0
7
0
2
10
6
2
1
14
13
12
1 | 1 |
Installation Instructions |
2 | 2 |
========================= |
3 | 3 |
|
4 | 4 |
Since you are reading this I assume you already obtained one of the release |
5 | 5 |
tarballs and successfully extracted it. The latest version of LEMON is |
6 | 6 |
available at our web page (http://lemon.cs.elte.hu/). |
7 | 7 |
|
8 | 8 |
LEMON provides two different build environments, one is based on "autotool", |
9 | 9 |
while the other is based on "cmake". This file contains instructions only for |
10 | 10 |
the former one, which is the recommended build environment on Linux, Mac OSX |
11 | 11 |
and other unices or if you use Cygwin on Windows. For cmake installation |
12 | 12 |
instructions visit http://lemon.cs.elte.hu. |
13 | 13 |
|
14 | 14 |
In order to install LEMON from the extracted source tarball you have to |
15 | 15 |
issue the following commands: |
16 | 16 |
|
17 | 17 |
1. `cd lemon-x.y.z' |
18 | 18 |
|
19 | 19 |
This command changes to the directory which was created when you |
20 | 20 |
extracted the sources. The x.y.z part is a version number. |
21 | 21 |
|
22 | 22 |
2. `./configure' |
23 | 23 |
|
24 | 24 |
This command runs the configure shell script, which does some checks and |
25 | 25 |
creates the makefiles. |
26 | 26 |
|
27 | 27 |
3. `make' |
28 | 28 |
|
29 | 29 |
This command compiles the non-template part of LEMON into libemon.a |
30 |
file. It also compiles the programs in the tools and demo subdirectories |
|
31 |
when enabled. |
|
30 |
file. It also compiles the programs in the tools subdirectory by |
|
31 |
default. |
|
32 | 32 |
|
33 | 33 |
4. `make check' |
34 | 34 |
|
35 | 35 |
This step is optional, but recommended. It runs the test programs that |
36 | 36 |
we developed for LEMON to check whether the library works properly on |
37 | 37 |
your platform. |
38 | 38 |
|
39 | 39 |
5. `make install' |
40 | 40 |
|
41 | 41 |
This command installs LEMON under /usr/local (you will need root |
42 | 42 |
privileges to be able to do that). If you want to install it to some |
43 | 43 |
other location, then pass the --prefix=DIRECTORY flag to configure in |
44 | 44 |
step 2. For example: `./configure --prefix=/home/username/lemon'. |
45 | 45 |
|
46 | 46 |
6. `make install-html' |
47 | 47 |
|
48 | 48 |
This command installs the documentation under share/doc/lemon/docs. The |
49 | 49 |
generated documentation is included in the tarball. If you want to |
50 | 50 |
generate it yourself, then run `make html'. Note that for this you need |
51 | 51 |
to have the following programs installed: Doxygen, Graphviz, Ghostscript, |
52 | 52 |
Latex. |
53 | 53 |
|
54 | 54 |
|
55 | 55 |
Configure Options and Variables |
56 | 56 |
=============================== |
57 | 57 |
|
58 | 58 |
In step 2 you can customize the actions of configure by setting variables |
59 | 59 |
and passing options to it. This can be done like this: |
60 | 60 |
`./configure [OPTION]... [VARIABLE=VALUE]...' |
61 | 61 |
|
62 | 62 |
Below you will find some useful variables and options (see `./configure --help' |
63 | 63 |
for more): |
64 | 64 |
|
65 | 65 |
CXX='comp' |
66 | 66 |
|
67 | 67 |
Change the C++ compiler to 'comp'. |
68 | 68 |
|
69 | 69 |
CXXFLAGS='flags' |
70 | 70 |
|
71 | 71 |
Pass the 'flags' to the compiler. For example CXXFLAGS='-O3 -march=pentium-m' |
72 | 72 |
turns on generation of aggressively optimized Pentium-M specific code. |
73 | 73 |
|
74 | 74 |
--prefix=PREFIX |
75 | 75 |
|
76 | 76 |
Set the installation prefix to PREFIX. By default it is /usr/local. |
77 | 77 |
|
78 |
--enable-demo |
|
79 |
|
|
80 |
Build the examples in the demo subdirectory. |
|
81 |
|
|
82 |
--disable-demo |
|
83 |
|
|
84 |
Do not build the examples in the demo subdirectory (default). |
|
85 |
|
|
86 | 78 |
--enable-tools |
87 | 79 |
|
88 | 80 |
Build the programs in the tools subdirectory (default). |
89 | 81 |
|
90 | 82 |
--disable-tools |
91 | 83 |
|
92 | 84 |
Do not build the programs in the tools subdirectory. |
93 | 85 |
|
94 | 86 |
--with-glpk[=PREFIX] |
95 | 87 |
|
96 | 88 |
Enable GLPK support (default). You should specify the prefix too if |
97 | 89 |
you installed GLPK to some non-standard location (e.g. your home |
98 | 90 |
directory). If it is not found, GLPK support will be disabled. |
99 | 91 |
|
100 | 92 |
--with-glpk-includedir=DIR |
101 | 93 |
|
102 | 94 |
The directory where the GLPK header files are located. This is only |
103 | 95 |
useful when the GLPK headers and libraries are not under the same |
104 | 96 |
prefix (which is unlikely). |
105 | 97 |
|
106 | 98 |
--with-glpk-libdir=DIR |
