess;
213 213
      CostVector &_pi;
214 214
      IntVector &_pred;
215 215

	
216 216
      IntVector _proc_nodes;
217 217
      CostVector _dist;
218 218

	
219 219
    public:
220 220

	
221 221
      ResidualDijkstra(CapacityScaling& cs) :
222 222
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
223 223
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
224 224
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
225 225
        _pred(cs._pred), _dist(cs._node_num)
226 226
      {}
227 227

	
228 228
      int run(int s, Value delta = 1) {
229 229
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
230 230
        Heap heap(heap_cross_ref);
231 231
        heap.push(s, 0);
232 232
        _pred[s] = -1;
233 233
        _proc_nodes.clear();
234 234

	
235 235
        // Process nodes
236 236
        while (!heap.empty() && _excess[heap.top()] > -delta) {
237 237
          int u = heap.top(), v;
238 238
          Cost d = heap.prio() + _pi[u], dn;
239 239
          _dist[u] = heap.prio();
240 240
          _proc_nodes.push_back(u);
241 241
          heap.pop();
242 242

	
243 243
          // Traverse outgoing residual arcs
244 244
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
245 245
          for (int a = _first_out[u]; a != last_out; ++a) {
246 246
            if (_res_cap[a] < delta) continue;
247 247
            v = _target[a];
248 248
            switch (heap.state(v)) {
249 249
              case Heap::PRE_HEAP:
250 250
                heap.push(v, d + _cost[a] - _pi[v]);
251 251
                _pred[v] = a;
252 252
                break;
253 253
              case Heap::IN_HEAP:
254 254
                dn = d + _cost[a] - _pi[v];
255 255
                if (dn < heap[v]) {
256 256
                  heap.decrease(v, dn);
257 257
                  _pred[v] = a;
258 258
                }
259 259
                break;
260 260
              case Heap::POST_HEAP:
261 261
                break;
262 262
            }
263 263
          }
264 264
        }
265 265
        if (heap.empty()) return -1;
266 266

	
267 267
        // Update potentials of processed nodes
268 268
        int t = heap.top();
269 269
        Cost dt = heap.prio();
270 270
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
271 271
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
272 272
        }
273 273

	
274 274
        return t;
275 275
      }
276 276

	
277 277
    }; //class ResidualDijkstra
278 278

	
279 279
  public:
280 280

	
281 281
    /// \name Named Template Parameters
282 282
    /// @{
283 283

	
284 284
    template <typename T>
285 285
    struct SetHeapTraits : public Traits {
286 286
      typedef T Heap;
287 287
    };
288 288

	
289 289
    /// \brief \ref named-templ-param "Named parameter" for setting
290 290
    /// \c Heap type.
291 291
    ///
292 292
    /// \ref named-templ-param "Named parameter" for setting \c Heap
293 293
    /// type, which is used for internal Dijkstra computations.
294 294
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
295 295
    /// its priority type must be \c Cost and its cross reference type
296 296
    /// must be \ref RangeMap "RangeMap<int>".
297 297
    template <typename T>
298 298
    struct SetHeap
299 299
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
300 300
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
301 301
    };
302 302

	
303 303
    /// @}
304 304

	
305 305
  protected:
306 306

	
307 307
    CapacityScaling() {}
308 308

	
309 309
  public:
310 310

	
311 311
    /// \brief Constructor.
312 312
    ///
313 313
    /// The constructor of the class.
314 314
    ///
315 315
    /// \param graph The digraph the algorithm runs on.
316 316
    CapacityScaling(const GR& graph) :
317 317
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
318 318
      INF(std::numeric_limits<Value>::has_infinity ?
319 319
          std::numeric_limits<Value>::infinity() :
320 320
          std::numeric_limits<Value>::max())
321 321
    {
322 322
      // Check the number types
323 323
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
324 324
        "The flow type of CapacityScaling must be signed");
325 325
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
326 326
        "The cost type of CapacityScaling must be signed");
327 327

	
328 328
      // Reset data structures
329 329
      reset();
330 330
    }
331 331

	
332 332
    /// \name Parameters
333 333
    /// The parameters of the algorithm can be specified using these
334 334
    /// functions.
335 335

