0
19
6
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
|
|
| 26 |
#include <lemon/bits/path_dump.h> |
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/error.h> |
|
| 29 |
#include <lemon/maps.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
|
|
| 32 |
#include <limits> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 37 |
/// |
|
| 38 |
/// This operation traits class defines all computational operations |
|
| 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 40 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 41 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 42 |
/// value is used as extremal infinity value. |
|
| 43 |
template < |
|
| 44 |
typename V, |
|
| 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 46 |
struct BellmanFordDefaultOperationTraits {
|
|
| 47 |
/// \e |
|
| 48 |
typedef V Value; |
|
| 49 |
/// \brief Gives back the zero value of the type. |
|
| 50 |
static Value zero() {
|
|
| 51 |
return static_cast<Value>(0); |
|
| 52 |
} |
|
| 53 |
/// \brief Gives back the positive infinity value of the type. |
|
| 54 |
static Value infinity() {
|
|
| 55 |
return std::numeric_limits<Value>::infinity(); |
|
| 56 |
} |
|
| 57 |
/// \brief Gives back the sum of the given two elements. |
|
| 58 |
static Value plus(const Value& left, const Value& right) {
|
|
| 59 |
return left + right; |
|
| 60 |
} |
|
| 61 |
/// \brief Gives back \c true only if the first value is less than |
|
| 62 |
/// the second. |
|
| 63 |
static bool less(const Value& left, const Value& right) {
|
|
| 64 |
return left < right; |
|
| 65 |
} |
|
| 66 |
}; |
|
| 67 |
|
|
| 68 |
template <typename V> |
|
| 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 70 |
typedef V Value; |
|
| 71 |
static Value zero() {
|
|
| 72 |
return static_cast<Value>(0); |
|
| 73 |
} |
|
| 74 |
static Value infinity() {
|
|
| 75 |
return std::numeric_limits<Value>::max(); |
|
| 76 |
} |
|
| 77 |
static Value plus(const Value& left, const Value& right) {
|
|
| 78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 79 |
return left + right; |
|
| 80 |
} |
|
| 81 |
static bool less(const Value& left, const Value& right) {
|
|
| 82 |
return left < right; |
|
| 83 |
} |
|
| 84 |
}; |
|
| 85 |
|
|
| 86 |
/// \brief Default traits class of BellmanFord class. |
|
| 87 |
/// |
|
| 88 |
/// Default traits class of BellmanFord class. |
|
| 89 |
/// \param GR The type of the digraph. |
|
| 90 |
/// \param LEN The type of the length map. |
|
| 91 |
template<typename GR, typename LEN> |
|
| 92 |
struct BellmanFordDefaultTraits {
|
|
| 93 |
/// The type of the digraph the algorithm runs on. |
|
| 94 |
typedef GR Digraph; |
|
| 95 |
|
|
| 96 |
/// \brief The type of the map that stores the arc lengths. |
|
| 97 |
/// |
|
| 98 |
/// The type of the map that stores the arc lengths. |
|
| 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 100 |
typedef LEN LengthMap; |
|
| 101 |
|
|
| 102 |
/// The type of the arc lengths. |
|
| 103 |
typedef typename LEN::Value Value; |
|
| 104 |
|
|
| 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 106 |
/// |
|
| 107 |
/// It defines the used operations and the infinity value for the |
|
| 108 |
/// given \c Value type. |
|
| 109 |
/// \see BellmanFordDefaultOperationTraits |
|
| 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 111 |
|
|
| 112 |
/// \brief The type of the map that stores the last arcs of the |
|
| 113 |
/// shortest paths. |
|
| 114 |
/// |
|
| 115 |
/// The type of the map that stores the last |
|
| 116 |
/// arcs of the shortest paths. |
|
| 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 119 |
|
|
| 120 |
/// \brief Instantiates a \c PredMap. |
|
| 121 |
/// |
|
| 122 |
/// This function instantiates a \ref PredMap. |
|
| 123 |
/// \param g is the digraph to which we would like to define the |
|
| 124 |
/// \ref PredMap. |
|
| 125 |
static PredMap *createPredMap(const GR& g) {
|
|
| 126 |
return new PredMap(g); |
|
| 127 |
} |
|
| 128 |
|
|
| 129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 130 |
/// |
|
| 131 |
/// The type of the map that stores the distances of the nodes. |
|
| 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 134 |
|
|
| 135 |
/// \brief Instantiates a \c DistMap. |
|
| 136 |
/// |
|
| 137 |
/// This function instantiates a \ref DistMap. |
|
| 138 |
/// \param g is the digraph to which we would like to define the |
|
| 139 |
/// \ref DistMap. |
|
| 140 |
static DistMap *createDistMap(const GR& g) {
|
|
| 141 |
return new DistMap(g); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
}; |
|
| 145 |
|
|
| 146 |
/// \brief %BellmanFord algorithm class. |
|
| 147 |
/// |
|
| 148 |
/// \ingroup shortest_path |
|
| 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 151 |
/// <tt>O(ne)</tt>. |
|
| 152 |
/// |
|
| 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 155 |
/// should not contain directed cycles with negative total length. |
|
| 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 157 |
/// algorithm instead, since it is more efficient. |
|
| 158 |
/// |
|
| 159 |
/// The arc lengths are passed to the algorithm using a |
|
| 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 161 |
/// kind of length. The type of the length values is determined by the |
|
| 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 163 |
/// |
|
| 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 166 |
/// it can be used easier. |
|
| 167 |
/// |
|
| 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 169 |
/// The default type is \ref ListDigraph. |
|
| 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 171 |
/// the lengths of the arcs. The default map type is |
|
| 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 173 |
#ifdef DOXYGEN |
|
| 174 |
template <typename GR, typename LEN, typename TR> |
|
| 175 |
#else |
|
| 176 |
template <typename GR=ListDigraph, |
|
| 177 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 179 |
#endif |
|
| 180 |
class BellmanFord {
|
|
| 181 |
public: |
|
| 182 |
|
|
| 183 |
///The type of the underlying digraph. |
|
| 184 |
typedef typename TR::Digraph Digraph; |
|
| 185 |
|
|
| 186 |
/// \brief The type of the arc lengths. |
|
| 187 |
typedef typename TR::LengthMap::Value Value; |
|
| 188 |
/// \brief The type of the map that stores the arc lengths. |
|
| 189 |
typedef typename TR::LengthMap LengthMap; |
|
| 190 |
/// \brief The type of the map that stores the last |
|
| 191 |
/// arcs of the shortest paths. |
|
| 192 |
typedef typename TR::PredMap PredMap; |
|
| 193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 194 |
typedef typename TR::DistMap DistMap; |
|
| 195 |
/// The type of the paths. |
|
| 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 198 |
/// "operation traits class" of the algorithm. |
|
| 199 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 200 |
|
|
| 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 202 |
typedef TR Traits; |
|
| 203 |
|
|
| 204 |
private: |
|
| 205 |
|
|
| 206 |
typedef typename Digraph::Node Node; |
|
| 207 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 208 |
typedef typename Digraph::Arc Arc; |
|
| 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 210 |
|
|
| 211 |
// Pointer to the underlying digraph. |
|
| 212 |
const Digraph *_gr; |
|
| 213 |
// Pointer to the length map |
|
| 214 |
const LengthMap *_length; |
|
| 215 |
// Pointer to the map of predecessors arcs. |
|
| 216 |
PredMap *_pred; |
|
| 217 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 218 |
bool _local_pred; |
|
| 219 |
// Pointer to the map of distances. |
|
| 220 |
DistMap *_dist; |
|
| 221 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 222 |
bool _local_dist; |
|
| 223 |
|
|
| 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 225 |
MaskMap *_mask; |
|
| 226 |
|
|
| 227 |
std::vector<Node> _process; |
|
| 228 |
|
|
| 229 |
// Creates the maps if necessary. |
|
| 230 |
void create_maps() {
|
|
| 231 |
if(!_pred) {
|
|
| 232 |
_local_pred = true; |
|
| 233 |
_pred = Traits::createPredMap(*_gr); |
|
| 234 |
} |
|
| 235 |
if(!_dist) {
|
|
| 236 |
_local_dist = true; |
|
| 237 |
_dist = Traits::createDistMap(*_gr); |
|
| 238 |
} |
|
| 239 |
_mask = new MaskMap(*_gr, false); |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
public : |
|
| 243 |
|
|
| 244 |
typedef BellmanFord Create; |
|
| 245 |
|
|
| 246 |
/// \name Named Template Parameters |
|
| 247 |
|
|
| 248 |
///@{
|
|
| 249 |
|
|
| 250 |
template <class T> |
|
| 251 |
struct SetPredMapTraits : public Traits {
|
|
| 252 |
typedef T PredMap; |
|
| 253 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 255 |
return 0; // ignore warnings |
|
| 256 |
} |
|
| 257 |
}; |
|
| 258 |
|
|
| 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 260 |
/// \c PredMap type. |
|
| 261 |
/// |
|
| 262 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 263 |
/// \c PredMap type. |
|
| 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 265 |
template <class T> |
|
| 266 |
struct SetPredMap |
|
| 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 269 |
}; |
|
| 270 |
|
|
| 271 |
template <class T> |
|
| 272 |
struct SetDistMapTraits : public Traits {
|
|
| 273 |
typedef T DistMap; |
|
| 274 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 276 |
return 0; // ignore warnings |
|
| 277 |
} |
|
| 278 |
}; |
|
| 279 |
|
|
| 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 281 |
/// \c DistMap type. |
|
| 282 |
/// |
|
| 283 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 284 |
/// \c DistMap type. |
|
| 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 286 |
template <class T> |
|
| 287 |
struct SetDistMap |
|
| 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 290 |
}; |
|
| 291 |
|
|
| 292 |
template <class T> |
|
| 293 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 294 |
typedef T OperationTraits; |
|
| 295 |
}; |
|
| 296 |
|
|
| 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 298 |
/// \c OperationTraits type. |
|
| 299 |
/// |
|
| 300 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 301 |
/// \c OperationTraits type. |
|
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 303 |
template <class T> |
|
| 304 |
struct SetOperationTraits |
|
| 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 307 |
Create; |
|
| 308 |
}; |
|
| 309 |
|
|
| 310 |
///@} |
|
| 311 |
|
|
| 312 |
protected: |
|
| 313 |
|
|
| 314 |
BellmanFord() {}
|
|
| 315 |
|
|
| 316 |
public: |
|
| 317 |
|
|
| 318 |
/// \brief Constructor. |
|
| 319 |
/// |
|
| 320 |
/// Constructor. |
|
| 321 |
/// \param g The digraph the algorithm runs on. |
|
| 322 |
/// \param length The length map used by the algorithm. |
|
| 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 324 |
_gr(&g), _length(&length), |
|
| 325 |
_pred(0), _local_pred(false), |
|
| 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 327 |
|
|
| 328 |
///Destructor. |
|
| 329 |
~BellmanFord() {
|
|
| 330 |
if(_local_pred) delete _pred; |
|
| 331 |
if(_local_dist) delete _dist; |
|
| 332 |
if(_mask) delete _mask; |
|
| 333 |
} |
|
| 334 |
|
|
| 335 |
/// \brief Sets the length map. |
|
| 336 |
/// |
|
| 337 |
/// Sets the length map. |
|
| 338 |
/// \return <tt>(*this)</tt> |
|
| 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 340 |
_length = ↦ |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 345 |
/// |
|
| 346 |
/// Sets the map that stores the predecessor arcs. |
|
| 347 |
/// If you don't use this function before calling \ref run() |
|
| 348 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 349 |
/// The destructor deallocates this automatically allocated map, |
|
| 350 |
/// of course. |
|
| 351 |
/// \return <tt>(*this)</tt> |
|
| 352 |
BellmanFord &predMap(PredMap &map) {
|
|
| 353 |
if(_local_pred) {
|
|
| 354 |
delete _pred; |
|
| 355 |
_local_pred=false; |
|
| 356 |
} |
|
| 357 |
_pred = ↦ |
|
| 358 |
return *this; |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 362 |
/// |
|
| 363 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 364 |
/// by the algorithm. |
|
| 365 |
/// If you don't use this function before calling \ref run() |
|
| 366 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 367 |
/// The destructor deallocates this automatically allocated map, |
|
| 368 |
/// of course. |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
BellmanFord &distMap(DistMap &map) {
|
|
| 371 |
if(_local_dist) {
|
|
| 372 |
delete _dist; |
|
| 373 |
_local_dist=false; |
|
| 374 |
} |
|
| 375 |
_dist = ↦ |
|
| 376 |
return *this; |
|
| 377 |
} |
|
| 378 |
|
|
| 379 |
/// \name Execution Control |
|
| 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 381 |
/// one of the member functions called \ref run().\n |
|
| 382 |
/// If you need better control on the execution, you have to call |
|
| 383 |
/// \ref init() first, then you can add several source nodes |
|
| 384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 385 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 386 |
/// \ref limitedStart(). |
|
| 387 |
|
|
| 388 |
///@{
|
|
| 389 |
|
|
| 390 |
/// \brief Initializes the internal data structures. |
|
| 391 |
/// |
|
| 392 |
/// Initializes the internal data structures. The optional parameter |
|
| 393 |
/// is the initial distance of each node. |
|
| 394 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 395 |
create_maps(); |
|
| 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 397 |
_pred->set(it, INVALID); |
|
| 398 |
_dist->set(it, value); |
|
| 399 |
} |
|
| 400 |
_process.clear(); |
|
| 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 403 |
_process.push_back(it); |
|
| 404 |
_mask->set(it, true); |
|
| 405 |
} |
|
| 406 |
} |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Adds a new source node. |
|
| 410 |
/// |
|
| 411 |
/// This function adds a new source node. The optional second parameter |
|
| 412 |
/// is the initial distance of the node. |
|
| 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 414 |
_dist->set(source, dst); |
|
| 415 |
if (!(*_mask)[source]) {
|
|
| 416 |
_process.push_back(source); |
|
| 417 |
_mask->set(source, true); |
|
| 418 |
} |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 422 |
/// |
|
| 423 |
/// If the algoritm calculated the distances in the previous round |
|
| 424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 425 |
/// will calculate the distances exactly for the paths of at most |
|
| 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 427 |
/// calculates the shortest path distances exactly for the paths |
|
| 428 |
/// consisting of at most \c k arcs. |
|
| 429 |
/// |
|
| 430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 432 |
/// need the shortest paths and not only the distances, you should |
|
| 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 434 |
/// and build the path manually. |
|
| 435 |
/// |
|
| 436 |
/// \return \c true when the algorithm have not found more shorter |
|
| 437 |
/// paths. |
|
| 438 |
/// |
|
| 439 |
/// \see ActiveIt |
|
| 440 |
bool processNextRound() {
|
|
| 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 442 |
_mask->set(_process[i], false); |
|
| 443 |
} |
|
| 444 |
std::vector<Node> nextProcess; |
|
| 445 |
std::vector<Value> values(_process.size()); |
|
| 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 447 |
values[i] = (*_dist)[_process[i]]; |
|
| 448 |
} |
|
| 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 451 |
Node target = _gr->target(it); |
|
| 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 454 |
_pred->set(target, it); |
|
| 455 |
_dist->set(target, relaxed); |
|
| 456 |
if (!(*_mask)[target]) {
|
|
| 457 |
_mask->set(target, true); |
|
| 458 |
nextProcess.push_back(target); |
|
| 459 |
} |
|
| 460 |
} |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
_process.swap(nextProcess); |
|
| 464 |
return _process.empty(); |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 468 |
/// |
|
| 469 |
/// If the algorithm calculated the distances in the previous round |
|
| 470 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 471 |
/// will calculate the distances at least for the paths of at most |
|
| 472 |
/// <tt>k+1</tt> arcs. |
|
| 473 |
/// This function does not make it possible to calculate the shortest |
|
| 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 475 |
/// this is why it is called weak round. |
|
| 476 |
/// |
|
| 477 |
/// \return \c true when the algorithm have not found more shorter |
|
| 478 |
/// paths. |
|
| 479 |
/// |
|
| 480 |
/// \see ActiveIt |
|
| 481 |
bool processNextWeakRound() {
|
|
| 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 483 |
_mask->set(_process[i], false); |
|
| 484 |
} |
|
| 485 |
std::vector<Node> nextProcess; |
|
| 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 488 |
Node target = _gr->target(it); |
|
| 489 |
Value relaxed = |
|
| 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 492 |
_pred->set(target, it); |
|
| 493 |
_dist->set(target, relaxed); |
|
| 494 |
if (!(*_mask)[target]) {
|
|
| 495 |
_mask->set(target, true); |
|
| 496 |
nextProcess.push_back(target); |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
_process.swap(nextProcess); |
|
| 502 |
return _process.empty(); |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
/// \brief Executes the algorithm. |
|
| 506 |
/// |
|
| 507 |
/// Executes the algorithm. |
|
| 508 |
/// |
|
| 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 510 |
/// in order to compute the shortest path to each node. |
|
| 511 |
/// |
|
| 512 |
/// The algorithm computes |
|
| 513 |
/// - the shortest path tree (forest), |
|
| 514 |
/// - the distance of each node from the root(s). |
|
| 515 |
/// |
|
| 516 |
/// \pre init() must be called and at least one root node should be |
|
| 517 |
/// added with addSource() before using this function. |
|
| 518 |
void start() {
|
|
| 519 |
int num = countNodes(*_gr) - 1; |
|
| 520 |
for (int i = 0; i < num; ++i) {
|
|
| 521 |
if (processNextWeakRound()) break; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
|
|
| 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 526 |
/// |
|
| 527 |
/// Executes the algorithm and checks the negative cycles. |
|
| 528 |
/// |
|
| 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 530 |
/// in order to compute the shortest path to each node and also checks |
|
| 531 |
/// if the digraph contains cycles with negative total length. |
|
| 532 |
/// |
|
| 533 |
/// The algorithm computes |
|
| 534 |
/// - the shortest path tree (forest), |
|
| 535 |
/// - the distance of each node from the root(s). |
|
| 536 |
/// |
|
| 537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 538 |
/// |
|
| 539 |
/// \pre init() must be called and at least one root node should be |
|
| 540 |
/// added with addSource() before using this function. |
|
| 541 |
bool checkedStart() {
|
|
| 542 |
int num = countNodes(*_gr); |
|
| 543 |
for (int i = 0; i < num; ++i) {
|
|
| 544 |
if (processNextWeakRound()) return true; |
|
| 545 |
} |
|
| 546 |
return _process.empty(); |
|
| 547 |
} |
|
| 548 |
|
|
| 549 |
/// \brief Executes the algorithm with arc number limit. |
|
| 550 |
/// |
|
| 551 |
/// Executes the algorithm with arc number limit. |
|
| 552 |
/// |
|
| 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 554 |
/// in order to compute the shortest path distance for each node |
|
| 555 |
/// using only the paths consisting of at most \c num arcs. |
|
| 556 |
/// |
|
| 557 |
/// The algorithm computes |
|
| 558 |
/// - the limited distance of each node from the root(s), |
|
| 559 |
/// - the predecessor arc for each node. |
|
| 560 |
/// |
|
| 561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 563 |
/// need the shortest paths and not only the distances, you should |
|
| 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 565 |
/// and build the path manually. |
|
| 566 |
/// |
|
| 567 |
/// \pre init() must be called and at least one root node should be |
|
| 568 |
/// added with addSource() before using this function. |
|
| 569 |
void limitedStart(int num) {
|
|
| 570 |
for (int i = 0; i < num; ++i) {
|
|
| 571 |
if (processNextRound()) break; |
|
| 572 |
} |
|
| 573 |
} |
|
| 574 |
|
|
| 575 |
/// \brief Runs the algorithm from the given root node. |
|
| 576 |
/// |
|
| 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 578 |
/// node \c s in order to compute the shortest path to each node. |
|
| 579 |
/// |
|
| 580 |
/// The algorithm computes |
|
| 581 |
/// - the shortest path tree (forest), |
|
| 582 |
/// - the distance of each node from the root(s). |
|
| 583 |
/// |
|
| 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 585 |
/// \code |
|
| 586 |
/// bf.init(); |
|
| 587 |
/// bf.addSource(s); |
|
| 588 |
/// bf.start(); |
|
| 589 |
/// \endcode |
|
| 590 |
void run(Node s) {
|
|
| 591 |
init(); |
|
| 592 |
addSource(s); |
|
| 593 |
start(); |
|
| 594 |
} |
|
| 595 |
|
|
| 596 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 597 |
/// number limit. |
|
| 598 |
/// |
|
| 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 600 |
/// node \c s in order to compute the shortest path distance for each |
|
| 601 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 602 |
/// |
|
| 603 |
/// The algorithm computes |
|
| 604 |
/// - the limited distance of each node from the root(s), |
|
| 605 |
/// - the predecessor arc for each node. |
|
| 606 |
/// |
|
| 607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 609 |
/// need the shortest paths and not only the distances, you should |
|
| 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 611 |
/// and build the path manually. |
|
| 612 |
/// |
|
| 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 614 |
/// \code |
|
| 615 |
/// bf.init(); |
|
| 616 |
/// bf.addSource(s); |
|
| 617 |
/// bf.limitedStart(num); |
|
| 618 |
/// \endcode |
|
| 619 |
void run(Node s, int num) {
|
|
| 620 |
init(); |
|
| 621 |
addSource(s); |
|
| 622 |
limitedStart(num); |
|
| 623 |
} |
|
| 624 |
|
|
| 625 |
///@} |
|
| 626 |
|
|
| 627 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 628 |
/// |
|
| 629 |
/// This class provides a common style LEMON iterator that traverses |
|
| 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 631 |
/// phase. These nodes should be checked in the next phase to |
|
| 632 |
/// find augmenting arcs outgoing from them. |
|
| 633 |
class ActiveIt {
|
|
| 634 |
public: |
|
| 635 |
|
|
| 636 |
/// \brief Constructor. |
|
| 637 |
/// |
|
| 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 639 |
/// instance. |
|
| 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 641 |
{
|
|
| 642 |
_index = _algorithm->_process.size() - 1; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
/// \brief Invalid constructor. |
|
| 646 |
/// |
|
| 647 |
/// Invalid constructor. |
|
| 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 649 |
|
|
| 650 |
/// \brief Conversion to \c Node. |
|
| 651 |
/// |
|
| 652 |
/// Conversion to \c Node. |
|
| 653 |
operator Node() const {
|
|
| 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 655 |
} |
|
| 656 |
|
|
| 657 |
/// \brief Increment operator. |
|
| 658 |
/// |
|
| 659 |
/// Increment operator. |
|
| 660 |
ActiveIt& operator++() {
|
|
| 661 |
--_index; |
|
| 662 |
return *this; |
|
| 663 |
} |
|
| 664 |
|
|
| 665 |
bool operator==(const ActiveIt& it) const {
|
|
| 666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 667 |
} |
|
| 668 |
bool operator!=(const ActiveIt& it) const {
|
|
| 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 670 |
} |
|
| 671 |
bool operator<(const ActiveIt& it) const {
|
|
| 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 673 |
} |
|
| 674 |
|
|
| 675 |
private: |
|
| 676 |
const BellmanFord* _algorithm; |
|
| 677 |
int _index; |
|
| 678 |
}; |
|
| 679 |
|
|
| 680 |
/// \name Query Functions |
|
| 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 682 |
/// functions.\n |
|
| 683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 684 |
|
|
| 685 |
///@{
|
|
| 686 |
|
|
| 687 |
/// \brief The shortest path to the given node. |
|
| 688 |
/// |
|
| 689 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 690 |
/// |
|
| 691 |
/// \warning \c t should be reached from the root(s). |
|
| 692 |
/// |
|
| 693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 694 |
/// using this function. |
|
| 695 |
Path path(Node t) const |
|
| 696 |
{
|
|
| 697 |
return Path(*_gr, *_pred, t); |
|
| 698 |
} |
|
| 699 |
|
|
| 700 |
/// \brief The distance of the given node from the root(s). |
|
| 701 |
/// |
|
| 702 |
/// Returns the distance of the given node from the root(s). |
|
| 703 |
/// |
|
| 704 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 705 |
/// the return value of this function is undefined. |
|
| 706 |
/// |
|
| 707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 708 |
/// using this function. |
|
| 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 710 |
|
|
| 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 712 |
/// the given node. |
|
| 713 |
/// |
|
| 714 |
/// This function returns the 'previous arc' of the shortest path |
|
| 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 717 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 718 |
/// |
|
| 719 |
/// The shortest path tree used here is equal to the shortest path |
|
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// |
|
| 722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 723 |
/// using this function. |
|
| 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 725 |
|
|
| 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 727 |
/// the given node. |
|
| 728 |
/// |
|
| 729 |
/// This function returns the 'previous node' of the shortest path |
|
| 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 732 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 733 |
/// |
|
| 734 |
/// The shortest path tree used here is equal to the shortest path |
|
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// |
|
| 737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 738 |
/// using this function. |
|
| 739 |
Node predNode(Node v) const {
|
|
| 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 741 |
} |
|
| 742 |
|
|
| 743 |
/// \brief Returns a const reference to the node map that stores the |
|
| 744 |
/// distances of the nodes. |
|
| 745 |
/// |
|
| 746 |
/// Returns a const reference to the node map that stores the distances |
|
| 747 |
/// of the nodes calculated by the algorithm. |
|
| 748 |
/// |
|
| 749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 750 |
/// using this function. |
|
| 751 |
const DistMap &distMap() const { return *_dist;}
|
|
| 752 |
|
|
| 753 |
/// \brief Returns a const reference to the node map that stores the |
|
| 754 |
/// predecessor arcs. |
|
| 755 |
/// |
|
| 756 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 757 |
/// arcs, which form the shortest path tree (forest). |
|
| 758 |
/// |
|
| 759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 760 |
/// using this function. |
|
| 761 |
const PredMap &predMap() const { return *_pred; }
|
|
| 762 |
|
|
| 763 |
/// \brief Checks if a node is reached from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 766 |
/// |
|
| 767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 768 |
/// using this function. |
|
| 769 |
bool reached(Node v) const {
|
|
| 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
/// \brief Gives back a negative cycle. |
|
| 774 |
/// |
|
| 775 |
/// This function gives back a directed cycle with negative total |
|
| 776 |
/// length if the algorithm has already found one. |
|
| 777 |
/// Otherwise it gives back an empty path. |
|
| 778 |
lemon::Path<Digraph> negativeCycle() {
|
|
| 779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
| 780 |
lemon::Path<Digraph> cycle; |
|
| 781 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 782 |
if (state[_process[i]] != -1) continue; |
|
| 783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
| 784 |
v = _gr->source((*_pred)[v])) {
|
|
| 785 |
if (state[v] == i) {
|
|
| 786 |
cycle.addFront((*_pred)[v]); |
|
| 787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
| 788 |
u = _gr->source((*_pred)[u])) {
|
|
| 789 |
cycle.addFront((*_pred)[u]); |
|
| 790 |
} |
|
| 791 |
return cycle; |
|
| 792 |
} |
|
| 793 |
else if (state[v] >= 0) {
|
|
| 794 |
break; |
|
| 795 |
} |
|
| 796 |
state[v] = i; |
|
| 797 |
} |
|
| 798 |
} |
|
| 799 |
return cycle; |
|
| 800 |
} |
|
| 801 |
|
|
| 802 |
///@} |
|
| 803 |
}; |
|
| 804 |
|
|
| 805 |
/// \brief Default traits class of bellmanFord() function. |
|
| 806 |
/// |
|
| 807 |
/// Default traits class of bellmanFord() function. |
|
| 808 |
/// \tparam GR The type of the digraph. |
|
| 809 |
/// \tparam LEN The type of the length map. |
|
| 810 |
template <typename GR, typename LEN> |
|
| 811 |
struct BellmanFordWizardDefaultTraits {
|
|
| 812 |
/// The type of the digraph the algorithm runs on. |
|
| 813 |
typedef GR Digraph; |
|
| 814 |
|
|
| 815 |
/// \brief The type of the map that stores the arc lengths. |
|
| 816 |
/// |
|
| 817 |
/// The type of the map that stores the arc lengths. |
|
| 818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 819 |
typedef LEN LengthMap; |
|
| 820 |
|
|
| 821 |
/// The type of the arc lengths. |
|
| 822 |
typedef typename LEN::Value Value; |
|
| 823 |
|
|
| 824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 825 |
/// |
|
| 826 |
/// It defines the used operations and the infinity value for the |
|
| 827 |
/// given \c Value type. |
|
| 828 |
/// \see BellmanFordDefaultOperationTraits |
|
| 829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 830 |
|
|
| 831 |
/// \brief The type of the map that stores the last |
|
| 832 |
/// arcs of the shortest paths. |
|
| 833 |
/// |
|
| 834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 837 |
|
|
| 838 |
/// \brief Instantiates a \c PredMap. |
|
| 839 |
/// |
|
| 840 |
/// This function instantiates a \ref PredMap. |
|
| 841 |
/// \param g is the digraph to which we would like to define the |
|
| 842 |
/// \ref PredMap. |
|
| 843 |
static PredMap *createPredMap(const GR &g) {
|
|
| 844 |
return new PredMap(g); |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 848 |
/// |
|
| 849 |
/// The type of the map that stores the distances of the nodes. |
|
| 850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 852 |
|
|
| 853 |
/// \brief Instantiates a \c DistMap. |
|
| 854 |
/// |
|
| 855 |