107 | 99 |
|
108 | 100 |
The directory where the GLPK libraries are located. This is only |
109 | 101 |
useful when the GLPK headers and libraries are not under the same |
110 | 102 |
prefix (which is unlikely). |
111 | 103 |
|
112 | 104 |
--without-glpk |
113 | 105 |
|
114 | 106 |
Disable GLPK support. |
115 | 107 |
|
116 | 108 |
--with-cplex[=PREFIX] |
117 | 109 |
|
118 | 110 |
Enable CPLEX support (default). You should specify the prefix too |
119 | 111 |
if you installed CPLEX to some non-standard location |
120 | 112 |
(e.g. /opt/ilog/cplex75). If it is not found, CPLEX support will be |
121 | 113 |
disabled. |
122 | 114 |
|
123 | 115 |
--with-cplex-includedir=DIR |
124 | 116 |
|
125 | 117 |
The directory where the CPLEX header files are located. This is |
126 | 118 |
only useful when the CPLEX headers and libraries are not under the |
127 | 119 |
same prefix (e.g. /usr/local/cplex/cplex75/include). |
128 | 120 |
|
129 | 121 |
--with-cplex-libdir=DIR |
130 | 122 |
|
131 | 123 |
The directory where the CPLEX libraries are located. This is only |
132 | 124 |
useful when the CPLEX headers and libraries are not under the same |
133 | 125 |
prefix (e.g. |
134 | 126 |
/usr/local/cplex/cplex75/lib/i86_linux2_glibc2.2_gcc3.0/static_pic_mt). |
135 | 127 |
|
136 | 128 |
--without-cplex |
137 | 129 |
|
138 | 130 |
Disable CPLEX support. |
139 | 131 |
|
140 | 132 |
--with-soplex[=PREFIX] |
141 | 133 |
|
142 | 134 |
Enable SoPlex support (default). You should specify the prefix too if |
143 | 135 |
you installed SoPlex to some non-standard location (e.g. your home |
144 | 136 |
directory). If it is not found, SoPlex support will be disabled. |
145 | 137 |
|
146 | 138 |
--with-soplex-includedir=DIR |
147 | 139 |
|
148 | 140 |
The directory where the SoPlex header files are located. This is only |
149 | 141 |
useful when the SoPlex headers and libraries are not under the same |
150 | 142 |
prefix (which is unlikely). |
151 | 143 |
|
152 | 144 |
--with-soplex-libdir=DIR |
153 | 145 |
|
154 | 146 |
The directory where the SoPlex libraries are located. This is only |
155 | 147 |
useful when the SoPlex headers and libraries are not under the same |
156 | 148 |
prefix (which is unlikely). |
157 | 149 |
|
158 | 150 |
--without-soplex |
159 | 151 |
|
160 | 152 |
Disable SoPlex support. |
1 | 1 |
ACLOCAL_AMFLAGS = -I m4 |
2 | 2 |
|
3 | 3 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
4 | 4 |
|
5 | 5 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
6 | 6 |
LDADD = $(top_builddir)/lemon/libemon.la |
7 | 7 |
|
8 | 8 |
EXTRA_DIST = \ |
9 | 9 |
AUTHORS \ |
10 | 10 |
LICENSE \ |
11 | 11 |
m4/lx_check_cplex.m4 \ |
12 | 12 |
m4/lx_check_glpk.m4 \ |
13 | 13 |
m4/lx_check_soplex.m4 \ |
14 | 14 |
CMakeLists.txt \ |
15 | 15 |
cmake/FindGhostscript.cmake \ |
16 | 16 |
cmake/FindGLPK.cmake \ |
17 | 17 |
cmake/version.cmake.in \ |
18 | 18 |
cmake/version.cmake \ |
19 | 19 |
cmake/nsis/lemon.ico \ |
20 | 20 |
cmake/nsis/uninstall.ico |
21 | 21 |
|
22 | 22 |
pkgconfigdir = $(libdir)/pkgconfig |
23 | 23 |
lemondir = $(pkgincludedir) |
24 | 24 |
bitsdir = $(lemondir)/bits |
25 | 25 |
conceptdir = $(lemondir)/concepts |
26 | 26 |
pkgconfig_DATA = |
27 | 27 |
lib_LTLIBRARIES = |
28 | 28 |
lemon_HEADERS = |
29 | 29 |
bits_HEADERS = |
30 | 30 |
concept_HEADERS = |
31 | 31 |
noinst_HEADERS = |
32 | 32 |
noinst_PROGRAMS = |
33 | 33 |
bin_PROGRAMS = |
34 | 34 |
check_PROGRAMS = |
35 | 35 |
dist_bin_SCRIPTS = |
36 | 36 |
TESTS = |
37 | 37 |
XFAIL_TESTS = |
38 | 38 |
|
39 | 39 |
include lemon/Makefile.am |
40 | 40 |
include test/Makefile.am |
41 | 41 |
include doc/Makefile.am |
42 |
include demo/Makefile.am |
|
43 | 42 |
include tools/Makefile.am |
44 | 43 |
|
44 |
DIST_SUBDIRS = demo |
|
45 |
|
|
46 |
demo: |
|
47 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
|
48 |
|
|
45 | 49 |
MRPROPERFILES = \ |
46 | 50 |
aclocal.m4 \ |
47 | 51 |
config.h.in \ |
48 | 52 |
config.h.in~ \ |
49 | 53 |
configure \ |
50 | 54 |
Makefile.in \ |
51 | 55 |
build-aux/config.guess \ |
52 | 56 |
build-aux/config.sub \ |
53 | 57 |
build-aux/depcomp \ |
54 | 58 |
build-aux/install-sh \ |
55 | 59 |
build-aux/ltmain.sh \ |
56 | 60 |
build-aux/missing \ |
57 | 61 |
doc/doxygen.log |
58 | 62 |
|
59 | 63 |
mrproper: |
60 | 64 |
$(MAKE) $(AM_MAKEFLAGS) maintainer-clean |
61 | 65 |
-rm -f $(MRPROPERFILES) |
62 | 66 |
|
63 | 67 |
dist-bz2: dist |
64 | 68 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
65 | 69 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
66 | 70 |
|
67 | 71 |
distcheck-bz2: distcheck |
68 | 72 |
