!
!
!
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 | 23 |
This group contains the several data structures implemented in LEMON. |
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| ... | ... |
@@ -230,128 +230,128 @@ |
| 230 | 230 |
@ingroup datas |
| 231 | 231 |
\brief %Path structures implemented in LEMON. |
| 232 | 232 |
|
| 233 | 233 |
This group contains the path structures implemented in LEMON. |
| 234 | 234 |
|
| 235 | 235 |
LEMON provides flexible data structures to work with paths. |
| 236 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 237 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 239 | 239 |
any kind of path structure. |
| 240 | 240 |
|
| 241 | 241 |
\sa lemon::concepts::Path |
| 242 | 242 |
*/ |
| 243 | 243 |
|
| 244 | 244 |
/** |
| 245 | 245 |
@defgroup auxdat Auxiliary Data Structures |
| 246 | 246 |
@ingroup datas |
| 247 | 247 |
\brief Auxiliary data structures implemented in LEMON. |
| 248 | 248 |
|
| 249 | 249 |
This group contains some data structures implemented in LEMON in |
| 250 | 250 |
order to make it easier to implement combinatorial algorithms. |
| 251 | 251 |
*/ |
| 252 | 252 |
|
| 253 | 253 |
/** |
| 254 | 254 |
@defgroup algs Algorithms |
| 255 | 255 |
\brief This group contains the several algorithms |
| 256 | 256 |
implemented in LEMON. |
| 257 | 257 |
|
| 258 | 258 |
This group contains the several algorithms |
| 259 | 259 |
implemented in LEMON. |
| 260 | 260 |
*/ |
| 261 | 261 |
|
| 262 | 262 |
/** |
| 263 | 263 |
@defgroup search Graph Search |
| 264 | 264 |
@ingroup algs |
| 265 | 265 |
\brief Common graph search algorithms. |
| 266 | 266 |
|
| 267 | 267 |
This group contains the common graph search algorithms, namely |
| 268 | 268 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 269 | 269 |
*/ |
| 270 | 270 |
|
| 271 | 271 |
/** |
| 272 | 272 |
@defgroup shortest_path Shortest Path Algorithms |
| 273 | 273 |
@ingroup algs |
| 274 | 274 |
\brief Algorithms for finding shortest paths. |
| 275 | 275 |
|
| 276 | 276 |
This group contains the algorithms for finding shortest paths in digraphs. |
| 277 | 277 |
|
| 278 |
- \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a |
|
| 278 |
- \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a |
|
| 279 | 279 |
source node when all arc lengths are non-negative. |
| 280 | 280 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 281 | 281 |
arc-disjoint paths between two nodes having minimum total length. |
| 282 | 282 |
*/ |
| 283 | 283 |
|
| 284 | 284 |
/** |
| 285 | 285 |
@defgroup max_flow Maximum Flow Algorithms |
| 286 | 286 |
@ingroup algs |
| 287 | 287 |
\brief Algorithms for finding maximum flows. |
| 288 | 288 |
|
| 289 | 289 |
This group contains the algorithms for finding maximum flows and |
| 290 | 290 |
feasible circulations. |
| 291 | 291 |
|
| 292 | 292 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 293 | 293 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 294 | 294 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 295 | 295 |
\f$s, t \in V\f$ source and target nodes. |
| 296 | 296 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 297 | 297 |
following optimization problem. |
| 298 | 298 |
|
| 299 | 299 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 300 | 300 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 301 | 301 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 302 | 302 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 303 | 303 |
|
| 304 | 304 |
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and |
| 305 | 305 |
Tarjan for solving this problem. It also provides functions to query the |
| 306 | 306 |
minimum cut, which is the dual problem of maximum flow. |
| 307 | 307 |
|
| 308 | 308 |
|
| 309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
| 309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
| 310 | 310 |
for finding feasible circulations, which is a somewhat different problem, |
| 311 | 311 |
but it is strongly related to maximum flow. |
| 312 | 312 |
For more information, see \ref Circulation. |
| 313 | 313 |
*/ |
| 314 | 314 |
|
| 315 | 315 |
/** |
| 316 | 316 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 317 | 317 |
@ingroup algs |
| 318 | 318 |
|
| 319 | 319 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 320 | 320 |
|
| 321 | 321 |
This group contains the algorithms for finding minimum cost flows and |
| 322 | 322 |
circulations. For more information about this problem and its dual |
| 323 | 323 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
| 324 | 324 |
|
| 325 | 325 |
\ref NetworkSimplex is an efficient implementation of the primal Network |
| 326 | 326 |
Simplex algorithm for finding minimum cost flows. It also provides dual |
| 327 | 327 |
solution (node potentials), if an optimal flow is found. |
| 328 | 328 |
*/ |
| 329 | 329 |
|
| 330 | 330 |
/** |
| 331 | 331 |
@defgroup min_cut Minimum Cut Algorithms |
| 332 | 332 |
@ingroup algs |
| 333 | 333 |
|
| 334 | 334 |
\brief Algorithms for finding minimum cut in graphs. |
| 335 | 335 |
|
| 336 | 336 |
This group contains the algorithms for finding minimum cut in graphs. |
| 337 | 337 |
|
| 338 | 338 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 339 | 339 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 340 | 340 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 341 | 341 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 342 | 342 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 343 | 343 |
|
| 344 | 344 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 345 | 345 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
|
| 346 | 346 |
|
| 347 | 347 |
LEMON contains several algorithms related to minimum cut problems: |
| 348 | 348 |
|
| 349 | 349 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 350 | 350 |
in directed graphs. |
| 351 | 351 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 352 | 352 |
all-pairs minimum cut in undirected graphs. |
| 353 | 353 |
|
| 354 | 354 |
If you want to find minimum cut just between two distinict nodes, |
| 355 | 355 |
see the \ref max_flow "maximum flow problem". |
| 356 | 356 |
*/ |
| 357 | 357 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
/*! |
| 21 | 21 |
|
| 22 | 22 |
|
| 23 | 23 |
|
| 24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
| 25 | 25 |
|
| 26 | 26 |
The \e LGF is a <em>column oriented</em> |
| 27 | 27 |
file format for storing graphs and associated data like |
| 28 | 28 |
node and edge maps. |
| 29 | 29 |
|
| 30 | 30 |
Each line with \c '#' first non-whitespace |
| 31 | 31 |
character is considered as a comment line. |
| 32 | 32 |
|
| 33 | 33 |
Otherwise the file consists of sections starting with |
| 34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
| 35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
| 36 | 36 |
\@arcs and \c \@edges |
| 37 | 37 |
and \@attributes. Each header line may also have an optional |
| 38 | 38 |
\e name, which can be use to distinguish the sections of the same |
| 39 | 39 |
type. |
| 40 | 40 |
|
| 41 | 41 |
The standard sections are column oriented, each line consists of |
| 42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
| 43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
| 44 | 44 |
while a quoted token is a |
| 45 | 45 |
character sequence surrounded by double quotes, and it can also |
| 46 | 46 |
contain whitespaces and escape sequences. |
| 47 | 47 |
|
| 48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
| 49 | 49 |
maps. The first is a header line, its columns are the names of the |
| 50 | 50 |
maps appearing in the following lines. |
| 51 | 51 |
One of the maps must be called \c |
| 52 | 52 |
"label", which plays special role in the file. |
| 53 | 53 |
The following |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 | 29 |
and arc costs. |
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| 36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
| 37 | 37 |
signed supply values of the nodes. |