/// This function instantiates a \ref DistMap. |
|
| 856 |
/// \param g is the digraph to which we would like to define the |
|
| 857 |
/// \ref DistMap. |
|
| 858 |
static DistMap *createDistMap(const GR &g) {
|
|
| 859 |
return new DistMap(g); |
|
| 860 |
} |
|
| 861 |
|
|
| 862 |
///The type of the shortest paths. |
|
| 863 |
|
|
| 864 |
///The type of the shortest paths. |
|
| 865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 866 |
typedef lemon::Path<Digraph> Path; |
|
| 867 |
}; |
|
| 868 |
|
|
| 869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 870 |
/// |
|
| 871 |
/// Default traits class used by BellmanFordWizard. |
|
| 872 |
/// \tparam GR The type of the digraph. |
|
| 873 |
/// \tparam LEN The type of the length map. |
|
| 874 |
template <typename GR, typename LEN> |
|
| 875 |
class BellmanFordWizardBase |
|
| 876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 877 |
|
|
| 878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 879 |
protected: |
|
| 880 |
// Type of the nodes in the digraph. |
|
| 881 |
typedef typename Base::Digraph::Node Node; |
|
| 882 |
|
|
| 883 |
// Pointer to the underlying digraph. |
|
| 884 |
void *_graph; |
|
| 885 |
// Pointer to the length map |
|
| 886 |
void *_length; |
|
| 887 |
// Pointer to the map of predecessors arcs. |
|
| 888 |
void *_pred; |
|
| 889 |
// Pointer to the map of distances. |
|
| 890 |
void *_dist; |
|
| 891 |
//Pointer to the shortest path to the target node. |
|
| 892 |
void *_path; |
|
| 893 |
//Pointer to the distance of the target node. |
|
| 894 |
void *_di; |
|
| 895 |
|
|
| 896 |
public: |
|
| 897 |
/// Constructor. |
|
| 898 |
|
|
| 899 |
/// This constructor does not require parameters, it initiates |
|
| 900 |
/// all of the attributes to default values \c 0. |
|
| 901 |
BellmanFordWizardBase() : |
|
| 902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 903 |
|
|
| 904 |
/// Constructor. |
|
| 905 |
|
|
| 906 |
/// This constructor requires two parameters, |
|
| 907 |
/// others are initiated to \c 0. |
|
| 908 |
/// \param gr The digraph the algorithm runs on. |
|
| 909 |
/// \param len The length map. |
|
| 910 |
BellmanFordWizardBase(const GR& gr, |
|
| 911 |
const LEN& len) : |
|
| 912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 914 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 915 |
|
|
| 916 |
}; |
|
| 917 |
|
|
| 918 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 920 |
/// |
|
| 921 |
/// This auxiliary class is created to implement the |
|
| 922 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 924 |
/// It does not have own \ref run() method, it uses the |
|
| 925 |
/// functions and features of the plain \ref BellmanFord. |
|
| 926 |
/// |
|
| 927 |
/// This class should only be used through the \ref bellmanFord() |
|
| 928 |
/// function, which makes it easier to use the algorithm. |
|
| 929 |
template<class TR> |
|
| 930 |
class BellmanFordWizard : public TR {
|
|
| 931 |
typedef TR Base; |
|
| 932 |
|
|
| 933 |
typedef typename TR::Digraph Digraph; |
|
| 934 |
|
|
| 935 |
typedef typename Digraph::Node Node; |
|
| 936 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 937 |
typedef typename Digraph::Arc Arc; |
|
| 938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 939 |
|
|
| 940 |
typedef typename TR::LengthMap LengthMap; |
|
| 941 |
typedef typename LengthMap::Value Value; |
|
| 942 |
typedef typename TR::PredMap PredMap; |
|
| 943 |
typedef typename TR::DistMap DistMap; |
|
| 944 |
typedef typename TR::Path Path; |
|
| 945 |
|
|
| 946 |
public: |
|
| 947 |
/// Constructor. |
|
| 948 |
BellmanFordWizard() : TR() {}
|
|
| 949 |
|
|
| 950 |
/// \brief Constructor that requires parameters. |
|
| 951 |
/// |
|
| 952 |
/// Constructor that requires parameters. |
|
| 953 |
/// These parameters will be the default values for the traits class. |
|
| 954 |
/// \param gr The digraph the algorithm runs on. |
|
| 955 |
/// \param len The length map. |
|
| 956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 957 |
: TR(gr, len) {}
|
|
| 958 |
|
|
| 959 |
/// \brief Copy constructor |
|
| 960 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 961 |
|
|
| 962 |
~BellmanFordWizard() {}
|
|
| 963 |
|
|
| 964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 965 |
/// |
|
| 966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 967 |
/// node in order to compute the shortest path to each node. |
|
| 968 |
void run(Node s) {
|
|
| 969 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 974 |
bf.run(s); |
|
| 975 |
} |
|
| 976 |
|
|
| 977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 978 |
/// between \c s and \c t. |
|
| 979 |
/// |
|
| 980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 981 |
/// in order to compute the shortest path to node \c t. |
|
| 982 |
/// Actually, it computes the shortest path to each node, but using |
|
| 983 |
/// this function you can retrieve the distance and the shortest path |
|
| 984 |
/// for a single target node easier. |
|
| 985 |
/// |
|
| 986 |
/// \return \c true if \c t is reachable form \c s. |
|
| 987 |
bool run(Node s, Node t) {
|
|
| 988 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 993 |
bf.run(s); |
|
| 994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 996 |
return bf.reached(t); |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
template<class T> |
|
| 1000 |
struct SetPredMapBase : public Base {
|
|
| 1001 |
typedef T PredMap; |
|
| 1002 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 1003 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 1004 |
}; |
|
| 1005 |
|
|
| 1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1007 |
/// the predecessor map. |
|
| 1008 |
/// |
|
| 1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 1011 |
template<class T> |
|
| 1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 1015 |
} |
|
| 1016 |
|
|
| 1017 |
template<class T> |
|
| 1018 |
struct SetDistMapBase : public Base {
|
|
| 1019 |
typedef T DistMap; |
|
| 1020 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 1021 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 1022 |
}; |
|
| 1023 |
|
|
| 1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1025 |
/// the distance map. |
|
| 1026 |
/// |
|
| 1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1028 |
/// the map that stores the distances of the nodes calculated |
|
| 1029 |
/// by the algorithm. |
|
| 1030 |
template<class T> |
|
| 1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 1034 |
} |
|
| 1035 |
|
|
| 1036 |
template<class T> |
|
| 1037 |
struct SetPathBase : public Base {
|
|
| 1038 |
typedef T Path; |
|
| 1039 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 1040 |
}; |
|
| 1041 |
|
|
| 1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1043 |
/// the shortest path to the target node. |
|
| 1044 |
/// |
|
| 1045 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1046 |
/// the shortest path to the target node. |
|
| 1047 |
template<class T> |
|
| 1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1049 |
{
|
|
| 1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1055 |
/// the distance of the target node. |
|
| 1056 |
/// |
|
| 1057 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1058 |
/// the distance of the target node. |
|
| 1059 |
BellmanFordWizard dist(const Value &d) |
|
| 1060 |
{
|
|
| 1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1062 |
return *this; |
|
| 1063 |
} |
|
| 1064 |
|
|
| 1065 |
}; |
|
| 1066 |
|
|
| 1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1068 |
/// algorithm. |
|
| 1069 |
/// |
|
| 1070 |
/// \ingroup shortest_path |
|
| 1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1072 |
/// algorithm. |
|
| 1073 |
/// |
|
| 1074 |
/// This function also has several \ref named-templ-func-param |
|
| 1075 |
/// "named parameters", they are declared as the members of class |
|
| 1076 |
/// \ref BellmanFordWizard. |
|
| 1077 |
/// The following examples show how to use these parameters. |
|
| 1078 |
/// \code |
|
| 1079 |
/// // Compute shortest path from node s to each node |
|
| 1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1081 |
/// |
|
| 1082 |
/// // Compute shortest path from s to t |
|
| 1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1084 |
/// \endcode |
|
| 1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1086 |
/// to the end of the parameter list. |
|
| 1087 |
/// \sa BellmanFordWizard |
|
| 1088 |
/// \sa BellmanFord |
|
| 1089 |
template<typename GR, typename LEN> |
|
| 1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1091 |
bellmanFord(const GR& digraph, |
|
| 1092 |
const LEN& length) |
|
| 1093 |
{
|
|
| 1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1095 |
} |
|
| 1096 |
|
|
| 1097 |
} //END OF NAMESPACE LEMON |
|
| 1098 |
|
|
| 1099 |
#endif |
|
| 1100 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BINOM_HEAP_H |
|
| 20 |
#define LEMON_BINOM_HEAP_H |
|
| 21 |
|
|
| 22 |
///\file |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Binomial Heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
#include <lemon/math.h> |
|
| 30 |
#include <lemon/counter.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
/// \ingroup heaps |
|
| 35 |
/// |
|
| 36 |
///\brief Binomial heap data structure. |
|
| 37 |
/// |
|
| 38 |
/// This class implements the \e binomial \e heap data structure. |
|
| 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 40 |
/// |
|
| 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
| 42 |
/// in a binomial heap. In case of many calls of these operations, |
|
| 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
| 44 |
/// "binary heap". |
|
| 45 |
/// |
|
| 46 |
/// \tparam PR Type of the priorities of the items. |
|
| 47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 48 |
/// internally to handle the cross references. |
|
| 49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 50 |
/// The default is \c std::less<PR>. |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class BinomHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Functor type for comparing the priorities. |
|
| 65 |
typedef CMP Compare; |
|
| 66 |
|
|
| 67 |
/// \brief Type to represent the states of the items. |
|
| 68 |
/// |
|
| 69 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 |
/// heap's point of view, but may be useful to the user. |
|
| 72 |
/// |
|
| 73 |
/// The item-int map must be initialized in such way that it assigns |
|
| 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 75 |
enum State {
|
|
| 76 |
IN_HEAP = 0, ///< = 0. |
|
| 77 |
PRE_HEAP = -1, ///< = -1. |
|
| 78 |
POST_HEAP = -2 ///< = -2. |
|
| 79 |
}; |
|
| 80 |
|
|
| 81 |
private: |
|
| 82 |
class Store; |
|
| 83 |
|
|
| 84 |
std::vector<Store> _data; |
|
| 85 |
int _min, _head; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
Compare _comp; |
|
| 88 |
int _num_items; |
|
| 89 |
|
|
| 90 |
public: |
|
| 91 |
/// \brief Constructor. |
|
| 92 |
/// |
|
| 93 |
/// Constructor. |
|
| 94 |
/// \param map A map that assigns \c int values to the items. |
|
| 95 |
/// It is used internally to handle the cross references. |
|
| 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 97 |
explicit BinomHeap(ItemIntMap &map) |
|
| 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {}
|
|
| 99 |
|
|
| 100 |
/// \brief Constructor. |
|
| 101 |
/// |
|
| 102 |
/// Constructor. |
|
| 103 |
/// \param map A map that assigns \c int values to the items. |
|
| 104 |
/// It is used internally to handle the cross references. |
|
| 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 106 |
/// \param comp The function object used for comparing the priorities. |
|
| 107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
| 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
|
|
| 109 |
|
|
| 110 |
/// \brief The number of items stored in the heap. |
|
| 111 |
/// |
|
| 112 |
/// This function returns the number of items stored in the heap. |
|
| 113 |
int size() const { return _num_items; }
|
|
| 114 |
|
|
| 115 |
/// \brief Check if the heap is empty. |
|
| 116 |
/// |
|
| 117 |
/// This function returns \c true if the heap is empty. |
|
| 118 |
bool empty() const { return _num_items==0; }
|
|
| 119 |
|
|
| 120 |
/// \brief Make the heap empty. |
|
| 121 |
/// |
|
| 122 |
/// This functon makes the heap empty. |
|
| 123 |
/// It does not change the cross reference map. If you want to reuse |
|
| 124 |
/// a heap that is not surely empty, you should first clear it and |
|
| 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 126 |
/// for each item. |
|
| 127 |
void clear() {
|
|
| 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 132 |
/// not stored in the heap. |
|
| 133 |
/// |
|
| 134 |
/// This method sets the priority of the given item if it is |
|
| 135 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 136 |
/// item into the heap with the given priority. |
|
| 137 |
/// \param item The item. |
|
| 138 |
/// \param value The priority. |
|
| 139 |
void set (const Item& item, const Prio& value) {
|
|
| 140 |
int i=_iim[item]; |
|
| 141 |
if ( i >= 0 && _data[i].in ) {
|
|
| 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 144 |
} else push(item, value); |
|
| 145 |
} |
|
| 146 |
|
|
| 147 |
/// \brief Insert an item into the heap with the given priority. |
|
| 148 |
/// |
|
| 149 |
/// This function inserts the given item into the heap with the |
|
| 150 |
/// given priority. |
|
| 151 |
/// \param item The item to insert. |
|
| 152 |
/// \param value The priority of the item. |
|
| 153 |
/// \pre \e item must not be stored in the heap. |
|
| 154 |
void push (const Item& item, const Prio& value) {
|
|
| 155 |
int i=_iim[item]; |
|
| 156 |
if ( i<0 ) {
|
|
| 157 |
int s=_data.size(); |
|
| 158 |
_iim.set( item,s ); |
|
| 159 |
Store st; |
|
| 160 |
st.name=item; |
|
| 161 |
st.prio=value; |
|
| 162 |
_data.push_back(st); |
|
| 163 |
i=s; |
|
| 164 |
} |
|
| 165 |
else {
|
|
| 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
| 167 |
_data[i].degree=0; |
|
| 168 |
_data[i].in=true; |
|
| 169 |
_data[i].prio=value; |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
if( 0==_num_items ) {
|
|
| 173 |
_head=i; |
|
| 174 |
_min=i; |
|
| 175 |
} else {
|
|
| 176 |
merge(i); |
|
| 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
| 178 |
} |
|
| 179 |
++_num_items; |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
/// \brief Return the item having minimum priority. |
|
| 183 |
/// |
|
| 184 |
/// This function returns the item having minimum priority. |
|
| 185 |
/// \pre The heap must be non-empty. |
|
| 186 |
Item top() const { return _data[_min].name; }
|
|
| 187 |
|
|
| 188 |
/// \brief The minimum priority. |
|
| 189 |
/// |
|
| 190 |
/// This function returns the minimum priority. |
|
| 191 |
/// \pre The heap must be non-empty. |
|
| 192 |
Prio prio() const { return _data[_min].prio; }
|
|
| 193 |
|
|
| 194 |
/// \brief The priority of the given item. |
|
| 195 |
/// |
|
| 196 |
/// This function returns the priority of the given item. |
|
| 197 |
/// \param item The item. |
|
| 198 |
/// \pre \e item must be in the heap. |
|
| 199 |
const Prio& operator[](const Item& item) const {
|
|
| 200 |
return _data[_iim[item]].prio; |
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
/// \brief Remove the item having minimum priority. |
|
| 204 |
/// |
|
| 205 |
/// This function removes the item having minimum priority. |
|
| 206 |
/// \pre The heap must be non-empty. |
|
| 207 |
void pop() {
|
|
| 208 |
_data[_min].in=false; |
|
| 209 |
|
|
| 210 |
int head_child=-1; |
|
| 211 |
if ( _data[_min].child!=-1 ) {
|
|
| 212 |
int child=_data[_min].child; |
|
| 213 |
int neighb; |
|
| 214 |
while( child!=-1 ) {
|
|
| 215 |
neighb=_data[child].right_neighbor; |
|
| 216 |
_data[child].parent=-1; |
|
| 217 |
_data[child].right_neighbor=head_child; |
|
| 218 |
head_child=child; |
|
| 219 |
child=neighb; |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
if ( _data[_head].right_neighbor==-1 ) {
|
|
| 224 |
// there was only one root |
|
| 225 |
_head=head_child; |
|
| 226 |
} |
|
| 227 |
else {
|
|
| 228 |
// there were more roots |
|
| 229 |
if( _head!=_min ) { unlace(_min); }
|
|
| 230 |
else { _head=_data[_head].right_neighbor; }
|
|
| 231 |
merge(head_child); |
|
| 232 |
} |
|
| 233 |
_min=findMin(); |
|
| 234 |
--_num_items; |
|
| 235 |
} |
|
| 236 |
|
|
| 237 |
/// \brief Remove the given item from the heap. |
|
| 238 |
/// |
|
| 239 |
/// This function removes the given item from the heap if it is |
|
| 240 |
/// already stored. |
|
| 241 |
/// \param item The item to delete. |
|
| 242 |
/// \pre \e item must be in the heap. |
|
| 243 |
void erase (const Item& item) {
|
|
| 244 |
int i=_iim[item]; |
|
| 245 |
if ( i >= 0 && _data[i].in ) {
|
|
| 246 |
decrease( item, _data[_min].prio-1 ); |
|
| 247 |
pop(); |
|
| 248 |
} |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Decrease the priority of an item to the given value. |
|
| 252 |
/// |
|
| 253 |
/// This function decreases the priority of an item to the given value. |
|
| 254 |
/// \param item The item. |
|
| 255 |
/// \param value The priority. |
|
| 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
| 257 |
void decrease (Item item, const Prio& value) {
|
|
| 258 |
int i=_iim[item]; |
|
| 259 |
int p=_data[i].parent; |
|
| 260 |
_data[i].prio=value; |
|
| 261 |
|
|
| 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 263 |
_data[i].name=_data[p].name; |
|
| 264 |
_data[i].prio=_data[p].prio; |
|
| 265 |
_data[p].name=item; |
|
| 266 |
_data[p].prio=value; |
|
| 267 |
_iim[_data[i].name]=i; |
|
| 268 |
i=p; |
|
| 269 |
p=_data[p].parent; |
|
| 270 |
} |
|
| 271 |
_iim[item]=i; |
|
| 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
/// \brief Increase the priority of an item to the given value. |
|
| 276 |
/// |
|
| 277 |
/// This function increases the priority of an item to the given value. |
|
| 278 |
/// \param item The item. |
|
| 279 |
/// \param value The priority. |
|
| 280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
| 281 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
erase(item); |
|
| 283 |
push(item, value); |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Return the state of an item. |
|
| 287 |
/// |
|
| 288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 290 |
/// and \c POST_HEAP otherwise. |
|
| 291 |
/// In the latter case it is possible that the item will get back |
|
| 292 |
/// to the heap again. |
|
| 293 |
/// \param item The item. |
|
| 294 |
State state(const Item &item) const {
|
|
| 295 |
int i=_iim[item]; |
|
| 296 |
if( i>=0 ) {
|
|
| 297 |
if ( _data[i].in ) i=0; |
|
| 298 |
else i=-2; |
|
| 299 |
} |
|
| 300 |
return State(i); |
|
| 301 |
} |
|
| 302 |
|
|
| 303 |
/// \brief Set the state of an item in the heap. |
|
| 304 |
/// |
|
| 305 |
/// This function sets the state of the given item in the heap. |
|
| 306 |
/// It can be used to manually clear the heap when it is important |
|
| 307 |
/// to achive better time complexity. |
|
| 308 |
/// \param i The item. |
|
| 309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 310 |
void state(const Item& i, State st) {
|
|
| 311 |
switch (st) {
|
|
| 312 |
case POST_HEAP: |
|
| 313 |
case PRE_HEAP: |
|
| 314 |
if (state(i) == IN_HEAP) {
|
|
| 315 |
erase(i); |
|
| 316 |
} |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
private: |
|
| 325 |
|
|
| 326 |
// Find the minimum of the roots |
|
| 327 |
int findMin() {
|
|
| 328 |
if( _head!=-1 ) {
|
|
| 329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
| 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
| 331 |
x=_data[x].right_neighbor ) {
|
|
| 332 |
if( _comp( _data[x].prio,min_val ) ) {
|
|
| 333 |
min_val=_data[x].prio; |
|
| 334 |
min_loc=x; |
|
| 335 |
} |
|
| 336 |
} |
|
| 337 |
return min_loc; |
|
| 338 |
} |
|
| 339 |
else return -1; |
|
| 340 |
} |
|
| 341 |
|
|
| 342 |
// Merge the heap with another heap starting at the given position |
|
| 343 |
void merge(int a) {
|
|
| 344 |
if( _head==-1 || a==-1 ) return; |
|
| 345 |
if( _data[a].right_neighbor==-1 && |
|
| 346 |
_data[a].degree<=_data[_head].degree ) {
|
|
| 347 |
_data[a].right_neighbor=_head; |
|
| 348 |
_head=a; |
|
| 349 |
} else {
|
|
| 350 |
interleave(a); |
|
| 351 |
} |
|
| 352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
| 353 |
|
|
| 354 |
int x=_head; |
|
| 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
| 356 |
while( x_next!=-1 ) {
|
|
| 357 |
if( _data[x].degree!=_data[x_next].degree || |
|
| 358 |
( _data[x_next].right_neighbor!=-1 && |
|
| 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
|
|
| 360 |
x_prev=x; |
|
| 361 |
x=x_next; |
|
| 362 |
} |
|
| 363 |
else {
|
|
| 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) {
|
|
| 365 |
if( x_prev==-1 ) {
|
|
| 366 |
_head=x_next; |
|
| 367 |
} else {
|
|
| 368 |
_data[x_prev].right_neighbor=x_next; |
|
| 369 |
} |
|
| 370 |
fuse(x,x_next); |
|
| 371 |
x=x_next; |
|
| 372 |
} |
|
| 373 |
else {
|
|
| 374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
| 375 |
fuse(x_next,x); |
|
| 376 |
} |
|
| 377 |
} |
|
| 378 |
x_next=_data[x].right_neighbor; |
|
| 379 |
} |
|
| 380 |
} |
|
| 381 |
|
|
| 382 |
// Interleave the elements of the given list into the list of the roots |
|
| 383 |
void interleave(int a) {
|
|
| 384 |
int p=_head, q=a; |
|
| 385 |
int curr=_data.size(); |
|
| 386 |
_data.push_back(Store()); |
|
| 387 |
|
|
| 388 |
while( p!=-1 || q!=-1 ) {
|
|
| 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
|
|
| 390 |
_data[curr].right_neighbor=p; |
|
| 391 |
curr=p; |
|
| 392 |
p=_data[p].right_neighbor; |
|
| 393 |
} |
|
| 394 |
else {
|
|
| 395 |
_data[curr].right_neighbor=q; |
|
| 396 |
curr=q; |
|
| 397 |
q=_data[q].right_neighbor; |
|
| 398 |
} |
|
| 399 |
} |
|
| 400 |
|
|
| 401 |
_head=_data.back().right_neighbor; |
|
| 402 |
_data.pop_back(); |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
// Lace node a under node b |
|
| 406 |
void fuse(int a, int b) {
|
|
| 407 |
_data[a].parent=b; |
|
| 408 |
_data[a].right_neighbor=_data[b].child; |
|
| 409 |
_data[b].child=a; |
|
| 410 |
|
|
| 411 |
++_data[b].degree; |
|
| 412 |
} |
|
| 413 |
|
|
| 414 |
// Unlace node a (if it has siblings) |
|
| 415 |
void unlace(int a) {
|
|
| 416 |
int neighb=_data[a].right_neighbor; |
|
| 417 |
int other=_head; |
|
| 418 |
|
|
| 419 |
while( _data[other].right_neighbor!=a ) |
|
| 420 |
other=_data[other].right_neighbor; |
|
| 421 |
_data[other].right_neighbor=neighb; |
|
| 422 |
} |
|
| 423 |
|
|
| 424 |
private: |
|
| 425 |
|
|
| 426 |
class Store {
|
|
| 427 |
friend class BinomHeap; |
|
| 428 |
|
|
| 429 |
Item name; |
|
| 430 |
int parent; |
|
| 431 |
int right_neighbor; |
|
| 432 |
int child; |
|
| 433 |
int degree; |
|
| 434 |
bool in; |
|
| 435 |
Prio prio; |
|
| 436 |
|
|
| 437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
| 438 |
in(true) {}
|
|
| 439 |
}; |
|
| 440 |
}; |
|
| 441 |
|
|
| 442 |
} //namespace lemon |
|
| 443 |
|
|
| 444 |
#endif //LEMON_BINOM_HEAP_H |
|
| 445 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
| 20 |
#define LEMON_FOURARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief Fourary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e fourary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
| 40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
| 41 |
/// but its nodes have at most four children, instead of two. |
|
| 42 |
/// |
|
| 43 |
/// \tparam PR Type of the priorities of the items. |
|
| 44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 45 |
/// internally to handle the cross references. |
|
| 46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 47 |
/// The default is \c std::less<PR>. |
|
| 48 |
/// |
|
| 49 |
///\sa BinHeap |
|
| 50 |
///\sa KaryHeap |
|
| 51 |
#ifdef DOXYGEN |
|
| 52 |
template <typename PR, typename IM, typename CMP> |
|
| 53 |
#else |
|
| 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 55 |
#endif |
|
| 56 |
class FouraryHeap {
|
|
| 57 |
public: |
|
| 58 |
/// Type of the item-int map. |
|
| 59 |
typedef IM ItemIntMap; |
|
| 60 |
/// Type of the priorities. |
|
| 61 |
typedef PR Prio; |
|
| 62 |
/// Type of the items stored in the heap. |
|
| 63 |
typedef typename ItemIntMap::Key Item; |
|
| 64 |
/// Type of the item-priority pairs. |
|
| 65 |
typedef std::pair<Item,Prio> Pair; |
|
| 66 |
/// Functor type for comparing the priorities. |
|
| 67 |
typedef CMP Compare; |
|
| 68 |
|
|
| 69 |
/// \brief Type to represent the states of the items. |
|
| 70 |
/// |
|
| 71 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 73 |
/// heap's point of view, but may be useful to the user. |
|
| 74 |
/// |
|
| 75 |
/// The item-int map must be initialized in such way that it assigns |
|
| 76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 77 |
enum State {
|
|
| 78 |
IN_HEAP = 0, ///< = 0. |
|
| 79 |
PRE_HEAP = -1, ///< = -1. |
|
| 80 |
POST_HEAP = -2 ///< = -2. |
|
| 81 |
}; |
|
| 82 |
|
|
| 83 |
private: |
|
| 84 |
std::vector<Pair> _data; |
|
| 85 |
Compare _comp; |
|
| 86 |
ItemIntMap &_iim; |
|
| 87 |
|
|
| 88 |
public: |
|
| 89 |
/// \brief Constructor. |
|
| 90 |
/// |
|
| 91 |
/// Constructor. |
|
| 92 |
/// \param map A map that assigns \c int values to the items. |
|
| 93 |
/// It is used internally to handle the cross references. |
|
| 94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 96 |
|
|
| 97 |
/// \brief Constructor. |
|
| 98 |
/// |
|
| 99 |
/// Constructor. |
|
| 100 |
/// \param map A map that assigns \c int values to the items. |
|
| 101 |
/// It is used internally to handle the cross references. |
|
| 102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 103 |
/// \param comp The function object used for comparing the priorities. |
|
| 104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
| 105 |
: _iim(map), _comp(comp) {}
|
|
| 106 |
|
|
| 107 |
/// \brief The number of items stored in the heap. |
|
| 108 |
/// |
|
| 109 |
/// This function returns the number of items stored in the heap. |
|
| 110 |
int size() const { return _data.size(); }
|
|
| 111 |
|
|
| 112 |
/// \brief Check if the heap is empty. |
|
| 113 |
/// |
|
| 114 |
/// This function returns \c true if the heap is empty. |
|
| 115 |
bool empty() const { return _data.empty(); }
|
|
| 116 |
|
|
| 117 |
/// \brief Make the heap empty. |
|
| 118 |
/// |
|
| 119 |
/// This functon makes the heap empty. |
|
| 120 |
/// It does not change the cross reference map. If you want to reuse |
|
| 121 |
/// a heap that is not surely empty, you should first clear it and |
|
| 122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 123 |
/// for each item. |
|
| 124 |
void clear() { _data.clear(); }
|
|
| 125 |
|
|
| 126 |
private: |
|
| 127 |
static int parent(int i) { return (i-1)/4; }
|
|
| 128 |
static int firstChild(int i) { return 4*i+1; }
|
|
| 129 |
|
|
| 130 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 131 |
return _comp(p1.second, p2.second); |
|
| 132 |
} |
|
| 133 |
|
|
| 134 |
void bubbleUp(int hole, Pair p) {
|
|
| 135 |
int par = parent(hole); |
|
| 136 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 137 |
move(_data[par],hole); |
|
| 138 |
hole = par; |
|
| 139 |
par = parent(hole); |
|
| 140 |
} |
|
| 141 |
move(p, hole); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 145 |
if( length>1 ) {
|
|
| 146 |
int child = firstChild(hole); |
|
| 147 |
while( child+3<length ) {
|
|
| 148 |
int min=child; |
|
| 149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
| 152 |
if( !less(_data[min], p) ) |
|
| 153 |
goto ok; |
|
| 154 |
move(_data[min], hole); |
|
| 155 |
hole = min; |
|
| 156 |
child = firstChild(hole); |
|
| 157 |
} |
|
| 158 |
if ( child<length ) {
|
|
| 159 |
int min = child; |
|
| 160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
| 162 |
if( less(_data[min], p) ) {
|
|
| 163 |
move(_data[min], hole); |
|
| 164 |
hole = min; |
|
| 165 |
} |
|
| 166 |
} |
|
| 167 |
} |
|
| 168 |
ok: |
|
| 169 |
move(p, hole); |
|
| 170 |
} |
|
| 171 |
|
|
| 172 |
void move(const Pair &p, int i) {
|
|
| 173 |
_data[i] = p; |
|
| 174 |
_iim.set(p.first, i); |
|
| 175 |
} |
|
| 176 |
|
|
| 177 |
public: |
|
| 178 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 179 |
/// |
|
| 180 |
/// This function inserts \c p.first to the heap with priority |
|
| 181 |
/// \c p.second. |
|
| 182 |
/// \param p The pair to insert. |
|
| 183 |
/// \pre \c p.first must not be stored in the heap. |
|
| 184 |
void push(const Pair &p) {
|
|
| 185 |
int n = _data.size(); |
|
| 186 |
_data.resize(n+1); |
|
| 187 |
bubbleUp(n, p); |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
/// \brief Insert an item into the heap with the given priority. |
|
| 191 |
/// |
|
| 192 |
/// This function inserts the given item into the heap with the |
|
| 193 |
/// given priority. |
|
| 194 |
/// \param i The item to insert. |
|
| 195 |
/// \param p The priority of the item. |
|
| 196 |
/// \pre \e i must not be stored in the heap. |
|
| 197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 198 |
|
|
| 199 |
/// \brief Return the item having minimum priority. |
|
| 200 |
/// |
|
| 201 |
/// This function returns the item having minimum priority. |
|
| 202 |
/// \pre The heap must be non-empty. |
|
| 203 |
Item top() const { return _data[0].first; }
|
|
| 204 |
|
|
| 205 |
/// \brief The minimum priority. |
|
| 206 |
/// |
|
| 207 |
/// This function returns the minimum priority. |
|
| 208 |
/// \pre The heap must be non-empty. |
|
| 209 |
Prio prio() const { return _data[0].second; }
|
|
| 210 |
|
|
| 211 |
/// \brief Remove the item having minimum priority. |
|
| 212 |
/// |
|
| 213 |
/// This function removes the item having minimum priority. |
|
| 214 |
/// \pre The heap must be non-empty. |
|
| 215 |
void pop() {
|
|
| 216 |
int n = _data.size()-1; |
|
| 217 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 219 |
_data.pop_back(); |
|
| 220 |
} |
|
| 221 |
|
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 228 |
void erase(const Item &i) {
|
|
| 229 |
int h = _iim[i]; |
|
| 230 |
int n = _data.size()-1; |
|
| 231 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 232 |
if( h<n ) {
|
|
| 233 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 235 |
else |
|
| 236 |
bubbleUp(h, _data[n]); |
|
| 237 |
} |
|
| 238 |
_data.pop_back(); |
|
| 239 |
} |
|
| 240 |
|
|
| 241 |
/// \brief The priority of the given item. |
|
| 242 |
/// |
|
| 243 |
/// This function returns the priority of the given item. |