zcat $(PACKAGE)-$(VERSION).tar.gz | \ |
69 | 73 |
bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2 |
70 | 74 |
|
71 |
.PHONY: mrproper dist-bz2 distcheck-bz2 |
|
75 |
.PHONY: demo mrproper dist-bz2 distcheck-bz2 |
1 | 1 |
dnl Process this file with autoconf to produce a configure script. |
2 | 2 |
|
3 | 3 |
dnl Version information. |
4 | 4 |
m4_define([lemon_version_number], |
5 | 5 |
[m4_normalize(esyscmd([echo ${LEMON_VERSION}]))]) |
6 | 6 |
dnl m4_define([lemon_version_number], []) |
7 | 7 |
m4_define([lemon_hg_path], [m4_normalize(esyscmd([./scripts/chg-len.py]))]) |
8 | 8 |
m4_define([lemon_hg_revision], [m4_normalize(esyscmd([hg id -i]))]) |
9 | 9 |
m4_define([lemon_version], [ifelse(lemon_version_number(), |
10 | 10 |
[], |
11 | 11 |
[lemon_hg_path().lemon_hg_revision()], |
12 | 12 |
[lemon_version_number()])]) |
13 | 13 |
|
14 | 14 |
AC_PREREQ([2.59]) |
15 | 15 |
AC_INIT([LEMON], [lemon_version()], [lemon-user@lemon.cs.elte.hu], [lemon]) |
16 | 16 |
AC_CONFIG_AUX_DIR([build-aux]) |
17 | 17 |
AC_CONFIG_MACRO_DIR([m4]) |
18 | 18 |
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects nostdinc]) |
19 | 19 |
AC_CONFIG_SRCDIR([lemon/list_graph.h]) |
20 | 20 |
AC_CONFIG_HEADERS([config.h lemon/config.h]) |
21 | 21 |
|
22 | 22 |
dnl Do compilation tests using the C++ compiler. |
23 | 23 |
AC_LANG([C++]) |
24 | 24 |
|
25 | 25 |
dnl Check the existence of long long type. |
26 | 26 |
AC_CHECK_TYPE(long long, [long_long_found=yes], [long_long_found=no]) |
27 | 27 |
if test x"$long_long_found" = x"yes"; then |
28 | 28 |
AC_DEFINE([HAVE_LONG_LONG], [1], [Define to 1 if you have long long.]) |
29 | 29 |
fi |
30 | 30 |
|
31 | 31 |
dnl Checks for programs. |
32 | 32 |
AC_PROG_CXX |
33 | 33 |
AC_PROG_CXXCPP |
34 | 34 |
AC_PROG_INSTALL |
35 | 35 |
AC_DISABLE_SHARED |
36 | 36 |
AC_PROG_LIBTOOL |
37 | 37 |
|
38 | 38 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
39 | 39 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
40 | 40 |
|
41 | 41 |
dnl Detect Intel compiler. |
42 | 42 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
43 | 43 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
44 | 44 |
choke me |
45 | 45 |
#endif], [ICC=[yes]], [ICC=[no]]) |
46 | 46 |
if test x"$ICC" = x"yes"; then |
47 | 47 |
AC_MSG_RESULT([yes]) |
48 | 48 |
else |
49 | 49 |
AC_MSG_RESULT([no]) |
50 | 50 |
fi |
51 | 51 |
|
52 | 52 |
dnl Set custom compiler flags when using g++. |
53 | 53 |
if test "$GXX" = yes -a "$ICC" = no; then |
54 | 54 |
WARNINGCXXFLAGS="-Wall -W -Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -ansi -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas" |
55 | 55 |
fi |
56 | 56 |
AC_SUBST([WARNINGCXXFLAGS]) |
57 | 57 |
|
58 | 58 |
dnl Checks for libraries. |
59 | 59 |
LX_CHECK_GLPK |
60 | 60 |
LX_CHECK_CPLEX |
61 | 61 |
LX_CHECK_SOPLEX |
62 | 62 |
LX_CHECK_CLP |
63 | 63 |
|
64 | 64 |
AM_CONDITIONAL([HAVE_LP], [test x"$lx_lp_found" = x"yes"]) |
65 | 65 |
AM_CONDITIONAL([HAVE_MIP], [test x"$lx_mip_found" = x"yes"]) |
66 | 66 |
|
67 |
dnl Disable/enable building the demo programs. |
|
68 |
AC_ARG_ENABLE([demo], |
|
69 |
AS_HELP_STRING([--enable-demo], [build the demo programs]) |
|
70 |
AS_HELP_STRING([--disable-demo], [do not build the demo programs @<:@default@:>@]), |
|
71 |
[], [enable_demo=no]) |
|
72 |
AC_MSG_CHECKING([whether to build the demo programs]) |
|
73 |
if test x"$enable_demo" != x"no"; then |
|
74 |
AC_MSG_RESULT([yes]) |
|
75 |
else |
|
76 |
AC_MSG_RESULT([no]) |
|
77 |
fi |
|
78 |
AM_CONDITIONAL([WANT_DEMO], [test x"$enable_demo" != x"no"]) |
|
79 |
|
|
80 | 67 |
dnl Disable/enable building the binary tools. |
81 | 68 |
AC_ARG_ENABLE([tools], |
82 | 69 |
AS_HELP_STRING([--enable-tools], [build additional tools @<:@default@:>@]) |
83 | 70 |
AS_HELP_STRING([--disable-tools], [do not build additional tools]), |
84 | 71 |
[], [enable_tools=yes]) |
85 | 72 |
AC_MSG_CHECKING([whether to build the additional tools]) |
86 | 73 |
if test x"$enable_tools" != x"no"; then |
87 | 74 |
AC_MSG_RESULT([yes]) |
88 | 75 |
else |
89 | 76 |
AC_MSG_RESULT([no]) |
90 | 77 |
fi |
91 | 78 |
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"]) |
92 | 79 |
|
93 | 80 |
dnl Checks for header files. |
94 | 81 |
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h) |
95 | 82 |
|
96 | 83 |
dnl Checks for typedefs, structures, and compiler characteristics. |
97 | 84 |
AC_C_CONST |
98 | 85 |
AC_C_INLINE |
99 | 86 |
AC_TYPE_SIZE_T |
100 | 87 |
AC_HEADER_TIME |
101 | 88 |
AC_STRUCT_TM |
102 | 89 |
|
103 | 90 |
dnl Checks for library functions. |
104 | 91 |
AC_HEADER_STDC |
105 | 92 |
