| ... | ... |
@@ -111,385 +111,390 @@ |
| 111 | 111 |
/// the network reliability, especially to test how many links have |
| 112 | 112 |
/// to be destroyed in the network to split it to at least two |
| 113 | 113 |
/// distinict subnetworks. |
| 114 | 114 |
/// |
| 115 | 115 |
/// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with |
| 116 | 116 |
/// \ref FibHeap "Fibonacci heap" it can be decreased to |
| 117 | 117 |
/// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities, |
| 118 | 118 |
/// \c BucketHeap can be used which yields \f$ O(nm) \f$ time |
| 119 | 119 |
/// complexity. |
| 120 | 120 |
/// |
| 121 | 121 |
/// \warning The value type of the capacity map should be able to |
| 122 | 122 |
/// hold any cut value of the graph, otherwise the result can |
| 123 | 123 |
/// overflow. |
| 124 | 124 |
/// \note This capacity is supposed to be integer type. |
| 125 | 125 |
#ifdef DOXYGEN |
| 126 | 126 |
template <typename GR, typename CM, typename TR> |
| 127 | 127 |
#else |
| 128 | 128 |
template <typename GR, |
| 129 | 129 |
typename CM = typename GR::template EdgeMap<int>, |
| 130 | 130 |
typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > |
| 131 | 131 |
#endif |
| 132 | 132 |
class NagamochiIbaraki {
|
| 133 | 133 |
public: |
| 134 | 134 |
|
| 135 | 135 |
typedef TR Traits; |
| 136 | 136 |
/// The type of the underlying graph. |
| 137 | 137 |
typedef typename Traits::Graph Graph; |
| 138 | 138 |
|
| 139 | 139 |
/// The type of the capacity map. |
| 140 | 140 |
typedef typename Traits::CapacityMap CapacityMap; |
| 141 | 141 |
/// The value type of the capacity map. |
| 142 | 142 |
typedef typename Traits::CapacityMap::Value Value; |
| 143 | 143 |
|
| 144 | 144 |
/// The heap type used by the algorithm. |
| 145 | 145 |
typedef typename Traits::Heap Heap; |
| 146 | 146 |
/// The cross reference type used for the heap. |
| 147 | 147 |
typedef typename Traits::HeapCrossRef HeapCrossRef; |
| 148 | 148 |
|
| 149 | 149 |
///\name Named template parameters |
| 150 | 150 |
|
| 151 | 151 |
///@{
|
| 152 | 152 |
|
| 153 | 153 |
struct SetUnitCapacityTraits : public Traits {
|
| 154 | 154 |
typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; |
| 155 | 155 |
static CapacityMap *createCapacityMap(const Graph&) {
|
| 156 | 156 |
return new CapacityMap(); |
| 157 | 157 |
} |
| 158 | 158 |
}; |
| 159 | 159 |
|
| 160 | 160 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 161 | 161 |
/// the capacity map to a constMap<Edge, int, 1>() instance |
| 162 | 162 |
/// |
| 163 | 163 |
/// \ref named-templ-param "Named parameter" for setting |
| 164 | 164 |
/// the capacity map to a constMap<Edge, int, 1>() instance |
| 165 | 165 |
struct SetUnitCapacity |
| 166 | 166 |
: public NagamochiIbaraki<Graph, CapacityMap, |
| 167 | 167 |
SetUnitCapacityTraits> {
|
| 168 | 168 |
typedef NagamochiIbaraki<Graph, CapacityMap, |
| 169 | 169 |
SetUnitCapacityTraits> Create; |
| 170 | 170 |
}; |
| 171 | 171 |
|
| 172 | 172 |
|
| 173 | 173 |
template <class H, class CR> |
| 174 | 174 |
struct SetHeapTraits : public Traits {
|
| 175 | 175 |
typedef CR HeapCrossRef; |
| 176 | 176 |
typedef H Heap; |
| 177 | 177 |
static HeapCrossRef *createHeapCrossRef(int num) {
|
| 178 | 178 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 179 | 179 |
return 0; // ignore warnings |