	
336 336
    /// @{
337 337

	
338 338
    /// \brief Set the lower bounds on the arcs.
339 339
    ///
340 340
    /// This function sets the lower bounds on the arcs.
341 341
    /// If it is not used before calling \ref run(), the lower bounds
342 342
    /// will be set to zero on all arcs.
343 343
    ///
344 344
    /// \param map An arc map storing the lower bounds.
345 345
    /// Its \c Value type must be convertible to the \c Value type
346 346
    /// of the algorithm.
347 347
    ///
348 348
    /// \return <tt>(*this)</tt>
349 349
    template <typename LowerMap>
350 350
    CapacityScaling& lowerMap(const LowerMap& map) {
351 351
      _have_lower = true;
352 352
      for (ArcIt a(_graph); a != INVALID; ++a) {
353 353
        _lower[_arc_idf[a]] = map[a];
354 354
        _lower[_arc_idb[a]] = map[a];
355 355
      }
356 356
      return *this;
357 357
    }
358 358

	
359 359
    /// \brief Set the upper bounds (capacities) on the arcs.
360 360
    ///
361 361
    /// This function sets the upper bounds (capacities) on the arcs.
362 362
    /// If it is not used before calling \ref run(), the upper bounds
363 363
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
364 364
    /// unbounded from above).
365 365
    ///
366 366
    /// \param map An arc map storing the upper bounds.
367 367
    /// Its \c Value type must be convertible to the \c Value type
368 368
    /// of the algorithm.
369 369
    ///
370 370
    /// \return <tt>(*this)</tt>
371 371
    template<typename UpperMap>
372 372
    CapacityScaling& upperMap(const UpperMap& map) {
373 373
      for (ArcIt a(_graph); a != INVALID; ++a) {
374 374
        _upper[_arc_idf[a]] = map[a];
375 375
      }
376 376
      return *this;
377 377
    }
378 378

	
379 379
    /// \brief Set the costs of the arcs.
380 380
    ///
381 381
    /// This function sets the costs of the arcs.
382 382
    /// If it is not used before calling \ref run(), the costs
383 383
    /// will be set to \c 1 on all arcs.
384 384
    ///
385 385
    /// \param map An arc map storing the costs.
386 386
    /// Its \c Value type must be convertible to the \c Cost type
387 387
    /// of the algorithm.
388 388
    ///
389 389
    /// \return <tt>(*this)</tt>
390 390
    template<typename CostMap>
391 391
    CapacityScaling& costMap(const CostMap& map) {
392 392
      for (ArcIt a(_graph); a != INVALID; ++a) {
393 393
        _cost[_arc_idf[a]] =  map[a];
394 394
        _cost[_arc_idb[a]] = -map[a];
395 395
      }
396 396
      return *this;
397 397
    }
398 398

	
399 399
    /// \brief Set the supply values of the nodes.
400 400
    ///
401 401
    /// This function sets the supply values of the nodes.
402 402
    /// If neither this function nor \ref stSupply() is used before
403 403
    /// calling \ref run(), the supply of each node will be set to zero.
404 404
    ///
405 405
    /// \param map A node map storing the supply values.
406 406
    /// Its \c Value type must be convertible to the \c Value type
407 407
    /// of the algorithm.
408 408
    ///
409 409
    /// \return <tt>(*this)</tt>
410 410
    template<typename SupplyMap>
411 411
    CapacityScaling& supplyMap(const SupplyMap& map) {
412 412
      for (NodeIt n(_graph); n != INVALID; ++n) {
413 413
        _supply[_node_id[n]] = map[n];
414 414
      }
415 415
      return *this;
416 416
    }
417 417

	
418 418
    /// \brief Set single source and target nodes and a supply value.
419 419
    ///
420 420
    /// This function sets a single source node and a single target node
421 421
    /// and the required flow value.
422 422
    /// If neither this function nor \ref supplyMap() is used before
423 423
    /// calling \ref run(), the supply of each node will be set to zero.
424 424
    ///
425 425
    /// Using this function has the same effect as using \ref supplyMap()
426 426
    /// with a map in which \c k is assigned to \c s, \c -k is
427 427
    /// assigned to \c t and all other nodes have zero supply value.
428 428
    ///
429 429
    /// \param s The source node.
430 430
    /// \param t The target node.
431 431
    /// \param k The required amount of flow from node \c s to node \c t
432 432
    /// (i.e. the supply of \c s and the demand of \c t).
433 433
    ///
434 434
    /// \return <tt>(*this)</tt>
435 435
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
436 436
      for (int i = 0; i != _node_num; ++i) {
437 437
        _supply[i] = 0;
438 438
      }
439 439
      _supply[_node_id[s]] =  k;
440 440
      _supply[_node_id[t]] = -k;
441 441
      return *this;
442 442
    }
443 443