| 38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 40 | 40 |
\f$-sup(u)\f$ demand. |
| 41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
|
| 42 | 42 |
of the following optimization problem. |
| 43 | 43 |
|
| 44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 46 | 46 |
sup(u) \quad \forall u\in V \f] |
| 47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 48 | 48 |
|
| 49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
| 51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
| 52 | 52 |
It means that the total demand must be greater or equal to the total |
| 53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
| 54 | 54 |
but there could be demands that are not satisfied. |
| 55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
| 57 | 57 |
have to be satisfied and all supplies have to be used. |
| 58 | 58 |
|
| 59 | 59 |
|
| 60 | 60 |
\section mcf_algs Algorithms |
| 61 | 61 |
|
| 62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
| 63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
| 64 | 64 |
|
| 65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
| 66 | 66 |
|
| 67 | 67 |
|
| 68 | 68 |
\section mcf_dual Dual Solution |
| 69 | 69 |
|
| 70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
| 71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
|
| 72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
|
| 73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
|
| 74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 | 81 |
- \f$\pi(u)<=0\f$; |
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 |
|
|
| 84 |
|
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 88 | 88 |
|
| 89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
| 90 | 90 |
if an optimal flow is found. |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
\section mcf_eq Equality Form |
| 94 | 94 |
|
| 95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
| 96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
| 97 | 97 |
equalities are required in the supply/demand contraints. |
| 98 | 98 |
|
| 99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
| 101 | 101 |
sup(u) \quad \forall u\in V \f] |
| 102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 103 | 103 |
|
| 104 | 104 |
However if the sum of the supply values is zero, then these two problems |
| 105 | 105 |
are equivalent. |
| 106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
| 107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
| 108 | 108 |
contraint manually. |
| 109 | 109 |
|
| 110 | 110 |
|
| 111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
| 112 | 112 |
|
| 113 | 113 |
Another possible definition of the minimum cost flow problem is |
| 114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
| 115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
| 116 | 116 |
|
| 117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
| 119 | 119 |
sup(u) \quad \forall u\in V \f] |
| 120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 121 | 121 |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 122 |
It means that the total demand must be less or equal to the |
|
| 123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 124 | 124 |
positive) and all the demands have to be satisfied, but there |
| 125 | 125 |
could be supplies that are not carried out from the supply |
| 126 | 126 |
nodes. |
| 127 | 127 |
The equality form is also a special case of this form, of course. |
| 128 | 128 |
|
| 129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
| 130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
| 131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
| 132 | 132 |
\ref NegMap adaptors). |
| 133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
| 134 | 134 |
for the sake of convenience. |
| 135 | 135 |
|
| 136 | 136 |
Note that the optimality conditions for this supply constraint type are |
| 137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
| 138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
| 139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
|
| 140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
|
| 141 | 141 |
node potentials the following conditions hold. |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 | 148 |
- \f$\pi(u)>=0\f$; |
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ADAPTORS_H |
| 20 | 20 |
#define LEMON_ADAPTORS_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup graph_adaptors |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
| 25 | 25 |
/// |
| 26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/maps.h> |
| 30 | 30 |
#include <lemon/bits/variant.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
| 33 | 33 |
#include <lemon/bits/map_extender.h> |
| 34 | 34 |
#include <lemon/tolerance.h> |
| 35 | 35 |
|
| 36 | 36 |
#include <algorithm> |
| 37 | 37 |
|
| 38 | 38 |
namespace lemon {
|
| 39 | 39 |
|
| 40 | 40 |
#ifdef _MSC_VER |
| 41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
| 42 | 42 |
#else |
| 43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
| 44 | 44 |
#endif |
| 45 | 45 |
|
| 46 | 46 |
template<typename DGR> |
| 47 | 47 |
class DigraphAdaptorBase {
|
| 48 | 48 |
public: |
| 49 | 49 |
typedef DGR Digraph; |
| 50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
| 51 | 51 |
|
| 52 | 52 |
protected: |
| 53 | 53 |
DGR* _digraph; |
| ... | ... |
@@ -373,354 +373,354 @@ |
| 373 | 373 |
class ReverseDigraph : |
| 374 | 374 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
|
| 375 | 375 |
#endif |
| 376 | 376 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
| 377 | 377 |
public: |
| 378 | 378 |
/// The type of the adapted digraph. |
| 379 | 379 |
typedef DGR Digraph; |
| 380 | 380 |
protected: |
| 381 | 381 |
ReverseDigraph() { }
|
| 382 | 382 |
public: |
| 383 | 383 |
|
| 384 | 384 |
/// \brief Constructor |
| 385 | 385 |
/// |
| 386 | 386 |
/// Creates a reverse digraph adaptor for the given digraph. |
| 387 | 387 |
explicit ReverseDigraph(DGR& digraph) {
|
| 388 | 388 |
Parent::initialize(digraph); |
| 389 | 389 |
} |
| 390 | 390 |
}; |
| 391 | 391 |
|
| 392 | 392 |
/// \brief Returns a read-only ReverseDigraph adaptor |
| 393 | 393 |
/// |
| 394 | 394 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
| 395 | 395 |
/// \ingroup graph_adaptors |
| 396 | 396 |
/// \relates ReverseDigraph |
| 397 | 397 |
template<typename DGR> |
| 398 | 398 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
|
| 399 | 399 |
return ReverseDigraph<const DGR>(digraph); |
| 400 | 400 |
} |
| 401 | 401 |
|
| 402 | 402 |
|
| 403 | 403 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
| 404 | 404 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 405 | 405 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 406 | 406 |
public: |
| 407 | 407 |
typedef DGR Digraph; |
| 408 | 408 |
typedef NF NodeFilterMap; |
| 409 | 409 |
typedef AF ArcFilterMap; |
| 410 | 410 |
|
| 411 | 411 |
typedef SubDigraphBase Adaptor; |
| 412 | 412 |
protected: |
| 413 | 413 |
NF* _node_filter; |
| 414 | 414 |
AF* _arc_filter; |
| 415 | 415 |
SubDigraphBase() |
| 416 | 416 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 417 | 417 |
|
| 418 | 418 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 419 | 419 |
Parent::initialize(digraph); |
| 420 | 420 |
_node_filter = &node_filter; |
| 421 |
_arc_filter = &arc_filter; |
|
| 421 |
_arc_filter = &arc_filter; |
|
| 422 | 422 |
} |
| 423 | 423 |
|
| 424 | 424 |
public: |
| 425 | 425 |
|
| 426 | 426 |
typedef typename Parent::Node Node; |
| 427 | 427 |
typedef typename Parent::Arc Arc; |
| 428 | 428 |
|
| 429 | 429 |
void first(Node& i) const {
|
| 430 | 430 |
Parent::first(i); |
| 431 | 431 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 432 | 432 |
} |
| 433 | 433 |
|
| 434 | 434 |
void first(Arc& i) const {
|
| 435 | 435 |
Parent::first(i); |
| 436 | 436 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 437 | 437 |
|| !(*_node_filter)[Parent::source(i)] |
| 438 | 438 |
|| !(*_node_filter)[Parent::target(i)])) |
| 439 | 439 |