|
| 244 |
/// \param i The item. |
|
| 245 |
/// \pre \e i must be in the heap. |
|
| 246 |
Prio operator[](const Item &i) const {
|
|
| 247 |
int idx = _iim[i]; |
|
| 248 |
return _data[idx].second; |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 252 |
/// not stored in the heap. |
|
| 253 |
/// |
|
| 254 |
/// This method sets the priority of the given item if it is |
|
| 255 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 256 |
/// item into the heap with the given priority. |
|
| 257 |
/// \param i The item. |
|
| 258 |
/// \param p The priority. |
|
| 259 |
void set(const Item &i, const Prio &p) {
|
|
| 260 |
int idx = _iim[i]; |
|
| 261 |
if( idx < 0 ) |
|
| 262 |
push(i,p); |
|
| 263 |
else if( _comp(p, _data[idx].second) ) |
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 265 |
else |
|
| 266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 |
} |
|
| 268 |
|
|
| 269 |
/// \brief Decrease the priority of an item to the given value. |
|
| 270 |
/// |
|
| 271 |
/// This function decreases the priority of an item to the given value. |
|
| 272 |
/// \param i The item. |
|
| 273 |
/// \param p The priority. |
|
| 274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 275 |
void decrease(const Item &i, const Prio &p) {
|
|
| 276 |
int idx = _iim[i]; |
|
| 277 |
bubbleUp(idx, Pair(i,p)); |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 281 |
/// |
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param i The item. |
|
| 284 |
/// \param p The priority. |
|
| 285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 286 |
void increase(const Item &i, const Prio &p) {
|
|
| 287 |
int idx = _iim[i]; |
|
| 288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 289 |
} |
|
| 290 |
|
|
| 291 |
/// \brief Return the state of an item. |
|
| 292 |
/// |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param i The item. |
|
| 299 |
State state(const Item &i) const {
|
|
| 300 |
int s = _iim[i]; |
|
| 301 |
if (s>=0) s=0; |
|
| 302 |
return State(s); |
|
| 303 |
} |
|
| 304 |
|
|
| 305 |
/// \brief Set the state of an item in the heap. |
|
| 306 |
/// |
|
| 307 |
/// This function sets the state of the given item in the heap. |
|
| 308 |
/// It can be used to manually clear the heap when it is important |
|
| 309 |
/// to achive better time complexity. |
|
| 310 |
/// \param i The item. |
|
| 311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 312 |
void state(const Item& i, State st) {
|
|
| 313 |
switch (st) {
|
|
| 314 |
case POST_HEAP: |
|
| 315 |
case PRE_HEAP: |
|
| 316 |
if (state(i) == IN_HEAP) erase(i); |
|
| 317 |
_iim[i] = st; |
|
| 318 |
break; |
|
| 319 |
case IN_HEAP: |
|
| 320 |
break; |
|
| 321 |
} |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Replace an item in the heap. |
|
| 325 |
/// |
|
| 326 |
/// This function replaces item \c i with item \c j. |
|
| 327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 328 |
/// After calling this method, item \c i will be out of the |
|
| 329 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 330 |
/// as item \c i had before. |
|
| 331 |
void replace(const Item& i, const Item& j) {
|
|
| 332 |
int idx = _iim[i]; |
|
| 333 |
_iim.set(i, _iim[j]); |
|
| 334 |
_iim.set(j, idx); |
|
| 335 |
_data[idx].first = j; |
|
| 336 |
} |
|
| 337 |
|
|
| 338 |
}; // class FouraryHeap |
|
| 339 |
|
|
| 340 |
} // namespace lemon |
|
| 341 |
|
|
| 342 |
#endif // LEMON_FOURARY_HEAP_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_KARY_HEAP_H |
|
| 20 |
#define LEMON_KARY_HEAP_H |
|
| 21 |
|
|
| 22 |
///\ingroup heaps |
|
| 23 |
///\file |
|
| 24 |
///\brief Fourary heap implementation. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <utility> |
|
| 28 |
#include <functional> |
|
| 29 |
|
|
| 30 |
namespace lemon {
|
|
| 31 |
|
|
| 32 |
/// \ingroup heaps |
|
| 33 |
/// |
|
| 34 |
///\brief K-ary heap data structure. |
|
| 35 |
/// |
|
| 36 |
/// This class implements the \e K-ary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 38 |
/// |
|
| 39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
| 40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
| 41 |
/// \c K children, instead of two. |
|
| 42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
| 43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
| 44 |
/// |
|
| 45 |
/// \tparam PR Type of the priorities of the items. |
|
| 46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 47 |
/// internally to handle the cross references. |
|
| 48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
| 49 |
/// children. The default is 16. Powers of two are suggested to use |
|
| 50 |
/// so that the multiplications and divisions needed to traverse the |
|
| 51 |
/// nodes of the heap could be performed faster. |
|
| 52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 53 |
/// The default is \c std::less<PR>. |
|
| 54 |
/// |
|
| 55 |
///\sa BinHeap |
|
| 56 |
///\sa FouraryHeap |
|
| 57 |
#ifdef DOXYGEN |
|
| 58 |
template <typename PR, typename IM, int K, typename CMP> |
|
| 59 |
#else |
|
| 60 |
template <typename PR, typename IM, int K = 16, |
|
| 61 |
typename CMP = std::less<PR> > |
|
| 62 |
#endif |
|
| 63 |
class KaryHeap {
|
|
| 64 |
public: |
|
| 65 |
/// Type of the item-int map. |
|
| 66 |
typedef IM ItemIntMap; |
|
| 67 |
/// Type of the priorities. |
|
| 68 |
typedef PR Prio; |
|
| 69 |
/// Type of the items stored in the heap. |
|
| 70 |
typedef typename ItemIntMap::Key Item; |
|
| 71 |
/// Type of the item-priority pairs. |
|
| 72 |
typedef std::pair<Item,Prio> Pair; |
|
| 73 |
/// Functor type for comparing the priorities. |
|
| 74 |
typedef CMP Compare; |
|
| 75 |
|
|
| 76 |
/// \brief Type to represent the states of the items. |
|
| 77 |
/// |
|
| 78 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 80 |
/// heap's point of view, but may be useful to the user. |
|
| 81 |
/// |
|
| 82 |
/// The item-int map must be initialized in such way that it assigns |
|
| 83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 84 |
enum State {
|
|
| 85 |
IN_HEAP = 0, ///< = 0. |
|
| 86 |
PRE_HEAP = -1, ///< = -1. |
|
| 87 |
POST_HEAP = -2 ///< = -2. |
|
| 88 |
}; |
|
| 89 |
|
|
| 90 |
private: |
|
| 91 |
std::vector<Pair> _data; |
|
| 92 |
Compare _comp; |
|
| 93 |
ItemIntMap &_iim; |
|
| 94 |
|
|
| 95 |
public: |
|
| 96 |
/// \brief Constructor. |
|
| 97 |
/// |
|
| 98 |
/// Constructor. |
|
| 99 |
/// \param map A map that assigns \c int values to the items. |
|
| 100 |
/// It is used internally to handle the cross references. |
|
| 101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 103 |
|
|
| 104 |
/// \brief Constructor. |
|
| 105 |
/// |
|
| 106 |
/// Constructor. |
|
| 107 |
/// \param map A map that assigns \c int values to the items. |
|
| 108 |
/// It is used internally to handle the cross references. |
|
| 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 110 |
/// \param comp The function object used for comparing the priorities. |
|
| 111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
| 112 |
: _iim(map), _comp(comp) {}
|
|
| 113 |
|
|
| 114 |
/// \brief The number of items stored in the heap. |
|
| 115 |
/// |
|
| 116 |
/// This function returns the number of items stored in the heap. |
|
| 117 |
int size() const { return _data.size(); }
|
|
| 118 |
|
|
| 119 |
/// \brief Check if the heap is empty. |
|
| 120 |
/// |
|
| 121 |
/// This function returns \c true if the heap is empty. |
|
| 122 |
bool empty() const { return _data.empty(); }
|
|
| 123 |
|
|
| 124 |
/// \brief Make the heap empty. |
|
| 125 |
/// |
|
| 126 |
/// This functon makes the heap empty. |
|
| 127 |
/// It does not change the cross reference map. If you want to reuse |
|
| 128 |
/// a heap that is not surely empty, you should first clear it and |
|
| 129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 130 |
/// for each item. |
|
| 131 |
void clear() { _data.clear(); }
|
|
| 132 |
|
|
| 133 |
private: |
|
| 134 |
int parent(int i) { return (i-1)/K; }
|
|
| 135 |
int firstChild(int i) { return K*i+1; }
|
|
| 136 |
|
|
| 137 |
bool less(const Pair &p1, const Pair &p2) const {
|
|
| 138 |
return _comp(p1.second, p2.second); |
|
| 139 |
} |
|
| 140 |
|
|
| 141 |
void bubbleUp(int hole, Pair p) {
|
|
| 142 |
int par = parent(hole); |
|
| 143 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 144 |
move(_data[par],hole); |
|
| 145 |
hole = par; |
|
| 146 |
par = parent(hole); |
|
| 147 |
} |
|
| 148 |
move(p, hole); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
void bubbleDown(int hole, Pair p, int length) {
|
|
| 152 |
if( length>1 ) {
|
|
| 153 |
int child = firstChild(hole); |
|
| 154 |
while( child+K<=length ) {
|
|
| 155 |
int min=child; |
|
| 156 |
for (int i=1; i<K; ++i) {
|
|
| 157 |
if( less(_data[child+i], _data[min]) ) |
|
| 158 |
min=child+i; |
|
| 159 |
} |
|
| 160 |
if( !less(_data[min], p) ) |
|
| 161 |
goto ok; |
|
| 162 |
move(_data[min], hole); |
|
| 163 |
hole = min; |
|
| 164 |
child = firstChild(hole); |
|
| 165 |
} |
|
| 166 |
if ( child<length ) {
|
|
| 167 |
int min = child; |
|
| 168 |
while (++child < length) {
|
|
| 169 |
if( less(_data[child], _data[min]) ) |
|
| 170 |
min=child; |
|
| 171 |
} |
|
| 172 |
if( less(_data[min], p) ) {
|
|
| 173 |
move(_data[min], hole); |
|
| 174 |
hole = min; |
|
| 175 |
} |
|
| 176 |
} |
|
| 177 |
} |
|
| 178 |
ok: |
|
| 179 |
move(p, hole); |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
void move(const Pair &p, int i) {
|
|
| 183 |
_data[i] = p; |
|
| 184 |
_iim.set(p.first, i); |
|
| 185 |
} |
|
| 186 |
|
|
| 187 |
public: |
|
| 188 |
/// \brief Insert a pair of item and priority into the heap. |
|
| 189 |
/// |
|
| 190 |
/// This function inserts \c p.first to the heap with priority |
|
| 191 |
/// \c p.second. |
|
| 192 |
/// \param p The pair to insert. |
|
| 193 |
/// \pre \c p.first must not be stored in the heap. |
|
| 194 |
void push(const Pair &p) {
|
|
| 195 |
int n = _data.size(); |
|
| 196 |
_data.resize(n+1); |
|
| 197 |
bubbleUp(n, p); |
|
| 198 |
} |
|
| 199 |
|
|
| 200 |
/// \brief Insert an item into the heap with the given priority. |
|
| 201 |
/// |
|
| 202 |
/// This function inserts the given item into the heap with the |
|
| 203 |
/// given priority. |
|
| 204 |
/// \param i The item to insert. |
|
| 205 |
/// \param p The priority of the item. |
|
| 206 |
/// \pre \e i must not be stored in the heap. |
|
| 207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
|
| 208 |
|
|
| 209 |
/// \brief Return the item having minimum priority. |
|
| 210 |
/// |
|
| 211 |
/// This function returns the item having minimum priority. |
|
| 212 |
/// \pre The heap must be non-empty. |
|
| 213 |
Item top() const { return _data[0].first; }
|
|
| 214 |
|
|
| 215 |
/// \brief The minimum priority. |
|
| 216 |
/// |
|
| 217 |
/// This function returns the minimum priority. |
|
| 218 |
/// \pre The heap must be non-empty. |
|
| 219 |
Prio prio() const { return _data[0].second; }
|
|
| 220 |
|
|
| 221 |
/// \brief Remove the item having minimum priority. |
|
| 222 |
/// |
|
| 223 |
/// This function removes the item having minimum priority. |
|
| 224 |
/// \pre The heap must be non-empty. |
|
| 225 |
void pop() {
|
|
| 226 |
int n = _data.size()-1; |
|
| 227 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
| 229 |
_data.pop_back(); |
|
| 230 |
} |
|
| 231 |
|
|
| 232 |
/// \brief Remove the given item from the heap. |
|
| 233 |
/// |
|
| 234 |
/// This function removes the given item from the heap if it is |
|
| 235 |
/// already stored. |
|
| 236 |
/// \param i The item to delete. |
|
| 237 |
/// \pre \e i must be in the heap. |
|
| 238 |
void erase(const Item &i) {
|
|
| 239 |
int h = _iim[i]; |
|
| 240 |
int n = _data.size()-1; |
|
| 241 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 242 |
if( h<n ) {
|
|
| 243 |
if( less(_data[parent(h)], _data[n]) ) |
|
| 244 |
bubbleDown(h, _data[n], n); |
|
| 245 |
else |
|
| 246 |
bubbleUp(h, _data[n]); |
|
| 247 |
} |
|
| 248 |
_data.pop_back(); |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief The priority of the given item. |
|
| 252 |
/// |
|
| 253 |
/// This function returns the priority of the given item. |
|
| 254 |
/// \param i The item. |
|
| 255 |
/// \pre \e i must be in the heap. |
|
| 256 |
Prio operator[](const Item &i) const {
|
|
| 257 |
int idx = _iim[i]; |
|
| 258 |
return _data[idx].second; |
|
| 259 |
} |
|
| 260 |
|
|
| 261 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 262 |
/// not stored in the heap. |
|
| 263 |
/// |
|
| 264 |
/// This method sets the priority of the given item if it is |
|
| 265 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 266 |
/// item into the heap with the given priority. |
|
| 267 |
/// \param i The item. |
|
| 268 |
/// \param p The priority. |
|
| 269 |
void set(const Item &i, const Prio &p) {
|
|
| 270 |
int idx = _iim[i]; |
|
| 271 |
if( idx<0 ) |
|
| 272 |
push(i,p); |
|
| 273 |
else if( _comp(p, _data[idx].second) ) |
|
| 274 |
bubbleUp(idx, Pair(i,p)); |
|
| 275 |
else |
|
| 276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
/// \brief Decrease the priority of an item to the given value. |
|
| 280 |
/// |
|
| 281 |
/// This function decreases the priority of an item to the given value. |
|
| 282 |
/// \param i The item. |
|
| 283 |
/// \param p The priority. |
|
| 284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 285 |
void decrease(const Item &i, const Prio &p) {
|
|
| 286 |
int idx = _iim[i]; |
|
| 287 |
bubbleUp(idx, Pair(i,p)); |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Increase the priority of an item to the given value. |
|
| 291 |
/// |
|
| 292 |
/// This function increases the priority of an item to the given value. |
|
| 293 |
/// \param i The item. |
|
| 294 |
/// \param p The priority. |
|
| 295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 296 |
void increase(const Item &i, const Prio &p) {
|
|
| 297 |
int idx = _iim[i]; |
|
| 298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
/// \brief Return the state of an item. |
|
| 302 |
/// |
|
| 303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 305 |
/// and \c POST_HEAP otherwise. |
|
| 306 |
/// In the latter case it is possible that the item will get back |
|
| 307 |
/// to the heap again. |
|
| 308 |
/// \param i The item. |
|
| 309 |
State state(const Item &i) const {
|
|
| 310 |
int s = _iim[i]; |
|
| 311 |
if (s>=0) s=0; |
|
| 312 |
return State(s); |
|
| 313 |
} |
|
| 314 |
|
|
| 315 |
/// \brief Set the state of an item in the heap. |
|
| 316 |
/// |
|
| 317 |
/// This function sets the state of the given item in the heap. |
|
| 318 |
/// It can be used to manually clear the heap when it is important |
|
| 319 |
/// to achive better time complexity. |
|
| 320 |
/// \param i The item. |
|
| 321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
| 322 |
void state(const Item& i, State st) {
|
|
| 323 |
switch (st) {
|
|
| 324 |
case POST_HEAP: |
|
| 325 |
case PRE_HEAP: |
|
| 326 |
if (state(i) == IN_HEAP) erase(i); |
|
| 327 |
_iim[i] = st; |
|
| 328 |
break; |
|
| 329 |
case IN_HEAP: |
|
| 330 |
break; |
|
| 331 |
} |
|
| 332 |
} |
|
| 333 |
|
|
| 334 |
/// \brief Replace an item in the heap. |
|
| 335 |
/// |
|
| 336 |
/// This function replaces item \c i with item \c j. |
|
| 337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 338 |
/// After calling this method, item \c i will be out of the |
|
| 339 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 340 |
/// as item \c i had before. |
|
| 341 |
void replace(const Item& i, const Item& j) {
|
|
| 342 |
int idx=_iim[i]; |
|
| 343 |
_iim.set(i, _iim[j]); |
|
| 344 |
_iim.set(j, idx); |
|
| 345 |
_data[idx].first=j; |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
}; // class KaryHeap |
|
| 349 |
|
|
| 350 |
} // namespace lemon |
|
| 351 |
|
|
| 352 |
#endif // LEMON_KARY_HEAP_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 | 23 |
This group contains the several data structures implemented in LEMON. |
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| 54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
| 55 | 55 |
in conjunction with other graph representations. |
| 56 | 56 |
|
| 57 | 57 |
You are free to use the graph structure that fit your requirements |
| 58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
| 59 | 59 |
with any graph structure. |
| 60 | 60 |
|
| 61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
| 62 | 62 |
*/ |
| 63 | 63 |
|
| 64 | 64 |
/** |
| 65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
| 66 | 66 |
@ingroup graphs |
| 67 | 67 |
\brief Adaptor classes for digraphs and graphs |
| 68 | 68 |
|
| 69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
| 70 | 70 |
|
| 71 | 71 |
The main parts of LEMON are the different graph structures, generic |
| 72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
| 73 | 73 |
adaptors. While the previous notions are more or less clear, the |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup maps Maps |
| 142 | 142 |
@ingroup datas |
| 143 | 143 |
\brief Map structures implemented in LEMON. |
| 144 | 144 |
|
| 145 | 145 |
This group contains the map structures implemented in LEMON. |
| 146 | 146 |
|
| 147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 148 | 148 |
new maps from existing ones. |
| 149 | 149 |
|
| 150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 151 | 151 |
*/ |
| 152 | 152 |
|
| 153 | 153 |
/** |
| 154 | 154 |
@defgroup graph_maps Graph Maps |
| 155 | 155 |
@ingroup maps |
| 156 | 156 |
\brief Special graph-related maps. |
| 157 | 157 |
|
| 158 | 158 |
This group contains maps that are specifically designed to assign |
| 159 | 159 |
values to the nodes and arcs/edges of graphs. |
| 160 | 160 |
|
| 161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 163 | 163 |
*/ |
| 164 | 164 |
|
| 165 | 165 |
/** |
| 166 | 166 |
\defgroup map_adaptors Map Adaptors |
| 167 | 167 |
\ingroup maps |
| 168 | 168 |
\brief Tools to create new maps from existing ones |
| 169 | 169 |
|
| 170 | 170 |
This group contains map adaptors that are used to create "implicit" |
| 171 | 171 |
maps from other maps. |
| 172 | 172 |
|
| 173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 174 | 174 |
They can make arithmetic and logical operations between one or two maps |
| 175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 177 | 177 |
|
| 178 | 178 |
The typical usage of this classes is passing implicit maps to |
| 179 | 179 |
algorithms. If a function type algorithm is called then the function |
| 180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
| 181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
| 182 | 182 |
\code |
| 183 | 183 |
Color nodeColor(int deg) {
|
| 184 | 184 |
if (deg >= 2) {
|
| 185 | 185 |
return Color(0.5, 0.0, 0.5); |
| 186 | 186 |
} else if (deg == 1) {
|
| 187 | 187 |
return Color(1.0, 0.5, 1.0); |
| 188 | 188 |
} else {
|
| 189 | 189 |
return Color(0.0, 0.0, 0.0); |
| 190 | 190 |
} |
| 191 | 191 |
} |
| 192 | 192 |
|
| 193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
| 194 | 194 |
|
| 195 | 195 |
graphToEps(graph, "graph.eps") |
| 196 | 196 |
.coords(coords).scaleToA4().undirected() |
| 197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 198 | 198 |
.run(); |
| 199 | 199 |
\endcode |
| 200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 202 | 202 |
and the previously created map. The composed map is a proper function to |
| 203 | 203 |
get the color of each node. |
| 204 | 204 |
|
| 205 | 205 |
The usage with class type algorithms is little bit harder. In this |
| 206 | 206 |
case the function type map adaptors can not be used, because the |
| 207 | 207 |
function map adaptors give back temporary objects. |
| 208 | 208 |
\code |
| 209 | 209 |
Digraph graph; |
| 210 | 210 |
|
| 211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 212 | 212 |
DoubleArcMap length(graph); |
| 213 | 213 |
DoubleArcMap speed(graph); |
| 214 | 214 |
|
| 215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 216 | 216 |
TimeMap time(length, speed); |
| 217 | 217 |
|
| 218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 219 | 219 |
dijkstra.run(source, target); |
| 220 | 220 |
\endcode |
| 221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
| 223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
| 224 | 224 |
class. We use the implicit minimum time map as the length map of the |
| 225 | 225 |
\c Dijkstra algorithm. |
| 226 | 226 |
*/ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 | 229 |
@defgroup paths Path Structures |
| 230 | 230 |
@ingroup datas |
| 231 | 231 |
\brief %Path structures implemented in LEMON. |
| 232 | 232 |
|
| 233 | 233 |
This group contains the path structures implemented in LEMON. |
| 234 | 234 |
|
| 235 | 235 |
LEMON provides flexible data structures to work with paths. |
| 236 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 237 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 239 | 239 |
any kind of path structure. |
| 240 | 240 |
|
| 241 |
\sa |
|
| 241 |
\sa \ref concepts::Path "Path concept" |
|
| 242 |
*/ |
|
| 243 |
|
|
| 244 |
/** |
|
| 245 |
@defgroup heaps Heap Structures |
|
| 246 |
@ingroup datas |
|
| 247 |
\brief %Heap structures implemented in LEMON. |
|
| 248 |
|
|
| 249 |
This group contains the heap structures implemented in LEMON. |
|
| 250 |
|
|
| 251 |
LEMON provides several heap classes. They are efficient implementations |
|
| 252 |
of the abstract data type \e priority \e queue. They store items with |
|
| 253 |
specified values called \e priorities in such a way that finding and |
|
| 254 |
removing the item with minimum priority are efficient. |
|
| 255 |
The basic operations are adding and erasing items, changing the priority |
|
| 256 |
of an item, etc. |
|
| 257 |
|
|
| 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 259 |
The heap implementations have the same interface, thus any of them can be |
|
| 260 |
used easily in such algorithms. |
|
| 261 |
|
|
| 262 |
\sa \ref concepts::Heap "Heap concept" |
|
| 263 |
*/ |
|
| 264 |
|
|
| 265 |
/** |
|
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 242 | 271 |
*/ |
| 243 | 272 |
|
| 244 | 273 |
/** |
| 245 | 274 |
@defgroup auxdat Auxiliary Data Structures |
| 246 | 275 |
@ingroup datas |
| 247 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
| 248 | 277 |
|
| 249 | 278 |
This group contains some data structures implemented in LEMON in |
| 250 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 251 | 280 |
*/ |
| 252 | 281 |
|
| 253 | 282 |
/** |
| 254 | 283 |
@defgroup geomdat Geometric Data Structures |
| 255 | 284 |
@ingroup auxdat |
| 256 | 285 |
\brief Geometric data structures implemented in LEMON. |
| 257 | 286 |
|
| 258 | 287 |
This group contains geometric data structures implemented in LEMON. |
| 259 | 288 |
|
| 260 | 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
| 261 | 290 |
vector with the usual operations. |
| 262 | 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
| 263 | 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
| 264 | 293 |
"dim2::Point"'s. |
| 265 | 294 |
*/ |
| 266 | 295 |
|
| 267 | 296 |
/** |
| 268 | 297 |
@defgroup matrices Matrices |
| 269 | 298 |
@ingroup auxdat |
| 270 | 299 |
\brief Two dimensional data storages implemented in LEMON. |
| 271 | 300 |
|
| 272 | 301 |
This group contains two dimensional data storages implemented in LEMON. |
| 273 | 302 |
*/ |
| 274 | 303 |
|
| 275 | 304 |
/** |
| 276 | 305 |
@defgroup algs Algorithms |
| 277 | 306 |
\brief This group contains the several algorithms |
| 278 | 307 |
implemented in LEMON. |
| 279 | 308 |
|
| 280 | 309 |
This group contains the several algorithms |
| 281 | 310 |
implemented in LEMON. |
| 282 | 311 |
*/ |
| 283 | 312 |
|
| 284 | 313 |
/** |
| 285 | 314 |
@defgroup search Graph Search |
| 286 | 315 |
@ingroup algs |
| 287 | 316 |
\brief Common graph search algorithms. |
| 288 | 317 |
|
| 289 | 318 |
This group contains the common graph search algorithms, namely |
| 290 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 291 | 320 |
*/ |
| 292 | 321 |
|
| 293 | 322 |
/** |
| 294 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
| 295 | 324 |
@ingroup algs |
| 296 | 325 |
\brief Algorithms for finding shortest paths. |
| 297 | 326 |
|
| 298 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
| 299 | 328 |
|
| 300 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 301 | 330 |
when all arc lengths are non-negative. |
| 302 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 303 | 332 |
from a source node when arc lenghts can be either positive or negative, |
| 304 | 333 |
but the digraph should not contain directed cycles with negative total |
| 305 | 334 |
length. |
| 306 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 307 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 308 | 337 |
lenghts can be either positive or negative, but the digraph should |
| 309 | 338 |
not contain directed cycles with negative total length. |
| 310 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 311 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
| 312 | 341 |
*/ |
| 313 | 342 |
|
| 314 | 343 |
/** |
| 315 | 344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 316 | 345 |
@ingroup algs |
| 317 | 346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
| 318 | 347 |
|
| 319 | 348 |
This group contains the algorithms for finding minimum cost spanning |
| 320 | 349 |
trees and arborescences. |
| 321 | 350 |
*/ |
| 322 | 351 |
|
| 323 | 352 |
/** |
| 324 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
| 325 | 354 |
@ingroup algs |
| 326 | 355 |
\brief Algorithms for finding maximum flows. |
| 327 | 356 |
|
| 328 | 357 |
This group contains the algorithms for finding maximum flows and |
| 329 | 358 |
feasible circulations. |
| 330 | 359 |
|
| 331 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 332 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 333 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 334 | 363 |
\f$s, t \in V\f$ source and target nodes. |
| 335 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 336 | 365 |
following optimization problem. |
| 337 | 366 |
|
| 338 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 339 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 340 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 341 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 342 | 371 |
|
| 343 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
| 344 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 345 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 346 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 347 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 348 | 377 |
|
| 349 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 350 | 379 |
fastest method for computing a maximum flow. All implementations |
| 351 | 380 |
also provide functions to query the minimum cut, which is the dual |
| 352 | 381 |
problem of maximum flow. |
| 353 | 382 |
|
| 354 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 355 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
| 356 | 385 |
but it is strongly related to maximum flow. |
| 357 | 386 |
For more information, see \ref Circulation. |
| 358 | 387 |
*/ |
| 359 | 388 |
|
| 360 | 389 |
/** |
| 361 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 362 | 391 |
@ingroup algs |
| 363 | 392 |
|
| 364 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 365 | 394 |
|
| 366 | 395 |
This group contains the algorithms for finding minimum cost flows and |
| 367 | 396 |
circulations. For more information about this problem and its dual |
| 368 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
| 369 | 398 |
|
| 370 | 399 |
LEMON contains several algorithms for this problem. |
| 371 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 372 | 401 |
pivot strategies. |
| 373 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 374 | 403 |
cost scaling. |
| 375 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 376 | 405 |
capacity scaling. |
| 377 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
| 378 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
| 379 | 408 |
|
| 380 | 409 |
In general NetworkSimplex is the most efficient implementation, |
| 381 | 410 |
but in special cases other algorithms could be faster. |
| 382 | 411 |
For example, if the total supply and/or capacities are rather small, |
| 383 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 384 | 413 |
*/ |
| 385 | 414 |
|
| 386 | 415 |
/** |
| 387 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
| 388 | 417 |
@ingroup algs |
| 389 | 418 |
|
| 390 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
| 391 | 420 |
|
| 392 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
| 393 | 422 |
|
| 394 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 395 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 396 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 397 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 398 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 399 | 428 |
|
| 400 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 401 | 430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
| 402 | 431 |
|
| 403 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
| 404 | 433 |
|
| 405 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 406 | 435 |
in directed graphs. |
| 407 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 408 | 437 |
calculating minimum cut in undirected graphs. |
| 409 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 410 | 439 |
all-pairs minimum cut in undirected graphs. |
| 411 | 440 |
|
| 412 | 441 |
If you want to find minimum cut just between two distinict nodes, |
| 413 | 442 |
see the \ref max_flow "maximum flow problem". |
| 414 | 443 |
*/ |
| 415 | 444 |
|
| 416 | 445 |
/** |
| 417 | 446 |
@defgroup matching Matching Algorithms |
| 418 | 447 |
@ingroup algs |
| 419 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 420 | 449 |
|
| 421 | 450 |
This group contains the algorithms for calculating |
| 422 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 423 | 452 |
finding a subset of the edges for which each node has at most one incident |
| 424 | 453 |
edge. |
| 425 | 454 |
|
| 426 | 455 |
There are several different algorithms for calculate matchings in |
| 427 | 456 |
graphs. The matching problems in bipartite graphs are generally |
| 428 | 457 |