	
444 444
    /// @}
445 445

	
446 446
    /// \name Execution control
447 447
    /// The algorithm can be executed using \ref run().
448 448

	
449 449
    /// @{
450 450

	
451 451
    /// \brief Run the algorithm.
452 452
    ///
453 453
    /// This function runs the algorithm.
454 454
    /// The paramters can be specified using functions \ref lowerMap(),
455 455
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
456 456
    /// For example,
457 457
    /// \code
458 458
    ///   CapacityScaling<ListDigraph> cs(graph);
459 459
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
460 460
    ///     .supplyMap(sup).run();
461 461
    /// \endcode
462 462
    ///
463 463
    /// This function can be called more than once. All the given parameters
464 464
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
465 465
    /// is used, thus only the modified parameters have to be set again.
466 466
    /// If the underlying digraph was also modified after the construction
467 467
    /// of the class (or the last \ref reset() call), then the \ref reset()
468 468
    /// function must be called.
469 469
    ///
470 470
    /// \param factor The capacity scaling factor. It must be larger than
471 471
    /// one to use scaling. If it is less or equal to one, then scaling
472 472
    /// will be disabled.
473 473
    ///
474 474
    /// \return \c INFEASIBLE if no feasible flow exists,
475 475
    /// \n \c OPTIMAL if the problem has optimal solution
476 476
    /// (i.e. it is feasible and bounded), and the algorithm has found
477 477
    /// optimal flow and node potentials (primal and dual solutions),
478 478
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
479 479
    /// and infinite upper bound. It means that the objective function
480 480
    /// is unbounded on that arc, however, note that it could actually be
481 481
    /// bounded over the feasible flows, but this algroithm cannot handle
482 482
    /// these cases.
483 483
    ///
484 484
    /// \see ProblemType
485 485
    /// \see resetParams(), reset()
486 486
    ProblemType run(int factor = 4) {
487 487
      _factor = factor;
488 488
      ProblemType pt = init();
489 489
      if (pt != OPTIMAL) return pt;
490 490
      return start();
491 491
    }
492 492

	
493 493
    /// \brief Reset all the parameters that have been given before.
494 494
    ///
495 495
    /// This function resets all the paramaters that have been given
496 496
    /// before using functions \ref lowerMap(), \ref upperMap(),
497 497
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
498 498
    ///
499 499
    /// It is useful for multiple \ref run() calls. Basically, all the given
500 500
    /// parameters are kept for the next \ref run() call, unless
501 501
    /// \ref resetParams() or \ref reset() is used.
502 502
    /// If the underlying digraph was also modified after the construction
503 503
    /// of the class or the last \ref reset() call, then the \ref reset()
504 504
    /// function must be used, otherwise \ref resetParams() is sufficient.
505 505
    ///
506 506
    /// For example,
507 507
    /// \code
508 508
    ///   CapacityScaling<ListDigraph> cs(graph);
509 509
    ///
510 510
    ///   // First run
511 511
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
512 512
    ///     .supplyMap(sup).run();
513 513
    ///
514 514
    ///   // Run again with modified cost map (resetParams() is not called,
515 515
    ///   // so only the cost map have to be set again)
516 516
    ///   cost[e] += 100;
517 517
    ///   cs.costMap(cost).run();
518 518
    ///
519 519
    ///   // Run again from scratch using resetParams()
520 520
    ///   // (the lower bounds will be set to zero on all arcs)
521 521
    ///   cs.resetParams();
522 522
    ///   cs.upperMap(capacity).costMap(cost)
523 523
    ///     .supplyMap(sup).run();
524 524
    /// \endcode
525 525
    ///
526 526
    /// \return <tt>(*this)</tt>
527 527
    ///
528 528
    /// \see reset(), run()
529 529
    CapacityScaling& resetParams() {
530 530
      for (int i = 0; i != _node_num; ++i) {
531 531
        _supply[i] = 0;
532 532
      }
533 533
      for (int j = 0; j != _res_arc_num; ++j) {
534 534
        _lower[j] = 0;
535 535
        _upper[j] = INF;
536 536
        _cost[j] = _forward[j] ? 1 : -1;
537 537
      }
538 538
      _have_lower = false;
539 539
      return *this;
540 540
    }
541 541