AC_CHECK_FUNCS(gettimeofday times ctime_r) |
106 | 93 |
|
107 | 94 |
dnl Add dependencies on files generated by configure. |
108 | 95 |
AC_SUBST([CONFIG_STATUS_DEPENDENCIES], |
109 | 96 |
['$(top_srcdir)/doc/Doxyfile.in $(top_srcdir)/lemon/lemon.pc.in $(top_srcdir)/cmake/version.cmake.in']) |
110 | 97 |
|
111 | 98 |
AC_CONFIG_FILES([ |
112 | 99 |
Makefile |
100 |
demo/Makefile |
|
113 | 101 |
cmake/version.cmake |
114 | 102 |
doc/Doxyfile |
115 | 103 |
lemon/lemon.pc |
116 | 104 |
]) |
117 | 105 |
|
118 | 106 |
AC_OUTPUT |
119 | 107 |
|
120 | 108 |
echo |
121 | 109 |
echo '****************************** SUMMARY ******************************' |
122 | 110 |
echo |
123 | 111 |
echo Package version............... : $PACKAGE-$VERSION |
124 | 112 |
echo |
125 | 113 |
echo C++ compiler.................. : $CXX |
126 | 114 |
echo C++ compiles flags............ : $WARNINGCXXFLAGS $CXXFLAGS |
127 | 115 |
echo |
128 | 116 |
echo Compiler supports long long... : $long_long_found |
129 | 117 |
echo |
130 | 118 |
echo GLPK support.................. : $lx_glpk_found |
131 | 119 |
echo CPLEX support................. : $lx_cplex_found |
132 | 120 |
echo SOPLEX support................ : $lx_soplex_found |
133 | 121 |
echo CLP support................... : $lx_clp_found |
134 | 122 |
echo |
135 |
echo Build demo programs........... : $enable_demo |
|
136 | 123 |
echo Build additional tools........ : $enable_tools |
137 | 124 |
echo |
138 | 125 |
echo The packace will be installed in |
139 | 126 |
echo -n ' ' |
140 | 127 |
echo $prefix. |
141 | 128 |
echo |
142 | 129 |
echo '*********************************************************************' |
143 | 130 |
|
144 | 131 |
echo |
145 | 132 |
echo Configure complete, now type \'make\' and then \'make install\'. |
146 | 133 |
echo |
1 |
EXTRA_DIST += \ |
|
2 |
demo/CMakeLists.txt \ |
|
3 |
|
|
1 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
|
4 | 2 |
|
5 |
|
|
3 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
|
4 |
LDADD = $(top_builddir)/lemon/libemon.la |
|
6 | 5 |
|
7 |
noinst_PROGRAMS += \ |
|
8 |
demo/arg_parser_demo \ |
|
9 |
demo/graph_to_eps_demo \ |
|
10 |
demo/lgf_demo |
|
6 |
EXTRA_DIST = \ |
|
7 |
CMakeLists.txt \ |
|
8 |
digraph.lgf |
|
11 | 9 |
|
12 |
|
|
10 |
noinst_PROGRAMS = \ |
|
11 |
arg_parser_demo \ |
|
12 |
graph_to_eps_demo \ |
|
13 |
lgf_demo |
|
13 | 14 |
|
14 |
demo_arg_parser_demo_SOURCES = demo/arg_parser_demo.cc |
|
15 |
demo_graph_to_eps_demo_SOURCES = demo/graph_to_eps_demo.cc |
|
16 |
|
|
15 |
arg_parser_demo_SOURCES = arg_parser_demo.cc |
|
16 |
graph_to_eps_demo_SOURCES = graph_to_eps_demo.cc |
|
17 |
lgf_demo_SOURCES = lgf_demo.cc |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group contains some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group contains the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group contains maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group contains map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group contains the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group contains some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group contains the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group contains the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group contains the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group contains the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 | 320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 | 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 | 325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
326 | 326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
327 | 327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
328 | 328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 | 353 |
in a network with capacity constraints and arc costs. |
354 | 354 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 355 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 | 356 |
upper bounds for the flow values on the arcs, |
357 | 357 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 | 358 |
on the arcs, and |
359 | 359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
360 | 360 |
of the nodes. |
361 | 361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
362 | 362 |
the following optimization problem. |
363 | 363 |
|
364 | 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
365 | 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
366 | 366 |
supply(v) \qquad \forall v\in V \f] |
367 | 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
368 | 368 |
|