easier than in general graphs. The goal of the matching optimization |
| 429 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 430 | 459 |
matching. The search can be constrained to find perfect or |
| 431 | 460 |
maximum cardinality matching. |
| 432 | 461 |
|
| 433 | 462 |
The matching algorithms implemented in LEMON: |
| 434 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 435 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
| 436 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 437 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
| 438 | 467 |
- \ref MaxWeightedBipartiteMatching |
| 439 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
| 440 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 441 | 470 |
- \ref MinCostMaxBipartiteMatching |
| 442 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 443 | 472 |
matching in bipartite graphs. |
| 444 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 445 | 474 |
maximum cardinality matching in general graphs. |
| 446 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 447 | 476 |
maximum weighted matching in general graphs. |
| 448 | 477 |
- \ref MaxWeightedPerfectMatching |
| 449 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 450 | 479 |
perfect matching in general graphs. |
| 451 | 480 |
|
| 452 | 481 |
\image html bipartite_matching.png |
| 453 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 454 | 483 |
*/ |
| 455 | 484 |
|
| 456 | 485 |
/** |
| 457 | 486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 458 | 487 |
@ingroup algs |
| 459 | 488 |
\brief Algorithms for discovering the graph properties |
| 460 | 489 |
|
| 461 | 490 |
This group contains the algorithms for discovering the graph properties |
| 462 | 491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 463 | 492 |
|
| 464 | 493 |
\image html connected_components.png |
| 465 | 494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
| 466 | 495 |
*/ |
| 467 | 496 |
|
| 468 | 497 |
/** |
| 469 | 498 |
@defgroup planar Planarity Embedding and Drawing |
| 470 | 499 |
@ingroup algs |
| 471 | 500 |
\brief Algorithms for planarity checking, embedding and drawing |
| 472 | 501 |
|
| 473 | 502 |
This group contains the algorithms for planarity checking, |
| 474 | 503 |
embedding and drawing. |
| 475 | 504 |
|
| 476 | 505 |
\image html planar.png |
| 477 | 506 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 478 | 507 |
*/ |
| 479 | 508 |
|
| 480 | 509 |
/** |
| 481 | 510 |
@defgroup approx Approximation Algorithms |
| 482 | 511 |
@ingroup algs |
| 483 | 512 |
\brief Approximation algorithms. |
| 484 | 513 |
|
| 485 | 514 |
This group contains the approximation and heuristic algorithms |
| 486 | 515 |
implemented in LEMON. |
| 487 | 516 |
*/ |
| 488 | 517 |
|
| 489 | 518 |
/** |
| 490 | 519 |
@defgroup auxalg Auxiliary Algorithms |
| 491 | 520 |
@ingroup algs |
| 492 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
| 493 | 522 |
|
| 494 | 523 |
This group contains some algorithms implemented in LEMON |
| 495 | 524 |
in order to make it easier to implement complex algorithms. |
| 496 | 525 |
*/ |
| 497 | 526 |
|
| 498 | 527 |
/** |
| 499 | 528 |
@defgroup gen_opt_group General Optimization Tools |
| 500 | 529 |
\brief This group contains some general optimization frameworks |
| 501 | 530 |
implemented in LEMON. |
| 502 | 531 |
|
| 503 | 532 |
This group contains some general optimization frameworks |
| 504 | 533 |
implemented in LEMON. |
| 505 | 534 |
*/ |
| 506 | 535 |
|
| 507 | 536 |
/** |
| 508 | 537 |
@defgroup lp_group Lp and Mip Solvers |
| 509 | 538 |
@ingroup gen_opt_group |
| 510 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
| 511 | 540 |
|
| 512 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
| 513 | 542 |
various LP solvers could be used in the same manner with this |
| 514 | 543 |
interface. |
| 515 | 544 |
*/ |
| 516 | 545 |
|
| 517 | 546 |
/** |
| 518 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 519 | 548 |
@ingroup lp_group |
| 520 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
| 521 | 550 |
|
| 522 | 551 |
This group adds some helper tools to general optimization framework |
| 523 | 552 |
implemented in LEMON. |
| 524 | 553 |
*/ |
| 525 | 554 |
|
| 526 | 555 |
/** |
| 527 | 556 |
@defgroup metah Metaheuristics |
| 528 | 557 |
@ingroup gen_opt_group |
| 529 | 558 |
\brief Metaheuristics for LEMON library. |
| 530 | 559 |
|
| 531 | 560 |
This group contains some metaheuristic optimization tools. |
| 532 | 561 |
*/ |
| 533 | 562 |
|
| 534 | 563 |
/** |
| 535 | 564 |
@defgroup utils Tools and Utilities |
| 536 | 565 |
\brief Tools and utilities for programming in LEMON |
| 537 | 566 |
|
| 538 | 567 |
Tools and utilities for programming in LEMON. |
| 539 | 568 |
*/ |
| 540 | 569 |
|
| 541 | 570 |
/** |
| 542 | 571 |
@defgroup gutils Basic Graph Utilities |
| 543 | 572 |
@ingroup utils |
| 544 | 573 |
\brief Simple basic graph utilities. |
| 545 | 574 |
|
| 546 | 575 |
This group contains some simple basic graph utilities. |
| 547 | 576 |
*/ |
| 548 | 577 |
|
| 549 | 578 |
/** |
| 550 | 579 |
@defgroup misc Miscellaneous Tools |
| 551 | 580 |
@ingroup utils |
| 552 | 581 |
\brief Tools for development, debugging and testing. |
| 553 | 582 |
|
| 554 | 583 |
This group contains several useful tools for development, |
| 555 | 584 |
debugging and testing. |
| 556 | 585 |
*/ |
| 557 | 586 |
|
| 558 | 587 |
/** |
| 559 | 588 |
@defgroup timecount Time Measuring and Counting |
| 560 | 589 |
@ingroup misc |
| 561 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
| 562 | 591 |
|
| 563 | 592 |
This group contains simple tools for measuring the performance |
| 564 | 593 |
of algorithms. |
| 565 | 594 |
*/ |
| 566 | 595 |
|
| 567 | 596 |
/** |
| 568 | 597 |
@defgroup exceptions Exceptions |
| 569 | 598 |
@ingroup utils |
| 570 | 599 |
\brief Exceptions defined in LEMON. |
| 571 | 600 |
|
| 572 | 601 |
This group contains the exceptions defined in LEMON. |
| 573 | 602 |
*/ |
| 574 | 603 |
|
| 575 | 604 |
/** |
| 576 | 605 |
@defgroup io_group Input-Output |
| 577 | 606 |
\brief Graph Input-Output methods |
| 578 | 607 |
|
| 579 | 608 |
This group contains the tools for importing and exporting graphs |
| 580 | 609 |
and graph related data. Now it supports the \ref lgf-format |
| 581 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 582 | 611 |
postscript (EPS) format. |
| 583 | 612 |
*/ |
| 584 | 613 |
|
| 585 | 614 |
/** |
| 586 | 615 |
@defgroup lemon_io LEMON Graph Format |
| 587 | 616 |
@ingroup io_group |
| 588 | 617 |
\brief Reading and writing LEMON Graph Format. |
| 589 | 618 |
|
| 590 | 619 |
This group contains methods for reading and writing |
| 591 | 620 |
\ref lgf-format "LEMON Graph Format". |
| 592 | 621 |
*/ |
| 593 | 622 |
|
| 594 | 623 |
/** |
| 595 | 624 |
@defgroup eps_io Postscript Exporting |
| 596 | 625 |
@ingroup io_group |
| 597 | 626 |
\brief General \c EPS drawer and graph exporter |
| 598 | 627 |
|
| 599 | 628 |
This group contains general \c EPS drawing methods and special |
| 600 | 629 |
graph exporting tools. |
| 601 | 630 |
*/ |
| 602 | 631 |
|
| 603 | 632 |
/** |
| 604 | 633 |
@defgroup dimacs_group DIMACS Format |
| 605 | 634 |
@ingroup io_group |
| 606 | 635 |
\brief Read and write files in DIMACS format |
| 607 | 636 |
|
| 608 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 609 | 638 |
*/ |
| 610 | 639 |
|
| 611 | 640 |
/** |
| 612 | 641 |
@defgroup nauty_group NAUTY Format |
| 613 | 642 |
@ingroup io_group |
| 614 | 643 |
\brief Read \e Nauty format |
| 615 | 644 |
|
| 616 | 645 |
Tool to read graphs from \e Nauty format data. |
| 617 | 646 |
*/ |
| 618 | 647 |
|
| 619 | 648 |
/** |
| 620 | 649 |
@defgroup concept Concepts |
| 621 | 650 |
\brief Skeleton classes and concept checking classes |
| 622 | 651 |
|
| 623 | 652 |
This group contains the data/algorithm skeletons and concept checking |
| 624 | 653 |
classes implemented in LEMON. |
| 625 | 654 |
| 1 | 1 |
EXTRA_DIST += \ |
| 2 | 2 |
lemon/lemon.pc.in \ |
| 3 | 3 |
lemon/CMakeLists.txt \ |
| 4 | 4 |
lemon/config.h.cmake |
| 5 | 5 |
|
| 6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
| 7 | 7 |
|
| 8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
| 9 | 9 |
|
| 10 | 10 |
lemon_libemon_la_SOURCES = \ |
| 11 | 11 |
lemon/arg_parser.cc \ |
| 12 | 12 |
lemon/base.cc \ |
| 13 | 13 |
lemon/color.cc \ |
| 14 | 14 |
lemon/lp_base.cc \ |
| 15 | 15 |
lemon/lp_skeleton.cc \ |
| 16 | 16 |
lemon/random.cc \ |
| 17 | 17 |
lemon/bits/windows.cc |
| 18 | 18 |
|
| 19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
| 20 | 20 |
|
| 21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
| 22 | 22 |
$(AM_CXXFLAGS) \ |
| 23 | 23 |
$(GLPK_CFLAGS) \ |
| 24 | 24 |
$(CPLEX_CFLAGS) \ |
| 25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
| 26 | 26 |
$(CLP_CXXFLAGS) \ |
| 27 | 27 |
$(CBC_CXXFLAGS) |
| 28 | 28 |
|
| 29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
| 30 | 30 |
$(GLPK_LIBS) \ |
| 31 | 31 |
$(CPLEX_LIBS) \ |
| 32 | 32 |
$(SOPLEX_LIBS) \ |
| 33 | 33 |
$(CLP_LIBS) \ |
| 34 | 34 |
$(CBC_LIBS) |
| 35 | 35 |
|
| 36 | 36 |
if HAVE_GLPK |
| 37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
| 38 | 38 |
endif |
| 39 | 39 |
|
| 40 | 40 |
if HAVE_CPLEX |
| 41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
| 42 | 42 |
endif |
| 43 | 43 |
|
| 44 | 44 |
if HAVE_SOPLEX |
| 45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
| 46 | 46 |
endif |
| 47 | 47 |
|
| 48 | 48 |
if HAVE_CLP |
| 49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
| 50 | 50 |
endif |
| 51 | 51 |
|
| 52 | 52 |
if HAVE_CBC |
| 53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
| 54 | 54 |
endif |
| 55 | 55 |
|
| 56 | 56 |
lemon_HEADERS += \ |
| 57 | 57 |
lemon/adaptors.h \ |
| 58 | 58 |
lemon/arg_parser.h \ |
| 59 | 59 |
lemon/assert.h \ |
| 60 |
lemon/bellman_ford.h \ |
|
| 60 | 61 |
lemon/bfs.h \ |
| 61 | 62 |
lemon/bin_heap.h \ |
| 63 |
lemon/binom_heap.h \ |
|
| 62 | 64 |
lemon/bucket_heap.h \ |
| 63 | 65 |
lemon/cbc.h \ |
| 64 | 66 |
lemon/circulation.h \ |
| 65 | 67 |
lemon/clp.h \ |
| 66 | 68 |
lemon/color.h \ |
| 67 | 69 |
lemon/concept_check.h \ |
| 68 | 70 |
lemon/connectivity.h \ |
| 69 | 71 |
lemon/counter.h \ |
| 70 | 72 |
lemon/core.h \ |
| 71 | 73 |
lemon/cplex.h \ |
| 72 | 74 |
lemon/dfs.h \ |
| 73 | 75 |
lemon/dijkstra.h \ |
| 74 | 76 |
lemon/dim2.h \ |
| 75 | 77 |
lemon/dimacs.h \ |
| 76 | 78 |
lemon/edge_set.h \ |
| 77 | 79 |
lemon/elevator.h \ |
| 78 | 80 |
lemon/error.h \ |
| 79 | 81 |
lemon/euler.h \ |
| 80 | 82 |
lemon/fib_heap.h \ |
| 83 |
lemon/fourary_heap.h \ |
|
| 81 | 84 |
lemon/full_graph.h \ |
| 82 | 85 |
lemon/glpk.h \ |
| 83 | 86 |
lemon/gomory_hu.h \ |
| 84 | 87 |
lemon/graph_to_eps.h \ |
| 85 | 88 |
lemon/grid_graph.h \ |
| 86 | 89 |
lemon/hypercube_graph.h \ |
| 90 |
lemon/kary_heap.h \ |
|
| 87 | 91 |
lemon/kruskal.h \ |
| 88 | 92 |
lemon/hao_orlin.h \ |
| 89 | 93 |
lemon/lgf_reader.h \ |
| 90 | 94 |
lemon/lgf_writer.h \ |
| 91 | 95 |
lemon/list_graph.h \ |
| 92 | 96 |
lemon/lp.h \ |
| 93 | 97 |
lemon/lp_base.h \ |
| 94 | 98 |
lemon/lp_skeleton.h \ |
| 95 |
lemon/list_graph.h \ |
|
| 96 | 99 |
lemon/maps.h \ |
| 97 | 100 |
lemon/matching.h \ |
| 98 | 101 |
lemon/math.h \ |
| 99 | 102 |
lemon/min_cost_arborescence.h \ |
| 100 | 103 |
lemon/nauty_reader.h \ |
| 101 | 104 |
lemon/network_simplex.h \ |
| 105 |
lemon/pairing_heap.h \ |
|
| 102 | 106 |
lemon/path.h \ |
| 103 | 107 |
lemon/preflow.h \ |
| 104 | 108 |
lemon/radix_heap.h \ |
| 105 | 109 |
lemon/radix_sort.h \ |
| 106 | 110 |
lemon/random.h \ |
| 107 | 111 |
lemon/smart_graph.h \ |
| 108 | 112 |
lemon/soplex.h \ |
| 109 | 113 |
lemon/suurballe.h \ |
| 110 | 114 |
lemon/time_measure.h \ |
| 111 | 115 |
lemon/tolerance.h \ |
| 112 | 116 |
lemon/unionfind.h \ |
| 113 | 117 |
lemon/bits/windows.h |
| 114 | 118 |
|
| 115 | 119 |
bits_HEADERS += \ |
| 116 | 120 |
lemon/bits/alteration_notifier.h \ |
| 117 | 121 |
lemon/bits/array_map.h \ |
| 118 | 122 |
lemon/bits/bezier.h \ |
| 119 | 123 |
lemon/bits/default_map.h \ |
| 120 | 124 |
lemon/bits/edge_set_extender.h \ |
| 121 | 125 |
lemon/bits/enable_if.h \ |
| 122 | 126 |
lemon/bits/graph_adaptor_extender.h \ |
| 123 | 127 |
lemon/bits/graph_extender.h \ |
| 124 | 128 |
lemon/bits/map_extender.h \ |
| 125 | 129 |
lemon/bits/path_dump.h \ |
| 126 | 130 |
lemon/bits/solver_bits.h \ |
| 127 | 131 |
lemon/bits/traits.h \ |
| 128 | 132 |
lemon/bits/variant.h \ |
| 129 | 133 |
lemon/bits/vector_map.h |
| 130 | 134 |
|
| 131 | 135 |
concept_HEADERS += \ |
| 132 | 136 |
lemon/concepts/digraph.h \ |
| 133 | 137 |
lemon/concepts/graph.h \ |
| 134 | 138 |
lemon/concepts/graph_components.h \ |
| 135 | 139 |
lemon/concepts/heap.h \ |
| 136 | 140 |
lemon/concepts/maps.h \ |
| 137 | 141 |
lemon/concepts/path.h |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Binary |
|
| 24 |
///\brief Binary heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
///\ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 |
///\brief |
|
| 34 |
/// \brief Binary heap data structure. |
|
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 36 |
/// This class implements the \e binary \e heap data structure. |
|
| 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 37 | 38 |
/// |
| 38 |
///A \e heap is a data structure for storing items with specified values |
|
| 39 |
///called \e priorities in such a way that finding the item with minimum |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 |
///In a heap one can change the priority of an item, add or erase an |
|
| 42 |
///item, etc. |
|
| 43 |
/// |
|
| 44 |
///\tparam PR Type of the priority of the items. |
|
| 45 |
///\tparam IM A read and writable item map with int values, used internally |
|
| 46 |
///to handle the cross references. |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 |
///The default is \c std::less<PR>. |
|
| 49 |
/// |
|
| 50 |
///\sa FibHeap |
|
| 51 |
///\sa Dijkstra |
|
| 39 |
/// \tparam PR Type of the priorities of the items. |
|
| 40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 41 |
/// internally to handle the cross references. |
|
| 42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 43 |
/// The default is \c std::less<PR>. |
|
| 44 |
#ifdef DOXYGEN |
|
| 45 |
template <typename PR, typename IM, typename CMP> |
|
| 46 |
#else |
|
| 52 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 48 |
#endif |
|
| 53 | 49 |
class BinHeap {
|
| 50 |
public: |
|
| 54 | 51 |
|
| 55 |
public: |
|
| 56 |
///\e |
|
| 52 |
/// Type of the item-int map. |
|
| 57 | 53 |
typedef IM ItemIntMap; |
| 58 |
/// |
|
| 54 |
/// Type of the priorities. |
|
| 59 | 55 |
typedef PR Prio; |
| 60 |
/// |
|
| 56 |
/// Type of the items stored in the heap. |
|
| 61 | 57 |
typedef typename ItemIntMap::Key Item; |
| 62 |
/// |
|
| 58 |
/// Type of the item-priority pairs. |
|
| 63 | 59 |
typedef std::pair<Item,Prio> Pair; |
| 64 |
/// |
|
| 60 |
/// Functor type for comparing the priorities. |
|
| 65 | 61 |
typedef CMP Compare; |
| 66 | 62 |
|
| 67 |
/// \brief Type to represent the |
|
| 63 |
/// \brief Type to represent the states of the items. |
|
| 68 | 64 |
/// |
| 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 65 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 71 | 67 |
/// heap's point of view, but may be useful to the user. |
| 72 | 68 |
/// |
| 73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
| 74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 75 | 71 |
enum State {
|
| 76 | 72 |
IN_HEAP = 0, ///< = 0. |
| 77 | 73 |
PRE_HEAP = -1, ///< = -1. |
| 78 | 74 |
POST_HEAP = -2 ///< = -2. |
| 79 | 75 |
}; |
| 80 | 76 |
|
| 81 | 77 |
private: |
| 82 | 78 |
std::vector<Pair> _data; |
| 83 | 79 |
Compare _comp; |
| 84 | 80 |
ItemIntMap &_iim; |
| 85 | 81 |
|
| 86 | 82 |
public: |
| 87 |
|
|
| 83 |
|
|
| 84 |
/// \brief Constructor. |
|
| 88 | 85 |
/// |
| 89 |
/// The constructor. |
|
| 90 |
/// \param map should be given to the constructor, since it is used |
|
| 91 |
/// internally to handle the cross references. The value of the map |
|
| 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
| 86 |
/// Constructor. |
|
| 87 |
/// \param map A map that assigns \c int values to the items. |
|
| 88 |
/// It is used internally to handle the cross references. |
|
| 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 94 | 91 |
|
| 95 |
/// \brief |
|
| 92 |
/// \brief Constructor. |
|
| 96 | 93 |
/// |
| 97 |
/// The constructor. |
|
| 98 |
/// \param map should be given to the constructor, since it is used |
|
| 99 |
/// internally to handle the cross references. The value of the map |
|
| 100 |
/// should be PRE_HEAP (-1) for each element. |
|
| 101 |
/// |
|
| 102 |
/// \param comp The comparator function object. |
|
| 94 |
/// Constructor. |
|
| 95 |
/// \param map A map that assigns \c int values to the items. |
|
| 96 |
/// It is used internally to handle the cross references. |
|
| 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 98 |
/// \param comp The function object used for comparing the priorities. |
|
| 103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 104 | 100 |
: _iim(map), _comp(comp) {}
|
| 105 | 101 |
|
| 106 | 102 |
|
| 107 |
/// The number of items stored in the heap. |
|
| 103 |
/// \brief The number of items stored in the heap. |
|
| 108 | 104 |
/// |
| 109 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 110 | 106 |
int size() const { return _data.size(); }
|
| 111 | 107 |
|
| 112 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 113 | 109 |
/// |
| 114 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 115 | 111 |
bool empty() const { return _data.empty(); }
|
| 116 | 112 |
|
| 117 |
/// \brief Make |
|
| 113 |
/// \brief Make the heap empty. |
|
| 118 | 114 |
/// |
| 119 |
/// Make empty this heap. It does not change the cross reference map. |
|
| 120 |
/// If you want to reuse what is not surely empty you should first clear |
|
| 121 |
/// the heap and after that you should set the cross reference map for |
|
| 122 |
/// each item to \c PRE_HEAP. |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 123 | 120 |
void clear() {
|
| 124 | 121 |
_data.clear(); |
| 125 | 122 |
} |
| 126 | 123 |
|
| 127 | 124 |
private: |
| 128 | 125 |
static int parent(int i) { return (i-1)/2; }
|
| 129 | 126 |
|
| 130 |
static int |
|
| 127 |
static int secondChild(int i) { return 2*i+2; }
|
|
| 131 | 128 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 132 | 129 |
return _comp(p1.second, p2.second); |
| 133 | 130 |
} |
| 134 | 131 |
|
| 135 |
int |
|
| 132 |
int bubbleUp(int hole, Pair p) {
|
|
| 136 | 133 |
int par = parent(hole); |
| 137 | 134 |
while( hole>0 && less(p,_data[par]) ) {
|
| 138 | 135 |
move(_data[par],hole); |
| 139 | 136 |
hole = par; |
| 140 | 137 |
par = parent(hole); |
| 141 | 138 |
} |
| 142 | 139 |
move(p, hole); |
| 143 | 140 |
return hole; |
| 144 | 141 |
} |
| 145 | 142 |
|
| 146 |
int bubble_down(int hole, Pair p, int length) {
|
|
| 147 |
int child = second_child(hole); |
|
| 143 |
int bubbleDown(int hole, Pair p, int length) {
|
|
| 144 |
int child = secondChild(hole); |
|
| 148 | 145 |
while(child < length) {
|
| 149 | 146 |
if( less(_data[child-1], _data[child]) ) {
|
| 150 | 147 |
--child; |
| 151 | 148 |
} |
| 152 | 149 |
if( !less(_data[child], p) ) |
| 153 | 150 |
goto ok; |
| 154 | 151 |
move(_data[child], hole); |
| 155 | 152 |
hole = child; |
| 156 |
child = |
|
| 153 |
child = secondChild(hole); |
|
| 157 | 154 |
} |
| 158 | 155 |
child--; |
| 159 | 156 |
if( child<length && less(_data[child], p) ) {
|
| 160 | 157 |
move(_data[child], hole); |
| 161 | 158 |
hole=child; |
| 162 | 159 |
} |
| 163 | 160 |
ok: |
| 164 | 161 |
move(p, hole); |
| 165 | 162 |
return hole; |
| 166 | 163 |
} |
| 167 | 164 |
|
| 168 | 165 |
void move(const Pair &p, int i) {
|
| 169 | 166 |
_data[i] = p; |
| 170 | 167 |
_iim.set(p.first, i); |
| 171 | 168 |
} |
| 172 | 169 |
|
| 173 | 170 |
public: |
| 171 |
|
|
| 174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
| 175 | 173 |
/// |
| 176 |
/// |
|
| 174 |
/// This function inserts \c p.first to the heap with priority |
|
| 175 |
/// \c p.second. |
|
| 177 | 176 |
/// \param p The pair to insert. |
| 177 |
/// \pre \c p.first must not be stored in the heap. |
|
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 |
|
|
| 181 |
bubbleUp(n, p); |
|
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 |
/// \brief Insert an item into the heap with the given |
|
| 184 |
/// \brief Insert an item into the heap with the given priority. |
|
| 185 | 185 |
/// |
| 186 |
/// |
|
| 186 |
/// This function inserts the given item into the heap with the |
|
| 187 |
/// given priority. |
|
| 187 | 188 |
/// \param i The item to insert. |
| 188 | 189 |
/// \param p The priority of the item. |
| 190 |
/// \pre \e i must not be stored in the heap. |
|
| 189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 190 | 192 |
|
| 191 |
/// \brief |
|
| 193 |
/// \brief Return the item having minimum priority. |
|
| 192 | 194 |
/// |
| 193 |
/// This method returns the item with minimum priority relative to \c |
|
| 194 |
/// Compare. |
|
| 195 |
/// |
|
| 195 |
/// This function returns the item having minimum priority. |
|
| 196 |
/// \pre The heap must be non-empty. |
|
| 196 | 197 |
Item top() const {
|
| 197 | 198 |
return _data[0].first; |
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 |
/// \brief |
|
| 201 |
/// \brief The minimum priority. |
|
| 201 | 202 |
/// |
| 202 |
/// It returns the minimum priority relative to \c Compare. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 203 |
/// This function returns the minimum priority. |
|
| 204 |
/// \pre The heap must be non-empty. |
|
| 204 | 205 |
Prio prio() const {
|
| 205 | 206 |
return _data[0].second; |
| 206 | 207 |
} |
| 207 | 208 |
|
| 208 |
/// \brief |
|
| 209 |
/// \brief Remove the item having minimum priority. |
|
| 209 | 210 |
/// |
| 210 |
/// This method deletes the item with minimum priority relative to \c |
|
| 211 |
/// Compare from the heap. |
|
| 211 |
/// This function removes the item having minimum priority. |
|
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| 214 | 214 |
int n = _data.size()-1; |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 |
|
|
| 217 |
bubbleDown(0, _data[n], n); |
|
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 |
/// \brief |
|
| 222 |
/// \brief Remove the given item from the heap. |
|
| 223 | 223 |
/// |
| 224 |
/// This method deletes item \c i from the heap. |
|
| 225 |
/// \param i The item to erase. |
|
| 226 |
/// |
|
| 224 |
/// This function removes the given item from the heap if it is |
|
| 225 |
/// already stored. |
|
| 226 |
/// \param i The item to delete. |
|
| 227 |
/// \pre \e i must be in the heap. |
|
| 227 | 228 |
void erase(const Item &i) {
|
| 228 | 229 |
int h = _iim[i]; |
| 229 | 230 |
int n = _data.size()-1; |
| 230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
| 231 | 232 |
if( h < n ) {
|
| 232 |
if ( bubble_up(h, _data[n]) == h) {
|
|
| 233 |
bubble_down(h, _data[n], n); |
|
| 233 |
if ( bubbleUp(h, _data[n]) == h) {
|
|
| 234 |
bubbleDown(h, _data[n], n); |
|
| 234 | 235 |
} |
| 235 | 236 |
} |
| 236 | 237 |
_data.pop_back(); |
| 237 | 238 |
} |
| 238 | 239 |
|
| 239 |
|
|
| 240 |
/// \brief Returns the priority of \c i. |
|
| 240 |
/// \brief The priority of the given item. |
|
| 241 | 241 |
/// |
| 242 |
/// This function returns the priority of |
|
| 242 |
/// This function returns the priority of the given item. |
|
| 243 | 243 |
/// \param i The item. |
| 244 |
/// \pre \ |
|
| 244 |
/// \pre \e i must be in the heap. |
|
| 245 | 245 |
Prio operator[](const Item &i) const {
|
| 246 | 246 |
int idx = _iim[i]; |
| 247 | 247 |
return _data[idx].second; |
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 251 |
/// if \c i was already there. |
|
| 250 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 251 |
/// not stored in the heap. |
|
| 252 | 252 |
/// |
| 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 253 |
/// This method sets the priority of the given item if it is |
|
| 254 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 255 |
/// item into the heap with the given priority. |
|
| 255 | 256 |
/// \param i The item. |
| 256 | 257 |
/// \param p The priority. |
| 257 | 258 |
void set(const Item &i, const Prio &p) {
|
| 258 | 259 |
int idx = _iim[i]; |
| 259 | 260 |
if( idx < 0 ) {
|
| 260 | 261 |
push(i,p); |
| 261 | 262 |
} |
| 262 | 263 |
else if( _comp(p, _data[idx].second) ) {
|
| 263 |
|
|
| 264 |
bubbleUp(idx, Pair(i,p)); |
|
| 264 | 265 |
} |
| 265 | 266 |
else {
|
| 266 |
|
|
| 267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 267 | 268 |
} |
| 268 | 269 |
} |
| 269 | 270 |
|
| 270 |
/// \brief |
|
| 271 |
/// \brief Decrease the priority of an item to the given value. |
|
| 271 | 272 |
/// |
| 272 |
/// This |
|
| 273 |
/// This function decreases the priority of an item to the given value. |
|
| 273 | 274 |
/// \param i The item. |
| 274 | 275 |
/// \param p The priority. |
| 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 276 |
/// p relative to \c Compare. |
|
| 276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 277 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 278 | 278 |
int idx = _iim[i]; |
| 279 |
|
|
| 279 |
bubbleUp(idx, Pair(i,p)); |
|
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 |
/// \brief |
|
| 282 |
/// \brief Increase the priority of an item to the given value. |
|
| 283 | 283 |
/// |
| 284 |
/// This |
|
| 284 |
/// This function increases the priority of an item to the given value. |
|
| 285 | 285 |
/// \param i The item. |
| 286 | 286 |
/// \param p The priority. |
| 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 288 |
/// p relative to \c Compare. |
|
| 287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 289 | 288 |
void increase(const Item &i, const Prio &p) {
|
| 290 | 289 |
int idx = _iim[i]; |
| 291 |
|
|
| 290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
| 292 | 291 |
} |
| 293 | 292 |
|
| 294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 295 |
/// never been in the heap. |
|
| 293 |
/// \brief Return the state of an item. |
|
| 296 | 294 |
/// |
| 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 299 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 300 |
/// get back to the heap again. |
|
| 295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 297 |
/// and \c POST_HEAP otherwise. |
|
| 298 |
/// In the latter case it is possible that the item will get back |
|
| 299 |
/// to the heap again. |
|
| 301 | 300 |
/// \param i The item. |
| 302 | 301 |
State state(const Item &i) const {
|
| 303 | 302 |
int s = _iim[i]; |
| 304 | 303 |
if( s>=0 ) |
| 305 | 304 |
s=0; |
| 306 | 305 |
return State(s); |
| 307 | 306 |
} |
| 308 | 307 |
|
| 309 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 310 | 309 |
/// |
| 311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 312 |
/// manually clear the heap when it is important to achive the |
|
| 313 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 314 | 313 |
/// \param i The item. |
| 315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 316 | 315 |
void state(const Item& i, State st) {
|
| 317 | 316 |
switch (st) {
|
| 318 | 317 |
case POST_HEAP: |
| 319 | 318 |
case PRE_HEAP: |
| 320 | 319 |
if (state(i) == IN_HEAP) {
|
| 321 | 320 |
erase(i); |
| 322 | 321 |
} |
| 323 | 322 |
_iim[i] = st; |
| 324 | 323 |
break; |
| 325 | 324 |
case IN_HEAP: |
| 326 | 325 |
break; |
| 327 | 326 |
} |
| 328 | 327 |
} |
| 329 | 328 |
|
| 330 |
/// \brief |
|
| 329 |
/// \brief Replace an item in the heap. |
|
| 331 | 330 |
/// |
| 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
| 333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
| 334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
| 335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
| 331 |
/// This function replaces item \c i with item \c j. |
|
| 332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
| 333 |
/// After calling this method, item \c i will be out of the |
|
| 334 |
/// heap and \c j will be in the heap with the same prioriority |
|
| 335 |
/// as item \c i had before. |
|
| 336 | 336 |
void replace(const Item& i, const Item& j) {
|
| 337 | 337 |
int idx = _iim[i]; |
| 338 | 338 |
_iim.set(i, _iim[j]); |
| 339 | 339 |
_iim.set(j, idx); |
| 340 | 340 |
_data[idx].first = j; |
| 341 | 341 |
} |
| 342 | 342 |
|
| 343 | 343 |
}; // class BinHeap |
| 344 | 344 |
|
| 345 | 345 |
} // namespace lemon |
| 346 | 346 |
|
| 347 | 347 |
#endif // LEMON_BIN_HEAP_H |
| ... | ... |
@@ -156,470 +156,470 @@ |
| 156 | 156 |
OutArcIt& operator++() {
|
| 157 | 157 |
digraph->nextOut(*this); |
| 158 | 158 |
return *this; |
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
|
| 164 | 164 |
class InArcIt : public Arc {
|
| 165 | 165 |
const Digraph* digraph; |
| 166 | 166 |
public: |
| 167 | 167 |
|
| 168 | 168 |
InArcIt() { }
|
| 169 | 169 |
|
| 170 | 170 |
InArcIt(Invalid i) : Arc(i) { }
|
| 171 | 171 |
|
| 172 | 172 |
InArcIt(const Digraph& _graph, const Node& node) |
| 173 | 173 |
: digraph(&_graph) {
|
| 174 | 174 |
_graph.firstIn(*this, node); |
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 | 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
| 178 | 178 |
Arc(arc), digraph(&_graph) {}
|
| 179 | 179 |
|
| 180 | 180 |
InArcIt& operator++() {
|
| 181 | 181 |
digraph->nextIn(*this); |
| 182 | 182 |
return *this; |
| 183 | 183 |
} |
| 184 | 184 |
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
// \brief Base node of the iterator |
| 188 | 188 |
// |
| 189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
| 190 | 190 |
Node baseNode(const OutArcIt &e) const {
|
| 191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
| 192 | 192 |
} |
| 193 | 193 |
// \brief Running node of the iterator |
| 194 | 194 |
// |
| 195 | 195 |
// Returns the running node (ie. the target in this case) of the |
| 196 | 196 |
// iterator |
| 197 | 197 |
Node runningNode(const OutArcIt &e) const {
|
| 198 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
// \brief Base node of the iterator |
| 202 | 202 |
// |
| 203 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
| 204 | 204 |
Node baseNode(const InArcIt &e) const {
|
| 205 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
| 206 | 206 |
} |
| 207 | 207 |
// \brief Running node of the iterator |
| 208 | 208 |
// |
| 209 | 209 |