	
542 542
    /// \brief Reset the internal data structures and all the parameters
543 543
    /// that have been given before.
544 544
    ///
545 545
    /// This function resets the internal data structures and all the
546 546
    /// paramaters that have been given before using functions \ref lowerMap(),
547 547
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
548 548
    ///
549 549
    /// It is useful for multiple \ref run() calls. Basically, all the given
550 550
    /// parameters are kept for the next \ref run() call, unless
551 551
    /// \ref resetParams() or \ref reset() is used.
552 552
    /// If the underlying digraph was also modified after the construction
553 553
    /// of the class or the last \ref reset() call, then the \ref reset()
554 554
    /// function must be used, otherwise \ref resetParams() is sufficient.
555 555
    ///
556 556
    /// See \ref resetParams() for examples.
557 557
    ///
558 558
    /// \return <tt>(*this)</tt>
559 559
    ///
560 560
    /// \see resetParams(), run()
561 561
    CapacityScaling& reset() {
562 562
      // Resize vectors
563 563
      _node_num = countNodes(_graph);
564 564
      _arc_num = countArcs(_graph);
565 565
      _res_arc_num = 2 * (_arc_num + _node_num);
566 566
      _root = _node_num;
567 567
      ++_node_num;
568 568

	
569 569
      _first_out.resize(_node_num + 1);
570 570
      _forward.resize(_res_arc_num);
571 571
      _source.resize(_res_arc_num);
572 572
      _target.resize(_res_arc_num);
573 573
      _reverse.resize(_res_arc_num);
574 574

	
575 575
      _lower.resize(_res_arc_num);
576 576
      _upper.resize(_res_arc_num);
577 577
      _cost.resize(_res_arc_num);
578 578
      _supply.resize(_node_num);
579 579

	
580 580
      _res_cap.resize(_res_arc_num);
581 581
      _pi.resize(_node_num);
582 582
      _excess.resize(_node_num);
583 583
      _pred.resize(_node_num);
584 584

	
585 585
      // Copy the graph
586 586
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
587 587
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
588 588
        _node_id[n] = i;
589 589
      }
590 590
      i = 0;
591 591
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
592 592
        _first_out[i] = j;
593 593
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
594 594
          _arc_idf[a] = j;
595 595
          _forward[j] = true;
596 596
          _source[j] = i;
597 597
          _target[j] = _node_id[_graph.runningNode(a)];
598 598
        }
599 599
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
600 600
          _arc_idb[a] = j;
601 601
          _forward[j] = false;
602 602
          _source[j] = i;
603 603
          _target[j] = _node_id[_graph.runningNode(a)];
604 604
        }
605 605
        _forward[j] = false;
606 606
        _source[j] = i;
607 607
        _target[j] = _root;
608 608
        _reverse[j] = k;
609 609
        _forward[k] = true;
610 610
        _source[k] = _root;
611 611
        _target[k] = i;
612 612
        _reverse[k] = j;
613 613
        ++j; ++k;
614 614
      }
615 615
      _first_out[i] = j;
616 616
      _first_out[_node_num] = k;
617 617
      for (ArcIt a(_graph); a != INVALID; ++a) {
618 618
        int fi = _arc_idf[a];
619 619
        int bi = _arc_idb[a];
620 620
        _reverse[fi] = bi;
621 621
        _reverse[bi] = fi;
622 622
      }
623 623

	
624 624
      // Reset parameters
625 625
      resetParams();
626 626
      return *this;
627 627
    }
628 628

	
629 629
    /// @}
630 630

	
631 631
    /// \name Query Functions
632 632
    /// The results of the algorithm can be obtained using these
633 633
    /// functions.\n
634 634
    /// The \ref run() function must be called before using them.
635 635

	
636 636
    /// @{
637 637

	
638 638
    /// \brief Return the total cost of the found flow.
639 639
    ///
640 640
    /// This function returns the total cost of the found flow.
641 641
    /// Its complexity is O(e).
642 642
    ///
643 643
    /// \note The return type of the function can be specified as a
644 644
    /// template parameter. For example,
645 645
    /// \code
646 646
    ///   cs.totalCost<double>();
647 647
    /// \endcode
648 648
    /// It is useful if the total cost cannot be stored in the \c Cost
649 649
    /// type of the algorithm, which is the default return type of the
650 650
    /// function.
651 651
    ///
652 652
    /// \pre \ref run() must be called before using this function.
653 653
    template <typename Number>
654 654
    Number totalCost() const {
655 655
      Number c = 0;
656 656
      for (ArcIt a(_graph); a != INVALID; ++a) {
657 657
        int i = _arc_idb[a];
658 658
        c += static_cast<Number>(_res_cap[i]) *
659 659
             (-static_cast<Number>(_cost[i]));
660 660
      }
661 661
      return c;
662 662
    }
663 663