369 | 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
370 | 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
371 | 371 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
372 | 372 |
capacity scaling. |
373 | 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
374 | 374 |
cost scaling. |
375 | 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
376 | 376 |
pivot strategies. |
377 | 377 |
*/ |
378 | 378 |
|
379 | 379 |
/** |
380 | 380 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 381 |
@ingroup algs |
382 | 382 |
|
383 | 383 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 384 |
|
385 | 385 |
This group contains the algorithms for finding minimum cut in graphs. |
386 | 386 |
|
387 | 387 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 388 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 389 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 390 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 391 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 392 |
|
393 | 393 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 394 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 395 |
|
396 | 396 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 397 |
|
398 | 398 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 399 |
in directed graphs. |
400 | 400 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
401 | 401 |
calculating minimum cut in undirected graphs. |
402 | 402 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
403 | 403 |
all-pairs minimum cut in undirected graphs. |
404 | 404 |
|
405 | 405 |
If you want to find minimum cut just between two distinict nodes, |
406 | 406 |
see the \ref max_flow "maximum flow problem". |
407 | 407 |
*/ |
408 | 408 |
|
409 | 409 |
/** |
410 | 410 |
@defgroup graph_prop Connectivity and Other Graph Properties |
411 | 411 |
@ingroup algs |
412 | 412 |
\brief Algorithms for discovering the graph properties |
413 | 413 |
|
414 | 414 |
This group contains the algorithms for discovering the graph properties |
415 | 415 |
like connectivity, bipartiteness, euler property, simplicity etc. |
416 | 416 |
|
417 | 417 |
\image html edge_biconnected_components.png |
418 | 418 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
419 | 419 |
*/ |
420 | 420 |
|
421 | 421 |
/** |
422 | 422 |
@defgroup planar Planarity Embedding and Drawing |
423 | 423 |
@ingroup algs |
424 | 424 |
\brief Algorithms for planarity checking, embedding and drawing |
425 | 425 |
|
426 | 426 |
This group contains the algorithms for planarity checking, |
427 | 427 |
embedding and drawing. |
428 | 428 |
|
429 | 429 |
\image html planar.png |
430 | 430 |
\image latex planar.eps "Plane graph" width=\textwidth |
431 | 431 |
*/ |
432 | 432 |
|
433 | 433 |
/** |
434 | 434 |
@defgroup matching Matching Algorithms |
435 | 435 |
@ingroup algs |
436 | 436 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
437 | 437 |
|
438 | 438 |
This group contains algorithm objects and functions to calculate |
439 | 439 |
matchings in graphs and bipartite graphs. The general matching problem is |
440 | 440 |
finding a subset of the arcs which does not shares common endpoints. |
441 | 441 |
|
442 | 442 |
There are several different algorithms for calculate matchings in |
443 | 443 |
graphs. The matching problems in bipartite graphs are generally |
444 | 444 |
easier than in general graphs. The goal of the matching optimization |
445 | 445 |
can be finding maximum cardinality, maximum weight or minimum cost |
446 | 446 |
matching. The search can be constrained to find perfect or |
447 | 447 |
maximum cardinality matching. |
448 | 448 |
|
449 | 449 |
The matching algorithms implemented in LEMON: |
450 | 450 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
451 | 451 |
for calculating maximum cardinality matching in bipartite graphs. |
452 | 452 |
- \ref PrBipartiteMatching Push-relabel algorithm |
453 | 453 |
for calculating maximum cardinality matching in bipartite graphs. |
454 | 454 |
- \ref MaxWeightedBipartiteMatching |
455 | 455 |
Successive shortest path algorithm for calculating maximum weighted |
456 | 456 |
matching and maximum weighted bipartite matching in bipartite graphs. |
457 | 457 |
- \ref MinCostMaxBipartiteMatching |
458 | 458 |
Successive shortest path algorithm for calculating minimum cost maximum |
459 | 459 |
matching in bipartite graphs. |
460 | 460 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
461 | 461 |
maximum cardinality matching in general graphs. |
462 | 462 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
463 | 463 |