// Returns the running node (ie. the source in this case) of the |
| 210 | 210 |
// iterator |
| 211 | 211 |
Node runningNode(const InArcIt &e) const {
|
| 212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
using Parent::first; |
| 216 | 216 |
|
| 217 | 217 |
// Mappable extension |
| 218 | 218 |
|
| 219 | 219 |
template <typename _Value> |
| 220 | 220 |
class ArcMap |
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 | 225 |
explicit ArcMap(const Digraph& _g) |
| 226 | 226 |
: Parent(_g) {}
|
| 227 | 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
| 228 | 228 |
: Parent(_g, _v) {}
|
| 229 | 229 |
|
| 230 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 | 231 |
return operator=<ArcMap>(cmap); |
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
template <typename CMap> |
| 235 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 236 |
Parent::operator=(cmap); |
| 237 | 237 |
return *this; |
| 238 | 238 |
} |
| 239 | 239 |
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
|
| 243 | 243 |
// Alteration extension |
| 244 | 244 |
|
| 245 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 246 |
Arc arc = Parent::addArc(from, to); |
| 247 | 247 |
notifier(Arc()).add(arc); |
| 248 | 248 |
return arc; |
| 249 | 249 |
} |
| 250 | 250 |
|
| 251 | 251 |
void clear() {
|
| 252 | 252 |
notifier(Arc()).clear(); |
| 253 | 253 |
Parent::clear(); |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
void erase(const Arc& arc) {
|
| 257 | 257 |
notifier(Arc()).erase(arc); |
| 258 | 258 |
Parent::erase(arc); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
ArcSetExtender() {
|
| 262 | 262 |
arc_notifier.setContainer(*this); |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
~ArcSetExtender() {
|
| 266 | 266 |
arc_notifier.clear(); |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
|
| 272 | 272 |
// \ingroup digraphbits |
| 273 | 273 |
// |
| 274 | 274 |
// \brief Extender for the EdgeSets |
| 275 | 275 |
template <typename Base> |
| 276 | 276 |
class EdgeSetExtender : public Base {
|
| 277 | 277 |
typedef Base Parent; |
| 278 | 278 |
|
| 279 | 279 |
public: |
| 280 | 280 |
|
| 281 | 281 |
typedef EdgeSetExtender Graph; |
| 282 | 282 |
|
| 283 | 283 |
typedef typename Parent::Node Node; |
| 284 | 284 |
typedef typename Parent::Arc Arc; |
| 285 | 285 |
typedef typename Parent::Edge Edge; |
| 286 | 286 |
|
| 287 | 287 |
int maxId(Node) const {
|
| 288 | 288 |
return Parent::maxNodeId(); |
| 289 | 289 |
} |
| 290 | 290 |
|
| 291 | 291 |
int maxId(Arc) const {
|
| 292 | 292 |
return Parent::maxArcId(); |
| 293 | 293 |
} |
| 294 | 294 |
|
| 295 | 295 |
int maxId(Edge) const {
|
| 296 | 296 |
return Parent::maxEdgeId(); |
| 297 | 297 |
} |
| 298 | 298 |
|
| 299 | 299 |
Node fromId(int id, Node) const {
|
| 300 | 300 |
return Parent::nodeFromId(id); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
Arc fromId(int id, Arc) const {
|
| 304 | 304 |
return Parent::arcFromId(id); |
| 305 | 305 |
} |
| 306 | 306 |
|
| 307 | 307 |
Edge fromId(int id, Edge) const {
|
| 308 | 308 |
return Parent::edgeFromId(id); |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 312 | 312 |
if( n == Parent::u(e)) |
| 313 | 313 |
return Parent::v(e); |
| 314 | 314 |
else if( n == Parent::v(e)) |
| 315 | 315 |
return Parent::u(e); |
| 316 | 316 |
else |
| 317 | 317 |
return INVALID; |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
Arc oppositeArc(const Arc &e) const {
|
| 321 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
using Parent::direct; |
| 325 | 325 |
Arc direct(const Edge &e, const Node &s) const {
|
| 326 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 330 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 331 | 331 |
|
| 332 | 332 |
|
| 333 | 333 |
protected: |
| 334 | 334 |
|
| 335 | 335 |
mutable ArcNotifier arc_notifier; |
| 336 | 336 |
mutable EdgeNotifier edge_notifier; |
| 337 | 337 |
|
| 338 | 338 |
public: |
| 339 | 339 |
|
| 340 | 340 |
using Parent::notifier; |
| 341 | 341 |
|
| 342 | 342 |
ArcNotifier& notifier(Arc) const {
|
| 343 | 343 |
return arc_notifier; |
| 344 | 344 |
} |
| 345 | 345 |
|
| 346 | 346 |
EdgeNotifier& notifier(Edge) const {
|
| 347 | 347 |
return edge_notifier; |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
|
| 351 | 351 |
class NodeIt : public Node {
|
| 352 | 352 |
const Graph* graph; |
| 353 | 353 |
public: |
| 354 | 354 |
|
| 355 | 355 |
NodeIt() {}
|
| 356 | 356 |
|
| 357 | 357 |
NodeIt(Invalid i) : Node(i) { }
|
| 358 | 358 |
|
| 359 | 359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) {
|
| 360 | 360 |
_graph.first(static_cast<Node&>(*this)); |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
NodeIt(const Graph& _graph, const Node& node) |
| 364 | 364 |
: Node(node), graph(&_graph) {}
|
| 365 | 365 |
|
| 366 | 366 |
NodeIt& operator++() {
|
| 367 | 367 |
graph->next(*this); |
| 368 | 368 |
return *this; |
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
}; |
| 372 | 372 |
|
| 373 | 373 |
|
| 374 | 374 |
class ArcIt : public Arc {
|
| 375 | 375 |
const Graph* graph; |
| 376 | 376 |
public: |
| 377 | 377 |
|
| 378 | 378 |
ArcIt() { }
|
| 379 | 379 |
|
| 380 | 380 |
ArcIt(Invalid i) : Arc(i) { }
|
| 381 | 381 |
|
| 382 | 382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) {
|
| 383 | 383 |
_graph.first(static_cast<Arc&>(*this)); |
| 384 | 384 |
} |
| 385 | 385 |
|
| 386 | 386 |
ArcIt(const Graph& _graph, const Arc& e) : |
| 387 | 387 |
Arc(e), graph(&_graph) { }
|
| 388 | 388 |
|
| 389 | 389 |
ArcIt& operator++() {
|
| 390 | 390 |
graph->next(*this); |
| 391 | 391 |
return *this; |
| 392 | 392 |
} |
| 393 | 393 |
|
| 394 | 394 |
}; |
| 395 | 395 |
|
| 396 | 396 |
|
| 397 | 397 |
class OutArcIt : public Arc {
|
| 398 | 398 |
const Graph* graph; |
| 399 | 399 |
public: |
| 400 | 400 |
|
| 401 | 401 |
OutArcIt() { }
|
| 402 | 402 |
|
| 403 | 403 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 404 | 404 |
|
| 405 | 405 |
OutArcIt(const Graph& _graph, const Node& node) |
| 406 | 406 |
: graph(&_graph) {
|
| 407 | 407 |
_graph.firstOut(*this, node); |
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 | 410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
| 411 | 411 |
: Arc(arc), graph(&_graph) {}
|
| 412 | 412 |
|
| 413 | 413 |
OutArcIt& operator++() {
|
| 414 | 414 |
graph->nextOut(*this); |
| 415 | 415 |
return *this; |
| 416 | 416 |
} |
| 417 | 417 |
|
| 418 | 418 |
}; |
| 419 | 419 |
|
| 420 | 420 |
|
| 421 | 421 |
class InArcIt : public Arc {
|
| 422 | 422 |
const Graph* graph; |
| 423 | 423 |
public: |
| 424 | 424 |
|
| 425 | 425 |
InArcIt() { }
|
| 426 | 426 |
|
| 427 | 427 |
InArcIt(Invalid i) : Arc(i) { }
|
| 428 | 428 |
|
| 429 | 429 |
InArcIt(const Graph& _graph, const Node& node) |
| 430 | 430 |
: graph(&_graph) {
|
| 431 | 431 |
_graph.firstIn(*this, node); |
| 432 | 432 |
} |
| 433 | 433 |
|
| 434 | 434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
| 435 | 435 |
Arc(arc), graph(&_graph) {}
|
| 436 | 436 |
|
| 437 | 437 |
InArcIt& operator++() {
|
| 438 | 438 |
graph->nextIn(*this); |
| 439 | 439 |
return *this; |
| 440 | 440 |
} |
| 441 | 441 |
|
| 442 | 442 |
}; |
| 443 | 443 |
|
| 444 | 444 |
|
| 445 | 445 |
class EdgeIt : public Parent::Edge {
|
| 446 | 446 |
const Graph* graph; |
| 447 | 447 |
public: |
| 448 | 448 |
|
| 449 | 449 |
EdgeIt() { }
|
| 450 | 450 |
|
| 451 | 451 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 452 | 452 |
|
| 453 | 453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
|
| 454 | 454 |
_graph.first(static_cast<Edge&>(*this)); |
| 455 | 455 |
} |
| 456 | 456 |
|
| 457 | 457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
| 458 | 458 |
Edge(e), graph(&_graph) { }
|
| 459 | 459 |
|
| 460 | 460 |
EdgeIt& operator++() {
|
| 461 | 461 |
graph->next(*this); |
| 462 | 462 |
return *this; |
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
}; |
| 466 | 466 |
|
| 467 | 467 |
class IncEdgeIt : public Parent::Edge {
|
| 468 | 468 |
friend class EdgeSetExtender; |
| 469 | 469 |
const Graph* graph; |
| 470 | 470 |
bool direction; |
| 471 | 471 |
public: |
| 472 | 472 |
|
| 473 | 473 |
IncEdgeIt() { }
|
| 474 | 474 |
|
| 475 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 476 | 476 |
|
| 477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
|
| 478 | 478 |
_graph.firstInc(*this, direction, n); |
| 479 | 479 |
} |
| 480 | 480 |
|
| 481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
| 482 | 482 |
: graph(&_graph), Edge(ue) {
|
| 483 | 483 |
direction = (_graph.source(ue) == n); |
| 484 | 484 |
} |
| 485 | 485 |
|
| 486 | 486 |
IncEdgeIt& operator++() {
|
| 487 | 487 |
graph->nextInc(*this, direction); |
| 488 | 488 |
return *this; |
| 489 | 489 |
} |
| 490 | 490 |
}; |
| 491 | 491 |
|
| 492 | 492 |
// \brief Base node of the iterator |
| 493 | 493 |
// |
| 494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
| 495 | 495 |
Node baseNode(const OutArcIt &e) const {
|
| 496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
| 497 | 497 |
} |
| 498 | 498 |
// \brief Running node of the iterator |
| 499 | 499 |
// |
| 500 | 500 |
// Returns the running node (ie. the target in this case) of the |
| 501 | 501 |
// iterator |
| 502 | 502 |
Node runningNode(const OutArcIt &e) const {
|
| 503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
| 504 | 504 |
} |
| 505 | 505 |
|
| 506 | 506 |
// \brief Base node of the iterator |
| 507 | 507 |
// |
| 508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
| 509 | 509 |
Node baseNode(const InArcIt &e) const {
|
| 510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
| 511 | 511 |
} |
| 512 | 512 |
// \brief Running node of the iterator |
| 513 | 513 |
// |
| 514 | 514 |
// Returns the running node (ie. the source in this case) of the |
| 515 | 515 |
// iterator |
| 516 | 516 |
Node runningNode(const InArcIt &e) const {
|
| 517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
| 518 | 518 |
} |
| 519 | 519 |
|
| 520 | 520 |
// Base node of the iterator |
| 521 | 521 |
// |
| 522 | 522 |
// Returns the base node of the iterator |
| 523 | 523 |
Node baseNode(const IncEdgeIt &e) const {
|
| 524 | 524 |
return e.direction ? u(e) : v(e); |
| 525 | 525 |
} |
| 526 | 526 |
// Running node of the iterator |
| 527 | 527 |
// |
| 528 | 528 |
// Returns the running node of the iterator |
| 529 | 529 |
Node runningNode(const IncEdgeIt &e) const {
|
| 530 | 530 |
return e.direction ? v(e) : u(e); |
| 531 | 531 |
} |
| 532 | 532 |
|
| 533 | 533 |
|
| 534 | 534 |
template <typename _Value> |
| 535 | 535 |
class ArcMap |
| 536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 538 | 538 |
|
| 539 | 539 |
public: |
| 540 |
ArcMap(const Graph& _g) |
|
| 540 |
explicit ArcMap(const Graph& _g) |
|
| 541 | 541 |
: Parent(_g) {}
|
| 542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
| 543 | 543 |
: Parent(_g, _v) {}
|
| 544 | 544 |
|
| 545 | 545 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 546 | 546 |
return operator=<ArcMap>(cmap); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
template <typename CMap> |
| 550 | 550 |
ArcMap& operator=(const CMap& cmap) {
|
| 551 | 551 |
Parent::operator=(cmap); |
| 552 | 552 |
return *this; |
| 553 | 553 |
} |
| 554 | 554 |
|
| 555 | 555 |
}; |
| 556 | 556 |
|
| 557 | 557 |
|
| 558 | 558 |
template <typename _Value> |
| 559 | 559 |
class EdgeMap |
| 560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 562 | 562 |
|
| 563 | 563 |
public: |
| 564 |
EdgeMap(const Graph& _g) |
|
| 564 |
explicit EdgeMap(const Graph& _g) |
|
| 565 | 565 |
: Parent(_g) {}
|
| 566 | 566 |
|
| 567 | 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
| 568 | 568 |
: Parent(_g, _v) {}
|
| 569 | 569 |
|
| 570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 571 | 571 |
return operator=<EdgeMap>(cmap); |
| 572 | 572 |
} |
| 573 | 573 |
|
| 574 | 574 |
template <typename CMap> |
| 575 | 575 |
EdgeMap& operator=(const CMap& cmap) {
|
| 576 | 576 |
Parent::operator=(cmap); |
| 577 | 577 |
return *this; |
| 578 | 578 |
} |
| 579 | 579 |
|
| 580 | 580 |
}; |
| 581 | 581 |
|
| 582 | 582 |
|
| 583 | 583 |
// Alteration extension |
| 584 | 584 |
|
| 585 | 585 |
Edge addEdge(const Node& from, const Node& to) {
|
| 586 | 586 |
Edge edge = Parent::addEdge(from, to); |
| 587 | 587 |
notifier(Edge()).add(edge); |
| 588 | 588 |
std::vector<Arc> arcs; |
| 589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
| 590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
| 591 | 591 |
notifier(Arc()).add(arcs); |
| 592 | 592 |
return edge; |
| 593 | 593 |
} |
| 594 | 594 |
|
| 595 | 595 |
void clear() {
|
| 596 | 596 |
notifier(Arc()).clear(); |
| 597 | 597 |
notifier(Edge()).clear(); |
| 598 | 598 |
Parent::clear(); |
| 599 | 599 |
} |
| 600 | 600 |
|
| 601 | 601 |
void erase(const Edge& edge) {
|
| 602 | 602 |
std::vector<Arc> arcs; |
| 603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
| 604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
| 605 | 605 |
notifier(Arc()).erase(arcs); |
| 606 | 606 |
notifier(Edge()).erase(edge); |
| 607 | 607 |
Parent::erase(edge); |
| 608 | 608 |
} |
| 609 | 609 |
|
| 610 | 610 |
|
| 611 | 611 |
EdgeSetExtender() {
|
| 612 | 612 |
arc_notifier.setContainer(*this); |
| 613 | 613 |
edge_notifier.setContainer(*this); |
| 614 | 614 |
} |
| 615 | 615 |
|
| 616 | 616 |
~EdgeSetExtender() {
|
| 617 | 617 |
edge_notifier.clear(); |
| 618 | 618 |
arc_notifier.clear(); |
| 619 | 619 |
} |
| 620 | 620 |
|
| 621 | 621 |
}; |
| 622 | 622 |
|
| 623 | 623 |
} |
| 624 | 624 |
|
| 625 | 625 |
#endif |
| ... | ... |
@@ -223,529 +223,529 @@ |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 | 225 |
explicit NodeMap(const Digraph& digraph) |
| 226 | 226 |
: Parent(digraph) {}
|
| 227 | 227 |
NodeMap(const Digraph& digraph, const _Value& value) |
| 228 | 228 |
: Parent(digraph, value) {}
|
| 229 | 229 |
|
| 230 | 230 |
private: |
| 231 | 231 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 232 | 232 |
return operator=<NodeMap>(cmap); |
| 233 | 233 |
} |
| 234 | 234 |
|
| 235 | 235 |
template <typename CMap> |
| 236 | 236 |
NodeMap& operator=(const CMap& cmap) {
|
| 237 | 237 |
Parent::operator=(cmap); |
| 238 | 238 |
return *this; |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
}; |
| 242 | 242 |
|
| 243 | 243 |
template <typename _Value> |
| 244 | 244 |
class ArcMap |
| 245 | 245 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 246 | 246 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 247 | 247 |
|
| 248 | 248 |
public: |
| 249 | 249 |
explicit ArcMap(const Digraph& digraph) |
| 250 | 250 |
: Parent(digraph) {}
|
| 251 | 251 |
ArcMap(const Digraph& digraph, const _Value& value) |
| 252 | 252 |
: Parent(digraph, value) {}
|
| 253 | 253 |
|
| 254 | 254 |
private: |
| 255 | 255 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 256 | 256 |
return operator=<ArcMap>(cmap); |
| 257 | 257 |
} |
| 258 | 258 |
|
| 259 | 259 |
template <typename CMap> |
| 260 | 260 |
ArcMap& operator=(const CMap& cmap) {
|
| 261 | 261 |
Parent::operator=(cmap); |
| 262 | 262 |
return *this; |
| 263 | 263 |
} |
| 264 | 264 |
}; |
| 265 | 265 |
|
| 266 | 266 |
|
| 267 | 267 |
Node addNode() {
|
| 268 | 268 |
Node node = Parent::addNode(); |
| 269 | 269 |
notifier(Node()).add(node); |
| 270 | 270 |
return node; |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
Arc addArc(const Node& from, const Node& to) {
|
| 274 | 274 |
Arc arc = Parent::addArc(from, to); |
| 275 | 275 |
notifier(Arc()).add(arc); |
| 276 | 276 |
return arc; |
| 277 | 277 |
} |
| 278 | 278 |
|
| 279 | 279 |
void clear() {
|
| 280 | 280 |
notifier(Arc()).clear(); |
| 281 | 281 |
notifier(Node()).clear(); |
| 282 | 282 |
Parent::clear(); |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
| 286 | 286 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
|
| 287 | 287 |
Parent::build(digraph, nodeRef, arcRef); |
| 288 | 288 |
notifier(Node()).build(); |
| 289 | 289 |
notifier(Arc()).build(); |
| 290 | 290 |
} |
| 291 | 291 |
|
| 292 | 292 |
void erase(const Node& node) {
|
| 293 | 293 |
Arc arc; |
| 294 | 294 |
Parent::firstOut(arc, node); |
| 295 | 295 |
while (arc != INVALID ) {
|
| 296 | 296 |
erase(arc); |
| 297 | 297 |
Parent::firstOut(arc, node); |
| 298 | 298 |
} |
| 299 | 299 |
|
| 300 | 300 |
Parent::firstIn(arc, node); |
| 301 | 301 |
while (arc != INVALID ) {
|
| 302 | 302 |
erase(arc); |
| 303 | 303 |
Parent::firstIn(arc, node); |
| 304 | 304 |
} |
| 305 | 305 |
|
| 306 | 306 |
notifier(Node()).erase(node); |
| 307 | 307 |
Parent::erase(node); |
| 308 | 308 |
} |
| 309 | 309 |
|
| 310 | 310 |
void erase(const Arc& arc) {
|
| 311 | 311 |
notifier(Arc()).erase(arc); |
| 312 | 312 |
Parent::erase(arc); |
| 313 | 313 |
} |
| 314 | 314 |
|
| 315 | 315 |
DigraphExtender() {
|
| 316 | 316 |
node_notifier.setContainer(*this); |
| 317 | 317 |
arc_notifier.setContainer(*this); |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
|
| 321 | 321 |
~DigraphExtender() {
|
| 322 | 322 |
arc_notifier.clear(); |
| 323 | 323 |
node_notifier.clear(); |
| 324 | 324 |
} |
| 325 | 325 |
}; |
| 326 | 326 |
|
| 327 | 327 |
// \ingroup _graphbits |
| 328 | 328 |
// |
| 329 | 329 |
// \brief Extender for the Graphs |
| 330 | 330 |
template <typename Base> |
| 331 | 331 |
class GraphExtender : public Base {
|
| 332 | 332 |
typedef Base Parent; |
| 333 | 333 |
|
| 334 | 334 |
public: |
| 335 | 335 |
|
| 336 | 336 |
typedef GraphExtender Graph; |
| 337 | 337 |
|
| 338 | 338 |
typedef True UndirectedTag; |
| 339 | 339 |
|
| 340 | 340 |
typedef typename Parent::Node Node; |
| 341 | 341 |
typedef typename Parent::Arc Arc; |
| 342 | 342 |
typedef typename Parent::Edge Edge; |
| 343 | 343 |
|
| 344 | 344 |
// Graph extension |
| 345 | 345 |
|
| 346 | 346 |
int maxId(Node) const {
|
| 347 | 347 |
return Parent::maxNodeId(); |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
int maxId(Arc) const {
|
| 351 | 351 |
return Parent::maxArcId(); |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
int maxId(Edge) const {
|
| 355 | 355 |
return Parent::maxEdgeId(); |
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 | 358 |
Node fromId(int id, Node) const {
|
| 359 | 359 |
return Parent::nodeFromId(id); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 | 362 |
Arc fromId(int id, Arc) const {
|
| 363 | 363 |
return Parent::arcFromId(id); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 | 366 |
Edge fromId(int id, Edge) const {
|
| 367 | 367 |
return Parent::edgeFromId(id); |
| 368 | 368 |
} |
| 369 | 369 |
|
| 370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 371 | 371 |
if( n == Parent::u(e)) |
| 372 | 372 |
return Parent::v(e); |
| 373 | 373 |
else if( n == Parent::v(e)) |
| 374 | 374 |
return Parent::u(e); |
| 375 | 375 |
else |
| 376 | 376 |
return INVALID; |
| 377 | 377 |
} |
| 378 | 378 |
|
| 379 | 379 |
Arc oppositeArc(const Arc &arc) const {
|
| 380 | 380 |
return Parent::direct(arc, !Parent::direction(arc)); |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 | 383 |
using Parent::direct; |
| 384 | 384 |
Arc direct(const Edge &edge, const Node &node) const {
|
| 385 | 385 |
return Parent::direct(edge, Parent::u(edge) == node); |
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 | 388 |
// Alterable extension |
| 389 | 389 |
|
| 390 | 390 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
| 391 | 391 |
typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier; |
| 392 | 392 |
typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier; |
| 393 | 393 |
|
| 394 | 394 |
|
| 395 | 395 |
protected: |
| 396 | 396 |
|
| 397 | 397 |
mutable NodeNotifier node_notifier; |
| 398 | 398 |
mutable ArcNotifier arc_notifier; |
| 399 | 399 |
mutable EdgeNotifier edge_notifier; |
| 400 | 400 |
|
| 401 | 401 |
public: |
| 402 | 402 |
|
| 403 | 403 |
NodeNotifier& notifier(Node) const {
|
| 404 | 404 |
return node_notifier; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
ArcNotifier& notifier(Arc) const {
|
| 408 | 408 |
return arc_notifier; |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
EdgeNotifier& notifier(Edge) const {
|
| 412 | 412 |
return edge_notifier; |
| 413 | 413 |
} |
| 414 | 414 |
|
| 415 | 415 |
|
| 416 | 416 |
|
| 417 | 417 |
class NodeIt : public Node {
|
| 418 | 418 |
const Graph* _graph; |
| 419 | 419 |
public: |
| 420 | 420 |
|
| 421 | 421 |
NodeIt() {}
|
| 422 | 422 |
|
| 423 | 423 |
NodeIt(Invalid i) : Node(i) { }
|
| 424 | 424 |
|
| 425 | 425 |
explicit NodeIt(const Graph& graph) : _graph(&graph) {
|
| 426 | 426 |
_graph->first(static_cast<Node&>(*this)); |
| 427 | 427 |
} |
| 428 | 428 |
|
| 429 | 429 |
NodeIt(const Graph& graph, const Node& node) |
| 430 | 430 |
: Node(node), _graph(&graph) {}
|
| 431 | 431 |
|
| 432 | 432 |
NodeIt& operator++() {
|
| 433 | 433 |
_graph->next(*this); |
| 434 | 434 |
return *this; |
| 435 | 435 |
} |
| 436 | 436 |
|
| 437 | 437 |
}; |
| 438 | 438 |
|
| 439 | 439 |
|
| 440 | 440 |
class ArcIt : public Arc {
|
| 441 | 441 |
const Graph* _graph; |
| 442 | 442 |
public: |
| 443 | 443 |
|
| 444 | 444 |
ArcIt() { }
|
| 445 | 445 |
|
| 446 | 446 |
ArcIt(Invalid i) : Arc(i) { }
|
| 447 | 447 |
|
| 448 | 448 |
explicit ArcIt(const Graph& graph) : _graph(&graph) {
|
| 449 | 449 |
_graph->first(static_cast<Arc&>(*this)); |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
ArcIt(const Graph& graph, const Arc& arc) : |
| 453 | 453 |
Arc(arc), _graph(&graph) { }
|
| 454 | 454 |
|
| 455 | 455 |
ArcIt& operator++() {
|
| 456 | 456 |
_graph->next(*this); |
| 457 | 457 |
return *this; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
}; |
| 461 | 461 |
|
| 462 | 462 |
|
| 463 | 463 |
class OutArcIt : public Arc {
|
| 464 | 464 |
const Graph* _graph; |
| 465 | 465 |
public: |
| 466 | 466 |
|
| 467 | 467 |
OutArcIt() { }
|
| 468 | 468 |
|
| 469 | 469 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 470 | 470 |
|
| 471 | 471 |
OutArcIt(const Graph& graph, const Node& node) |
| 472 | 472 |
: _graph(&graph) {
|
| 473 | 473 |
_graph->firstOut(*this, node); |
| 474 | 474 |
} |
| 475 | 475 |
|
| 476 | 476 |
OutArcIt(const Graph& graph, const Arc& arc) |
| 477 | 477 |
: Arc(arc), _graph(&graph) {}
|
| 478 | 478 |
|
| 479 | 479 |
OutArcIt& operator++() {
|
| 480 | 480 |
_graph->nextOut(*this); |
| 481 | 481 |
return *this; |
| 482 | 482 |
} |
| 483 | 483 |
|
| 484 | 484 |
}; |
| 485 | 485 |
|
| 486 | 486 |
|
| 487 | 487 |
class InArcIt : public Arc {
|
| 488 | 488 |
const Graph* _graph; |
| 489 | 489 |
public: |
| 490 | 490 |
|
| 491 | 491 |
InArcIt() { }
|
| 492 | 492 |
|
| 493 | 493 |
InArcIt(Invalid i) : Arc(i) { }
|
| 494 | 494 |
|
| 495 | 495 |
InArcIt(const Graph& graph, const Node& node) |
| 496 | 496 |
: _graph(&graph) {
|
| 497 | 497 |
_graph->firstIn(*this, node); |
| 498 | 498 |
} |
| 499 | 499 |
|
| 500 | 500 |
InArcIt(const Graph& graph, const Arc& arc) : |
| 501 | 501 |
Arc(arc), _graph(&graph) {}
|
| 502 | 502 |
|
| 503 | 503 |
InArcIt& operator++() {
|
| 504 | 504 |
_graph->nextIn(*this); |
| 505 | 505 |
return *this; |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
}; |
| 509 | 509 |
|
| 510 | 510 |
|
| 511 | 511 |
class EdgeIt : public Parent::Edge {
|
| 512 | 512 |
const Graph* _graph; |
| 513 | 513 |
public: |
| 514 | 514 |
|
| 515 | 515 |
EdgeIt() { }
|
| 516 | 516 |
|
| 517 | 517 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 518 | 518 |
|
| 519 | 519 |
explicit EdgeIt(const Graph& graph) : _graph(&graph) {
|
| 520 | 520 |
_graph->first(static_cast<Edge&>(*this)); |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
EdgeIt(const Graph& graph, const Edge& edge) : |
| 524 | 524 |
Edge(edge), _graph(&graph) { }
|
| 525 | 525 |
|
| 526 | 526 |
EdgeIt& operator++() {
|
| 527 | 527 |
_graph->next(*this); |
| 528 | 528 |
return *this; |
| 529 | 529 |
} |
| 530 | 530 |
|
| 531 | 531 |
}; |
| 532 | 532 |
|
| 533 | 533 |
class IncEdgeIt : public Parent::Edge {
|
| 534 | 534 |
friend class GraphExtender; |
| 535 | 535 |
const Graph* _graph; |
| 536 | 536 |
bool _direction; |
| 537 | 537 |
public: |
| 538 | 538 |
|
| 539 | 539 |
IncEdgeIt() { }
|
| 540 | 540 |
|
| 541 | 541 |
IncEdgeIt(Invalid i) : Edge(i), _direction(false) { }
|
| 542 | 542 |
|
| 543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) {
|
| 544 | 544 |
_graph->firstInc(*this, _direction, node); |
| 545 | 545 |
} |
| 546 | 546 |
|
| 547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
| 548 | 548 |
: _graph(&graph), Edge(edge) {
|
| 549 | 549 |
_direction = (_graph->source(edge) == node); |
| 550 | 550 |
} |
| 551 | 551 |
|
| 552 | 552 |
IncEdgeIt& operator++() {
|
| 553 | 553 |
_graph->nextInc(*this, _direction); |
| 554 | 554 |
return *this; |
| 555 | 555 |
} |
| 556 | 556 |
}; |
| 557 | 557 |
|
| 558 | 558 |
// \brief Base node of the iterator |
| 559 | 559 |
// |
| 560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
| 561 | 561 |
Node baseNode(const OutArcIt &arc) const {
|
| 562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 563 | 563 |
} |
| 564 | 564 |
// \brief Running node of the iterator |
| 565 | 565 |
// |
| 566 | 566 |
// Returns the running node (ie. the target in this case) of the |
| 567 | 567 |
// iterator |
| 568 | 568 |
Node runningNode(const OutArcIt &arc) const {
|
| 569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 570 | 570 |
} |
| 571 | 571 |
|
| 572 | 572 |
// \brief Base node of the iterator |
| 573 | 573 |
// |
| 574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
| 575 | 575 |
Node baseNode(const InArcIt &arc) const {
|
| 576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
| 577 | 577 |
} |
| 578 | 578 |
// \brief Running node of the iterator |
| 579 | 579 |
// |
| 580 | 580 |
// Returns the running node (ie. the source in this case) of the |
| 581 | 581 |
// iterator |
| 582 | 582 |
Node runningNode(const InArcIt &arc) const {
|
| 583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
| 584 | 584 |
} |
| 585 | 585 |
|
| 586 | 586 |
// Base node of the iterator |
| 587 | 587 |
// |
| 588 | 588 |
// Returns the base node of the iterator |
| 589 | 589 |
Node baseNode(const IncEdgeIt &edge) const {
|
| 590 | 590 |
return edge._direction ? u(edge) : v(edge); |
| 591 | 591 |
} |
| 592 | 592 |
// Running node of the iterator |
| 593 | 593 |
// |
| 594 | 594 |
// Returns the running node of the iterator |
| 595 | 595 |
Node runningNode(const IncEdgeIt &edge) const {
|
| 596 | 596 |
return edge._direction ? v(edge) : u(edge); |
| 597 | 597 |
} |
| 598 | 598 |
|
| 599 | 599 |
// Mappable extension |
| 600 | 600 |
|
| 601 | 601 |
template <typename _Value> |
| 602 | 602 |
class NodeMap |
| 603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > {
|
| 604 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
| 605 | 605 |
|
| 606 | 606 |
public: |
| 607 |
NodeMap(const Graph& graph) |
|
| 607 |
explicit NodeMap(const Graph& graph) |
|
| 608 | 608 |
: Parent(graph) {}
|
| 609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
| 610 | 610 |
: Parent(graph, value) {}
|
| 611 | 611 |
|
| 612 | 612 |
private: |
| 613 | 613 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 614 | 614 |
return operator=<NodeMap>(cmap); |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
template <typename CMap> |
| 618 | 618 |
NodeMap& operator=(const CMap& cmap) {
|
| 619 | 619 |
Parent::operator=(cmap); |
| 620 | 620 |
return *this; |
| 621 | 621 |
} |
| 622 | 622 |
|
| 623 | 623 |
}; |
| 624 | 624 |
|
| 625 | 625 |
template <typename _Value> |
| 626 | 626 |
class ArcMap |
| 627 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 628 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 629 | 629 |
|
| 630 | 630 |
public: |
| 631 |
ArcMap(const Graph& graph) |
|
| 631 |
explicit ArcMap(const Graph& graph) |
|
| 632 | 632 |
: Parent(graph) {}
|
| 633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
| 634 | 634 |
: Parent(graph, value) {}
|
| 635 | 635 |
|
| 636 | 636 |
private: |
| 637 | 637 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 638 | 638 |
return operator=<ArcMap>(cmap); |
| 639 | 639 |
} |
| 640 | 640 |
|
| 641 | 641 |
template <typename CMap> |
| 642 | 642 |
ArcMap& operator=(const CMap& cmap) {
|
| 643 | 643 |
Parent::operator=(cmap); |
| 644 | 644 |
return *this; |
| 645 | 645 |
} |
| 646 | 646 |
}; |
| 647 | 647 |
|
| 648 | 648 |
|
| 649 | 649 |
template <typename _Value> |
| 650 | 650 |
class EdgeMap |
| 651 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 652 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 653 | 653 |
|
| 654 | 654 |
public: |
| 655 |
EdgeMap(const Graph& graph) |
|
| 655 |
explicit EdgeMap(const Graph& graph) |
|
| 656 | 656 |
: Parent(graph) {}
|
| 657 | 657 |
|
| 658 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
| 659 | 659 |
: Parent(graph, value) {}
|
| 660 | 660 |
|
| 661 | 661 |
private: |
| 662 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 663 | 663 |
return operator=<EdgeMap>(cmap); |
| 664 | 664 |
} |
| 665 | 665 |
|
| 666 | 666 |
template <typename CMap> |
| 667 | 667 |
EdgeMap& operator=(const CMap& cmap) {
|
| 668 | 668 |
Parent::operator=(cmap); |
| 669 | 669 |
return *this; |
| 670 | 670 |
} |
| 671 | 671 |
|
| 672 | 672 |
}; |
| 673 | 673 |
|
| 674 | 674 |
// Alteration extension |
| 675 | 675 |
|
| 676 | 676 |
Node addNode() {
|
| 677 | 677 |
Node node = Parent::addNode(); |
| 678 | 678 |
notifier(Node()).add(node); |
| 679 | 679 |
return node; |
| 680 | 680 |
} |
| 681 | 681 |
|
| 682 | 682 |
Edge addEdge(const Node& from, const Node& to) {
|
| 683 | 683 |
Edge edge = Parent::addEdge(from, to); |
| 684 | 684 |
notifier(Edge()).add(edge); |
| 685 | 685 |
std::vector<Arc> ev; |
| 686 | 686 |
ev.push_back(Parent::direct(edge, true)); |
| 687 | 687 |
ev.push_back(Parent::direct(edge, false)); |
| 688 | 688 |
notifier(Arc()).add(ev); |
| 689 | 689 |
return edge; |
| 690 | 690 |
} |
| 691 | 691 |
|
| 692 | 692 |
void clear() {
|
| 693 | 693 |
notifier(Arc()).clear(); |
| 694 | 694 |
notifier(Edge()).clear(); |
| 695 | 695 |
notifier(Node()).clear(); |
| 696 | 696 |
Parent::clear(); |
| 697 | 697 |
} |
| 698 | 698 |
|
| 699 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
| 700 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
| 701 | 701 |
EdgeRefMap& edgeRef) {
|
| 702 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
| 703 | 703 |
notifier(Node()).build(); |
| 704 | 704 |
notifier(Edge()).build(); |
| 705 | 705 |
notifier(Arc()).build(); |
| 706 | 706 |
} |
| 707 | 707 |
|
| 708 | 708 |
void erase(const Node& node) {
|
| 709 | 709 |
Arc arc; |
| 710 | 710 |
Parent::firstOut(arc, node); |
| 711 | 711 |