Parent::next(i); |
| 440 | 440 |
} |
| 441 | 441 |
|
| 442 | 442 |
void firstIn(Arc& i, const Node& n) const {
|
| 443 | 443 |
Parent::firstIn(i, n); |
| 444 | 444 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 445 | 445 |
|| !(*_node_filter)[Parent::source(i)])) |
| 446 | 446 |
Parent::nextIn(i); |
| 447 | 447 |
} |
| 448 | 448 |
|
| 449 | 449 |
void firstOut(Arc& i, const Node& n) const {
|
| 450 | 450 |
Parent::firstOut(i, n); |
| 451 | 451 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 452 | 452 |
|| !(*_node_filter)[Parent::target(i)])) |
| 453 | 453 |
Parent::nextOut(i); |
| 454 | 454 |
} |
| 455 | 455 |
|
| 456 | 456 |
void next(Node& i) const {
|
| 457 | 457 |
Parent::next(i); |
| 458 | 458 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 459 | 459 |
} |
| 460 | 460 |
|
| 461 | 461 |
void next(Arc& i) const {
|
| 462 | 462 |
Parent::next(i); |
| 463 | 463 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 464 | 464 |
|| !(*_node_filter)[Parent::source(i)] |
| 465 | 465 |
|| !(*_node_filter)[Parent::target(i)])) |
| 466 | 466 |
Parent::next(i); |
| 467 | 467 |
} |
| 468 | 468 |
|
| 469 | 469 |
void nextIn(Arc& i) const {
|
| 470 | 470 |
Parent::nextIn(i); |
| 471 | 471 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 472 | 472 |
|| !(*_node_filter)[Parent::source(i)])) |
| 473 | 473 |
Parent::nextIn(i); |
| 474 | 474 |
} |
| 475 | 475 |
|
| 476 | 476 |
void nextOut(Arc& i) const {
|
| 477 | 477 |
Parent::nextOut(i); |
| 478 | 478 |
while (i != INVALID && (!(*_arc_filter)[i] |
| 479 | 479 |
|| !(*_node_filter)[Parent::target(i)])) |
| 480 | 480 |
Parent::nextOut(i); |
| 481 | 481 |
} |
| 482 | 482 |
|
| 483 | 483 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 484 | 484 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 485 | 485 |
|
| 486 | 486 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 487 | 487 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 488 | 488 |
|
| 489 | 489 |
typedef False NodeNumTag; |
| 490 | 490 |
typedef False ArcNumTag; |
| 491 | 491 |
|
| 492 | 492 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 493 | 493 |
Arc findArc(const Node& source, const Node& target, |
| 494 | 494 |
const Arc& prev = INVALID) const {
|
| 495 | 495 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 496 | 496 |
return INVALID; |
| 497 | 497 |
} |
| 498 | 498 |
Arc arc = Parent::findArc(source, target, prev); |
| 499 | 499 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 500 | 500 |
arc = Parent::findArc(source, target, arc); |
| 501 | 501 |
} |
| 502 | 502 |
return arc; |
| 503 | 503 |
} |
| 504 | 504 |
|
| 505 | 505 |
public: |
| 506 | 506 |
|
| 507 | 507 |
template <typename V> |
| 508 |
class NodeMap |
|
| 509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 510 |
|
|
| 508 |
class NodeMap |
|
| 509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
| 510 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
|
| 511 | 511 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 512 |
|
|
| 512 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
| 513 | 513 |
|
| 514 | 514 |
public: |
| 515 | 515 |
typedef V Value; |
| 516 | 516 |
|
| 517 | 517 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 518 | 518 |
: Parent(adaptor) {}
|
| 519 | 519 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 520 | 520 |
: Parent(adaptor, value) {}
|
| 521 | 521 |
|
| 522 | 522 |
private: |
| 523 | 523 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 524 | 524 |
return operator=<NodeMap>(cmap); |
| 525 | 525 |
} |
| 526 | 526 |
|
| 527 | 527 |
template <typename CMap> |
| 528 | 528 |
NodeMap& operator=(const CMap& cmap) {
|
| 529 | 529 |
Parent::operator=(cmap); |
| 530 | 530 |
return *this; |
| 531 | 531 |
} |
| 532 | 532 |
}; |
| 533 | 533 |
|
| 534 | 534 |
template <typename V> |
| 535 |
class ArcMap |
|
| 535 |
class ArcMap |
|
| 536 | 536 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 537 |
|
|
| 537 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
|
| 538 | 538 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
| 539 | 539 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 540 | 540 |
|
| 541 | 541 |
public: |
| 542 | 542 |
typedef V Value; |
| 543 | 543 |
|
| 544 | 544 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
| 545 | 545 |
: Parent(adaptor) {}
|
| 546 | 546 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
| 547 | 547 |
: Parent(adaptor, value) {}
|
| 548 | 548 |
|
| 549 | 549 |
private: |
| 550 | 550 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 551 | 551 |
return operator=<ArcMap>(cmap); |
| 552 | 552 |
} |
| 553 | 553 |
|
| 554 | 554 |
template <typename CMap> |
| 555 | 555 |
ArcMap& operator=(const CMap& cmap) {
|
| 556 | 556 |
Parent::operator=(cmap); |
| 557 | 557 |
return *this; |
| 558 | 558 |
} |
| 559 | 559 |
}; |
| 560 | 560 |
|
| 561 | 561 |
}; |
| 562 | 562 |
|
| 563 | 563 |
template <typename DGR, typename NF, typename AF> |
| 564 | 564 |
class SubDigraphBase<DGR, NF, AF, false> |
| 565 | 565 |
: public DigraphAdaptorBase<DGR> {
|
| 566 | 566 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 567 | 567 |
public: |
| 568 | 568 |
typedef DGR Digraph; |
| 569 | 569 |
typedef NF NodeFilterMap; |
| 570 | 570 |
typedef AF ArcFilterMap; |
| 571 | 571 |
|
| 572 | 572 |
typedef SubDigraphBase Adaptor; |
| 573 | 573 |
protected: |
| 574 | 574 |
NF* _node_filter; |
| 575 | 575 |
AF* _arc_filter; |
| 576 | 576 |
SubDigraphBase() |
| 577 | 577 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 578 | 578 |
|
| 579 | 579 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
|
| 580 | 580 |
Parent::initialize(digraph); |
| 581 | 581 |
_node_filter = &node_filter; |
| 582 |
_arc_filter = &arc_filter; |
|
| 582 |
_arc_filter = &arc_filter; |
|
| 583 | 583 |
} |
| 584 | 584 |
|
| 585 | 585 |
public: |
| 586 | 586 |
|
| 587 | 587 |
typedef typename Parent::Node Node; |
| 588 | 588 |
typedef typename Parent::Arc Arc; |
| 589 | 589 |
|
| 590 | 590 |
void first(Node& i) const {
|
| 591 | 591 |
Parent::first(i); |
| 592 | 592 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 593 | 593 |
} |
| 594 | 594 |
|
| 595 | 595 |
void first(Arc& i) const {
|
| 596 | 596 |
Parent::first(i); |
| 597 | 597 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
| 598 | 598 |
} |
| 599 | 599 |
|
| 600 | 600 |
void firstIn(Arc& i, const Node& n) const {
|
| 601 | 601 |
Parent::firstIn(i, n); |
| 602 | 602 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 603 | 603 |
} |
| 604 | 604 |
|
| 605 | 605 |
void firstOut(Arc& i, const Node& n) const {
|
| 606 | 606 |
Parent::firstOut(i, n); |
| 607 | 607 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 608 | 608 |
} |
| 609 | 609 |
|
| 610 | 610 |
void next(Node& i) const {
|
| 611 | 611 |
Parent::next(i); |
| 612 | 612 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 613 | 613 |
} |
| 614 | 614 |
void next(Arc& i) const {
|
| 615 | 615 |
Parent::next(i); |
| 616 | 616 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
| 617 | 617 |
} |
| 618 | 618 |
void nextIn(Arc& i) const {
|
| 619 | 619 |
Parent::nextIn(i); |
| 620 | 620 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
| 621 | 621 |
} |
| 622 | 622 |
|
| 623 | 623 |
void nextOut(Arc& i) const {
|
| 624 | 624 |
Parent::nextOut(i); |
| 625 | 625 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
| 626 | 626 |
} |
| 627 | 627 |
|
| 628 | 628 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 629 | 629 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
|
| 630 | 630 |
|
| 631 | 631 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 632 | 632 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
|
| 633 | 633 |
|
| 634 | 634 |
typedef False NodeNumTag; |
| 635 | 635 |
typedef False ArcNumTag; |
| 636 | 636 |
|
| 637 | 637 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 638 | 638 |
Arc findArc(const Node& source, const Node& target, |
| 639 | 639 |
const Arc& prev = INVALID) const {
|
| 640 | 640 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