	
664 664
#ifndef DOXYGEN
665 665
    Cost totalCost() const {
666 666
      return totalCost<Cost>();
667 667
    }
668 668
#endif
669 669

	
670 670
    /// \brief Return the flow on the given arc.
671 671
    ///
672 672
    /// This function returns the flow on the given arc.
673 673
    ///
674 674
    /// \pre \ref run() must be called before using this function.
675 675
    Value flow(const Arc& a) const {
676 676
      return _res_cap[_arc_idb[a]];
677 677
    }
678 678

	
679 679
    /// \brief Return the flow map (the primal solution).
680 680
    ///
681 681
    /// This function copies the flow value on each arc into the given
682 682
    /// map. The \c Value type of the algorithm must be convertible to
683 683
    /// the \c Value type of the map.
684 684
    ///
685 685
    /// \pre \ref run() must be called before using this function.
686 686
    template <typename FlowMap>
687 687
    void flowMap(FlowMap &map) const {
688 688
      for (ArcIt a(_graph); a != INVALID; ++a) {
689 689
        map.set(a, _res_cap[_arc_idb[a]]);
690 690
      }
691 691
    }
692 692

	
693 693
    /// \brief Return the potential (dual value) of the given node.
694 694
    ///
695 695
    /// This function returns the potential (dual value) of the
696 696
    /// given node.
697 697
    ///
698 698
    /// \pre \ref run() must be called before using this function.
699 699
    Cost potential(const Node& n) const {
700 700
      return _pi[_node_id[n]];
701 701
    }
702 702

	
703 703
    /// \brief Return the potential map (the dual solution).
704 704
    ///
705 705
    /// This function copies the potential (dual value) of each node
706 706
    /// into the given map.
707 707
    /// The \c Cost type of the algorithm must be convertible to the
708 708
    /// \c Value type of the map.
709 709
    ///
710 710
    /// \pre \ref run() must be called before using this function.
711 711
    template <typename PotentialMap>
712 712
    void potentialMap(PotentialMap &map) const {
713 713
      for (NodeIt n(_graph); n != INVALID; ++n) {
714 714
        map.set(n, _pi[_node_id[n]]);
715 715
      }
716 716
    }
717 717

	
718 718
    /// @}
719 719

	
720 720
  private:
721 721

	
722 722
    // Initialize the algorithm
723 723
    ProblemType init() {
724 724
      if (_node_num <= 1) return INFEASIBLE;
725 725

	
726 726
      // Check the sum of supply values
727 727
      _sum_supply = 0;
728 728
      for (int i = 0; i != _root; ++i) {
729 729
        _sum_supply += _supply[i];
730 730
      }
731 731
      if (_sum_supply > 0) return INFEASIBLE;
732 732

	
733 733
      // Initialize vectors
734 734
      for (int i = 0; i != _root; ++i) {
735 735
        _pi[i] = 0;
736 736
        _excess[i] = _supply[i];
737 737
      }
738 738

	
739 739
      // Remove non-zero lower bounds
740 740
      const Value MAX = std::numeric_limits<Value>::max();
741 741
      int last_out;
742 742
      if (_have_lower) {
743 743
        for (int i = 0; i != _root; ++i) {
744 744
          last_out = _first_out[i+1];
745 745
          for (int j = _first_out[i]; j != last_out; ++j) {
746 746
            if (_forward[j]) {
747 747
              Value c = _lower[j];
748 748
              if (c >= 0) {
749 749
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
750 750
              } else {
751 751
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
752 752
              }
753 753
              _excess[i] -= c;
754 754
              _excess[_target[j]] += c;
755 755
            } else {
756 756
              _res_cap[j] = 0;
757 757
            }
758 758
          }
759 759
        }
760 760
      } else {
761 761
        for (int j = 0; j != _res_arc_num; ++j) {
762 762
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
763 763
        }
764 764
      }
765 765