while (arc != INVALID ) {
|
| 712 | 712 |
erase(arc); |
| 713 | 713 |
Parent::firstOut(arc, node); |
| 714 | 714 |
} |
| 715 | 715 |
|
| 716 | 716 |
Parent::firstIn(arc, node); |
| 717 | 717 |
while (arc != INVALID ) {
|
| 718 | 718 |
erase(arc); |
| 719 | 719 |
Parent::firstIn(arc, node); |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
notifier(Node()).erase(node); |
| 723 | 723 |
Parent::erase(node); |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
void erase(const Edge& edge) {
|
| 727 | 727 |
std::vector<Arc> av; |
| 728 | 728 |
av.push_back(Parent::direct(edge, true)); |
| 729 | 729 |
av.push_back(Parent::direct(edge, false)); |
| 730 | 730 |
notifier(Arc()).erase(av); |
| 731 | 731 |
notifier(Edge()).erase(edge); |
| 732 | 732 |
Parent::erase(edge); |
| 733 | 733 |
} |
| 734 | 734 |
|
| 735 | 735 |
GraphExtender() {
|
| 736 | 736 |
node_notifier.setContainer(*this); |
| 737 | 737 |
arc_notifier.setContainer(*this); |
| 738 | 738 |
edge_notifier.setContainer(*this); |
| 739 | 739 |
} |
| 740 | 740 |
|
| 741 | 741 |
~GraphExtender() {
|
| 742 | 742 |
edge_notifier.clear(); |
| 743 | 743 |
arc_notifier.clear(); |
| 744 | 744 |
node_notifier.clear(); |
| 745 | 745 |
} |
| 746 | 746 |
|
| 747 | 747 |
}; |
| 748 | 748 |
|
| 749 | 749 |
} |
| 750 | 750 |
|
| 751 | 751 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 |
///\brief Bucket |
|
| 24 |
///\brief Bucket heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
namespace _bucket_heap_bits {
|
| 33 | 33 |
|
| 34 | 34 |
template <bool MIN> |
| 35 | 35 |
struct DirectionTraits {
|
| 36 | 36 |
static bool less(int left, int right) {
|
| 37 | 37 |
return left < right; |
| 38 | 38 |
} |
| 39 | 39 |
static void increase(int& value) {
|
| 40 | 40 |
++value; |
| 41 | 41 |
} |
| 42 | 42 |
}; |
| 43 | 43 |
|
| 44 | 44 |
template <> |
| 45 | 45 |
struct DirectionTraits<false> {
|
| 46 | 46 |
static bool less(int left, int right) {
|
| 47 | 47 |
return left > right; |
| 48 | 48 |
} |
| 49 | 49 |
static void increase(int& value) {
|
| 50 | 50 |
--value; |
| 51 | 51 |
} |
| 52 | 52 |
}; |
| 53 | 53 |
|
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 |
/// \ingroup |
|
| 56 |
/// \ingroup heaps |
|
| 57 | 57 |
/// |
| 58 |
/// \brief |
|
| 58 |
/// \brief Bucket heap data structure. |
|
| 59 | 59 |
/// |
| 60 |
/// This class implements the \e bucket \e heap data structure. A \e heap |
|
| 61 |
/// is a data structure for storing items with specified values called \e |
|
| 62 |
/// priorities in such a way that finding the item with minimum priority is |
|
| 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
|
| 64 |
/// only integer priorities and it stores for each priority in the |
|
| 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
|
| 66 |
/// the |
|
| 60 |
/// This class implements the \e bucket \e heap data structure. |
|
| 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
| 62 |
/// but it has some limitations. |
|
| 67 | 63 |
/// |
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 |
/// to handle the cross references. |
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// |
|
| 64 |
/// The bucket heap is a very simple structure. It can store only |
|
| 65 |
/// \c int priorities and it maintains a list of items for each priority |
|
| 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
| 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
| 68 |
/// |
|
| 69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 70 |
/// internally to handle the cross references. |
|
| 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 74 |
/// functions deal with the item having maximum priority instead of the |
|
| 75 |
/// minimum. |
|
| 76 |
/// |
|
| 77 |
/// \sa SimpleBucketHeap |
|
| 73 | 78 |
template <typename IM, bool MIN = true> |
| 74 | 79 |
class BucketHeap {
|
| 75 | 80 |
|
| 76 | 81 |
public: |
| 77 |
/// \e |
|
| 78 |
typedef typename IM::Key Item; |
|
| 79 |
|
|
| 82 |
|
|
| 83 |
/// Type of the item-int map. |
|
| 84 |
typedef IM ItemIntMap; |
|
| 85 |
/// Type of the priorities. |
|
| 80 | 86 |
typedef int Prio; |
| 81 |
/// \e |
|
| 82 |
typedef std::pair<Item, Prio> Pair; |
|
| 83 |
/// \e |
|
| 84 |
typedef IM ItemIntMap; |
|
| 87 |
/// Type of the items stored in the heap. |
|
| 88 |
typedef typename ItemIntMap::Key Item; |
|
| 89 |
/// Type of the item-priority pairs. |
|
| 90 |
typedef std::pair<Item,Prio> Pair; |
|
| 85 | 91 |
|
| 86 | 92 |
private: |
| 87 | 93 |
|
| 88 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 89 | 95 |
|
| 90 | 96 |
public: |
| 91 | 97 |
|
| 92 |
/// \brief Type to represent the |
|
| 98 |
/// \brief Type to represent the states of the items. |
|
| 93 | 99 |
/// |
| 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 100 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 96 | 102 |
/// heap's point of view, but may be useful to the user. |
| 97 | 103 |
/// |
| 98 | 104 |
/// The item-int map must be initialized in such way that it assigns |
| 99 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 100 | 106 |
enum State {
|
| 101 | 107 |
IN_HEAP = 0, ///< = 0. |
| 102 | 108 |
PRE_HEAP = -1, ///< = -1. |
| 103 | 109 |
POST_HEAP = -2 ///< = -2. |
| 104 | 110 |
}; |
| 105 | 111 |
|
| 106 | 112 |
public: |
| 107 |
|
|
| 113 |
|
|
| 114 |
/// \brief Constructor. |
|
| 108 | 115 |
/// |
| 109 |
/// The constructor. |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 111 |
/// internally to handle the cross references. The value of the map |
|
| 112 |
/// should be PRE_HEAP (-1) for each element. |
|
| 116 |
/// Constructor. |
|
| 117 |
/// \param map A map that assigns \c int values to the items. |
|
| 118 |
/// It is used internally to handle the cross references. |
|
| 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 113 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
| 114 | 121 |
|
| 115 |
/// The number of items stored in the heap. |
|
| 122 |
/// \brief The number of items stored in the heap. |
|
| 116 | 123 |
/// |
| 117 |
/// |
|
| 124 |
/// This function returns the number of items stored in the heap. |
|
| 118 | 125 |
int size() const { return _data.size(); }
|
| 119 | 126 |
|
| 120 |
/// \brief |
|
| 127 |
/// \brief Check if the heap is empty. |
|
| 121 | 128 |
/// |
| 122 |
/// |
|
| 129 |
/// This function returns \c true if the heap is empty. |
|
| 123 | 130 |
bool empty() const { return _data.empty(); }
|
| 124 | 131 |
|
| 125 |
/// \brief Make |
|
| 132 |
/// \brief Make the heap empty. |
|
| 126 | 133 |
/// |
| 127 |
/// Make empty this heap. It does not change the cross reference |
|
| 128 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 129 |
/// should first clear the heap and after that you should set the |
|
| 130 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 134 |
/// This functon makes the heap empty. |
|
| 135 |
/// It does not change the cross reference map. If you want to reuse |
|
| 136 |
/// a heap that is not surely empty, you should first clear it and |
|
| 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 138 |
/// for each item. |
|
| 131 | 139 |
void clear() {
|
| 132 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
| 133 | 141 |
} |
| 134 | 142 |
|
| 135 | 143 |
private: |
| 136 | 144 |
|
| 137 |
void |
|
| 145 |
void relocateLast(int idx) {
|
|
| 138 | 146 |
if (idx + 1 < int(_data.size())) {
|
| 139 | 147 |
_data[idx] = _data.back(); |
| 140 | 148 |
if (_data[idx].prev != -1) {
|
| 141 | 149 |
_data[_data[idx].prev].next = idx; |
| 142 | 150 |
} else {
|
| 143 | 151 |
_first[_data[idx].value] = idx; |
| 144 | 152 |
} |
| 145 | 153 |
if (_data[idx].next != -1) {
|
| 146 | 154 |
_data[_data[idx].next].prev = idx; |
| 147 | 155 |
} |
| 148 | 156 |
_iim[_data[idx].item] = idx; |
| 149 | 157 |
} |
| 150 | 158 |
_data.pop_back(); |
| 151 | 159 |
} |
| 152 | 160 |
|
| 153 | 161 |
void unlace(int idx) {
|
| 154 | 162 |
if (_data[idx].prev != -1) {
|
| 155 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
| 156 | 164 |
} else {
|
| 157 | 165 |
_first[_data[idx].value] = _data[idx].next; |
| 158 | 166 |
} |
| 159 | 167 |
if (_data[idx].next != -1) {
|
| 160 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
| 161 | 169 |
} |
| 162 | 170 |
} |
| 163 | 171 |
|
| 164 | 172 |
void lace(int idx) {
|
| 165 | 173 |
if (int(_first.size()) <= _data[idx].value) {
|
| 166 | 174 |
_first.resize(_data[idx].value + 1, -1); |
| 167 | 175 |
} |
| 168 | 176 |
_data[idx].next = _first[_data[idx].value]; |
| 169 | 177 |
if (_data[idx].next != -1) {
|
| 170 | 178 |
_data[_data[idx].next].prev = idx; |
| 171 | 179 |
} |
| 172 | 180 |
_first[_data[idx].value] = idx; |
| 173 | 181 |
_data[idx].prev = -1; |
| 174 | 182 |
} |
| 175 | 183 |
|
| 176 | 184 |
public: |
| 185 |
|
|
| 177 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
| 178 | 187 |
/// |
| 179 |
/// |
|
| 188 |
/// This function inserts \c p.first to the heap with priority |
|
| 189 |
/// \c p.second. |
|
| 180 | 190 |
/// \param p The pair to insert. |
| 191 |
/// \pre \c p.first must not be stored in the heap. |
|
| 181 | 192 |
void push(const Pair& p) {
|
| 182 | 193 |
push(p.first, p.second); |
| 183 | 194 |
} |
| 184 | 195 |
|
| 185 | 196 |
/// \brief Insert an item into the heap with the given priority. |
| 186 | 197 |
/// |
| 187 |
/// |
|
| 198 |
/// This function inserts the given item into the heap with the |
|
| 199 |
/// given priority. |
|
| 188 | 200 |
/// \param i The item to insert. |
| 189 | 201 |
/// \param p The priority of the item. |
| 202 |
/// \pre \e i must not be stored in the heap. |
|
| 190 | 203 |
void push(const Item &i, const Prio &p) {
|
| 191 | 204 |
int idx = _data.size(); |
| 192 | 205 |
_iim[i] = idx; |
| 193 | 206 |
_data.push_back(BucketItem(i, p)); |
| 194 | 207 |
lace(idx); |
| 195 | 208 |
if (Direction::less(p, _minimum)) {
|
| 196 | 209 |
_minimum = p; |
| 197 | 210 |
} |
| 198 | 211 |
} |
| 199 | 212 |
|
| 200 |
/// \brief |
|
| 213 |
/// \brief Return the item having minimum priority. |
|
| 201 | 214 |
/// |
| 202 |
/// This method returns the item with minimum priority. |
|
| 203 |
/// \pre The heap must be nonempty. |
|
| 215 |
/// This function returns the item having minimum priority. |
|
| 216 |
/// \pre The heap must be non-empty. |
|
| 204 | 217 |
Item top() const {
|
| 205 | 218 |
while (_first[_minimum] == -1) {
|
| 206 | 219 |
Direction::increase(_minimum); |
| 207 | 220 |
} |
| 208 | 221 |
return _data[_first[_minimum]].item; |
| 209 | 222 |
} |
| 210 | 223 |
|
| 211 |
/// \brief |
|
| 224 |
/// \brief The minimum priority. |
|
| 212 | 225 |
/// |
| 213 |
/// It returns the minimum priority. |
|
| 214 |
/// \pre The heap must be nonempty. |
|
| 226 |
/// This function returns the minimum priority. |
|
| 227 |
/// \pre The heap must be non-empty. |
|
| 215 | 228 |
Prio prio() const {
|
| 216 | 229 |
while (_first[_minimum] == -1) {
|
| 217 | 230 |
Direction::increase(_minimum); |
| 218 | 231 |
} |
| 219 | 232 |
return _minimum; |
| 220 | 233 |
} |
| 221 | 234 |
|
| 222 |
/// \brief |
|
| 235 |
/// \brief Remove the item having minimum priority. |
|
| 223 | 236 |
/// |
| 224 |
/// This |
|
| 237 |
/// This function removes the item having minimum priority. |
|
| 225 | 238 |
/// \pre The heap must be non-empty. |
| 226 | 239 |
void pop() {
|
| 227 | 240 |
while (_first[_minimum] == -1) {
|
| 228 | 241 |
Direction::increase(_minimum); |
| 229 | 242 |
} |
| 230 | 243 |
int idx = _first[_minimum]; |
| 231 | 244 |
_iim[_data[idx].item] = -2; |
| 232 | 245 |
unlace(idx); |
| 233 |
|
|
| 246 |
relocateLast(idx); |
|
| 234 | 247 |
} |
| 235 | 248 |
|
| 236 |
/// \brief |
|
| 249 |
/// \brief Remove the given item from the heap. |
|
| 237 | 250 |
/// |
| 238 |
/// This method deletes item \c i from the heap, if \c i was |
|
| 239 |
/// already stored in the heap. |
|
| 240 |
/// |
|
| 251 |
/// This function removes the given item from the heap if it is |
|
| 252 |
/// already stored. |
|
| 253 |
/// \param i The item to delete. |
|
| 254 |
/// \pre \e i must be in the heap. |
|
| 241 | 255 |
void erase(const Item &i) {
|
| 242 | 256 |
int idx = _iim[i]; |
| 243 | 257 |
_iim[_data[idx].item] = -2; |
| 244 | 258 |
unlace(idx); |
| 245 |
|
|
| 259 |
relocateLast(idx); |
|
| 246 | 260 |
} |
| 247 | 261 |
|
| 248 |
|
|
| 249 |
/// \brief Returns the priority of \c i. |
|
| 262 |
/// \brief The priority of the given item. |
|
| 250 | 263 |
/// |
| 251 |
/// This function returns the priority of item \c i. |
|
| 252 |
/// \pre \c i must be in the heap. |
|
| 264 |
/// This function returns the priority of the given item. |
|
| 253 | 265 |
/// \param i The item. |
| 266 |
/// \pre \e i must be in the heap. |
|
| 254 | 267 |
Prio operator[](const Item &i) const {
|
| 255 | 268 |
int idx = _iim[i]; |
| 256 | 269 |
return _data[idx].value; |
| 257 | 270 |
} |
| 258 | 271 |
|
| 259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
| 260 |
/// if \c i was already there. |
|
| 272 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 273 |
/// not stored in the heap. |
|
| 261 | 274 |
/// |
| 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
| 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
| 275 |
/// This method sets the priority of the given item if it is |
|
| 276 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 277 |
/// item into the heap with the given priority. |
|
| 264 | 278 |
/// \param i The item. |
| 265 | 279 |
/// \param p The priority. |
| 266 | 280 |
void set(const Item &i, const Prio &p) {
|
| 267 | 281 |
int idx = _iim[i]; |
| 268 | 282 |
if (idx < 0) {
|
| 269 | 283 |
push(i, p); |
| 270 | 284 |
} else if (Direction::less(p, _data[idx].value)) {
|
| 271 | 285 |
decrease(i, p); |
| 272 | 286 |
} else {
|
| 273 | 287 |
increase(i, p); |
| 274 | 288 |
} |
| 275 | 289 |
} |
| 276 | 290 |
|
| 277 |
/// \brief |
|
| 291 |
/// \brief Decrease the priority of an item to the given value. |
|
| 278 | 292 |
/// |
| 279 |
/// This method decreases the priority of item \c i to \c p. |
|
| 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
| 281 |
/// |
|
| 293 |
/// This function decreases the priority of an item to the given value. |
|
| 282 | 294 |
/// \param i The item. |
| 283 | 295 |
/// \param p The priority. |
| 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 284 | 297 |
void decrease(const Item &i, const Prio &p) {
|
| 285 | 298 |
int idx = _iim[i]; |
| 286 | 299 |
unlace(idx); |
| 287 | 300 |
_data[idx].value = p; |
| 288 | 301 |
if (Direction::less(p, _minimum)) {
|
| 289 | 302 |
_minimum = p; |
| 290 | 303 |
} |
| 291 | 304 |
lace(idx); |
| 292 | 305 |
} |
| 293 | 306 |
|
| 294 |
/// \brief |
|
| 307 |
/// \brief Increase the priority of an item to the given value. |
|
| 295 | 308 |
/// |
| 296 |
/// This method sets the priority of item \c i to \c p. |
|
| 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
| 298 |
/// |
|
| 309 |
/// This function increases the priority of an item to the given value. |
|
| 299 | 310 |
/// \param i The item. |
| 300 | 311 |
/// \param p The priority. |
| 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 301 | 313 |
void increase(const Item &i, const Prio &p) {
|
| 302 | 314 |
int idx = _iim[i]; |
| 303 | 315 |
unlace(idx); |
| 304 | 316 |
_data[idx].value = p; |
| 305 | 317 |
lace(idx); |
| 306 | 318 |
} |
| 307 | 319 |
|
| 308 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 309 |
/// never been in the heap. |
|
| 320 |
/// \brief Return the state of an item. |
|
| 310 | 321 |
/// |
| 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 313 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 314 |
/// get back to the heap again. |
|
| 322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 324 |
/// and \c POST_HEAP otherwise. |
|
| 325 |
/// In the latter case it is possible that the item will get back |
|
| 326 |
/// to the heap again. |
|
| 315 | 327 |
/// \param i The item. |
| 316 | 328 |
State state(const Item &i) const {
|
| 317 | 329 |
int idx = _iim[i]; |
| 318 | 330 |
if (idx >= 0) idx = 0; |
| 319 | 331 |
return State(idx); |
| 320 | 332 |
} |
| 321 | 333 |
|
| 322 |
/// \brief |
|
| 334 |
/// \brief Set the state of an item in the heap. |
|
| 323 | 335 |
/// |
| 324 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 325 |
/// manually clear the heap when it is important to achive the |
|
| 326 |
/// |
|
| 336 |
/// This function sets the state of the given item in the heap. |
|
| 337 |
/// It can be used to manually clear the heap when it is important |
|
| 338 |
/// to achive better time complexity. |
|
| 327 | 339 |
/// \param i The item. |
| 328 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
| 329 | 341 |
void state(const Item& i, State st) {
|
| 330 | 342 |
switch (st) {
|
| 331 | 343 |
case POST_HEAP: |
| 332 | 344 |
case PRE_HEAP: |
| 333 | 345 |
if (state(i) == IN_HEAP) {
|
| 334 | 346 |
erase(i); |
| 335 | 347 |
} |
| 336 | 348 |
_iim[i] = st; |
| 337 | 349 |
break; |
| 338 | 350 |
case IN_HEAP: |
| 339 | 351 |
break; |
| 340 | 352 |
} |
| 341 | 353 |
} |
| 342 | 354 |
|
| 343 | 355 |
private: |
| 344 | 356 |
|
| 345 | 357 |
struct BucketItem {
|
| 346 | 358 |
BucketItem(const Item& _item, int _value) |
| 347 | 359 |
: item(_item), value(_value) {}
|
| 348 | 360 |
|
| 349 | 361 |
Item item; |
| 350 | 362 |
int value; |
| 351 | 363 |
|
| 352 | 364 |
int prev, next; |
| 353 | 365 |
}; |
| 354 | 366 |
|
| 355 | 367 |
ItemIntMap& _iim; |
| 356 | 368 |
std::vector<int> _first; |
| 357 | 369 |
std::vector<BucketItem> _data; |
| 358 | 370 |
mutable int _minimum; |
| 359 | 371 |
|
| 360 | 372 |
}; // class BucketHeap |
| 361 | 373 |
|
| 362 |
/// \ingroup |
|
| 374 |
/// \ingroup heaps |
|
| 363 | 375 |
/// |
| 364 |
/// \brief |
|
| 376 |
/// \brief Simplified bucket heap data structure. |
|
| 365 | 377 |
/// |
| 366 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 367 |
/// structure. It does not provide some functionality but it faster |
|
| 368 |
/// and simplier data structure than the BucketHeap. The main |
|
| 369 |
/// difference is that the BucketHeap stores for every key a double |
|
| 370 |
/// linked list while this class stores just simple lists. In the |
|
| 371 |
/// other way it does not support erasing each elements just the |
|
| 372 |
/// minimal and it does not supports key increasing, decreasing. |
|
| 379 |
/// structure. It does not provide some functionality, but it is |
|
| 380 |
/// faster and simpler than BucketHeap. The main difference is |
|
| 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
| 382 |
/// this class stores only simply-linked lists. It supports erasing |
|
| 383 |
/// only for the item having minimum priority and it does not support |
|
| 384 |
/// key increasing and decreasing. |
|
| 373 | 385 |
/// |
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 375 |
/// to handle the cross references. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// |
|
| 386 |
/// Note that this implementation does not conform to the |
|
| 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
| 388 |
/// functionality. |
|
| 389 |
/// |
|
| 390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 391 |
/// internally to handle the cross references. |
|
| 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
| 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
| 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
| 395 |
/// functions deal with the item having maximum priority instead of the |
|
| 396 |
/// minimum. |
|
| 379 | 397 |
/// |
| 380 | 398 |
/// \sa BucketHeap |
| 381 | 399 |
template <typename IM, bool MIN = true > |
| 382 | 400 |
class SimpleBucketHeap {
|
| 383 | 401 |
|
| 384 | 402 |
public: |
| 385 |
|
|
| 403 |
|
|
| 404 |
/// Type of the item-int map. |
|
| 405 |
typedef IM ItemIntMap; |
|
| 406 |
/// Type of the priorities. |
|
| 386 | 407 |
typedef int Prio; |
| 387 |
typedef std::pair<Item, Prio> Pair; |
|
| 388 |
typedef IM ItemIntMap; |
|
| 408 |
/// Type of the items stored in the heap. |
|
| 409 |
typedef typename ItemIntMap::Key Item; |
|
| 410 |
/// Type of the item-priority pairs. |
|
| 411 |
typedef std::pair<Item,Prio> Pair; |
|
| 389 | 412 |
|
| 390 | 413 |
private: |
| 391 | 414 |
|
| 392 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 393 | 416 |
|
| 394 | 417 |
public: |
| 395 | 418 |
|
| 396 |
/// \brief Type to represent the |
|
| 419 |
/// \brief Type to represent the states of the items. |
|
| 397 | 420 |
/// |
| 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 421 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 400 | 423 |
/// heap's point of view, but may be useful to the user. |
| 401 | 424 |
/// |
| 402 | 425 |
/// The item-int map must be initialized in such way that it assigns |
| 403 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 404 | 427 |
enum State {
|
| 405 | 428 |
IN_HEAP = 0, ///< = 0. |
| 406 | 429 |
PRE_HEAP = -1, ///< = -1. |
| 407 | 430 |
POST_HEAP = -2 ///< = -2. |
| 408 | 431 |
}; |
| 409 | 432 |
|
| 410 | 433 |
public: |
| 411 | 434 |
|
| 412 |
/// \brief |
|
| 435 |
/// \brief Constructor. |
|
| 413 | 436 |
/// |
| 414 |
/// The constructor. |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 416 |
/// internally to handle the cross references. The value of the map |
|
| 417 |
/// should be PRE_HEAP (-1) for each element. |
|
| 437 |
/// Constructor. |
|
| 438 |
/// \param map A map that assigns \c int values to the items. |
|
| 439 |
/// It is used internally to handle the cross references. |
|
| 440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 418 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
| 419 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
| 420 | 443 |
|
| 421 |
/// \brief |
|
| 444 |
/// \brief The number of items stored in the heap. |
|
| 422 | 445 |
/// |
| 423 |
/// |
|
| 446 |
/// This function returns the number of items stored in the heap. |
|
| 424 | 447 |
int size() const { return _num; }
|
| 425 | 448 |
|
| 426 |
/// \brief |
|
| 449 |
/// \brief Check if the heap is empty. |
|
| 427 | 450 |
/// |
| 428 |
/// |
|
| 451 |
/// This function returns \c true if the heap is empty. |
|
| 429 | 452 |
bool empty() const { return _num == 0; }
|
| 430 | 453 |
|
| 431 |
/// \brief Make |
|
| 454 |
/// \brief Make the heap empty. |
|
| 432 | 455 |
/// |
| 433 |
/// Make empty this heap. It does not change the cross reference |
|
| 434 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 435 |
/// should first clear the heap and after that you should set the |
|
| 436 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 456 |
/// This functon makes the heap empty. |
|
| 457 |
/// It does not change the cross reference map. If you want to reuse |
|
| 458 |
/// a heap that is not surely empty, you should first clear it and |
|
| 459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 460 |
/// for each item. |
|
| 437 | 461 |
void clear() {
|
| 438 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
| 439 | 463 |
} |
| 440 | 464 |
|
| 441 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
| 442 | 466 |
/// |
| 443 |
/// |
|
| 467 |
/// This function inserts \c p.first to the heap with priority |
|
| 468 |
/// \c p.second. |
|
| 444 | 469 |
/// \param p The pair to insert. |
| 470 |
/// \pre \c p.first must not be stored in the heap. |
|
| 445 | 471 |
void push(const Pair& p) {
|
| 446 | 472 |
push(p.first, p.second); |
| 447 | 473 |
} |
| 448 | 474 |
|
| 449 | 475 |
/// \brief Insert an item into the heap with the given priority. |
| 450 | 476 |
/// |
| 451 |
/// |
|
| 477 |
/// This function inserts the given item into the heap with the |
|
| 478 |
/// given priority. |
|
| 452 | 479 |
/// \param i The item to insert. |
| 453 | 480 |
/// \param p The priority of the item. |
| 481 |
/// \pre \e i must not be stored in the heap. |
|
| 454 | 482 |
void push(const Item &i, const Prio &p) {
|
| 455 | 483 |
int idx; |
| 456 | 484 |
if (_free == -1) {
|
| 457 | 485 |
idx = _data.size(); |
| 458 | 486 |
_data.push_back(BucketItem(i)); |
| 459 | 487 |
} else {
|
| 460 | 488 |
idx = _free; |
| 461 | 489 |
_free = _data[idx].next; |
| 462 | 490 |
_data[idx].item = i; |
| 463 | 491 |
} |
| 464 | 492 |
_iim[i] = idx; |
| 465 | 493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
| 466 | 494 |
_data[idx].next = _first[p]; |
| 467 | 495 |
_first[p] = idx; |
| 468 | 496 |
if (Direction::less(p, _minimum)) {
|
| 469 | 497 |
_minimum = p; |
| 470 | 498 |
} |
| 471 | 499 |
++_num; |
| 472 | 500 |
} |
| 473 | 501 |
|
| 474 |
/// \brief |
|
| 502 |
/// \brief Return the item having minimum priority. |
|
| 475 | 503 |
/// |
| 476 |
/// This method returns the item with minimum priority. |
|
| 477 |
/// \pre The heap must be nonempty. |
|
| 504 |
/// This function returns the item having minimum priority. |
|
| 505 |
/// \pre The heap must be non-empty. |
|
| 478 | 506 |
Item top() const {
|
| 479 | 507 |
while (_first[_minimum] == -1) {
|
| 480 | 508 |
Direction::increase(_minimum); |
| 481 | 509 |
} |
| 482 | 510 |
return _data[_first[_minimum]].item; |
| 483 | 511 |
} |
| 484 | 512 |
|
| 485 |
/// \brief |
|
| 513 |
/// \brief The minimum priority. |
|
| 486 | 514 |
/// |
| 487 |
/// It returns the minimum priority. |
|
| 488 |
/// \pre The heap must be nonempty. |
|
| 515 |
/// This function returns the minimum priority. |
|
| 516 |
/// \pre The heap must be non-empty. |
|
| 489 | 517 |
Prio prio() const {
|
| 490 | 518 |
while (_first[_minimum] == -1) {
|
| 491 | 519 |
Direction::increase(_minimum); |
| 492 | 520 |
} |
| 493 | 521 |
return _minimum; |
| 494 | 522 |
} |
| 495 | 523 |
|
| 496 |
/// \brief |
|
| 524 |
/// \brief Remove the item having minimum priority. |
|
| 497 | 525 |
/// |
| 498 |
/// This |
|
| 526 |
/// This function removes the item having minimum priority. |
|
| 499 | 527 |
/// \pre The heap must be non-empty. |
| 500 | 528 |
void pop() {
|
| 501 | 529 |
while (_first[_minimum] == -1) {
|
| 502 | 530 |
Direction::increase(_minimum); |
| 503 | 531 |
} |
| 504 | 532 |
int idx = _first[_minimum]; |
| 505 | 533 |
_iim[_data[idx].item] = -2; |
| 506 | 534 |
_first[_minimum] = _data[idx].next; |
| 507 | 535 |
_data[idx].next = _free; |
| 508 | 536 |
_free = idx; |
| 509 | 537 |
--_num; |
| 510 | 538 |
} |
| 511 | 539 |
|
| 512 |
/// \brief |
|
| 540 |
/// \brief The priority of the given item. |
|
| 513 | 541 |
/// |
| 514 |
/// This function returns the priority of item \c i. |
|
| 515 |
/// \warning This operator is not a constant time function |
|
| 516 |
/// because it scans the whole data structure to find the proper |
|
| 517 |
/// value. |
|
| 518 |
/// |
|
| 542 |
/// This function returns the priority of the given item. |
|
| 519 | 543 |
/// \param i The item. |
| 544 |
/// \pre \e i must be in the heap. |
|
| 545 |
/// \warning This operator is not a constant time function because |
|
| 546 |
/// it scans the whole data structure to find the proper value. |
|
| 520 | 547 |
Prio operator[](const Item &i) const {
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 548 |
for (int k = 0; k < int(_first.size()); ++k) {
|
|
| 522 | 549 |
int idx = _first[k]; |
| 523 | 550 |
while (idx != -1) {
|
| 524 | 551 |
if (_data[idx].item == i) {
|
| 525 | 552 |
return k; |
| 526 | 553 |
} |
| 527 | 554 |
idx = _data[idx].next; |
| 528 | 555 |
} |
| 529 | 556 |
} |
| 530 | 557 |
return -1; |
| 531 | 558 |
} |
| 532 | 559 |
|
| 533 |
/// \brief Returns if \c item is in, has already been in, or has |
|
| 534 |
/// never been in the heap. |
|
| 560 |
/// \brief Return the state of an item. |
|
| 535 | 561 |
/// |
| 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 538 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 539 |
/// get back to the heap again. |
|
| 562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 564 |
/// and \c POST_HEAP otherwise. |
|
| 565 |
/// In the latter case it is possible that the item will get back |
|
| 566 |
/// to the heap again. |
|
| 540 | 567 |
/// \param i The item. |
| 541 | 568 |
State state(const Item &i) const {
|
| 542 | 569 |
int idx = _iim[i]; |
| 543 | 570 |
if (idx >= 0) idx = 0; |
| 544 | 571 |
return State(idx); |
| 545 | 572 |
} |
| 546 | 573 |
|
| 547 | 574 |
private: |
| 548 | 575 |
|
| 549 | 576 |
struct BucketItem {
|
| 550 | 577 |
BucketItem(const Item& _item) |
| 551 | 578 |
: item(_item) {}
|
| 552 | 579 |
|
| 553 | 580 |
Item item; |
| 554 | 581 |
int next; |
| 555 | 582 |
}; |
| 556 | 583 |
|
| 557 | 584 |
ItemIntMap& _iim; |
| 558 | 585 |
std::vector<int> _first; |
| 559 | 586 |
std::vector<BucketItem> _data; |
| 560 | 587 |
int _free, _num; |
| 561 | 588 |
mutable int _minimum; |
| 562 | 589 |
|
| 563 | 590 |
}; // class SimpleBucketHeap |
| 564 | 591 |
|
| 565 | 592 |
} |
| 566 | 593 |
|
| 567 | 594 |
#endif |
| ... | ... |
@@ -76,726 +76,728 @@ |
| 76 | 76 |
typedef GR::ArcMap<Value> FlowMap; |
| 77 | 77 |
#else |
| 78 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 | 79 |
#endif |
| 80 | 80 |
|
| 81 | 81 |
/// \brief Instantiates a FlowMap. |
| 82 | 82 |
/// |
| 83 | 83 |
/// This function instantiates a \ref FlowMap. |
| 84 | 84 |
/// \param digraph The digraph for which we would like to define |
| 85 | 85 |
/// the flow map. |
| 86 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 87 | 87 |
return new FlowMap(digraph); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
/// \brief The elevator type used by the algorithm. |
| 91 | 91 |
/// |
| 92 | 92 |
/// The elevator type used by the algorithm. |
| 93 | 93 |
/// |
| 94 | 94 |
/// \sa Elevator, LinkedElevator |
| 95 | 95 |
#ifdef DOXYGEN |
| 96 | 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
| 97 | 97 |
#else |
| 98 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 | 99 |
#endif |
| 100 | 100 |
|
| 101 | 101 |
/// \brief Instantiates an Elevator. |
| 102 | 102 |
/// |
| 103 | 103 |
/// This function instantiates an \ref Elevator. |
| 104 | 104 |
/// \param digraph The digraph for which we would like to define |
| 105 | 105 |
/// the elevator. |
| 106 | 106 |
/// \param max_level The maximum level of the elevator. |
| 107 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 108 | 108 |
return new Elevator(digraph, max_level); |
| 109 | 109 |
} |
| 110 | 110 |
|
| 111 | 111 |
/// \brief The tolerance used by the algorithm |
| 112 | 112 |
/// |
| 113 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 114 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 115 | 115 |
|
| 116 | 116 |
}; |
| 117 | 117 |
|
| 118 | 118 |
/** |
| 119 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 120 | 120 |
|