|
| 641 | 641 |
return INVALID; |
| 642 | 642 |
} |
| 643 | 643 |
Arc arc = Parent::findArc(source, target, prev); |
| 644 | 644 |
while (arc != INVALID && !(*_arc_filter)[arc]) {
|
| 645 | 645 |
arc = Parent::findArc(source, target, arc); |
| 646 | 646 |
} |
| 647 | 647 |
return arc; |
| 648 | 648 |
} |
| 649 | 649 |
|
| 650 | 650 |
template <typename V> |
| 651 |
class NodeMap |
|
| 651 |
class NodeMap |
|
| 652 | 652 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 653 | 653 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
|
| 654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
| 655 | 655 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
| 656 | 656 |
|
| 657 | 657 |
public: |
| 658 | 658 |
typedef V Value; |
| 659 | 659 |
|
| 660 | 660 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 661 | 661 |
: Parent(adaptor) {}
|
| 662 | 662 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 663 | 663 |
: Parent(adaptor, value) {}
|
| 664 | 664 |
|
| 665 | 665 |
private: |
| 666 | 666 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 667 | 667 |
return operator=<NodeMap>(cmap); |
| 668 | 668 |
} |
| 669 | 669 |
|
| 670 | 670 |
template <typename CMap> |
| 671 | 671 |
NodeMap& operator=(const CMap& cmap) {
|
| 672 | 672 |
Parent::operator=(cmap); |
| 673 | 673 |
return *this; |
| 674 | 674 |
} |
| 675 | 675 |
}; |
| 676 | 676 |
|
| 677 | 677 |
template <typename V> |
| 678 |
class ArcMap |
|
| 678 |
class ArcMap |
|
| 679 | 679 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 680 | 680 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
|
| 681 | 681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
| 682 | 682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
| 683 | 683 |
|
| 684 | 684 |
public: |
| 685 | 685 |
typedef V Value; |
| 686 | 686 |
|
| 687 | 687 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
| 688 | 688 |
: Parent(adaptor) {}
|
| 689 | 689 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
| 690 | 690 |
: Parent(adaptor, value) {}
|
| 691 | 691 |
|
| 692 | 692 |
private: |
| 693 | 693 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 694 | 694 |
return operator=<ArcMap>(cmap); |
| 695 | 695 |
} |
| 696 | 696 |
|
| 697 | 697 |
template <typename CMap> |
| 698 | 698 |
ArcMap& operator=(const CMap& cmap) {
|
| 699 | 699 |
Parent::operator=(cmap); |
| 700 | 700 |
return *this; |
| 701 | 701 |
} |
| 702 | 702 |
}; |
| 703 | 703 |
|
| 704 | 704 |
}; |
| 705 | 705 |
|
| 706 | 706 |
/// \ingroup graph_adaptors |
| 707 | 707 |
/// |
| 708 | 708 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
| 709 | 709 |
/// |
| 710 | 710 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
| 711 | 711 |
/// A \c bool node map and a \c bool arc map must be specified, which |
| 712 | 712 |
/// define the filters for nodes and arcs. |
| 713 | 713 |
/// Only the nodes and arcs with \c true filter value are |
| 714 | 714 |
/// shown in the subdigraph. The arcs that are incident to hidden |
| 715 | 715 |
/// nodes are also filtered out. |
| 716 | 716 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
| 717 | 717 |
/// |
| 718 | 718 |
/// The adapted digraph can also be modified through this adaptor |
| 719 | 719 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 720 | 720 |
/// parameter is set to be \c const. |
| 721 | 721 |
/// |
| 722 | 722 |
/// \tparam DGR The type of the adapted digraph. |
| 723 | 723 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 724 | 724 |
/// It can also be specified to be \c const. |
| 725 | 725 |
/// \tparam NF The type of the node filter map. |
| 726 | 726 |
/// It must be a \c bool (or convertible) node map of the |
| ... | ... |
@@ -971,194 +971,194 @@ |
| 971 | 971 |
Parent::nextOut(i); |
| 972 | 972 |
} |
| 973 | 973 |
|
| 974 | 974 |
void nextInc(Edge& i, bool& d) const {
|
| 975 | 975 |
Parent::nextInc(i, d); |
| 976 | 976 |
while (i!=INVALID && (!(*_edge_filter)[i] |
| 977 | 977 |
|| !(*_node_filter)[Parent::u(i)] |
| 978 | 978 |
|| !(*_node_filter)[Parent::v(i)])) |
| 979 | 979 |
Parent::nextInc(i, d); |
| 980 | 980 |
} |
| 981 | 981 |
|
| 982 | 982 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 983 | 983 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
|
| 984 | 984 |
|
| 985 | 985 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 986 | 986 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
|
| 987 | 987 |
|
| 988 | 988 |
typedef False NodeNumTag; |
| 989 | 989 |
typedef False ArcNumTag; |
| 990 | 990 |
typedef False EdgeNumTag; |
| 991 | 991 |
|
| 992 | 992 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 993 | 993 |
Arc findArc(const Node& u, const Node& v, |
| 994 | 994 |
const Arc& prev = INVALID) const {
|
| 995 | 995 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 996 | 996 |
return INVALID; |
| 997 | 997 |
} |
| 998 | 998 |
Arc arc = Parent::findArc(u, v, prev); |
| 999 | 999 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1000 | 1000 |
arc = Parent::findArc(u, v, arc); |
| 1001 | 1001 |
} |
| 1002 | 1002 |
return arc; |
| 1003 | 1003 |
} |
| 1004 | 1004 |
|
| 1005 | 1005 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1006 | 1006 |
Edge findEdge(const Node& u, const Node& v, |
| 1007 | 1007 |
const Edge& prev = INVALID) const {
|
| 1008 | 1008 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
|
| 1009 | 1009 |
return INVALID; |
| 1010 | 1010 |
} |
| 1011 | 1011 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1012 | 1012 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1013 | 1013 |
edge = Parent::findEdge(u, v, edge); |
| 1014 | 1014 |
} |
| 1015 | 1015 |
return edge; |
| 1016 | 1016 |
} |
| 1017 | 1017 |
|
| 1018 | 1018 |
template <typename V> |
| 1019 |
class NodeMap |
|
| 1019 |
class NodeMap |
|
| 1020 | 1020 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1021 | 1021 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1023 | 1023 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1024 | 1024 |
|
| 1025 | 1025 |
public: |
| 1026 | 1026 |
typedef V Value; |
| 1027 | 1027 |
|
| 1028 | 1028 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1029 | 1029 |
: Parent(adaptor) {}
|
| 1030 | 1030 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1031 | 1031 |
: Parent(adaptor, value) {}
|
| 1032 | 1032 |
|
| 1033 | 1033 |
private: |
| 1034 | 1034 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1035 | 1035 |
return operator=<NodeMap>(cmap); |
| 1036 | 1036 |
} |
| 1037 | 1037 |
|
| 1038 | 1038 |
template <typename CMap> |
| 1039 | 1039 |
NodeMap& operator=(const CMap& cmap) {
|
| 1040 | 1040 |
Parent::operator=(cmap); |
| 1041 | 1041 |
return *this; |
| 1042 | 1042 |
} |
| 1043 | 1043 |
}; |
| 1044 | 1044 |
|
| 1045 | 1045 |
template <typename V> |
| 1046 |
class ArcMap |
|
| 1046 |
class ArcMap |
|
| 1047 | 1047 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1048 | 1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1050 | 1050 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1051 | 1051 |
|
| 1052 | 1052 |
public: |
| 1053 | 1053 |
typedef V Value; |
| 1054 | 1054 |
|
| 1055 | 1055 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1056 | 1056 |
: Parent(adaptor) {}
|
| 1057 | 1057 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1058 | 1058 |
: Parent(adaptor, value) {}
|
| 1059 | 1059 |
|
| 1060 | 1060 |
private: |
| 1061 | 1061 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1062 | 1062 |
return operator=<ArcMap>(cmap); |
| 1063 | 1063 |
} |
| 1064 | 1064 |
|
| 1065 | 1065 |
template <typename CMap> |
| 1066 | 1066 |
ArcMap& operator=(const CMap& cmap) {
|
| 1067 | 1067 |
Parent::operator=(cmap); |
| 1068 | 1068 |
return *this; |
| 1069 | 1069 |
} |
| 1070 | 1070 |
}; |
| 1071 | 1071 |
|
| 1072 | 1072 |
template <typename V> |
| 1073 |
class EdgeMap |
|
| 1073 |
class EdgeMap |
|
| 1074 | 1074 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
| 1075 | 1075 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
| 1077 | 1077 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