| 180 | 180 |
} |
| 181 | 181 |
static Heap *createHeap(HeapCrossRef &) {
|
| 182 | 182 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 183 | 183 |
return 0; // ignore warnings |
| 184 | 184 |
} |
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 188 | 188 |
/// heap and cross reference type |
| 189 | 189 |
/// |
| 190 | 190 |
/// \ref named-templ-param "Named parameter" for setting heap and |
| 191 | 191 |
/// cross reference type. The heap has to maximize the priorities. |
| 192 | 192 |
template <class H, class CR = RangeMap<int> > |
| 193 | 193 |
struct SetHeap |
| 194 | 194 |
: public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
|
| 195 | 195 |
typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > |
| 196 | 196 |
Create; |
| 197 | 197 |
}; |
| 198 | 198 |
|
| 199 | 199 |
template <class H, class CR> |
| 200 | 200 |
struct SetStandardHeapTraits : public Traits {
|
| 201 | 201 |
typedef CR HeapCrossRef; |
| 202 | 202 |
typedef H Heap; |
| 203 | 203 |
static HeapCrossRef *createHeapCrossRef(int size) {
|
| 204 | 204 |
return new HeapCrossRef(size); |
| 205 | 205 |
} |
| 206 | 206 |
static Heap *createHeap(HeapCrossRef &crossref) {
|
| 207 | 207 |
return new Heap(crossref); |
| 208 | 208 |
} |
| 209 | 209 |
}; |
| 210 | 210 |
|
| 211 | 211 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 212 | 212 |
/// heap and cross reference type with automatic allocation |
| 213 | 213 |
/// |
| 214 | 214 |
/// \ref named-templ-param "Named parameter" for setting heap and |
| 215 | 215 |
/// cross reference type with automatic allocation. They should |
| 216 | 216 |
/// have standard constructor interfaces to be able to |
| 217 | 217 |
/// automatically created by the algorithm (i.e. the graph should |
| 218 | 218 |
/// be passed to the constructor of the cross reference and the |
| 219 | 219 |
/// cross reference should be passed to the constructor of the |
| 220 | 220 |
/// heap). However, external heap and cross reference objects |
| 221 | 221 |
/// could also be passed to the algorithm using the \ref heap() |
| 222 | 222 |
/// function before calling \ref run() or \ref init(). The heap |
| 223 | 223 |
/// has to maximize the priorities. |
| 224 | 224 |
/// \sa SetHeap |
| 225 | 225 |
template <class H, class CR = RangeMap<int> > |
| 226 | 226 |
struct SetStandardHeap |
| 227 | 227 |
: public NagamochiIbaraki<Graph, CapacityMap, |
| 228 | 228 |
SetStandardHeapTraits<H, CR> > {
|
| 229 | 229 |
typedef NagamochiIbaraki<Graph, CapacityMap, |
| 230 | 230 |
SetStandardHeapTraits<H, CR> > Create; |
| 231 | 231 |
}; |
| 232 | 232 |
|
| 233 | 233 |
///@} |
| 234 | 234 |
|
| 235 | 235 |
|
| 236 | 236 |
private: |
| 237 | 237 |
|
| 238 | 238 |
const Graph &_graph; |
| 239 | 239 |
const CapacityMap *_capacity; |
| 240 | 240 |
bool _local_capacity; // unit capacity |
| 241 | 241 |
|
| 242 | 242 |
struct ArcData {
|
| 243 | 243 |
typename Graph::Node target; |
| 244 | 244 |
int prev, next; |
| 245 | 245 |
}; |
| 246 | 246 |
struct EdgeData {
|
| 247 | 247 |
Value capacity; |
| 248 | 248 |
Value cut; |
| 249 | 249 |
}; |
| 250 | 250 |
|
| 251 | 251 |
struct NodeData {
|
| 252 | 252 |
int first_arc; |
| 253 | 253 |
typename Graph::Node prev, next; |
| 254 | 254 |
int curr_arc; |
| 255 | 255 |
typename Graph::Node last_rep; |
| 256 | 256 |
Value sum; |
| 257 | 257 |