| 121 | 121 |
\ingroup max_flow |
| 122 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 123 | 123 |
\e circulation problem. |
| 124 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 125 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 126 | 126 |
given for the difference between the outgoing and incoming flow |
| 127 | 127 |
at the nodes. |
| 128 | 128 |
|
| 129 | 129 |
The exact formulation of this problem is the following. |
| 130 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 131 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 134 | 134 |
denotes the signed supply values of the nodes. |
| 135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 137 | 137 |
\f$-sup(u)\f$ demand. |
| 138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 139 | 139 |
solution of the following problem. |
| 140 | 140 |
|
| 141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 144 | 144 |
|
| 145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 148 | 148 |
It means that the total demand must be greater or equal to the total |
| 149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 150 | 150 |
but there could be demands that are not satisfied. |
| 151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 153 | 153 |
have to be satisfied and all supplies have to be used. |
| 154 | 154 |
|
| 155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 157 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 158 | 158 |
then you could easily transform the problem to the above form by reversing |
| 159 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 161 | 161 |
|
| 162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
| 163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 164 | 164 |
cannot exist. |
| 165 | 165 |
|
| 166 | 166 |
Note that this algorithm also provides a feasible solution for the |
| 167 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
| 168 | 168 |
|
| 169 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
| 170 | 170 |
\tparam LM The type of the lower bound map. The default |
| 171 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 172 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 173 | 173 |
The default map type is \c LM. |
| 174 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 175 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 176 | 176 |
*/ |
| 177 | 177 |
#ifdef DOXYGEN |
| 178 | 178 |
template< typename GR, |
| 179 | 179 |
typename LM, |
| 180 | 180 |
typename UM, |
| 181 | 181 |
typename SM, |
| 182 | 182 |
typename TR > |
| 183 | 183 |
#else |
| 184 | 184 |
template< typename GR, |
| 185 | 185 |
typename LM = typename GR::template ArcMap<int>, |
| 186 | 186 |
typename UM = LM, |
| 187 | 187 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 188 | 188 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 189 | 189 |
#endif |
| 190 | 190 |
class Circulation {
|
| 191 | 191 |
public: |
| 192 | 192 |
|
| 193 | 193 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 194 | 194 |
typedef TR Traits; |
| 195 | 195 |
///The type of the digraph the algorithm runs on. |
| 196 | 196 |
typedef typename Traits::Digraph Digraph; |
| 197 | 197 |
///The type of the flow and supply values. |
| 198 | 198 |
typedef typename Traits::Value Value; |
| 199 | 199 |
|
| 200 | 200 |
///The type of the lower bound map. |
| 201 | 201 |
typedef typename Traits::LowerMap LowerMap; |
| 202 | 202 |
///The type of the upper bound (capacity) map. |
| 203 | 203 |
typedef typename Traits::UpperMap UpperMap; |
| 204 | 204 |
///The type of the supply map. |
| 205 | 205 |
typedef typename Traits::SupplyMap SupplyMap; |
| 206 | 206 |
///The type of the flow map. |
| 207 | 207 |
typedef typename Traits::FlowMap FlowMap; |
| 208 | 208 |
|
| 209 | 209 |
///The type of the elevator. |
| 210 | 210 |
typedef typename Traits::Elevator Elevator; |
| 211 | 211 |
///The type of the tolerance. |
| 212 | 212 |
typedef typename Traits::Tolerance Tolerance; |
| 213 | 213 |
|
| 214 | 214 |
private: |
| 215 | 215 |
|
| 216 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 217 | 217 |
|
| 218 | 218 |
const Digraph &_g; |
| 219 | 219 |
int _node_num; |
| 220 | 220 |
|
| 221 | 221 |
const LowerMap *_lo; |
| 222 | 222 |
const UpperMap *_up; |
| 223 | 223 |
const SupplyMap *_supply; |
| 224 | 224 |
|
| 225 | 225 |
FlowMap *_flow; |
| 226 | 226 |
bool _local_flow; |
| 227 | 227 |
|
| 228 | 228 |
Elevator* _level; |
| 229 | 229 |
bool _local_level; |
| 230 | 230 |
|
| 231 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 232 | 232 |
ExcessMap* _excess; |
| 233 | 233 |
|
| 234 | 234 |
Tolerance _tol; |
| 235 | 235 |
int _el; |
| 236 | 236 |
|
| 237 | 237 |
public: |
| 238 | 238 |
|
| 239 | 239 |
typedef Circulation Create; |
| 240 | 240 |
|
| 241 | 241 |
///\name Named Template Parameters |
| 242 | 242 |
|
| 243 | 243 |
///@{
|
| 244 | 244 |
|
| 245 | 245 |
template <typename T> |
| 246 | 246 |
struct SetFlowMapTraits : public Traits {
|
| 247 | 247 |
typedef T FlowMap; |
| 248 | 248 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 249 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 250 | 250 |
return 0; // ignore warnings |
| 251 | 251 |
} |
| 252 | 252 |
}; |
| 253 | 253 |
|
| 254 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 255 | 255 |
/// FlowMap type |
| 256 | 256 |
/// |
| 257 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 258 | 258 |
/// type. |
| 259 | 259 |
template <typename T> |
| 260 | 260 |
struct SetFlowMap |
| 261 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 262 | 262 |
SetFlowMapTraits<T> > {
|
| 263 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 264 | 264 |
SetFlowMapTraits<T> > Create; |
| 265 | 265 |
}; |
| 266 | 266 |
|
| 267 | 267 |
template <typename T> |
| 268 | 268 |
struct SetElevatorTraits : public Traits {
|
| 269 | 269 |
typedef T Elevator; |
| 270 | 270 |
static Elevator *createElevator(const Digraph&, int) {
|
| 271 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 272 | 272 |
return 0; // ignore warnings |
| 273 | 273 |
} |
| 274 | 274 |
}; |
| 275 | 275 |
|
| 276 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 277 | 277 |
/// Elevator type |
| 278 | 278 |
/// |
| 279 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 280 | 280 |
/// type. If this named parameter is used, then an external |
| 281 | 281 |
/// elevator object must be passed to the algorithm using the |
| 282 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 283 | 283 |
/// \ref run() or \ref init(). |
| 284 | 284 |
/// \sa SetStandardElevator |
| 285 | 285 |
template <typename T> |
| 286 | 286 |
struct SetElevator |
| 287 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 288 | 288 |
SetElevatorTraits<T> > {
|
| 289 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 290 | 290 |
SetElevatorTraits<T> > Create; |
| 291 | 291 |
}; |
| 292 | 292 |
|
| 293 | 293 |
template <typename T> |
| 294 | 294 |
struct SetStandardElevatorTraits : public Traits {
|
| 295 | 295 |
typedef T Elevator; |
| 296 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 297 | 297 |
return new Elevator(digraph, max_level); |
| 298 | 298 |
} |
| 299 | 299 |
}; |
| 300 | 300 |
|
| 301 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 302 | 302 |
/// Elevator type with automatic allocation |
| 303 | 303 |
/// |
| 304 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 305 | 305 |
/// type with automatic allocation. |
| 306 | 306 |
/// The Elevator should have standard constructor interface to be |
| 307 | 307 |
/// able to automatically created by the algorithm (i.e. the |
| 308 | 308 |
/// digraph and the maximum level should be passed to it). |
| 309 | 309 |
/// However an external elevator object could also be passed to the |
| 310 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 311 | 311 |
/// before calling \ref run() or \ref init(). |
| 312 | 312 |
/// \sa SetElevator |
| 313 | 313 |
template <typename T> |
| 314 | 314 |
struct SetStandardElevator |
| 315 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 316 | 316 |
SetStandardElevatorTraits<T> > {
|
| 317 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 318 | 318 |
SetStandardElevatorTraits<T> > Create; |
| 319 | 319 |
}; |
| 320 | 320 |
|
| 321 | 321 |
/// @} |
| 322 | 322 |
|
| 323 | 323 |
protected: |
| 324 | 324 |
|
| 325 | 325 |
Circulation() {}
|
| 326 | 326 |
|
| 327 | 327 |
public: |
| 328 | 328 |
|
| 329 | 329 |
/// Constructor. |
| 330 | 330 |
|
| 331 | 331 |
/// The constructor of the class. |
| 332 | 332 |
/// |
| 333 | 333 |
/// \param graph The digraph the algorithm runs on. |
| 334 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 335 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
| 336 | 336 |
/// on the arcs. |
| 337 | 337 |
/// \param supply The signed supply values of the nodes. |
| 338 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 339 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
| 340 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 341 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 342 | 342 |
_excess(NULL) {}
|
| 343 | 343 |
|
| 344 | 344 |
/// Destructor. |
| 345 | 345 |
~Circulation() {
|
| 346 | 346 |
destroyStructures(); |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
|
| 350 | 350 |
private: |
| 351 | 351 |
|
| 352 | 352 |
bool checkBoundMaps() {
|
| 353 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 354 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 355 | 355 |
} |
| 356 | 356 |
return true; |
| 357 | 357 |
} |
| 358 | 358 |
|
| 359 | 359 |
void createStructures() {
|
| 360 | 360 |
_node_num = _el = countNodes(_g); |
| 361 | 361 |
|
| 362 | 362 |
if (!_flow) {
|
| 363 | 363 |
_flow = Traits::createFlowMap(_g); |
| 364 | 364 |
_local_flow = true; |
| 365 | 365 |
} |
| 366 | 366 |
if (!_level) {
|
| 367 | 367 |
_level = Traits::createElevator(_g, _node_num); |
| 368 | 368 |
_local_level = true; |
| 369 | 369 |
} |
| 370 | 370 |
if (!_excess) {
|
| 371 | 371 |
_excess = new ExcessMap(_g); |
| 372 | 372 |
} |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
void destroyStructures() {
|
| 376 | 376 |
if (_local_flow) {
|
| 377 | 377 |
delete _flow; |
| 378 | 378 |
} |
| 379 | 379 |
if (_local_level) {
|
| 380 | 380 |
delete _level; |
| 381 | 381 |
} |
| 382 | 382 |
if (_excess) {
|
| 383 | 383 |
delete _excess; |
| 384 | 384 |
} |
| 385 | 385 |
} |
| 386 | 386 |
|
| 387 | 387 |
public: |
| 388 | 388 |
|
| 389 | 389 |
/// Sets the lower bound map. |
| 390 | 390 |
|
| 391 | 391 |
/// Sets the lower bound map. |
| 392 | 392 |
/// \return <tt>(*this)</tt> |
| 393 | 393 |
Circulation& lowerMap(const LowerMap& map) {
|
| 394 | 394 |
_lo = ↦ |
| 395 | 395 |
return *this; |
| 396 | 396 |
} |
| 397 | 397 |
|
| 398 | 398 |
/// Sets the upper bound (capacity) map. |
| 399 | 399 |
|
| 400 | 400 |
/// Sets the upper bound (capacity) map. |
| 401 | 401 |
/// \return <tt>(*this)</tt> |
| 402 | 402 |
Circulation& upperMap(const UpperMap& map) {
|
| 403 | 403 |
_up = ↦ |
| 404 | 404 |
return *this; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
/// Sets the supply map. |
| 408 | 408 |
|
| 409 | 409 |
/// Sets the supply map. |
| 410 | 410 |
/// \return <tt>(*this)</tt> |
| 411 | 411 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 412 | 412 |
_supply = ↦ |
| 413 | 413 |
return *this; |
| 414 | 414 |
} |
| 415 | 415 |
|
| 416 | 416 |
/// \brief Sets the flow map. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Sets the flow map. |
| 419 | 419 |
/// If you don't use this function before calling \ref run() or |
| 420 | 420 |
/// \ref init(), an instance will be allocated automatically. |
| 421 | 421 |
/// The destructor deallocates this automatically allocated map, |
| 422 | 422 |
/// of course. |
| 423 | 423 |
/// \return <tt>(*this)</tt> |
| 424 | 424 |
Circulation& flowMap(FlowMap& map) {
|
| 425 | 425 |
if (_local_flow) {
|
| 426 | 426 |
delete _flow; |
| 427 | 427 |
_local_flow = false; |
| 428 | 428 |
} |
| 429 | 429 |
_flow = ↦ |
| 430 | 430 |
return *this; |
| 431 | 431 |
} |
| 432 | 432 |
|
| 433 | 433 |
/// \brief Sets the elevator used by algorithm. |
| 434 | 434 |
/// |
| 435 | 435 |
/// Sets the elevator used by algorithm. |
| 436 | 436 |
/// If you don't use this function before calling \ref run() or |
| 437 | 437 |
/// \ref init(), an instance will be allocated automatically. |
| 438 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
| 439 | 439 |
/// of course. |
| 440 | 440 |
/// \return <tt>(*this)</tt> |
| 441 | 441 |
Circulation& elevator(Elevator& elevator) {
|
| 442 | 442 |
if (_local_level) {
|
| 443 | 443 |
delete _level; |
| 444 | 444 |
_local_level = false; |
| 445 | 445 |
} |
| 446 | 446 |
_level = &elevator; |
| 447 | 447 |
return *this; |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
/// \brief Returns a const reference to the elevator. |
| 451 | 451 |
/// |
| 452 | 452 |
/// Returns a const reference to the elevator. |
| 453 | 453 |
/// |
| 454 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
| 455 | 455 |
/// using this function. |
| 456 | 456 |
const Elevator& elevator() const {
|
| 457 | 457 |
return *_level; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 |
/// \brief Sets the tolerance used by algorithm. |
|
| 460 |
/// \brief Sets the tolerance used by the algorithm. |
|
| 461 | 461 |
/// |
| 462 |
/// Sets the tolerance used by algorithm. |
|
| 463 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
|
| 462 |
/// Sets the tolerance object used by the algorithm. |
|
| 463 |
/// \return <tt>(*this)</tt> |
|
| 464 |
Circulation& tolerance(const Tolerance& tolerance) {
|
|
| 464 | 465 |
_tol = tolerance; |
| 465 | 466 |
return *this; |
| 466 | 467 |
} |
| 467 | 468 |
|
| 468 | 469 |
/// \brief Returns a const reference to the tolerance. |
| 469 | 470 |
/// |
| 470 |
/// Returns a const reference to the tolerance |
|
| 471 |
/// Returns a const reference to the tolerance object used by |
|
| 472 |
/// the algorithm. |
|
| 471 | 473 |
const Tolerance& tolerance() const {
|
| 472 |
return |
|
| 474 |
return _tol; |
|
| 473 | 475 |
} |
| 474 | 476 |
|
| 475 | 477 |
/// \name Execution Control |
| 476 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 477 | 479 |
/// If you need better control on the initial solution or the execution, |
| 478 | 480 |
/// you have to call one of the \ref init() functions first, then |
| 479 | 481 |
/// the \ref start() function. |
| 480 | 482 |
|
| 481 | 483 |
///@{
|
| 482 | 484 |
|
| 483 | 485 |
/// Initializes the internal data structures. |
| 484 | 486 |
|
| 485 | 487 |
/// Initializes the internal data structures and sets all flow values |
| 486 | 488 |
/// to the lower bound. |
| 487 | 489 |
void init() |
| 488 | 490 |
{
|
| 489 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
| 490 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 491 | 493 |
|
| 492 | 494 |
createStructures(); |
| 493 | 495 |
|
| 494 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 495 | 497 |
(*_excess)[n] = (*_supply)[n]; |
| 496 | 498 |
} |
| 497 | 499 |
|
| 498 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 499 | 501 |
_flow->set(e, (*_lo)[e]); |
| 500 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 501 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 502 | 504 |
} |
| 503 | 505 |
|
| 504 | 506 |
// global relabeling tested, but in general case it provides |
| 505 | 507 |
// worse performance for random digraphs |
| 506 | 508 |
_level->initStart(); |
| 507 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 508 | 510 |
_level->initAddItem(n); |
| 509 | 511 |
_level->initFinish(); |
| 510 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 511 | 513 |
if(_tol.positive((*_excess)[n])) |
| 512 | 514 |
_level->activate(n); |
| 513 | 515 |
} |
| 514 | 516 |
|
| 515 | 517 |
/// Initializes the internal data structures using a greedy approach. |
| 516 | 518 |
|
| 517 | 519 |
/// Initializes the internal data structures using a greedy approach |
| 518 | 520 |
/// to construct the initial solution. |
| 519 | 521 |
void greedyInit() |
| 520 | 522 |
{
|
| 521 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
| 522 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 523 | 525 |
|
| 524 | 526 |
createStructures(); |
| 525 | 527 |
|
| 526 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 527 | 529 |
(*_excess)[n] = (*_supply)[n]; |
| 528 | 530 |
} |
| 529 | 531 |
|
| 530 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 531 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 532 | 534 |
_flow->set(e, (*_up)[e]); |
| 533 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 534 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 535 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 536 | 538 |
_flow->set(e, (*_lo)[e]); |
| 537 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 538 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 539 | 541 |
} else {
|
| 540 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
| 541 | 543 |
_flow->set(e, fc); |
| 542 | 544 |
(*_excess)[_g.target(e)] = 0; |
| 543 | 545 |
(*_excess)[_g.source(e)] -= fc; |
| 544 | 546 |
} |
| 545 | 547 |
} |
| 546 | 548 |
|
| 547 | 549 |
_level->initStart(); |
| 548 | 550 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 549 | 551 |
_level->initAddItem(n); |
| 550 | 552 |
_level->initFinish(); |
| 551 | 553 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 552 | 554 |
if(_tol.positive((*_excess)[n])) |
| 553 | 555 |
_level->activate(n); |
| 554 | 556 |
} |
| 555 | 557 |
|
| 556 | 558 |
///Executes the algorithm |
| 557 | 559 |
|
| 558 | 560 |
///This function executes the algorithm. |
| 559 | 561 |
/// |
| 560 | 562 |
///\return \c true if a feasible circulation is found. |
| 561 | 563 |
/// |
| 562 | 564 |
///\sa barrier() |
| 563 | 565 |
///\sa barrierMap() |
| 564 | 566 |
bool start() |
| 565 | 567 |
{
|
| 566 | 568 |
|
| 567 | 569 |
Node act; |
| 568 | 570 |
Node bact=INVALID; |
| 569 | 571 |
Node last_activated=INVALID; |
| 570 | 572 |
while((act=_level->highestActive())!=INVALID) {
|
| 571 | 573 |
int actlevel=(*_level)[act]; |
| 572 | 574 |
int mlevel=_node_num; |
| 573 | 575 |
Value exc=(*_excess)[act]; |
| 574 | 576 |
|
| 575 | 577 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 576 | 578 |
Node v = _g.target(e); |
| 577 | 579 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 578 | 580 |
if(!_tol.positive(fc)) continue; |
| 579 | 581 |
if((*_level)[v]<actlevel) {
|
| 580 | 582 |
if(!_tol.less(fc, exc)) {
|
| 581 | 583 |
_flow->set(e, (*_flow)[e] + exc); |
| 582 | 584 |
(*_excess)[v] += exc; |
| 583 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 584 | 586 |
_level->activate(v); |
| 585 | 587 |
(*_excess)[act] = 0; |
| 586 | 588 |
_level->deactivate(act); |
| 587 | 589 |
goto next_l; |
| 588 | 590 |
} |
| 589 | 591 |
else {
|
| 590 | 592 |
_flow->set(e, (*_up)[e]); |
| 591 | 593 |
(*_excess)[v] += fc; |
| 592 | 594 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 593 | 595 |
_level->activate(v); |
| 594 | 596 |
exc-=fc; |
| 595 | 597 |
} |
| 596 | 598 |
} |
| 597 | 599 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 598 | 600 |
} |
| 599 | 601 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 600 | 602 |
Node v = _g.source(e); |
| 601 | 603 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 602 | 604 |
if(!_tol.positive(fc)) continue; |
| 603 | 605 |
if((*_level)[v]<actlevel) {
|
| 604 | 606 |
if(!_tol.less(fc, exc)) {
|
| 605 | 607 |
_flow->set(e, (*_flow)[e] - exc); |
| 606 | 608 |
(*_excess)[v] += exc; |
| 607 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 608 | 610 |
_level->activate(v); |
| 609 | 611 |
(*_excess)[act] = 0; |
| 610 | 612 |
_level->deactivate(act); |
| 611 | 613 |
goto next_l; |
| 612 | 614 |
} |
| 613 | 615 |
else {
|
| 614 | 616 |
_flow->set(e, (*_lo)[e]); |
| 615 | 617 |
(*_excess)[v] += fc; |
| 616 | 618 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 617 | 619 |
_level->activate(v); |
| 618 | 620 |
exc-=fc; |
| 619 | 621 |
} |
| 620 | 622 |
} |
| 621 | 623 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 622 | 624 |
} |
| 623 | 625 |
|
| 624 | 626 |
(*_excess)[act] = exc; |
| 625 | 627 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 626 | 628 |
else if(mlevel==_node_num) {
|
| 627 | 629 |
_level->liftHighestActiveToTop(); |
| 628 | 630 |
_el = _node_num; |
| 629 | 631 |
return false; |
| 630 | 632 |
} |
| 631 | 633 |
else {
|
| 632 | 634 |
_level->liftHighestActive(mlevel+1); |
| 633 | 635 |
if(_level->onLevel(actlevel)==0) {
|
| 634 | 636 |
_el = actlevel; |
| 635 | 637 |
return false; |
| 636 | 638 |
} |
| 637 | 639 |
} |
| 638 | 640 |
next_l: |
| 639 | 641 |
; |
| 640 | 642 |
} |
| 641 | 643 |
return true; |
| 642 | 644 |
} |
| 643 | 645 |
|
| 644 | 646 |
/// Runs the algorithm. |
| 645 | 647 |
|
| 646 | 648 |
/// This function runs the algorithm. |
| 647 | 649 |
/// |
| 648 | 650 |
/// \return \c true if a feasible circulation is found. |
| 649 | 651 |
/// |
| 650 | 652 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 651 | 653 |
/// the following code. |
| 652 | 654 |
/// \code |
| 653 | 655 |
/// c.greedyInit(); |
| 654 | 656 |
/// c.start(); |
| 655 | 657 |
/// \endcode |
| 656 | 658 |
bool run() {
|
| 657 | 659 |
greedyInit(); |
| 658 | 660 |
return start(); |
| 659 | 661 |
} |
| 660 | 662 |
|
| 661 | 663 |
/// @} |
| 662 | 664 |
|
| 663 | 665 |
/// \name Query Functions |
| 664 | 666 |
/// The results of the circulation algorithm can be obtained using |
| 665 | 667 |
/// these functions.\n |
| 666 | 668 |
/// Either \ref run() or \ref start() should be called before |
| 667 | 669 |
/// using them. |
| 668 | 670 |
|
| 669 | 671 |
///@{
|
| 670 | 672 |
|
| 671 | 673 |
/// \brief Returns the flow value on the given arc. |
| 672 | 674 |
/// |
| 673 | 675 |
/// Returns the flow value on the given arc. |
| 674 | 676 |
/// |
| 675 | 677 |
/// \pre Either \ref run() or \ref init() must be called before |
| 676 | 678 |
/// using this function. |
| 677 | 679 |
Value flow(const Arc& arc) const {
|
| 678 | 680 |
return (*_flow)[arc]; |
| 679 | 681 |
} |
| 680 | 682 |
|
| 681 | 683 |
/// \brief Returns a const reference to the flow map. |
| 682 | 684 |
/// |
| 683 | 685 |
/// Returns a const reference to the arc map storing the found flow. |
| 684 | 686 |
/// |
| 685 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
| 686 | 688 |
/// using this function. |
| 687 | 689 |
const FlowMap& flowMap() const {
|
| 688 | 690 |
return *_flow; |
| 689 | 691 |
} |
| 690 | 692 |
|
| 691 | 693 |
/** |
| 692 | 694 |
\brief Returns \c true if the given node is in a barrier. |
| 693 | 695 |
|
| 694 | 696 |
Barrier is a set \e B of nodes for which |
| 695 | 697 |
|
| 696 | 698 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 697 | 699 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 698 | 700 |
|
| 699 | 701 |
holds. The existence of a set with this property prooves that a |
| 700 | 702 |
feasible circualtion cannot exist. |
| 701 | 703 |
|
| 702 | 704 |
This function returns \c true if the given node is in the found |
| 703 | 705 |
barrier. If a feasible circulation is found, the function |
| 704 | 706 |
gives back \c false for every node. |
| 705 | 707 |
|
| 706 | 708 |
\pre Either \ref run() or \ref init() must be called before |
| 707 | 709 |
using this function. |
| 708 | 710 |
|
| 709 | 711 |
\sa barrierMap() |
| 710 | 712 |
\sa checkBarrier() |
| 711 | 713 |
*/ |
| 712 | 714 |
bool barrier(const Node& node) const |
| 713 | 715 |
{
|
| 714 | 716 |
return (*_level)[node] >= _el; |
| 715 | 717 |
} |
| 716 | 718 |
|
| 717 | 719 |
/// \brief Gives back a barrier. |
| 718 | 720 |
/// |
| 719 | 721 |
/// This function sets \c bar to the characteristic vector of the |
| 720 | 722 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 721 | 723 |
/// node map with \c bool (or convertible) value type. |
| 722 | 724 |
/// |
| 723 | 725 |
/// If a feasible circulation is found, the function gives back an |
| 724 | 726 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 725 | 727 |
/// |
| 726 | 728 |
/// \note This function calls \ref barrier() for each node, |
| 727 | 729 |
/// so it runs in O(n) time. |
| 728 | 730 |
/// |
| 729 | 731 |
/// \pre Either \ref run() or \ref init() must be called before |
| 730 | 732 |
/// using this function. |
| 731 | 733 |
/// |
| 732 | 734 |
/// \sa barrier() |
| 733 | 735 |
/// \sa checkBarrier() |
| 734 | 736 |
template<class BarrierMap> |
| 735 | 737 |
void barrierMap(BarrierMap &bar) const |
| 736 | 738 |
{
|
| 737 | 739 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 738 | 740 |
bar.set(n, (*_level)[n] >= _el); |
| 739 | 741 |
} |
| 740 | 742 |
|
| 741 | 743 |
/// @} |
| 742 | 744 |
|
| 743 | 745 |
/// \name Checker Functions |
| 744 | 746 |
/// The feasibility of the results can be checked using |
| 745 | 747 |
/// these functions.\n |
| 746 | 748 |
/// Either \ref run() or \ref start() should be called before |
| 747 | 749 |
/// using them. |
| 748 | 750 |
|
| 749 | 751 |
///@{
|
| 750 | 752 |
|
| 751 | 753 |
///Check if the found flow is a feasible circulation |
| 752 | 754 |
|
| 753 | 755 |
///Check if the found flow is a feasible circulation, |
| 754 | 756 |
/// |
| 755 | 757 |
bool checkFlow() const {
|
| 756 | 758 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 757 | 759 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 758 | 760 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 759 | 761 |
{
|
| 760 | 762 |
Value dif=-(*_supply)[n]; |
| 761 | 763 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 762 | 764 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 763 | 765 |
if(_tol.negative(dif)) return false; |
| 764 | 766 |
} |
| 765 | 767 |
return true; |
| 766 | 768 |
} |
| 767 | 769 |
|
| 768 | 770 |
///Check whether or not the last execution provides a barrier |
| 769 | 771 |
|
| 770 | 772 |
///Check whether or not the last execution provides a barrier. |
| 771 | 773 |
///\sa barrier() |
| 772 | 774 |
///\sa barrierMap() |
| 773 | 775 |
bool checkBarrier() const |
| 774 | 776 |
{
|
| 775 | 777 |
Value delta=0; |
| 776 | 778 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
| 777 | 779 |
std::numeric_limits<Value>::infinity() : |
| 778 | 780 |
std::numeric_limits<Value>::max(); |
| 779 | 781 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 780 | 782 |
if(barrier(n)) |
| 781 | 783 |
delta-=(*_supply)[n]; |
| 782 | 784 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 783 | 785 |
{
|
| 784 | 786 |
Node s=_g.source(e); |
| 785 | 787 |
Node t=_g.target(e); |
| 786 | 788 |
if(barrier(s)&&!barrier(t)) {
|
| 787 | 789 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 788 | 790 |
delta+=(*_up)[e]; |
| 789 | 791 |
} |
| 790 | 792 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 791 | 793 |
} |
| 792 | 794 |
return _tol.negative(delta); |
| 793 | 795 |
} |
| 794 | 796 |
|
| 795 | 797 |
/// @} |
| 796 | 798 |
|
| 797 | 799 |
}; |
| 798 | 800 |
|
| 799 | 801 |
} |
| 800 | 802 |
|
| 801 | 803 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 20 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 21 |
|
|
| 19 | 22 |
///\ingroup concept |
| 20 | 23 |
///\file |
| 21 | 24 |
///\brief The concept of heaps. |
| 22 | 25 |
|
| 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
| 24 |
#define LEMON_CONCEPTS_HEAP_H |
|
| 25 |
|
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
| 39 |
/// is a data structure for storing items with specified values called |
|
| 40 |
/// \e priorities in such a way that finding the item with minimum |
|
| 41 |
/// priority is efficient. In a heap one can change the priority of an |
|
| 42 |
/// |
|
| 38 |
/// This concept class describes the main interface of heaps. |
|
| 39 |
/// The various \ref heaps "heap structures" are efficient |
|
| 40 |
/// implementations of the abstract data type \e priority \e queue. |
|
| 41 |
/// They store items with specified values called \e priorities |
|
| 42 |
/// in such a way that finding and removing the item with minimum |
|
| 43 |
/// priority are efficient. The basic operations are adding and |
|
| 44 |
/// erasing items, changing the priority of an item, etc. |
|
| 43 | 45 |
/// |
| 44 |
/// \tparam PR Type of the priority of the items. |
|
| 45 |
/// \tparam IM A read and writable item map with int values, used |
|
| 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 47 |
/// Any class that conforms to this concept can be used easily in such |
|
| 48 |
/// algorithms. |
|
| 49 |
/// |
|
| 50 |
/// \tparam PR Type of the priorities of the items. |
|
| 51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 | 52 |
/// internally to handle the cross references. |
| 47 |
/// \tparam |
|
| 53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 | 54 |
/// The default is \c std::less<PR>. |
| 49 | 55 |
#ifdef DOXYGEN |
| 50 |
template <typename PR, typename IM, typename |
|
| 56 |
template <typename PR, typename IM, typename CMP> |
|
| 51 | 57 |
#else |
| 52 |
template <typename PR, typename IM> |
|
| 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 59 |
#endif |
| 54 | 60 |
class Heap {
|
| 55 | 61 |
public: |
| 56 | 62 |
|
| 57 | 63 |
/// Type of the item-int map. |
| 58 | 64 |
typedef IM ItemIntMap; |
| 59 | 65 |
/// Type of the priorities. |
| 60 | 66 |
typedef PR Prio; |
| 61 | 67 |
/// Type of the items stored in the heap. |
| 62 | 68 |
typedef typename ItemIntMap::Key Item; |
| 63 | 69 |
|
| 64 | 70 |
/// \brief Type to represent the states of the items. |
| 65 | 71 |
/// |
| 66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
| 68 |
/// from the point of view of the heap, but may be useful for |
|
| 69 |
/// |
|
| 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 74 |
/// heap's point of view, but may be useful to the user. |
|
| 70 | 75 |
/// |
| 71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| 72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 73 | 78 |
enum State {
|
| 74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
| 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
| 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
| 77 | 82 |
}; |
| 78 | 83 |
|
| 79 |
/// \brief |
|
| 84 |
/// \brief Constructor. |
|
| 80 | 85 |
/// |
| 81 |
/// |
|
| 86 |
/// Constructor. |
|
| 82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 84 | 89 |
/// handle the cross references. The assigned value must be |
| 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 86 | 91 |
explicit Heap(ItemIntMap &map) {}
|
| 87 | 92 |