| 1078 | 1078 |
|
| 1079 | 1079 |
public: |
| 1080 | 1080 |
typedef V Value; |
| 1081 | 1081 |
|
| 1082 | 1082 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
| 1083 | 1083 |
: Parent(adaptor) {}
|
| 1084 | 1084 |
|
| 1085 | 1085 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
| 1086 | 1086 |
: Parent(adaptor, value) {}
|
| 1087 | 1087 |
|
| 1088 | 1088 |
private: |
| 1089 | 1089 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1090 | 1090 |
return operator=<EdgeMap>(cmap); |
| 1091 | 1091 |
} |
| 1092 | 1092 |
|
| 1093 | 1093 |
template <typename CMap> |
| 1094 | 1094 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1095 | 1095 |
Parent::operator=(cmap); |
| 1096 | 1096 |
return *this; |
| 1097 | 1097 |
} |
| 1098 | 1098 |
}; |
| 1099 | 1099 |
|
| 1100 | 1100 |
}; |
| 1101 | 1101 |
|
| 1102 | 1102 |
template <typename GR, typename NF, typename EF> |
| 1103 | 1103 |
class SubGraphBase<GR, NF, EF, false> |
| 1104 | 1104 |
: public GraphAdaptorBase<GR> {
|
| 1105 | 1105 |
typedef GraphAdaptorBase<GR> Parent; |
| 1106 | 1106 |
public: |
| 1107 | 1107 |
typedef GR Graph; |
| 1108 | 1108 |
typedef NF NodeFilterMap; |
| 1109 | 1109 |
typedef EF EdgeFilterMap; |
| 1110 | 1110 |
|
| 1111 | 1111 |
typedef SubGraphBase Adaptor; |
| 1112 | 1112 |
protected: |
| 1113 | 1113 |
NF* _node_filter; |
| 1114 | 1114 |
EF* _edge_filter; |
| 1115 |
SubGraphBase() |
|
| 1116 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1115 |
SubGraphBase() |
|
| 1116 |
: Parent(), _node_filter(0), _edge_filter(0) { }
|
|
| 1117 | 1117 |
|
| 1118 | 1118 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
|
| 1119 | 1119 |
Parent::initialize(graph); |
| 1120 | 1120 |
_node_filter = &node_filter; |
| 1121 | 1121 |
_edge_filter = &edge_filter; |
| 1122 | 1122 |
} |
| 1123 | 1123 |
|
| 1124 | 1124 |
public: |
| 1125 | 1125 |
|
| 1126 | 1126 |
typedef typename Parent::Node Node; |
| 1127 | 1127 |
typedef typename Parent::Arc Arc; |
| 1128 | 1128 |
typedef typename Parent::Edge Edge; |
| 1129 | 1129 |
|
| 1130 | 1130 |
void first(Node& i) const {
|
| 1131 | 1131 |
Parent::first(i); |
| 1132 | 1132 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 1133 | 1133 |
} |
| 1134 | 1134 |
|
| 1135 | 1135 |
void first(Arc& i) const {
|
| 1136 | 1136 |
Parent::first(i); |
| 1137 | 1137 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1138 | 1138 |
} |
| 1139 | 1139 |
|
| 1140 | 1140 |
void first(Edge& i) const {
|
| 1141 | 1141 |
Parent::first(i); |
| 1142 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1143 | 1143 |
} |
| 1144 | 1144 |
|
| 1145 | 1145 |
void firstIn(Arc& i, const Node& n) const {
|
| 1146 | 1146 |
Parent::firstIn(i, n); |
| 1147 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
| 1148 | 1148 |
} |
| 1149 | 1149 |
|
| 1150 | 1150 |
void firstOut(Arc& i, const Node& n) const {
|
| 1151 | 1151 |
Parent::firstOut(i, n); |
| 1152 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
| 1153 | 1153 |
} |
| 1154 | 1154 |
|
| 1155 | 1155 |
void firstInc(Edge& i, bool& d, const Node& n) const {
|
| 1156 | 1156 |
Parent::firstInc(i, d, n); |
| 1157 | 1157 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
| 1158 | 1158 |
} |
| 1159 | 1159 |
|
| 1160 | 1160 |
void next(Node& i) const {
|
| 1161 | 1161 |
Parent::next(i); |
| 1162 | 1162 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
| 1163 | 1163 |
} |
| 1164 | 1164 |
void next(Arc& i) const {
|
| ... | ... |
@@ -1169,155 +1169,155 @@ |
| 1169 | 1169 |
Parent::next(i); |
| 1170 | 1170 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
| 1171 | 1171 |
} |
| 1172 | 1172 |
void nextIn(Arc& i) const {
|
| 1173 | 1173 |
Parent::nextIn(i); |
| 1174 | 1174 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
| 1175 | 1175 |
} |
| 1176 | 1176 |
|
| 1177 | 1177 |
void nextOut(Arc& i) const {
|
| 1178 | 1178 |
Parent::nextOut(i); |
| 1179 | 1179 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
| 1180 | 1180 |
} |
| 1181 | 1181 |
void nextInc(Edge& i, bool& d) const {
|
| 1182 | 1182 |
Parent::nextInc(i, d); |
| 1183 | 1183 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
| 1184 | 1184 |
} |
| 1185 | 1185 |
|
| 1186 | 1186 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
|
| 1187 | 1187 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
|
| 1188 | 1188 |
|
| 1189 | 1189 |
bool status(const Node& n) const { return (*_node_filter)[n]; }
|
| 1190 | 1190 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
|
| 1191 | 1191 |
|
| 1192 | 1192 |
typedef False NodeNumTag; |
| 1193 | 1193 |
typedef False ArcNumTag; |
| 1194 | 1194 |
typedef False EdgeNumTag; |
| 1195 | 1195 |
|
| 1196 | 1196 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 1197 | 1197 |
Arc findArc(const Node& u, const Node& v, |
| 1198 | 1198 |
const Arc& prev = INVALID) const {
|
| 1199 | 1199 |
Arc arc = Parent::findArc(u, v, prev); |
| 1200 | 1200 |
while (arc != INVALID && !(*_edge_filter)[arc]) {
|
| 1201 | 1201 |
arc = Parent::findArc(u, v, arc); |
| 1202 | 1202 |
} |
| 1203 | 1203 |
return arc; |
| 1204 | 1204 |
} |
| 1205 | 1205 |
|
| 1206 | 1206 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 1207 | 1207 |
Edge findEdge(const Node& u, const Node& v, |
| 1208 | 1208 |
const Edge& prev = INVALID) const {
|
| 1209 | 1209 |
Edge edge = Parent::findEdge(u, v, prev); |
| 1210 | 1210 |
while (edge != INVALID && !(*_edge_filter)[edge]) {
|
| 1211 | 1211 |
edge = Parent::findEdge(u, v, edge); |
| 1212 | 1212 |
} |
| 1213 | 1213 |
return edge; |
| 1214 | 1214 |
} |
| 1215 | 1215 |
|
| 1216 | 1216 |
template <typename V> |
| 1217 |
class NodeMap |
|
| 1217 |
class NodeMap |
|
| 1218 | 1218 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1219 | 1219 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
|
| 1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1221 | 1221 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
| 1222 | 1222 |
|
| 1223 | 1223 |
public: |
| 1224 | 1224 |
typedef V Value; |
| 1225 | 1225 |
|
| 1226 | 1226 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1227 | 1227 |
: Parent(adaptor) {}
|
| 1228 | 1228 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1229 | 1229 |
: Parent(adaptor, value) {}
|
| 1230 | 1230 |
|
| 1231 | 1231 |
private: |
| 1232 | 1232 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 1233 | 1233 |
return operator=<NodeMap>(cmap); |
| 1234 | 1234 |
} |
| 1235 | 1235 |
|
| 1236 | 1236 |
template <typename CMap> |
| 1237 | 1237 |
NodeMap& operator=(const CMap& cmap) {
|
| 1238 | 1238 |
Parent::operator=(cmap); |
| 1239 | 1239 |
return *this; |
| 1240 | 1240 |
} |
| 1241 | 1241 |
}; |
| 1242 | 1242 |
|
| 1243 | 1243 |
template <typename V> |
| 1244 |
class ArcMap |
|
| 1244 |
class ArcMap |
|
| 1245 | 1245 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1246 | 1246 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
|
| 1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1248 | 1248 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
| 1249 | 1249 |
|
| 1250 | 1250 |
public: |
| 1251 | 1251 |
typedef V Value; |
| 1252 | 1252 |
|
| 1253 | 1253 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1254 | 1254 |
: Parent(adaptor) {}
|
| 1255 | 1255 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1256 | 1256 |
: Parent(adaptor, value) {}
|
| 1257 | 1257 |
|
| 1258 | 1258 |
private: |
| 1259 | 1259 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 1260 | 1260 |
return operator=<ArcMap>(cmap); |
| 1261 | 1261 |
} |
| 1262 | 1262 |
|
| 1263 | 1263 |
template <typename CMap> |
| 1264 | 1264 |
ArcMap& operator=(const CMap& cmap) {
|
| 1265 | 1265 |
Parent::operator=(cmap); |
| 1266 | 1266 |
return *this; |
| 1267 | 1267 |
} |
| 1268 | 1268 |
}; |
| 1269 | 1269 |
|
| 1270 | 1270 |
template <typename V> |
| 1271 |
class EdgeMap |
|
| 1271 |
class EdgeMap |
|
| 1272 | 1272 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
| 1273 | 1273 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
|
| 1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