	
766 766
      // Handle negative costs
767 767
      for (int i = 0; i != _root; ++i) {
768 768
        last_out = _first_out[i+1] - 1;
769 769
        for (int j = _first_out[i]; j != last_out; ++j) {
770 770
          Value rc = _res_cap[j];
771 771
          if (_cost[j] < 0 && rc > 0) {
772 772
            if (rc >= MAX) return UNBOUNDED;
773 773
            _excess[i] -= rc;
774 774
            _excess[_target[j]] += rc;
775 775
            _res_cap[j] = 0;
776 776
            _res_cap[_reverse[j]] += rc;
777 777
          }
778 778
        }
779 779
      }
780 780

	
781 781
      // Handle GEQ supply type
782 782
      if (_sum_supply < 0) {
783 783
        _pi[_root] = 0;
784 784
        _excess[_root] = -_sum_supply;
785 785
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
786 786
          int ra = _reverse[a];
787 787
          _res_cap[a] = -_sum_supply + 1;
788 788
          _res_cap[ra] = 0;
789 789
          _cost[a] = 0;
790 790
          _cost[ra] = 0;
791 791
        }
792 792
      } else {
793 793
        _pi[_root] = 0;
794 794
        _excess[_root] = 0;
795 795
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
796 796
          int ra = _reverse[a];
797 797
          _res_cap[a] = 1;
798 798
          _res_cap[ra] = 0;
799 799
          _cost[a] = 0;
800 800
          _cost[ra] = 0;
801 801
        }
802 802
      }
803 803

	
804 804
      // Initialize delta value
805 805
      if (_factor > 1) {
806 806
        // With scaling
807 807
        Value max_sup = 0, max_dem = 0, max_cap = 0;
808 808
        for (int i = 0; i != _root; ++i) {
809 809
          Value ex = _excess[i];
810 810
          if ( ex > max_sup) max_sup =  ex;
811 811
          if (-ex > max_dem) max_dem = -ex;
812 812
          int last_out = _first_out[i+1] - 1;
813 813
          for (int j = _first_out[i]; j != last_out; ++j) {
814 814
            if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
815 815
          }
816 816
        }
817 817
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
818 818
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
819 819
      } else {
820 820
        // Without scaling
821 821
        _delta = 1;
822 822
      }
823 823

	
824 824
      return OPTIMAL;
825 825
    }
826 826

	
827 827
    ProblemType start() {
828 828
      // Execute the algorithm
829 829
      ProblemType pt;
830 830
      if (_delta > 1)
831 831
        pt = startWithScaling();
832 832
      else
833 833
        pt = startWithoutScaling();
834 834

	
835 835
      // Handle non-zero lower bounds
836 836
      if (_have_lower) {
837 837
        int limit = _first_out[_root];
838 838
        for (int j = 0; j != limit; ++j) {
839 839
          if (!_forward[j]) _res_cap[j] += _lower[j];
840 840
        }
841 841
      }
842 842

	
843 843
      // Shift potentials if necessary
844 844
      Cost pr = _pi[_root];
845 845
      if (_sum_supply < 0 || pr > 0) {
846 846
        for (int i = 0; i != _node_num; ++i) {
847 847
          _pi[i] -= pr;
848 848
        }
849 849
      }
850 850

	
851 851
      return pt;
852 852
    }
853 853

	
854 854
    // Execute the capacity scaling algorithm
855 855
    ProblemType startWithScaling() {
856 856
      // Perform capacity scaling phases
857 857
      int s, t;
858 858
      ResidualDijkstra _dijkstra(*this);
859 859
      while (true) {
860 860
        // Saturate all arcs not satisfying the optimality condition
861 861
        int last_out;
862 862
        for (int u = 0; u != _node_num; ++u) {
863 863
          last_out = _sum_supply < 0 ?
864 864
            _first_out[u+1] : _first_out[u+1] - 1;
865 865
          for (int a = _first_out[u]; a != last_out; ++a) {
866 866
            int v = _target[a];
867 867
            Cost c = _cost[a] + _pi[u] - _pi[v];
868 868
            Value rc = _res_cap[a];
869 869
            if (c < 0 && rc >= _delta) {
870 870
              _excess[u] -= rc;
871 871
              _excess[v] += rc;
872 872
              _res_cap[a] = 0;
873 873
              _res_cap[_reverse[a]] += rc;
874 874
            }
875 875
          }
876 876
        }
877 877