maximum weighted matching in general graphs. |
464 | 464 |
- \ref MaxWeightedPerfectMatching |
465 | 465 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
466 | 466 |
perfect matching in general graphs. |
467 | 467 |
|
468 | 468 |
\image html bipartite_matching.png |
469 | 469 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
470 | 470 |
*/ |
471 | 471 |
|
472 | 472 |
/** |
473 | 473 |
@defgroup spantree Minimum Spanning Tree Algorithms |
474 | 474 |
@ingroup algs |
475 | 475 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
476 | 476 |
|
477 | 477 |
This group contains the algorithms for finding a minimum cost spanning |
478 | 478 |
tree in a graph. |
479 | 479 |
*/ |
480 | 480 |
|
481 | 481 |
/** |
482 | 482 |
@defgroup auxalg Auxiliary Algorithms |
483 | 483 |
@ingroup algs |
484 | 484 |
\brief Auxiliary algorithms implemented in LEMON. |
485 | 485 |
|
486 | 486 |
This group contains some algorithms implemented in LEMON |
487 | 487 |
in order to make it easier to implement complex algorithms. |
488 | 488 |
*/ |
489 | 489 |
|
490 | 490 |
/** |
491 | 491 |
@defgroup approx Approximation Algorithms |
492 | 492 |
@ingroup algs |
493 | 493 |
\brief Approximation algorithms. |
494 | 494 |
|
495 | 495 |
This group contains the approximation and heuristic algorithms |
496 | 496 |
implemented in LEMON. |
497 | 497 |
*/ |
498 | 498 |
|
499 | 499 |
/** |
500 | 500 |
@defgroup gen_opt_group General Optimization Tools |
501 | 501 |
\brief This group contains some general optimization frameworks |
502 | 502 |
implemented in LEMON. |
503 | 503 |
|
504 | 504 |
This group contains some general optimization frameworks |
505 | 505 |
implemented in LEMON. |
506 | 506 |
*/ |
507 | 507 |
|
508 | 508 |
/** |
509 | 509 |
@defgroup lp_group Lp and Mip Solvers |
510 | 510 |
@ingroup gen_opt_group |
511 | 511 |
\brief Lp and Mip solver interfaces for LEMON. |
512 | 512 |
|
513 | 513 |
This group contains Lp and Mip solver interfaces for LEMON. The |
514 | 514 |
various LP solvers could be used in the same manner with this |
515 | 515 |
interface. |
516 | 516 |
*/ |
517 | 517 |
|
518 | 518 |
/** |
519 | 519 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
520 | 520 |
@ingroup lp_group |
521 | 521 |
\brief Helper tools to the Lp and Mip solvers. |
522 | 522 |
|
523 | 523 |
This group adds some helper tools to general optimization framework |
524 | 524 |
implemented in LEMON. |
525 | 525 |
*/ |
526 | 526 |
|
527 | 527 |
/** |
528 | 528 |
@defgroup metah Metaheuristics |
529 | 529 |
@ingroup gen_opt_group |
530 | 530 |
\brief Metaheuristics for LEMON library. |
531 | 531 |
|
532 | 532 |
This group contains some metaheuristic optimization tools. |
533 | 533 |
*/ |
534 | 534 |
|
535 | 535 |
/** |
536 | 536 |
@defgroup utils Tools and Utilities |
537 | 537 |
\brief Tools and utilities for programming in LEMON |
538 | 538 |
|
539 | 539 |
Tools and utilities for programming in LEMON. |
540 | 540 |
*/ |
541 | 541 |
|
542 | 542 |
/** |
543 | 543 |
@defgroup gutils Basic Graph Utilities |
544 | 544 |
@ingroup utils |
545 | 545 |
\brief Simple basic graph utilities. |
546 | 546 |
|
547 | 547 |
This group contains some simple basic graph utilities. |
548 | 548 |
*/ |
549 | 549 |
|
550 | 550 |
/** |
551 | 551 |
@defgroup misc Miscellaneous Tools |
552 | 552 |
@ingroup utils |
553 | 553 |
\brief Tools for development, debugging and testing. |
554 | 554 |
|
555 | 555 |
This group contains several useful tools for development, |
556 | 556 |
debugging and testing. |
557 | 557 |
*/ |
558 | 558 |
|
559 | 559 |
/** |
560 | 560 |
@defgroup timecount Time Measuring and Counting |
561 | 561 |
@ingroup misc |
562 | 562 |
\brief Simple tools for measuring the performance of algorithms. |
563 | 563 |
|
564 | 564 |
This group contains simple tools for measuring the performance |
565 | 565 |
of algorithms. |
566 | 566 |
*/ |
567 | 567 |
|
568 | 568 |
/** |
569 | 569 |
@defgroup exceptions Exceptions |
570 | 570 |
@ingroup utils |
571 | 571 |
\brief Exceptions defined in LEMON. |
572 | 572 |
|
573 | 573 |
This group contains the exceptions defined in LEMON. |
574 | 574 |
*/ |
575 | 575 |
|
576 | 576 |
/** |
577 | 577 |
@defgroup io_group Input-Output |
578 | 578 |
\brief Graph Input-Output methods |
579 | 579 |
|
580 | 580 |
This group contains the tools for importing and exporting graphs |
581 | 581 |
and graph related data. Now it supports the \ref lgf-format |
582 | 582 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
583 | 583 |
postscript (EPS) format. |
584 | 584 |
*/ |
585 | 585 |
|
586 | 586 |
/** |
587 | 587 |