| 1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
| 1276 | 1276 |
|
| 1277 | 1277 |
public: |
| 1278 | 1278 |
typedef V Value; |
| 1279 | 1279 |
|
| 1280 | 1280 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
| 1281 | 1281 |
: Parent(adaptor) {}
|
| 1282 | 1282 |
|
| 1283 | 1283 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
| 1284 | 1284 |
: Parent(adaptor, value) {}
|
| 1285 | 1285 |
|
| 1286 | 1286 |
private: |
| 1287 | 1287 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 1288 | 1288 |
return operator=<EdgeMap>(cmap); |
| 1289 | 1289 |
} |
| 1290 | 1290 |
|
| 1291 | 1291 |
template <typename CMap> |
| 1292 | 1292 |
EdgeMap& operator=(const CMap& cmap) {
|
| 1293 | 1293 |
Parent::operator=(cmap); |
| 1294 | 1294 |
return *this; |
| 1295 | 1295 |
} |
| 1296 | 1296 |
}; |
| 1297 | 1297 |
|
| 1298 | 1298 |
}; |
| 1299 | 1299 |
|
| 1300 | 1300 |
/// \ingroup graph_adaptors |
| 1301 | 1301 |
/// |
| 1302 | 1302 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
| 1303 | 1303 |
/// graph. |
| 1304 | 1304 |
/// |
| 1305 | 1305 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
| 1306 | 1306 |
/// A \c bool node map and a \c bool edge map must be specified, which |
| 1307 | 1307 |
/// define the filters for nodes and edges. |
| 1308 | 1308 |
/// Only the nodes and edges with \c true filter value are |
| 1309 | 1309 |
/// shown in the subgraph. The edges that are incident to hidden |
| 1310 | 1310 |
/// nodes are also filtered out. |
| 1311 | 1311 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 1312 | 1312 |
/// |
| 1313 | 1313 |
/// The adapted graph can also be modified through this adaptor |
| 1314 | 1314 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1315 | 1315 |
/// parameter is set to be \c const. |
| 1316 | 1316 |
/// |
| 1317 | 1317 |
/// \tparam GR The type of the adapted graph. |
| 1318 | 1318 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1319 | 1319 |
/// It can also be specified to be \c const. |
| 1320 | 1320 |
/// \tparam NF The type of the node filter map. |
| 1321 | 1321 |
/// It must be a \c bool (or convertible) node map of the |
| 1322 | 1322 |
/// adapted graph. The default type is |
| 1323 | 1323 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
| ... | ... |
@@ -1450,244 +1450,244 @@ |
| 1450 | 1450 |
template<typename GR, typename NF, typename EF> |
| 1451 | 1451 |
SubGraph<const GR, const NF, const EF> |
| 1452 | 1452 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
|
| 1453 | 1453 |
return SubGraph<const GR, const NF, const EF> |
| 1454 | 1454 |
(graph, node_filter, edge_filter); |
| 1455 | 1455 |
} |
| 1456 | 1456 |
|
| 1457 | 1457 |
|
| 1458 | 1458 |
/// \ingroup graph_adaptors |
| 1459 | 1459 |
/// |
| 1460 | 1460 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
| 1461 | 1461 |
/// |
| 1462 | 1462 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
| 1463 | 1463 |
/// graph. A \c bool node map must be specified, which defines the filter |
| 1464 | 1464 |
/// for the nodes. Only the nodes with \c true filter value and the |
| 1465 | 1465 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
| 1466 | 1466 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
| 1467 | 1467 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
| 1468 | 1468 |
/// depending on the \c GR template parameter. |
| 1469 | 1469 |
/// |
| 1470 | 1470 |
/// The adapted (di)graph can also be modified through this adaptor |
| 1471 | 1471 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
| 1472 | 1472 |
/// parameter is set to be \c const. |
| 1473 | 1473 |
/// |
| 1474 | 1474 |
/// \tparam GR The type of the adapted digraph or graph. |
| 1475 | 1475 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
| 1476 | 1476 |
/// or the \ref concepts::Graph "Graph" concept. |
| 1477 | 1477 |
/// It can also be specified to be \c const. |
| 1478 | 1478 |
/// \tparam NF The type of the node filter map. |
| 1479 | 1479 |
/// It must be a \c bool (or convertible) node map of the |
| 1480 | 1480 |
/// adapted (di)graph. The default type is |
| 1481 | 1481 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
| 1482 | 1482 |
/// |
| 1483 | 1483 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
| 1484 | 1484 |
/// adapted (di)graph are convertible to each other. |
| 1485 | 1485 |
#ifdef DOXYGEN |
| 1486 | 1486 |
template<typename GR, typename NF> |
| 1487 | 1487 |
class FilterNodes {
|
| 1488 | 1488 |
#else |
| 1489 | 1489 |
template<typename GR, |
| 1490 | 1490 |
typename NF = typename GR::template NodeMap<bool>, |
| 1491 | 1491 |
typename Enable = void> |
| 1492 | 1492 |
class FilterNodes : |
| 1493 | 1493 |
public DigraphAdaptorExtender< |
| 1494 | 1494 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
| 1495 | 1495 |
true> > {
|
| 1496 | 1496 |
#endif |
| 1497 | 1497 |
typedef DigraphAdaptorExtender< |
| 1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
| 1499 | 1499 |
true> > Parent; |
| 1500 | 1500 |
|
| 1501 | 1501 |
public: |
| 1502 | 1502 |
|
| 1503 | 1503 |
typedef GR Digraph; |
| 1504 | 1504 |
typedef NF NodeFilterMap; |
| 1505 | 1505 |
|
| 1506 | 1506 |
typedef typename Parent::Node Node; |
| 1507 | 1507 |
|
| 1508 | 1508 |
protected: |
| 1509 | 1509 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
| 1510 | 1510 |
|
| 1511 | 1511 |
FilterNodes() : const_true_map() {}
|
| 1512 | 1512 |
|
| 1513 | 1513 |
public: |
| 1514 | 1514 |
|
| 1515 | 1515 |
/// \brief Constructor |
| 1516 | 1516 |
/// |
| 1517 | 1517 |
/// Creates a subgraph for the given digraph or graph with the |
| 1518 | 1518 |
/// given node filter map. |
| 1519 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1519 |
FilterNodes(GR& graph, NF& node_filter) |
|
| 1520 | 1520 |
: Parent(), const_true_map() |
| 1521 | 1521 |
{
|
| 1522 | 1522 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1523 | 1523 |
} |
| 1524 | 1524 |
|
| 1525 | 1525 |
/// \brief Sets the status of the given node |
| 1526 | 1526 |
/// |
| 1527 | 1527 |
/// This function sets the status of the given node. |
| 1528 | 1528 |
/// It is done by simply setting the assigned value of \c n |
| 1529 | 1529 |
/// to \c v in the node filter map. |
| 1530 | 1530 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1531 | 1531 |
|
| 1532 | 1532 |
/// \brief Returns the status of the given node |
| 1533 | 1533 |
/// |
| 1534 | 1534 |
/// This function returns the status of the given node. |
| 1535 | 1535 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
| 1536 | 1536 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1537 | 1537 |
|
| 1538 | 1538 |
/// \brief Disables the given node |
| 1539 | 1539 |
/// |
| 1540 | 1540 |
/// This function disables the given node, so the iteration |
| 1541 | 1541 |
/// jumps over it. |
| 1542 | 1542 |
/// It is the same as \ref status() "status(n, false)". |
| 1543 | 1543 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1544 | 1544 |
|
| 1545 | 1545 |
/// \brief Enables the given node |
| 1546 | 1546 |
/// |
| 1547 | 1547 |
/// This function enables the given node. |
| 1548 | 1548 |
/// It is the same as \ref status() "status(n, true)". |
| 1549 | 1549 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1550 | 1550 |
|
| 1551 | 1551 |
}; |
| 1552 | 1552 |
|
| 1553 | 1553 |
template<typename GR, typename NF> |
| 1554 | 1554 |
class FilterNodes<GR, NF, |
| 1555 | 1555 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
| 1556 | 1556 |
public GraphAdaptorExtender< |
| 1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1558 | 1558 |
true> > {
|
| 1559 | 1559 |
|
| 1560 | 1560 |
typedef GraphAdaptorExtender< |
| 1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
| 1562 | 1562 |
true> > Parent; |
| 1563 | 1563 |
|
| 1564 | 1564 |
public: |
| 1565 | 1565 |
|
| 1566 | 1566 |
typedef GR Graph; |
| 1567 | 1567 |
typedef NF NodeFilterMap; |
| 1568 | 1568 |
|
| 1569 | 1569 |
typedef typename Parent::Node Node; |
| 1570 | 1570 |
|
| 1571 | 1571 |
protected: |
| 1572 | 1572 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