}; |
| 258 | 258 |
|
| 259 | 259 |
typename Graph::template NodeMap<NodeData> *_nodes; |
| 260 | 260 |
std::vector<ArcData> _arcs; |
| 261 | 261 |
std::vector<EdgeData> _edges; |
| 262 | 262 |
|
| 263 | 263 |
typename Graph::Node _first_node; |
| 264 | 264 |
int _node_num; |
| 265 | 265 |
|
| 266 | 266 |
Value _min_cut; |
| 267 | 267 |
|
| 268 | 268 |
HeapCrossRef *_heap_cross_ref; |
| 269 | 269 |
bool _local_heap_cross_ref; |
| 270 | 270 |
Heap *_heap; |
| 271 | 271 |
bool _local_heap; |
| 272 | 272 |
|
| 273 | 273 |
typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; |
| 274 | 274 |
NodeList *_next_rep; |
| 275 | 275 |
|
| 276 | 276 |
typedef typename Graph::template NodeMap<bool> MinCutMap; |
| 277 | 277 |
MinCutMap *_cut_map; |
| 278 | 278 |
|
| 279 | 279 |
void createStructures() {
|
| 280 | 280 |
if (!_nodes) {
|
| 281 | 281 |
_nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); |
| 282 | 282 |
} |
| 283 | 283 |
if (!_capacity) {
|
| 284 | 284 |
_local_capacity = true; |
| 285 | 285 |
_capacity = Traits::createCapacityMap(_graph); |
| 286 | 286 |
} |
| 287 | 287 |
if (!_heap_cross_ref) {
|
| 288 | 288 |
_local_heap_cross_ref = true; |
| 289 | 289 |
_heap_cross_ref = Traits::createHeapCrossRef(_graph); |
| 290 | 290 |
} |
| 291 | 291 |
if (!_heap) {
|
| 292 | 292 |
_local_heap = true; |
| 293 | 293 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 294 | 294 |
} |
| 295 | 295 |
if (!_next_rep) {
|
| 296 | 296 |
_next_rep = new NodeList(_graph); |
| 297 | 297 |
} |
| 298 | 298 |
if (!_cut_map) {
|
| 299 | 299 |
_cut_map = new MinCutMap(_graph); |
| 300 | 300 |
} |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 |
|
|
| 303 |
protected: |
|
| 304 |
//This is here to avoid a gcc-3.3 compilation error. |
|
| 305 |
//It should never be called. |
|
| 306 |
NagamochiIbaraki() {}
|
|
| 307 |
|
|
| 308 |
public: |
|
| 304 | 309 |
|
| 305 | 310 |
typedef NagamochiIbaraki Create; |
| 306 | 311 |
|
| 307 | 312 |
|
| 308 | 313 |
/// \brief Constructor. |
| 309 | 314 |
/// |
| 310 | 315 |
/// \param graph The graph the algorithm runs on. |
| 311 | 316 |
/// \param capacity The capacity map used by the algorithm. |
| 312 | 317 |
NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
| 313 | 318 |
: _graph(graph), _capacity(&capacity), _local_capacity(false), |
| 314 | 319 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
| 315 | 320 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
| 316 | 321 |
_heap(0), _local_heap(false), |
| 317 | 322 |
_next_rep(0), _cut_map(0) {}
|
| 318 | 323 |
|
| 319 | 324 |
/// \brief Constructor. |
| 320 | 325 |
/// |
| 321 | 326 |
/// This constructor can be used only when the Traits class |
| 322 | 327 |
/// defines how can the local capacity map be instantiated. |
| 323 | 328 |
/// If the SetUnitCapacity used the algorithm automatically |
| 324 | 329 |
/// constructs the capacity map. |
| 325 | 330 |
/// |
| 326 | 331 |
///\param graph The graph the algorithm runs on. |
| 327 | 332 |
NagamochiIbaraki(const Graph& graph) |
| 328 | 333 |
: _graph(graph), _capacity(0), _local_capacity(false), |
| 329 | 334 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
| 330 | 335 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
| 331 | 336 |
_heap(0), _local_heap(false), |
| 332 | 337 |
_next_rep(0), _cut_map(0) {}
|