@defgroup lemon_io LEMON Graph Format |
588 | 588 |
@ingroup io_group |
589 | 589 |
\brief Reading and writing LEMON Graph Format. |
590 | 590 |
|
591 | 591 |
This group contains methods for reading and writing |
592 | 592 |
\ref lgf-format "LEMON Graph Format". |
593 | 593 |
*/ |
594 | 594 |
|
595 | 595 |
/** |
596 | 596 |
@defgroup eps_io Postscript Exporting |
597 | 597 |
@ingroup io_group |
598 | 598 |
\brief General \c EPS drawer and graph exporter |
599 | 599 |
|
600 | 600 |
This group contains general \c EPS drawing methods and special |
601 | 601 |
graph exporting tools. |
602 | 602 |
*/ |
603 | 603 |
|
604 | 604 |
/** |
605 | 605 |
@defgroup dimacs_group DIMACS format |
606 | 606 |
@ingroup io_group |
607 | 607 |
\brief Read and write files in DIMACS format |
608 | 608 |
|
609 | 609 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
610 | 610 |
*/ |
611 | 611 |
|
612 | 612 |
/** |
613 | 613 |
@defgroup nauty_group NAUTY Format |
614 | 614 |
@ingroup io_group |
615 | 615 |
\brief Read \e Nauty format |
616 | 616 |
|
617 | 617 |
Tool to read graphs from \e Nauty format data. |
618 | 618 |
*/ |
619 | 619 |
|
620 | 620 |
/** |
621 | 621 |
@defgroup concept Concepts |
622 | 622 |
\brief Skeleton classes and concept checking classes |
623 | 623 |
|
624 | 624 |
This group contains the data/algorithm skeletons and concept checking |
625 | 625 |
classes implemented in LEMON. |
626 | 626 |
|
627 | 627 |
The purpose of the classes in this group is fourfold. |
628 | 628 |
|
629 | 629 |
- These classes contain the documentations of the %concepts. In order |
630 | 630 |
to avoid document multiplications, an implementation of a concept |
631 | 631 |
simply refers to the corresponding concept class. |
632 | 632 |
|
633 | 633 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
634 | 634 |
implementation of the %concepts should provide, however completely |
635 | 635 |
without implementations and real data structures behind the |
636 | 636 |
interface. On the other hand they should provide nothing else. All |
637 | 637 |
the algorithms working on a data structure meeting a certain concept |
638 | 638 |
should compile with these classes. (Though it will not run properly, |
639 | 639 |
of course.) In this way it is easily to check if an algorithm |
640 | 640 |
doesn't use any extra feature of a certain implementation. |
641 | 641 |
|
642 | 642 |
- The concept descriptor classes also provide a <em>checker class</em> |
643 | 643 |
that makes it possible to check whether a certain implementation of a |
644 | 644 |
concept indeed provides all the required features. |
645 | 645 |
|
646 | 646 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
647 | 647 |
*/ |
648 | 648 |
|
649 | 649 |
/** |
650 | 650 |
@defgroup graph_concepts Graph Structure Concepts |
651 | 651 |
@ingroup concept |
652 | 652 |
\brief Skeleton and concept checking classes for graph structures |
653 | 653 |
|
654 | 654 |
This group contains the skeletons and concept checking classes of LEMON's |
655 | 655 |
graph structures and helper classes used to implement these. |
656 | 656 |
*/ |
657 | 657 |
|
658 | 658 |
/** |
659 | 659 |
@defgroup map_concepts Map Concepts |
660 | 660 |
@ingroup concept |
661 | 661 |
\brief Skeleton and concept checking classes for maps |
662 | 662 |
|
663 | 663 |
This group contains the skeletons and concept checking classes of maps. |
664 | 664 |
*/ |
665 | 665 |
|
666 | 666 |
/** |
667 | 667 |
\anchor demoprograms |
668 | 668 |
|
669 | 669 |
@defgroup demos Demo Programs |
670 | 670 |
|
671 | 671 |
Some demo programs are listed here. Their full source codes can be found in |
672 | 672 |
the \c demo subdirectory of the source tree. |
673 | 673 |
|
674 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
|
675 |
build the library. |
|
674 |
In order to compile them, use the <tt>make demo</tt> or the |
|
675 |
<tt>make check</tt> commands. |
|
676 | 676 |
*/ |
677 | 677 |
|
678 | 678 |
/** |
679 | 679 |
@defgroup tools Standalone Utility Applications |
680 | 680 |
|
681 | 681 |
Some utility applications are listed here. |
682 | 682 |
|
683 | 683 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
684 | 684 |
them, as well. |
685 | 685 |
*/ |
686 | 686 |
|
687 | 687 |
} |
1 | 1 |
#!/bin/bash |
2 | 2 |
|
3 | 3 |
set -e |
4 | 4 |
|
5 | 5 |
if [ $# = 0 ]; then |
6 | 6 |
echo "Usage: $0 release-id" |
7 | 7 |
exit 1 |
8 | 8 |
else |
9 | 9 |
export LEMON_VERSION=$1 |
10 | 10 |
fi |
11 | 11 |
|
12 | 12 |
echo '*****************************************************************' |
13 | 13 |