	
878 878
        // Find excess nodes and deficit nodes
879 879
        _excess_nodes.clear();
880 880
        _deficit_nodes.clear();
881 881
        for (int u = 0; u != _node_num; ++u) {
882 882
          Value ex = _excess[u];
883 883
          if (ex >=  _delta) _excess_nodes.push_back(u);
884 884
          if (ex <= -_delta) _deficit_nodes.push_back(u);
885 885
        }
886 886
        int next_node = 0, next_def_node = 0;
887 887

	
888 888
        // Find augmenting shortest paths
889 889
        while (next_node < int(_excess_nodes.size())) {
890 890
          // Check deficit nodes
891 891
          if (_delta > 1) {
892 892
            bool delta_deficit = false;
893 893
            for ( ; next_def_node < int(_deficit_nodes.size());
894 894
                    ++next_def_node ) {
895 895
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
896 896
                delta_deficit = true;
897 897
                break;
898 898
              }
899 899
            }
900 900
            if (!delta_deficit) break;
901 901
          }
902 902

	
903 903
          // Run Dijkstra in the residual network
904 904
          s = _excess_nodes[next_node];
905 905
          if ((t = _dijkstra.run(s, _delta)) == -1) {
906 906
            if (_delta > 1) {
907 907
              ++next_node;
908 908
              continue;
909 909
            }
910 910
            return INFEASIBLE;
911 911
          }
912 912

	
913 913
          // Augment along a shortest path from s to t
914 914
          Value d = std::min(_excess[s], -_excess[t]);
915 915
          int u = t;
916 916
          int a;
917 917
          if (d > _delta) {
918 918
            while ((a = _pred[u]) != -1) {
919 919
              if (_res_cap[a] < d) d = _res_cap[a];
920 920
              u = _source[a];
921 921
            }
922 922
          }
923 923
          u = t;
924 924
          while ((a = _pred[u]) != -1) {
925 925
            _res_cap[a] -= d;
926 926
            _res_cap[_reverse[a]] += d;
927 927
            u = _source[a];
928 928
          }
929 929
          _excess[s] -= d;
930 930
          _excess[t] += d;
931 931

	
932 932
          if (_excess[s] < _delta) ++next_node;
933 933
        }
934 934

	
935 935
        if (_delta == 1) break;
936 936
        _delta = _delta <= _factor ? 1 : _delta / _factor;
937 937
      }
938 938

	
939 939
      return OPTIMAL;
940 940
    }
941 941

	
942 942
    // Execute the successive shortest path algorithm
943 943
    ProblemType startWithoutScaling() {
944 944
      // Find excess nodes
945 945
      _excess_nodes.clear();
946 946
      for (int i = 0; i != _node_num; ++i) {
947 947
        if (_excess[i] > 0) _excess_nodes.push_back(i);
948 948
      }
949 949
      if (_excess_nodes.size() == 0) return OPTIMAL;
950 950
      int next_node = 0;
951 951

	
952 952
      // Find shortest paths
953 953
      int s, t;
954 954
      ResidualDijkstra _dijkstra(*this);
955 955
      while ( _excess[_excess_nodes[next_node]] > 0 ||
956 956
              ++next_node < int(_excess_nodes.size()) )
957 957
      {
958 958
        // Run Dijkstra in the residual network
959 959
        s = _excess_nodes[next_node];
960 960
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
961 961

	
962 962
        // Augment along a shortest path from s to t
963 963
        Value d = std::min(_excess[s], -_excess[t]);
964 964
        int u = t;
965 965
        int a;
966 966
        if (d > 1) {
967 967
          while ((a = _pred[u]) != -1) {
968 968
            if (_res_cap[a] < d) d = _res_cap[a];
969 969
            u = _source[a];
970 970
          }
971 971
        }
972 972
        u = t;
973 973
        while ((a = _pred[u]) != -1) {
974 974
          _res_cap[a] -= d;
975 975
          _res_cap[_reverse[a]] += d;
976 976
          u = _source[a];
977 977
        }
978 978
        _excess[s] -= d;
979 979
        _excess[t] += d;
980 980
      }
981 981

	
982 982
      return OPTIMAL;
983 983
    }
984 984

	
985 985
  }; //class CapacityScaling
986 986

	
987 987
  ///@}
988 988

	
989 989
} //namespace lemon
990 990

	
991 991
#endif //LEMON_CAPACITY_SCALING_H
0 comments (0 inline)