| 333 | 338 |
|
| 334 | 339 |
/// \brief Destructor. |
| 335 | 340 |
/// |
| 336 | 341 |
/// Destructor. |
| 337 | 342 |
~NagamochiIbaraki() {
|
| 338 | 343 |
if (_local_capacity) delete _capacity; |
| 339 | 344 |
if (_nodes) delete _nodes; |
| 340 | 345 |
if (_local_heap) delete _heap; |
| 341 | 346 |
if (_local_heap_cross_ref) delete _heap_cross_ref; |
| 342 | 347 |
if (_next_rep) delete _next_rep; |
| 343 | 348 |
if (_cut_map) delete _cut_map; |
| 344 | 349 |
} |
| 345 | 350 |
|
| 346 | 351 |
/// \brief Sets the heap and the cross reference used by algorithm. |
| 347 | 352 |
/// |
| 348 | 353 |
/// Sets the heap and the cross reference used by algorithm. |
| 349 | 354 |
/// If you don't use this function before calling \ref run(), |
| 350 | 355 |
/// it will allocate one. The destuctor deallocates this |
| 351 | 356 |
/// automatically allocated heap and cross reference, of course. |
| 352 | 357 |
/// \return <tt> (*this) </tt> |
| 353 | 358 |
NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) |
| 354 | 359 |
{
|
| 355 | 360 |
if (_local_heap_cross_ref) {
|
| 356 | 361 |
delete _heap_cross_ref; |
| 357 | 362 |
_local_heap_cross_ref = false; |
| 358 | 363 |
} |
| 359 | 364 |
_heap_cross_ref = &cr; |
| 360 | 365 |
if (_local_heap) {
|
| 361 | 366 |
delete _heap; |
| 362 | 367 |
_local_heap = false; |
| 363 | 368 |
} |
| 364 | 369 |
_heap = &hp; |
| 365 | 370 |
return *this; |
| 366 | 371 |
} |
| 367 | 372 |
|
| 368 | 373 |
/// \name Execution control |
| 369 | 374 |
/// The simplest way to execute the algorithm is to use |
| 370 | 375 |
/// one of the member functions called \c run(). |
| 371 | 376 |
/// \n |
| 372 | 377 |
/// If you need more control on the execution, |
| 373 | 378 |
/// first you must call \ref init() and then call the start() |
| 374 | 379 |
/// or proper times the processNextPhase() member functions. |
| 375 | 380 |
|
| 376 | 381 |
///@{
|
| 377 | 382 |
|
| 378 | 383 |
/// \brief Initializes the internal data structures. |
| 379 | 384 |
/// |
| 380 | 385 |
/// Initializes the internal data structures. |
| 381 | 386 |
void init() {
|
| 382 | 387 |
createStructures(); |
| 383 | 388 |
|
| 384 | 389 |
int edge_num = countEdges(_graph); |
| 385 | 390 |
_edges.resize(edge_num); |
| 386 | 391 |
_arcs.resize(2 * edge_num); |
| 387 | 392 |
|
| 388 | 393 |
typename Graph::Node prev = INVALID; |
| 389 | 394 |
_node_num = 0; |
| 390 | 395 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
| 391 | 396 |
(*_cut_map)[n] = false; |
| 392 | 397 |
(*_next_rep)[n] = INVALID; |
| 393 | 398 |
(*_nodes)[n].last_rep = n; |
| 394 | 399 |
(*_nodes)[n].first_arc = -1; |
| 395 | 400 |
(*_nodes)[n].curr_arc = -1; |
| 396 | 401 |
(*_nodes)[n].prev = prev; |
| 397 | 402 |
if (prev != INVALID) {
|
| 398 | 403 |
(*_nodes)[prev].next = n; |
| 399 | 404 |
} |
| 400 | 405 |
(*_nodes)[n].next = INVALID; |
| 401 | 406 |
(*_nodes)[n].sum = 0; |
| 402 | 407 |
prev = n; |
| 403 | 408 |
++_node_num; |
| 404 | 409 |
} |
| 405 | 410 |
|
| 406 | 411 |
_first_node = typename Graph::NodeIt(_graph); |
| 407 | 412 |
|
| 408 | 413 |
int index = 0; |
| 409 | 414 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
| 410 | 415 |
for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
|
| 411 | 416 |
typename Graph::Node m = _graph.target(a); |
| 412 | 417 |
|
| 413 | 418 |