echo ' Start making release tarballs for version '${LEMON_VERSION} |
14 | 14 |
echo '*****************************************************************' |
15 | 15 |
|
16 | 16 |
autoreconf -vif |
17 |
./configure |
|
17 |
./configure |
|
18 | 18 |
|
19 | 19 |
make |
20 | 20 |
make html |
21 | 21 |
make distcheck |
22 | 22 |
tar xf lemon-${LEMON_VERSION}.tar.gz |
23 | 23 |
zip -r lemon-${LEMON_VERSION}.zip lemon-${LEMON_VERSION} |
24 | 24 |
mv lemon-${LEMON_VERSION}/doc/html lemon-doc-${LEMON_VERSION} |
25 | 25 |
tar czf lemon-doc-${LEMON_VERSION}.tar.gz lemon-doc-${LEMON_VERSION} |
26 | 26 |
zip -r lemon-doc-${LEMON_VERSION}.zip lemon-doc-${LEMON_VERSION} |
27 | 27 |
tar czf lemon-nodoc-${LEMON_VERSION}.tar.gz lemon-${LEMON_VERSION} |
28 | 28 |
zip -r lemon-nodoc-${LEMON_VERSION}.zip lemon-${LEMON_VERSION} |
29 | 29 |
hg tag -m 'LEMON '${LEMON_VERSION}' released ('$(hg par --template="{node|short}")' tagged as r'${LEMON_VERSION}')' r${LEMON_VERSION} |
30 | 30 |
|
31 | 31 |
rm -rf lemon-${LEMON_VERSION} lemon-doc-${LEMON_VERSION} |
32 | 32 |
|
33 | 33 |
echo '*****************************************************************' |
34 | 34 |
echo ' Release '${LEMON_VERSION}' has been created' |
35 | 35 |
echo '*****************************************************************' |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bfs_test \ |
11 | 11 |
test/circulation_test \ |
12 | 12 |
test/counter_test \ |
13 | 13 |
test/dfs_test \ |
14 | 14 |
test/digraph_test \ |
15 | 15 |
test/dijkstra_test \ |
16 | 16 |
test/dim_test \ |
17 | 17 |
test/edge_set_test \ |
18 | 18 |
test/error_test \ |
19 | 19 |
test/euler_test \ |
20 | 20 |
test/gomory_hu_test \ |
21 | 21 |
test/graph_copy_test \ |
22 | 22 |
test/graph_test \ |
23 | 23 |
test/graph_utils_test \ |
24 | 24 |
test/hao_orlin_test \ |
25 | 25 |
test/heap_test \ |
26 | 26 |
test/kruskal_test \ |
27 | 27 |
test/maps_test \ |
28 | 28 |
test/max_matching_test \ |
29 | 29 |
test/min_cost_arborescence_test \ |
30 | 30 |
test/path_test \ |
31 | 31 |
test/preflow_test \ |
32 | 32 |
test/radix_sort_test \ |
33 | 33 |
test/random_test \ |
34 | 34 |
test/suurballe_test \ |
35 | 35 |
test/test_tools_fail \ |
36 | 36 |
test/test_tools_pass \ |
37 | 37 |
test/time_measure_test \ |
38 | 38 |
test/unionfind_test |
39 | 39 |
|
40 |
test_test_tools_pass_DEPENDENCIES = demo |
|
41 |
|
|
40 | 42 |
if HAVE_LP |
41 | 43 |
check_PROGRAMS += test/lp_test |
42 | 44 |
endif HAVE_LP |
43 | 45 |
if HAVE_MIP |
44 | 46 |
check_PROGRAMS += test/mip_test |
45 | 47 |
endif HAVE_MIP |
46 | 48 |
|
47 | 49 |
TESTS += $(check_PROGRAMS) |
48 | 50 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
49 | 51 |
|
50 | 52 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
51 | 53 |
test_bfs_test_SOURCES = test/bfs_test.cc |
52 | 54 |
test_circulation_test_SOURCES = test/circulation_test.cc |
53 | 55 |
test_counter_test_SOURCES = test/counter_test.cc |
54 | 56 |
test_dfs_test_SOURCES = test/dfs_test.cc |
55 | 57 |
test_digraph_test_SOURCES = test/digraph_test.cc |
56 | 58 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
57 | 59 |
test_dim_test_SOURCES = test/dim_test.cc |
58 | 60 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
59 | 61 |
test_error_test_SOURCES = test/error_test.cc |
60 | 62 |
test_euler_test_SOURCES = test/euler_test.cc |
61 | 63 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
62 | 64 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
63 | 65 |
test_graph_test_SOURCES = test/graph_test.cc |
64 | 66 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
65 | 67 |
test_heap_test_SOURCES = test/heap_test.cc |
66 | 68 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
67 | 69 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
68 | 70 |
test_lp_test_SOURCES = test/lp_test.cc |
69 | 71 |
test_maps_test_SOURCES = test/maps_test.cc |
70 | 72 |
test_mip_test_SOURCES = test/mip_test.cc |
71 | 73 |
test_max_matching_test_SOURCES = test/max_matching_test.cc |
72 | 74 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
73 | 75 |
test_path_test_SOURCES = test/path_test.cc |
74 | 76 |
test_preflow_test_SOURCES = test/preflow_test.cc |
75 | 77 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
76 | 78 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
77 | 79 |
test_random_test_SOURCES = test/random_test.cc |
78 | 80 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
79 | 81 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
80 | 82 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
81 | 83 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
0 comments (0 inline)