| 1573 | 1573 |
|
| 1574 | 1574 |
FilterNodes() : const_true_map() {}
|
| 1575 | 1575 |
|
| 1576 | 1576 |
public: |
| 1577 | 1577 |
|
| 1578 | 1578 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
| 1579 | 1579 |
Parent(), const_true_map() {
|
| 1580 | 1580 |
Parent::initialize(graph, node_filter, const_true_map); |
| 1581 | 1581 |
} |
| 1582 | 1582 |
|
| 1583 | 1583 |
void status(const Node& n, bool v) const { Parent::status(n, v); }
|
| 1584 | 1584 |
bool status(const Node& n) const { return Parent::status(n); }
|
| 1585 | 1585 |
void disable(const Node& n) const { Parent::status(n, false); }
|
| 1586 | 1586 |
void enable(const Node& n) const { Parent::status(n, true); }
|
| 1587 | 1587 |
|
| 1588 | 1588 |
}; |
| 1589 | 1589 |
|
| 1590 | 1590 |
|
| 1591 | 1591 |
/// \brief Returns a read-only FilterNodes adaptor |
| 1592 | 1592 |
/// |
| 1593 | 1593 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
| 1594 | 1594 |
/// \ingroup graph_adaptors |
| 1595 | 1595 |
/// \relates FilterNodes |
| 1596 | 1596 |
template<typename GR, typename NF> |
| 1597 | 1597 |
FilterNodes<const GR, NF> |
| 1598 | 1598 |
filterNodes(const GR& graph, NF& node_filter) {
|
| 1599 | 1599 |
return FilterNodes<const GR, NF>(graph, node_filter); |
| 1600 | 1600 |
} |
| 1601 | 1601 |
|
| 1602 | 1602 |
template<typename GR, typename NF> |
| 1603 | 1603 |
FilterNodes<const GR, const NF> |
| 1604 | 1604 |
filterNodes(const GR& graph, const NF& node_filter) {
|
| 1605 | 1605 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
| 1606 | 1606 |
} |
| 1607 | 1607 |
|
| 1608 | 1608 |
/// \ingroup graph_adaptors |
| 1609 | 1609 |
/// |
| 1610 | 1610 |
/// \brief Adaptor class for hiding arcs in a digraph. |
| 1611 | 1611 |
/// |
| 1612 | 1612 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
| 1613 | 1613 |
/// A \c bool arc map must be specified, which defines the filter for |
| 1614 | 1614 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
| 1615 | 1615 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
| 1616 | 1616 |
/// "Digraph" concept. |
| 1617 | 1617 |
/// |
| 1618 | 1618 |
/// The adapted digraph can also be modified through this adaptor |
| 1619 | 1619 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 1620 | 1620 |
/// parameter is set to be \c const. |
| 1621 | 1621 |
/// |
| 1622 | 1622 |
/// \tparam DGR The type of the adapted digraph. |
| 1623 | 1623 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 1624 | 1624 |
/// It can also be specified to be \c const. |
| 1625 | 1625 |
/// \tparam AF The type of the arc filter map. |
| 1626 | 1626 |
/// It must be a \c bool (or convertible) arc map of the |
| 1627 | 1627 |
/// adapted digraph. The default type is |
| 1628 | 1628 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
| 1629 | 1629 |
/// |
| 1630 | 1630 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 1631 | 1631 |
/// digraph are convertible to each other. |
| 1632 | 1632 |
#ifdef DOXYGEN |
| 1633 | 1633 |
template<typename DGR, |
| 1634 | 1634 |
typename AF> |
| 1635 | 1635 |
class FilterArcs {
|
| 1636 | 1636 |
#else |
| 1637 | 1637 |
template<typename DGR, |
| 1638 | 1638 |
typename AF = typename DGR::template ArcMap<bool> > |
| 1639 | 1639 |
class FilterArcs : |
| 1640 | 1640 |
public DigraphAdaptorExtender< |
| 1641 | 1641 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
| 1642 | 1642 |
AF, false> > {
|
| 1643 | 1643 |
#endif |
| 1644 | 1644 |
typedef DigraphAdaptorExtender< |
| 1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
| 1646 | 1646 |
AF, false> > Parent; |
| 1647 | 1647 |
|
| 1648 | 1648 |
public: |
| 1649 | 1649 |
|
| 1650 | 1650 |
/// The type of the adapted digraph. |
| 1651 | 1651 |
typedef DGR Digraph; |
| 1652 | 1652 |
/// The type of the arc filter map. |
| 1653 | 1653 |
typedef AF ArcFilterMap; |
| 1654 | 1654 |
|
| 1655 | 1655 |
typedef typename Parent::Arc Arc; |
| 1656 | 1656 |
|
| 1657 | 1657 |
protected: |
| 1658 | 1658 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
| 1659 | 1659 |
|
| 1660 | 1660 |
FilterArcs() : const_true_map() {}
|
| 1661 | 1661 |
|
| 1662 | 1662 |
public: |
| 1663 | 1663 |
|
| 1664 | 1664 |
/// \brief Constructor |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
/// Creates a subdigraph for the given digraph with the given arc |
| 1667 | 1667 |
/// filter map. |
| 1668 | 1668 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
| 1669 | 1669 |
: Parent(), const_true_map() {
|
| 1670 | 1670 |
Parent::initialize(digraph, const_true_map, arc_filter); |
| 1671 | 1671 |
} |
| 1672 | 1672 |
|
| 1673 | 1673 |
/// \brief Sets the status of the given arc |
| 1674 | 1674 |
/// |
| 1675 | 1675 |
/// This function sets the status of the given arc. |
| 1676 | 1676 |
/// It is done by simply setting the assigned value of \c a |
| 1677 | 1677 |
/// to \c v in the arc filter map. |
| 1678 | 1678 |
void status(const Arc& a, bool v) const { Parent::status(a, v); }
|
| 1679 | 1679 |
|
| 1680 | 1680 |
/// \brief Returns the status of the given arc |
| 1681 | 1681 |
/// |
| 1682 | 1682 |
/// This function returns the status of the given arc. |
| 1683 | 1683 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
| 1684 | 1684 |
bool status(const Arc& a) const { return Parent::status(a); }
|
| 1685 | 1685 |
|
| 1686 | 1686 |
/// \brief Disables the given arc |
| 1687 | 1687 |
/// |
| 1688 | 1688 |
/// This function disables the given arc in the subdigraph, |
| 1689 | 1689 |
/// so the iteration jumps over it. |
| 1690 | 1690 |
/// It is the same as \ref status() "status(a, false)". |
| 1691 | 1691 |
void disable(const Arc& a) const { Parent::status(a, false); }
|
| 1692 | 1692 |
|
| 1693 | 1693 |
/// \brief Enables the given arc |
| ... | ... |
@@ -1703,194 +1703,194 @@ |
| 1703 | 1703 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
| 1704 | 1704 |
/// \ingroup graph_adaptors |
| 1705 | 1705 |
/// \relates FilterArcs |
| 1706 | 1706 |
template<typename DGR, typename AF> |
| 1707 | 1707 |
FilterArcs<const DGR, AF> |
| 1708 | 1708 |
filterArcs(const DGR& digraph, AF& arc_filter) {
|
| 1709 | 1709 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
| 1710 | 1710 |
} |
| 1711 | 1711 |
|
| 1712 | 1712 |
template<typename DGR, typename AF> |
| 1713 | 1713 |
FilterArcs<const DGR, const AF> |
| 1714 | 1714 |
filterArcs(const DGR& digraph, const AF& arc_filter) {
|
| 1715 | 1715 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
| 1716 | 1716 |
} |
| 1717 | 1717 |
|
| 1718 | 1718 |
/// \ingroup graph_adaptors |
| 1719 | 1719 |
/// |
| 1720 | 1720 |
/// \brief Adaptor class for hiding edges in a graph. |
| 1721 | 1721 |
/// |
| 1722 | 1722 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
| 1723 | 1723 |
/// A \c bool edge map must be specified, which defines the filter for |
| 1724 | 1724 |
/// the edges. Only the edges with \c true filter value are shown in the |
| 1725 | 1725 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
| 1726 | 1726 |
/// "Graph" concept. |
| 1727 | 1727 |
/// |
| 1728 | 1728 |
/// The adapted graph can also be modified through this adaptor |
| 1729 | 1729 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1730 | 1730 |
/// parameter is set to be \c const. |
| 1731 | 1731 |
/// |
| 1732 | 1732 |
/// \tparam GR The type of the adapted graph. |
| 1733 | 1733 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1734 | 1734 |
/// It can also be specified to be \c const. |
| 1735 | 1735 |
/// \tparam EF The type of the edge filter map. |
| 1736 | 1736 |
/// It must be a \c bool (or convertible) edge map of the |
| 1737 | 1737 |
/// adapted graph. The default type is |
| 1738 | 1738 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| 1739 | 1739 |
/// |
| 1740 | 1740 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
| 1741 | 1741 |
/// adapted graph are convertible to each other. |
| 1742 | 1742 |
#ifdef DOXYGEN |
| 1743 | 1743 |
template<typename GR, |
| 1744 | 1744 |
typename EF> |
| 1745 | 1745 |
class FilterEdges {
|
| 1746 | 1746 |
#else |
| 1747 | 1747 |