if (!(n < m)) continue; |
| 414 | 419 |
|
| 415 | 420 |
(*_nodes)[n].sum += (*_capacity)[a]; |
| 416 | 421 |
(*_nodes)[m].sum += (*_capacity)[a]; |
| 417 | 422 |
|
| 418 | 423 |
int c = (*_nodes)[m].curr_arc; |
| 419 | 424 |
if (c != -1 && _arcs[c ^ 1].target == n) {
|
| 420 | 425 |
_edges[c >> 1].capacity += (*_capacity)[a]; |
| 421 | 426 |
} else {
|
| 422 | 427 |
_edges[index].capacity = (*_capacity)[a]; |
| 423 | 428 |
|
| 424 | 429 |
_arcs[index << 1].prev = -1; |
| 425 | 430 |
if ((*_nodes)[n].first_arc != -1) {
|
| 426 | 431 |
_arcs[(*_nodes)[n].first_arc].prev = (index << 1); |
| 427 | 432 |
} |
| 428 | 433 |
_arcs[index << 1].next = (*_nodes)[n].first_arc; |
| 429 | 434 |
(*_nodes)[n].first_arc = (index << 1); |
| 430 | 435 |
_arcs[index << 1].target = m; |
| 431 | 436 |
|
| 432 | 437 |
(*_nodes)[m].curr_arc = (index << 1); |
| 433 | 438 |
|
| 434 | 439 |
_arcs[(index << 1) | 1].prev = -1; |
| 435 | 440 |
if ((*_nodes)[m].first_arc != -1) {
|
| 436 | 441 |
_arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); |
| 437 | 442 |
} |
| 438 | 443 |
_arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; |
| 439 | 444 |
(*_nodes)[m].first_arc = ((index << 1) | 1); |
| 440 | 445 |
_arcs[(index << 1) | 1].target = n; |
| 441 | 446 |
|
| 442 | 447 |
++index; |
| 443 | 448 |
} |
| 444 | 449 |
} |
| 445 | 450 |
} |
| 446 | 451 |
|
| 447 | 452 |
typename Graph::Node cut_node = INVALID; |
| 448 | 453 |
_min_cut = std::numeric_limits<Value>::max(); |
| 449 | 454 |
|
| 450 | 455 |
for (typename Graph::Node n = _first_node; |
| 451 | 456 |
n != INVALID; n = (*_nodes)[n].next) {
|
| 452 | 457 |
if ((*_nodes)[n].sum < _min_cut) {
|
| 453 | 458 |
cut_node = n; |
| 454 | 459 |
_min_cut = (*_nodes)[n].sum; |
| 455 | 460 |
} |
| 456 | 461 |
} |
| 457 | 462 |
(*_cut_map)[cut_node] = true; |
| 458 | 463 |
if (_min_cut == 0) {
|
| 459 | 464 |
_first_node = INVALID; |
| 460 | 465 |
} |
| 461 | 466 |
} |
| 462 | 467 |
|
| 463 | 468 |
public: |
| 464 | 469 |
|
| 465 | 470 |
/// \brief Processes the next phase |
| 466 | 471 |
/// |
| 467 | 472 |
/// Processes the next phase in the algorithm. It must be called |
| 468 | 473 |
/// at most one less the number of the nodes in the graph. |
| 469 | 474 |
/// |
| 470 | 475 |
///\return %True when the algorithm finished. |
| 471 | 476 |
bool processNextPhase() {
|
| 472 | 477 |
if (_first_node == INVALID) return true; |
| 473 | 478 |
|
| 474 | 479 |
_heap->clear(); |
| 475 | 480 |
for (typename Graph::Node n = _first_node; |
| 476 | 481 |
n != INVALID; n = (*_nodes)[n].next) {
|
| 477 | 482 |
(*_heap_cross_ref)[n] = Heap::PRE_HEAP; |
| 478 | 483 |
} |
| 479 | 484 |
|
| 480 | 485 |
std::vector<typename Graph::Node> order; |
| 481 | 486 |
order.reserve(_node_num); |
| 482 | 487 |
int sep = 0; |
| 483 | 488 |
|
| 484 | 489 |
Value alpha = 0; |
| 485 | 490 |
Value pmc = std::numeric_limits<Value>::max(); |
| 486 | 491 |
|
| 487 | 492 |
_heap->push(_first_node, static_cast<Value>(0)); |
| 488 | 493 |
while (!_heap->empty()) {
|
| 489 | 494 |
typename Graph::Node n = _heap->top(); |
| 490 | 495 |
Value v = _heap->prio(); |
| 491 | 496 |
|
| 492 | 497 |
_heap->pop(); |
| 493 | 498 |
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
|
| 494 | 499 |
switch (_heap->state(_arcs[a].target)) {
|
| 495 | 500 |
case Heap::PRE_HEAP: |
0 comments (0 inline)