|
| 93 |
/// \brief Constructor. |
|
| 94 |
/// |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to keys of type |
|
| 97 |
/// \c Item. It is used internally by the heap implementations to |
|
| 98 |
/// handle the cross references. The assigned value must be |
|
| 99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 100 |
/// \param comp The function object used for comparing the priorities. |
|
| 101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
|
| 102 |
|
|
| 88 | 103 |
/// \brief The number of items stored in the heap. |
| 89 | 104 |
/// |
| 90 |
/// |
|
| 105 |
/// This function returns the number of items stored in the heap. |
|
| 91 | 106 |
int size() const { return 0; }
|
| 92 | 107 |
|
| 93 |
/// \brief |
|
| 108 |
/// \brief Check if the heap is empty. |
|
| 94 | 109 |
/// |
| 95 |
/// |
|
| 110 |
/// This function returns \c true if the heap is empty. |
|
| 96 | 111 |
bool empty() const { return false; }
|
| 97 | 112 |
|
| 98 |
/// \brief |
|
| 113 |
/// \brief Make the heap empty. |
|
| 99 | 114 |
/// |
| 100 |
/// Makes the heap empty. |
|
| 101 |
void clear(); |
|
| 115 |
/// This functon makes the heap empty. |
|
| 116 |
/// It does not change the cross reference map. If you want to reuse |
|
| 117 |
/// a heap that is not surely empty, you should first clear it and |
|
| 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 119 |
/// for each item. |
|
| 120 |
void clear() {}
|
|
| 102 | 121 |
|
| 103 |
/// \brief |
|
| 122 |
/// \brief Insert an item into the heap with the given priority. |
|
| 104 | 123 |
/// |
| 105 |
/// |
|
| 124 |
/// This function inserts the given item into the heap with the |
|
| 125 |
/// given priority. |
|
| 106 | 126 |
/// \param i The item to insert. |
| 107 | 127 |
/// \param p The priority of the item. |
| 128 |
/// \pre \e i must not be stored in the heap. |
|
| 108 | 129 |
void push(const Item &i, const Prio &p) {}
|
| 109 | 130 |
|
| 110 |
/// \brief |
|
| 131 |
/// \brief Return the item having minimum priority. |
|
| 111 | 132 |
/// |
| 112 |
/// |
|
| 133 |
/// This function returns the item having minimum priority. |
|
| 113 | 134 |
/// \pre The heap must be non-empty. |
| 114 | 135 |
Item top() const {}
|
| 115 | 136 |
|
| 116 | 137 |
/// \brief The minimum priority. |
| 117 | 138 |
/// |
| 118 |
/// |
|
| 139 |
/// This function returns the minimum priority. |
|
| 119 | 140 |
/// \pre The heap must be non-empty. |
| 120 | 141 |
Prio prio() const {}
|
| 121 | 142 |
|
| 122 |
/// \brief |
|
| 143 |
/// \brief Remove the item having minimum priority. |
|
| 123 | 144 |
/// |
| 124 |
/// |
|
| 145 |
/// This function removes the item having minimum priority. |
|
| 125 | 146 |
/// \pre The heap must be non-empty. |
| 126 | 147 |
void pop() {}
|
| 127 | 148 |
|
| 128 |
/// \brief |
|
| 149 |
/// \brief Remove the given item from the heap. |
|
| 129 | 150 |
/// |
| 130 |
/// |
|
| 151 |
/// This function removes the given item from the heap if it is |
|
| 152 |
/// already stored. |
|
| 131 | 153 |
/// \param i The item to delete. |
| 154 |
/// \pre \e i must be in the heap. |
|
| 132 | 155 |
void erase(const Item &i) {}
|
| 133 | 156 |
|
| 134 |
/// \brief The priority of |
|
| 157 |
/// \brief The priority of the given item. |
|
| 135 | 158 |
/// |
| 136 |
/// |
|
| 159 |
/// This function returns the priority of the given item. |
|
| 137 | 160 |
/// \param i The item. |
| 138 |
/// \pre \ |
|
| 161 |
/// \pre \e i must be in the heap. |
|
| 139 | 162 |
Prio operator[](const Item &i) const {}
|
| 140 | 163 |
|
| 141 |
/// \brief |
|
| 164 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 142 | 165 |
/// not stored in the heap. |
| 143 | 166 |
/// |
| 144 | 167 |
/// This method sets the priority of the given item if it is |
| 145 |
/// already stored in the heap. |
|
| 146 |
/// Otherwise it inserts the given item with the given priority. |
|
| 168 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 169 |
/// item into the heap with the given priority. |
|
| 147 | 170 |
/// |
| 148 | 171 |
/// \param i The item. |
| 149 | 172 |
/// \param p The priority. |
| 150 | 173 |
void set(const Item &i, const Prio &p) {}
|
| 151 | 174 |
|
| 152 |
/// \brief |
|
| 175 |
/// \brief Decrease the priority of an item to the given value. |
|
| 153 | 176 |
/// |
| 154 |
/// |
|
| 177 |
/// This function decreases the priority of an item to the given value. |
|
| 155 | 178 |
/// \param i The item. |
| 156 | 179 |
/// \param p The priority. |
| 157 |
/// \pre \ |
|
| 180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
| 158 | 181 |
void decrease(const Item &i, const Prio &p) {}
|
| 159 | 182 |
|
| 160 |
/// \brief |
|
| 183 |
/// \brief Increase the priority of an item to the given value. |
|
| 161 | 184 |
/// |
| 162 |
/// |
|
| 185 |
/// This function increases the priority of an item to the given value. |
|
| 163 | 186 |
/// \param i The item. |
| 164 | 187 |
/// \param p The priority. |
| 165 |
/// \pre \ |
|
| 188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
| 166 | 189 |
void increase(const Item &i, const Prio &p) {}
|
| 167 | 190 |
|
| 168 |
/// \brief Returns if an item is in, has already been in, or has |
|
| 169 |
/// never been in the heap. |
|
| 191 |
/// \brief Return the state of an item. |
|
| 170 | 192 |
/// |
| 171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
| 172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 173 | 195 |
/// and \c POST_HEAP otherwise. |
| 174 | 196 |
/// In the latter case it is possible that the item will get back |
| 175 | 197 |
/// to the heap again. |
| 176 | 198 |
/// \param i The item. |
| 177 | 199 |
State state(const Item &i) const {}
|
| 178 | 200 |
|
| 179 |
/// \brief |
|
| 201 |
/// \brief Set the state of an item in the heap. |
|
| 180 | 202 |
/// |
| 181 |
/// Sets the state of the given item in the heap. It can be used |
|
| 182 |
/// to manually clear the heap when it is important to achive the |
|
| 183 |
/// |
|
| 203 |
/// This function sets the state of the given item in the heap. |
|
| 204 |
/// It can be used to manually clear the heap when it is important |
|
| 205 |
/// to achive better time complexity. |
|
| 184 | 206 |
/// \param i The item. |
| 185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
| 186 | 208 |
void state(const Item& i, State st) {}
|
| 187 | 209 |
|
| 188 | 210 |
|
| 189 | 211 |
template <typename _Heap> |
| 190 | 212 |
struct Constraints {
|
| 191 | 213 |
public: |
| 192 | 214 |
void constraints() {
|
| 193 | 215 |
typedef typename _Heap::Item OwnItem; |
| 194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
| 195 | 217 |
typedef typename _Heap::State OwnState; |
| 196 | 218 |
|
| 197 | 219 |
Item item; |
| 198 | 220 |
Prio prio; |
| 199 | 221 |
item=Item(); |
| 200 | 222 |
prio=Prio(); |
| 201 | 223 |
ignore_unused_variable_warning(item); |
| 202 | 224 |
ignore_unused_variable_warning(prio); |
| 203 | 225 |
|
| 204 | 226 |
OwnItem own_item; |
| 205 | 227 |
OwnPrio own_prio; |
| 206 | 228 |
OwnState own_state; |
| 207 | 229 |
own_item=Item(); |
| 208 | 230 |
own_prio=Prio(); |
| 209 | 231 |
ignore_unused_variable_warning(own_item); |
| 210 | 232 |
ignore_unused_variable_warning(own_prio); |
| 211 | 233 |
ignore_unused_variable_warning(own_state); |
| 212 | 234 |
|
| 213 | 235 |
_Heap heap1(map); |
| 214 | 236 |
_Heap heap2 = heap1; |
| 215 | 237 |
ignore_unused_variable_warning(heap1); |
| 216 | 238 |
ignore_unused_variable_warning(heap2); |
| 217 | 239 |
|
| 218 | 240 |
int s = heap.size(); |
| 219 | 241 |
ignore_unused_variable_warning(s); |
| 220 | 242 |
bool e = heap.empty(); |
| 221 | 243 |
ignore_unused_variable_warning(e); |
| 222 | 244 |
|
| 223 | 245 |
prio = heap.prio(); |
| 224 | 246 |
item = heap.top(); |
| 225 | 247 |
prio = heap[item]; |
| 226 | 248 |
own_prio = heap.prio(); |
| 227 | 249 |
own_item = heap.top(); |
| 228 | 250 |
own_prio = heap[own_item]; |
| 229 | 251 |
|
| 230 | 252 |
heap.push(item, prio); |
| 231 | 253 |
heap.push(own_item, own_prio); |
| 232 | 254 |
heap.pop(); |
| 233 | 255 |
|
| 234 | 256 |
heap.set(item, prio); |
| 235 | 257 |
heap.decrease(item, prio); |
| 236 | 258 |
heap.increase(item, prio); |
| 237 | 259 |
heap.set(own_item, own_prio); |
| 238 | 260 |
heap.decrease(own_item, own_prio); |
| 239 | 261 |
heap.increase(own_item, own_prio); |
| 240 | 262 |
|
| 241 | 263 |
heap.erase(item); |
| 242 | 264 |
heap.erase(own_item); |
| 243 | 265 |
heap.clear(); |
| 244 | 266 |
|
| 245 | 267 |
own_state = heap.state(own_item); |
| 246 | 268 |
heap.state(own_item, own_state); |
| 247 | 269 |
|
| 248 | 270 |
own_state = _Heap::PRE_HEAP; |
| 249 | 271 |
own_state = _Heap::IN_HEAP; |
| 250 | 272 |
own_state = _Heap::POST_HEAP; |
| 251 | 273 |
} |
| 252 | 274 |
|
| 253 | 275 |
_Heap& heap; |
| 254 | 276 |
ItemIntMap& map; |
| 255 | 277 |
}; |
| 256 | 278 |
}; |
| 257 | 279 |
|
| 258 | 280 |
/// @} |
| 259 | 281 |
} // namespace lemon |
| 260 | 282 |
} |
| 261 | 283 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
| 20 | 20 |
#define LEMON_FIB_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 |
///\ingroup auxdat |
|
| 24 |
///\brief Fibonacci Heap implementation. |
|
| 23 |
///\ingroup heaps |
|
| 24 |
///\brief Fibonacci heap implementation. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 |
#include <utility> |
|
| 27 | 28 |
#include <functional> |
| 28 | 29 |
#include <lemon/math.h> |
| 29 | 30 |
|
| 30 | 31 |
namespace lemon {
|
| 31 | 32 |
|
| 32 |
/// \ingroup |
|
| 33 |
/// \ingroup heaps |
|
| 33 | 34 |
/// |
| 34 |
///\brief Fibonacci |
|
| 35 |
/// \brief Fibonacci heap data structure. |
|
| 35 | 36 |
/// |
| 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 |
/// |
|
| 37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
| 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
| 41 | 39 |
/// |
| 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
|
| 43 |
///heap. In case of many calls to these operations, it is better to use a |
|
| 44 |
///\ref |
|
| 40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
| 41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
| 42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
| 45 | 43 |
/// |
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 |
///to handle the cross references. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 |
/// |
|
| 52 |
///\sa BinHeap |
|
| 53 |
///\sa Dijkstra |
|
| 44 |
/// \tparam PR Type of the priorities of the items. |
|
| 45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 54 | 49 |
#ifdef DOXYGEN |
| 55 |
template <typename |
|
| 50 |
template <typename PR, typename IM, typename CMP> |
|
| 56 | 51 |
#else |
| 57 |
template <typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 58 | 53 |
#endif |
| 59 | 54 |
class FibHeap {
|
| 60 | 55 |
public: |
| 61 |
|
|
| 56 |
|
|
| 57 |
/// Type of the item-int map. |
|
| 62 | 58 |
typedef IM ItemIntMap; |
| 63 |
///\e |
|
| 64 |
typedef PRIO Prio; |
|
| 65 |
/// |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 61 |
/// Type of the items stored in the heap. |
|
| 66 | 62 |
typedef typename ItemIntMap::Key Item; |
| 67 |
/// |
|
| 63 |
/// Type of the item-priority pairs. |
|
| 68 | 64 |
typedef std::pair<Item,Prio> Pair; |
| 69 |
/// |
|
| 65 |
/// Functor type for comparing the priorities. |
|
| 70 | 66 |
typedef CMP Compare; |
| 71 | 67 |
|
| 72 | 68 |
private: |
| 73 | 69 |
class Store; |
| 74 | 70 |
|
| 75 | 71 |
std::vector<Store> _data; |
| 76 | 72 |
int _minimum; |
| 77 | 73 |
ItemIntMap &_iim; |
| 78 | 74 |
Compare _comp; |
| 79 | 75 |
int _num; |
| 80 | 76 |
|
| 81 | 77 |
public: |
| 82 | 78 |
|
| 83 |
/// \brief Type to represent the |
|
| 79 |
/// \brief Type to represent the states of the items. |
|
| 84 | 80 |
/// |
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 81 |
/// Each item has a state associated to it. It can be "in heap", |
|
| 82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
| 87 | 83 |
/// heap's point of view, but may be useful to the user. |
| 88 | 84 |
/// |
| 89 | 85 |
/// The item-int map must be initialized in such way that it assigns |
| 90 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 91 | 87 |
enum State {
|
| 92 | 88 |
IN_HEAP = 0, ///< = 0. |
| 93 | 89 |
PRE_HEAP = -1, ///< = -1. |
| 94 | 90 |
POST_HEAP = -2 ///< = -2. |
| 95 | 91 |
}; |
| 96 | 92 |
|
| 97 |
/// \brief |
|
| 93 |
/// \brief Constructor. |
|
| 98 | 94 |
/// |
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 100 |
/// used internally to handle the cross references. |
|
| 95 |
/// Constructor. |
|
| 96 |
/// \param map A map that assigns \c int values to the items. |
|
| 97 |
/// It is used internally to handle the cross references. |
|
| 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 101 | 99 |
explicit FibHeap(ItemIntMap &map) |
| 102 | 100 |
: _minimum(0), _iim(map), _num() {}
|
| 103 | 101 |
|
| 104 |
/// \brief |
|
| 102 |
/// \brief Constructor. |
|
| 105 | 103 |
/// |
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 108 |
/// |
|
| 104 |
/// Constructor. |
|
| 105 |
/// \param map A map that assigns \c int values to the items. |
|
| 106 |
/// It is used internally to handle the cross references. |
|
| 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
| 108 |
/// \param comp The function object used for comparing the priorities. |
|
| 109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
| 110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
| 111 | 111 |
|
| 112 | 112 |
/// \brief The number of items stored in the heap. |
| 113 | 113 |
/// |
| 114 |
/// |
|
| 114 |
/// This function returns the number of items stored in the heap. |
|
| 115 | 115 |
int size() const { return _num; }
|
| 116 | 116 |
|
| 117 |
/// \brief |
|
| 117 |
/// \brief Check if the heap is empty. |
|
| 118 | 118 |
/// |
| 119 |
/// |
|
| 119 |
/// This function returns \c true if the heap is empty. |
|
| 120 | 120 |
bool empty() const { return _num==0; }
|
| 121 | 121 |
|
| 122 |
/// \brief Make |
|
| 122 |
/// \brief Make the heap empty. |
|
| 123 | 123 |
/// |
| 124 |
/// Make empty this heap. It does not change the cross reference |
|
| 125 |
/// map. If you want to reuse a heap what is not surely empty you |
|
| 126 |
/// should first clear the heap and after that you should set the |
|
| 127 |
/// cross reference map for each item to \c PRE_HEAP. |
|
| 124 |
/// This functon makes the heap empty. |
|
| 125 |
/// It does not change the cross reference map. If you want to reuse |
|
| 126 |
/// a heap that is not surely empty, you should first clear it and |
|
| 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
| 128 |
/// for each item. |
|
| 128 | 129 |
void clear() {
|
| 129 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
| 130 | 131 |
} |
| 131 | 132 |
|
| 132 |
/// \brief \c item gets to the heap with priority \c value independently |
|
| 133 |
/// if \c item was already there. |
|
| 133 |
/// \brief Insert an item into the heap with the given priority. |
|
| 134 | 134 |
/// |
| 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
| 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
| 137 |
/// \ref increase(\c item, \c value) otherwise. |
|
| 138 |
void set (const Item& item, const Prio& value) {
|
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 143 |
} else push(item, value); |
|
| 144 |
} |
|
| 145 |
|
|
| 146 |
/// \brief Adds \c item to the heap with priority \c value. |
|
| 147 |
/// |
|
| 148 |
/// Adds \c item to the heap with priority \c value. |
|
| 149 |
/// \pre \c item must not be stored in the heap. |
|
| 150 |
void push (const Item& item, const Prio& value) {
|
|
| 135 |
/// This function inserts the given item into the heap with the |
|
| 136 |
/// given priority. |
|
| 137 |
/// \param item The item to insert. |
|
| 138 |
/// \param prio The priority of the item. |
|
| 139 |
/// \pre \e item must not be stored in the heap. |
|
| 140 |
void push (const Item& item, const Prio& prio) {
|
|
| 151 | 141 |
int i=_iim[item]; |
| 152 | 142 |
if ( i < 0 ) {
|
| 153 | 143 |
int s=_data.size(); |
| 154 | 144 |
_iim.set( item, s ); |
| 155 | 145 |
Store st; |
| 156 | 146 |
st.name=item; |
| 157 | 147 |
_data.push_back(st); |
| 158 | 148 |
i=s; |
| 159 | 149 |
} else {
|
| 160 | 150 |
_data[i].parent=_data[i].child=-1; |
| 161 | 151 |
_data[i].degree=0; |
| 162 | 152 |
_data[i].in=true; |
| 163 | 153 |
_data[i].marked=false; |
| 164 | 154 |
} |
| 165 | 155 |
|
| 166 | 156 |
if ( _num ) {
|
| 167 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
| 168 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
| 169 | 159 |
_data[_minimum].right_neighbor=i; |
| 170 | 160 |
_data[i].left_neighbor=_minimum; |
| 171 |
if ( _comp( |
|
| 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
| 172 | 162 |
} else {
|
| 173 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
| 174 | 164 |
_minimum=i; |
| 175 | 165 |
} |
| 176 |
_data[i].prio= |
|
| 166 |
_data[i].prio=prio; |
|
| 177 | 167 |
++_num; |
| 178 | 168 |
} |
| 179 | 169 |
|
| 180 |
/// \brief |
|
| 170 |
/// \brief Return the item having minimum priority. |
|
| 181 | 171 |
/// |
| 182 |
/// This method returns the item with minimum priority relative to \c |
|
| 183 |
/// Compare. |
|
| 184 |
/// |
|
| 172 |
/// This function returns the item having minimum priority. |
|
| 173 |
/// \pre The heap must be non-empty. |
|
| 185 | 174 |
Item top() const { return _data[_minimum].name; }
|
| 186 | 175 |
|
| 187 |
/// \brief |
|
| 176 |
/// \brief The minimum priority. |
|
| 188 | 177 |
/// |
| 189 |
/// It returns the minimum priority relative to \c Compare. |
|
| 190 |
/// \pre The heap must be nonempty. |
|
| 191 |
|
|
| 178 |
/// This function returns the minimum priority. |
|
| 179 |
/// \pre The heap must be non-empty. |
|
| 180 |
Prio prio() const { return _data[_minimum].prio; }
|
|
| 192 | 181 |
|
| 193 |
/// \brief |
|
| 182 |
/// \brief Remove the item having minimum priority. |
|
| 194 | 183 |
/// |
| 195 |
/// It returns the priority of \c item. |
|
| 196 |
/// \pre \c item must be in the heap. |
|
| 197 |
const Prio& operator[](const Item& item) const {
|
|
| 198 |
return _data[_iim[item]].prio; |
|
| 199 |
} |
|
| 200 |
|
|
| 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
| 202 |
/// |
|
| 203 |
/// This method deletes the item with minimum priority relative to \c |
|
| 204 |
/// Compare from the heap. |
|
| 184 |
/// This function removes the item having minimum priority. |
|
| 205 | 185 |
/// \pre The heap must be non-empty. |
| 206 | 186 |
void pop() {
|
| 207 | 187 |
/*The first case is that there are only one root.*/ |
| 208 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
| 209 | 189 |
_data[_minimum].in=false; |
| 210 | 190 |
if ( _data[_minimum].degree!=0 ) {
|
| 211 |
|
|
| 191 |
makeRoot(_data[_minimum].child); |
|
| 212 | 192 |
_minimum=_data[_minimum].child; |
| 213 | 193 |
balance(); |
| 214 | 194 |
} |
| 215 | 195 |
} else {
|
| 216 | 196 |
int right=_data[_minimum].right_neighbor; |
| 217 | 197 |
unlace(_minimum); |
| 218 | 198 |
_data[_minimum].in=false; |
| 219 | 199 |
if ( _data[_minimum].degree > 0 ) {
|
| 220 | 200 |
int left=_data[_minimum].left_neighbor; |
| 221 | 201 |
int child=_data[_minimum].child; |
| 222 | 202 |
int last_child=_data[child].left_neighbor; |
| 223 | 203 |
|
| 224 |
|
|
| 204 |
makeRoot(child); |
|
| 225 | 205 |
|
| 226 | 206 |
_data[left].right_neighbor=child; |
| 227 | 207 |
_data[child].left_neighbor=left; |
| 228 | 208 |
_data[right].left_neighbor=last_child; |
| 229 | 209 |
_data[last_child].right_neighbor=right; |
| 230 | 210 |
} |
| 231 | 211 |
_minimum=right; |
| 232 | 212 |
balance(); |
| 233 | 213 |
} // the case where there are more roots |
| 234 | 214 |
--_num; |
| 235 | 215 |
} |
| 236 | 216 |
|
| 237 |
/// \brief |
|
| 217 |
/// \brief Remove the given item from the heap. |
|
| 238 | 218 |
/// |
| 239 |
/// This method deletes \c item from the heap, if \c item was already |
|
| 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
|
| 219 |
/// This function removes the given item from the heap if it is |
|
| 220 |
/// already stored. |
|
| 221 |
/// \param item The item to delete. |
|
| 222 |
/// \pre \e item must be in the heap. |
|
| 241 | 223 |
void erase (const Item& item) {
|
| 242 | 224 |
int i=_iim[item]; |
| 243 | 225 |
|
| 244 | 226 |
if ( i >= 0 && _data[i].in ) {
|
| 245 | 227 |
if ( _data[i].parent!=-1 ) {
|
| 246 | 228 |
int p=_data[i].parent; |
| 247 | 229 |
cut(i,p); |
| 248 | 230 |
cascade(p); |
| 249 | 231 |
} |
| 250 | 232 |
_minimum=i; //As if its prio would be -infinity |
| 251 | 233 |
pop(); |
| 252 | 234 |
} |
| 253 | 235 |
} |
| 254 | 236 |
|
| 255 |
/// \brief |
|
| 237 |
/// \brief The priority of the given item. |
|
| 256 | 238 |
/// |
| 257 |
/// This method decreases the priority of \c item to \c value. |
|
| 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
| 259 |
/// value relative to \c Compare. |
|
| 260 |
void decrease (Item item, const Prio& value) {
|
|
| 239 |
/// This function returns the priority of the given item. |
|
| 240 |
/// \param item The item. |
|
| 241 |
/// \pre \e item must be in the heap. |
|
| 242 |
Prio operator[](const Item& item) const {
|
|
| 243 |
return _data[_iim[item]].prio; |
|
| 244 |
} |
|
| 245 |
|
|
| 246 |
/// \brief Set the priority of an item or insert it, if it is |
|
| 247 |
/// not stored in the heap. |
|
| 248 |
/// |
|
| 249 |
/// This method sets the priority of the given item if it is |
|
| 250 |
/// already stored in the heap. Otherwise it inserts the given |
|
| 251 |
/// item into the heap with the given priority. |
|
| 252 |
/// \param item The item. |
|
| 253 |
/// \param prio The priority. |
|
| 254 |
void set (const Item& item, const Prio& prio) {
|
|
| 261 | 255 |
int i=_iim[item]; |
| 262 |
_data[i]. |
|
| 256 |
if ( i >= 0 && _data[i].in ) {
|
|
| 257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
| 258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
| 259 |
} else push(item, prio); |
|
| 260 |
} |
|
| 261 |
|
|
| 262 |
/// \brief Decrease the priority of an item to the given value. |
|
| 263 |
/// |
|
| 264 |
/// This function decreases the priority of an item to the given value. |
|
| 265 |
/// \param item The item. |
|
| 266 |
/// \param prio The priority. |
|
| 267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
| 268 |
void decrease (const Item& item, const Prio& prio) {
|
|
| 269 |
int i=_iim[item]; |
|
| 270 |
_data[i].prio=prio; |
|
| 263 | 271 |
int p=_data[i].parent; |
| 264 | 272 |
|
| 265 |
if ( p!=-1 && _comp( |
|
| 273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) {
|
|
| 266 | 274 |
cut(i,p); |
| 267 | 275 |
cascade(p); |
| 268 | 276 |
} |
| 269 |
if ( _comp( |
|
| 277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
| 270 | 278 |
} |
| 271 | 279 |
|
| 272 |
/// \brief |
|
| 280 |
/// \brief Increase the priority of an item to the given value. |
|
| 273 | 281 |
/// |
| 274 |
/// This method sets the priority of \c item to \c value. Though |
|
| 275 |
/// there is no precondition on the priority of \c item, this |
|
| 276 |
/// method should be used only if it is indeed necessary to increase |
|
| 277 |
/// (relative to \c Compare) the priority of \c item, because this |
|
| 278 |
/// method is inefficient. |
|
| 279 |
void increase (Item item, const Prio& value) {
|
|
| 282 |
/// This function increases the priority of an item to the given value. |
|
| 283 |
/// \param item The item. |
|
| 284 |
/// \param prio The priority. |
|
| 285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
| 286 |
void increase (const Item& item, const Prio& prio) {
|
|
| 280 | 287 |
erase(item); |
| 281 |
push(item, |
|
| 288 |
push(item, prio); |
|
| 282 | 289 |
} |
| 283 | 290 |
|
| 284 |
|
|
| 285 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
| 286 |
/// |
|
| 291 |
/// \brief Return the state of an item. |
|
| 287 | 292 |
/// |
| 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
| 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
| 290 |
/// otherwise. In the latter case it is possible that \c item will |
|
| 291 |
/// get back to the heap again. |
|
| 293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
| 294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
| 295 |
/// and \c POST_HEAP otherwise. |
|
| 296 |
/// In the latter case it is possible that the item will get back |
|
| 297 |
/// to the heap again. |
|
| 298 |
/// \param item The item. |
|
| 292 | 299 |
State state(const Item &item) const {
|
| 293 | 300 |
int i=_iim[item]; |
| 294 | 301 |
if( i>=0 ) {
|
| 295 | 302 |
if ( _data[i].in ) i=0; |
| 296 | 303 |
else i=-2; |
| 297 | 304 |
} |
| 298 | 305 |
return State(i); |
| 299 | 306 |
} |
| 300 | 307 |
|
| 301 |
/// \brief |
|
| 308 |
/// \brief Set the state of an item in the heap. |
|
| 302 | 309 |
/// |
| 303 |
/// Sets the state of the \c item in the heap. It can be used to |
|
| 304 |
/// manually clear the heap when it is important to achive the |
|
| 305 |
/// |
|
| 310 |
/// This function sets the state of the given item in the heap. |
|
| 311 |
/// It can be used to manually clear the heap when it is important |
|
| 312 |
/// to achive better time complexity. |
|
| 306 | 313 |
/// \param i The item. |
| 307 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
| 308 | 315 |
void state(const Item& i, State st) {
|
| 309 | 316 |
switch (st) {
|
| 310 | 317 |
case POST_HEAP: |
| 311 | 318 |
case PRE_HEAP: |
| 312 | 319 |
if (state(i) == IN_HEAP) {
|
| 313 | 320 |
erase(i); |
| 314 | 321 |
} |
| 315 | 322 |
_iim[i] = st; |
| 316 | 323 |
break; |
| 317 | 324 |
case IN_HEAP: |
| 318 | 325 |
break; |
| 319 | 326 |
} |
| 320 | 327 |
} |
| 321 | 328 |
|
| 322 | 329 |
private: |
| 323 | 330 |
|
| 324 | 331 |
void balance() {
|
| 325 | 332 |
|
| 326 | 333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
| 327 | 334 |
|
| 328 | 335 |
std::vector<int> A(maxdeg,-1); |
| 329 | 336 |
|
| 330 | 337 |
/* |
| 331 | 338 |
*Recall that now minimum does not point to the minimum prio element. |
| 332 | 339 |
*We set minimum to this during balance(). |
| 333 | 340 |
*/ |
| 334 | 341 |
int anchor=_data[_minimum].left_neighbor; |
| 335 | 342 |
int next=_minimum; |
| 336 | 343 |
bool end=false; |
| 337 | 344 |
|
| 338 | 345 |
do {
|
| 339 | 346 |
int active=next; |
| 340 | 347 |
if ( anchor==active ) end=true; |
| 341 | 348 |
int d=_data[active].degree; |
| 342 | 349 |
next=_data[active].right_neighbor; |
| 343 | 350 |
|
| 344 | 351 |
while (A[d]!=-1) {
|
| 345 | 352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
| 346 | 353 |
fuse(active,A[d]); |
| 347 | 354 |
} else {
|
| 348 | 355 |
fuse(A[d],active); |
| 349 | 356 |
active=A[d]; |
| 350 | 357 |
} |
| 351 | 358 |
A[d]=-1; |
| 352 | 359 |
++d; |
| 353 | 360 |
} |
| 354 | 361 |
A[d]=active; |
| 355 | 362 |
} while ( !end ); |
| 356 | 363 |
|
| 357 | 364 |
|
| 358 | 365 |
while ( _data[_minimum].parent >=0 ) |
| 359 | 366 |
_minimum=_data[_minimum].parent; |
| 360 | 367 |
int s=_minimum; |
| 361 | 368 |
int m=_minimum; |
| 362 | 369 |
do {
|
| 363 | 370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
| 364 | 371 |
s=_data[s].right_neighbor; |
| 365 | 372 |
} while ( s != m ); |
| 366 | 373 |
} |
| 367 | 374 |
|
| 368 |
void |
|
| 375 |
void makeRoot(int c) {
|
|
| 369 | 376 |
int s=c; |
| 370 | 377 |
do {
|
| 371 | 378 |
_data[s].parent=-1; |
| 372 | 379 |
s=_data[s].right_neighbor; |
| 373 | 380 |
} while ( s != c ); |
| 374 | 381 |
} |
| 375 | 382 |
|
| 376 | 383 |
void cut(int a, int b) {
|
| 377 | 384 |
/* |
| 378 | 385 |
*Replacing a from the children of b. |
| 379 | 386 |
*/ |
| 380 | 387 |
--_data[b].degree; |
| 381 | 388 |
|
| 382 | 389 |
if ( _data[b].degree !=0 ) {
|
| 383 | 390 |
int child=_data[b].child; |
| 384 | 391 |
if ( child==a ) |
| 385 | 392 |
_data[b].child=_data[child].right_neighbor; |
| 386 | 393 |
unlace(a); |
| 387 | 394 |
} |
| 388 | 395 |
|
| 389 | 396 |
|
| 390 | 397 |
/*Lacing a to the roots.*/ |
| 391 | 398 |
int right=_data[_minimum].right_neighbor; |
| 392 | 399 |
_data[_minimum].right_neighbor=a; |
| 393 | 400 |
_data[a].left_neighbor=_minimum; |
| 394 | 401 |
_data[a].right_neighbor=right; |
| 395 | 402 |
_data[right].left_neighbor=a; |
| 396 | 403 |
|
| 397 | 404 |
_data[a].parent=-1; |
| 398 | 405 |
_data[a].marked=false; |
| 399 | 406 |
} |
| 400 | 407 |
|
| 401 | 408 |
void cascade(int a) {
|
| 402 | 409 |
if ( _data[a].parent!=-1 ) {
|
| 403 | 410 |
int p=_data[a].parent; |
| 404 | 411 |
|
| 405 | 412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
| 406 | 413 |
else {
|
| 407 | 414 |
cut(a,p); |
| 408 | 415 |
cascade(p); |
| 409 | 416 |
} |
| 410 | 417 |
} |
| 411 | 418 |
} |
| 412 | 419 |
|
| 413 | 420 |
void fuse(int a, int b) {
|
| 414 | 421 |
unlace(b); |
| 415 | 422 |
|
| 416 | 423 |
/*Lacing b under a.*/ |
| 417 | 424 |
_data[b].parent=a; |
| 418 | 425 |
|
| 419 | 426 |
if (_data[a].degree==0) {
|
| 420 | 427 |
_data[b].left_neighbor=b; |
| 421 | 428 |
_data[b].right_neighbor=b; |
| 422 | 429 |
_data[a].child=b; |
| 423 | 430 |
} else {
|
| 424 | 431 |
int child=_data[a].child; |
| 425 | 432 |
int last_child=_data[child].left_neighbor; |
| 426 | 433 |
_data[child].left_neighbor=b; |
| 427 | 434 |
_data[b].right_neighbor=child; |
| 428 | 435 |
_data[last_child].right_neighbor=b; |
| 429 | 436 |
_data[b].left_neighbor=last_child; |
| 430 | 437 |
} |
| 431 | 438 |
|
| 432 | 439 |
++_data[a].degree; |
| 433 | 440 |
|
| 434 | 441 |
_data[b].marked=false; |
| 435 | 442 |
} |
| 436 | 443 |
|
| 437 | 444 |
/* |
| 438 | 445 |
*It is invoked only if a has siblings. |
| 439 | 446 |
*/ |
| 440 | 447 |
void unlace(int a) {
|
| 441 | 448 |
int leftn=_data[a].left_neighbor; |
| 442 | 449 |
int rightn=_data[a].right_neighbor; |
| 443 | 450 |
_data[leftn].right_neighbor=rightn; |
| 444 | 451 |
_data[rightn].left_neighbor=leftn; |
| 445 | 452 |
} |
| 446 | 453 |
|
| 447 | 454 |
|
| 448 | 455 |
class Store {
|
| 449 | 456 |
friend class FibHeap; |
| 450 | 457 |
|
| 451 | 458 |
Item name; |
| 452 | 459 |
int parent; |
| 453 | 460 |
int left_neighbor; |
| 454 | 461 |
int right_neighbor; |
| 455 | 462 |
int child; |
| 456 | 463 |
int degree; |
| 457 | 464 |
bool marked; |
| 458 | 465 |
bool in; |
| 459 | 466 |
Prio prio; |
| 460 | 467 |
|
| 461 | 468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
| 462 | 469 |
}; |
| 463 | 470 |
}; |
| 464 | 471 |
|
| 465 | 472 |
} //namespace lemon |
| 466 | 473 |
|
| 467 | 474 |
#endif //LEMON_FIB_HEAP_H |
| 468 | 475 |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)