template<typename GR, |
| 1748 | 1748 |
typename EF = typename GR::template EdgeMap<bool> > |
| 1749 | 1749 |
class FilterEdges : |
| 1750 | 1750 |
public GraphAdaptorExtender< |
| 1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
| 1752 | 1752 |
EF, false> > {
|
| 1753 | 1753 |
#endif |
| 1754 | 1754 |
typedef GraphAdaptorExtender< |
| 1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
| 1756 | 1756 |
EF, false> > Parent; |
| 1757 | 1757 |
|
| 1758 | 1758 |
public: |
| 1759 | 1759 |
|
| 1760 | 1760 |
/// The type of the adapted graph. |
| 1761 | 1761 |
typedef GR Graph; |
| 1762 | 1762 |
/// The type of the edge filter map. |
| 1763 | 1763 |
typedef EF EdgeFilterMap; |
| 1764 | 1764 |
|
| 1765 | 1765 |
typedef typename Parent::Edge Edge; |
| 1766 | 1766 |
|
| 1767 | 1767 |
protected: |
| 1768 | 1768 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
| 1769 | 1769 |
|
| 1770 | 1770 |
FilterEdges() : const_true_map(true) {
|
| 1771 | 1771 |
Parent::setNodeFilterMap(const_true_map); |
| 1772 | 1772 |
} |
| 1773 | 1773 |
|
| 1774 | 1774 |
public: |
| 1775 | 1775 |
|
| 1776 | 1776 |
/// \brief Constructor |
| 1777 | 1777 |
/// |
| 1778 | 1778 |
/// Creates a subgraph for the given graph with the given edge |
| 1779 | 1779 |
/// filter map. |
| 1780 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1780 |
FilterEdges(GR& graph, EF& edge_filter) |
|
| 1781 | 1781 |
: Parent(), const_true_map() {
|
| 1782 | 1782 |
Parent::initialize(graph, const_true_map, edge_filter); |
| 1783 | 1783 |
} |
| 1784 | 1784 |
|
| 1785 | 1785 |
/// \brief Sets the status of the given edge |
| 1786 | 1786 |
/// |
| 1787 | 1787 |
/// This function sets the status of the given edge. |
| 1788 | 1788 |
/// It is done by simply setting the assigned value of \c e |
| 1789 | 1789 |
/// to \c v in the edge filter map. |
| 1790 | 1790 |
void status(const Edge& e, bool v) const { Parent::status(e, v); }
|
| 1791 | 1791 |
|
| 1792 | 1792 |
/// \brief Returns the status of the given edge |
| 1793 | 1793 |
/// |
| 1794 | 1794 |
/// This function returns the status of the given edge. |
| 1795 | 1795 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
| 1796 | 1796 |
bool status(const Edge& e) const { return Parent::status(e); }
|
| 1797 | 1797 |
|
| 1798 | 1798 |
/// \brief Disables the given edge |
| 1799 | 1799 |
/// |
| 1800 | 1800 |
/// This function disables the given edge in the subgraph, |
| 1801 | 1801 |
/// so the iteration jumps over it. |
| 1802 | 1802 |
/// It is the same as \ref status() "status(e, false)". |
| 1803 | 1803 |
void disable(const Edge& e) const { Parent::status(e, false); }
|
| 1804 | 1804 |
|
| 1805 | 1805 |
/// \brief Enables the given edge |
| 1806 | 1806 |
/// |
| 1807 | 1807 |
/// This function enables the given edge in the subgraph. |
| 1808 | 1808 |
/// It is the same as \ref status() "status(e, true)". |
| 1809 | 1809 |
void enable(const Edge& e) const { Parent::status(e, true); }
|
| 1810 | 1810 |
|
| 1811 | 1811 |
}; |
| 1812 | 1812 |
|
| 1813 | 1813 |
/// \brief Returns a read-only FilterEdges adaptor |
| 1814 | 1814 |
/// |
| 1815 | 1815 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
| 1816 | 1816 |
/// \ingroup graph_adaptors |
| 1817 | 1817 |
/// \relates FilterEdges |
| 1818 | 1818 |
template<typename GR, typename EF> |
| 1819 | 1819 |
FilterEdges<const GR, EF> |
| 1820 | 1820 |
filterEdges(const GR& graph, EF& edge_filter) {
|
| 1821 | 1821 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
| 1822 | 1822 |
} |
| 1823 | 1823 |
|
| 1824 | 1824 |
template<typename GR, typename EF> |
| 1825 | 1825 |
FilterEdges<const GR, const EF> |
| 1826 | 1826 |
filterEdges(const GR& graph, const EF& edge_filter) {
|
| 1827 | 1827 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
| 1828 | 1828 |
} |
| 1829 | 1829 |
|
| 1830 | 1830 |
|
| 1831 | 1831 |
template <typename DGR> |
| 1832 | 1832 |
class UndirectorBase {
|
| 1833 | 1833 |
public: |
| 1834 | 1834 |
typedef DGR Digraph; |
| 1835 | 1835 |
typedef UndirectorBase Adaptor; |
| 1836 | 1836 |
|
| 1837 | 1837 |
typedef True UndirectedTag; |
| 1838 | 1838 |
|
| 1839 | 1839 |
typedef typename Digraph::Arc Edge; |
| 1840 | 1840 |
typedef typename Digraph::Node Node; |
| 1841 | 1841 |
|
| 1842 | 1842 |
class Arc {
|
| 1843 | 1843 |
friend class UndirectorBase; |
| 1844 | 1844 |
protected: |
| 1845 | 1845 |
Edge _edge; |
| 1846 | 1846 |
bool _forward; |
| 1847 | 1847 |
|
| 1848 |
Arc(const Edge& edge, bool forward) |
|
| 1848 |
Arc(const Edge& edge, bool forward) |
|
| 1849 | 1849 |
: _edge(edge), _forward(forward) {}
|
| 1850 | 1850 |
|
| 1851 | 1851 |
public: |
| 1852 | 1852 |
Arc() {}
|
| 1853 | 1853 |
|
| 1854 | 1854 |
Arc(Invalid) : _edge(INVALID), _forward(true) {}
|
| 1855 | 1855 |
|
| 1856 | 1856 |
operator const Edge&() const { return _edge; }
|
| 1857 | 1857 |
|
| 1858 | 1858 |
bool operator==(const Arc &other) const {
|
| 1859 | 1859 |
return _forward == other._forward && _edge == other._edge; |
| 1860 | 1860 |
} |
| 1861 | 1861 |
bool operator!=(const Arc &other) const {
|
| 1862 | 1862 |
return _forward != other._forward || _edge != other._edge; |
| 1863 | 1863 |
} |
| 1864 | 1864 |
bool operator<(const Arc &other) const {
|
| 1865 | 1865 |
return _forward < other._forward || |
| 1866 | 1866 |
(_forward == other._forward && _edge < other._edge); |
| 1867 | 1867 |
} |
| 1868 | 1868 |
}; |
| 1869 | 1869 |
|
| 1870 | 1870 |
void first(Node& n) const {
|
| 1871 | 1871 |
_digraph->first(n); |
| 1872 | 1872 |
} |
| 1873 | 1873 |
|
| 1874 | 1874 |
void next(Node& n) const {
|
| 1875 | 1875 |
_digraph->next(n); |
| 1876 | 1876 |
} |
| 1877 | 1877 |
|
| 1878 | 1878 |
void first(Arc& a) const {
|
| 1879 | 1879 |
_digraph->first(a._edge); |
| 1880 | 1880 |
a._forward = true; |
| 1881 | 1881 |
} |
| 1882 | 1882 |
|
| 1883 | 1883 |
void next(Arc& a) const {
|
| 1884 | 1884 |
if (a._forward) {
|
| 1885 | 1885 |
a._forward = false; |
| 1886 | 1886 |
} else {
|
| 1887 | 1887 |
_digraph->next(a._edge); |
| 1888 | 1888 |
a._forward = true; |
| 1889 | 1889 |
} |
| 1890 | 1890 |
} |
| 1891 | 1891 |
|
| 1892 | 1892 |
void first(Edge& e) const {
|
| 1893 | 1893 |
_digraph->first(e); |
| 1894 | 1894 |
} |
| 1895 | 1895 |
|
| 1896 | 1896 |
void next(Edge& e) const {
|
| ... | ... |
@@ -2040,97 +2040,97 @@ |
| 2040 | 2040 |
} |
| 2041 | 2041 |
|
| 2042 | 2042 |
typedef FindArcTag FindEdgeTag; |
| 2043 | 2043 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
|
| 2044 | 2044 |
if (s != t) {
|
| 2045 | 2045 |
if (p == INVALID) {
|
| 2046 | 2046 |
Edge arc = _digraph->findArc(s, t); |
| 2047 | 2047 |
if (arc != INVALID) return arc; |
| 2048 | 2048 |
arc = _digraph->findArc(t, s); |
| 2049 | 2049 |
if (arc != INVALID) return arc; |
| 2050 | 2050 |
} else if (_digraph->source(p) == s) {
|
| 2051 | 2051 |
Edge arc = _digraph->findArc(s, t, p); |
| 2052 | 2052 |
if (arc != INVALID) return arc; |
| 2053 | 2053 |
arc = _digraph->findArc(t, s); |
| 2054 | 2054 |
if (arc != INVALID) return arc; |
| 2055 | 2055 |
} else {
|
| 2056 | 2056 |
Edge arc = _digraph->findArc(t, s, p); |
| 2057 | 2057 |
if (arc != INVALID) return arc; |
| 2058 | 2058 |
} |
| 2059 | 2059 |
} else {
|
| 2060 | 2060 |
return _digraph->findArc(s, t, p); |
| 2061 | 2061 |
} |
| 2062 | 2062 |
return INVALID; |
| 2063 | 2063 |
} |
| 2064 | 2064 |
|
| 2065 | 2065 |
private: |
| 2066 | 2066 |
|
| 2067 | 2067 |
template <typename V> |
| 2068 | 2068 |
class ArcMapBase {
|
| 2069 | 2069 |
private: |
| 2070 | 2070 |
|
| 2071 | 2071 |
typedef typename DGR::template ArcMap<V> MapImpl; |
| 2072 | 2072 |
|
| 2073 | 2073 |
public: |
| 2074 | 2074 |
|
| 2075 | 2075 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
| 2076 | 2076 |
|
| 2077 | 2077 |
typedef V Value; |
| 2078 | 2078 |
typedef Arc Key; |
| 2079 | 2079 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
| 2080 | 2080 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
| 2081 | 2081 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
| 2082 | 2082 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
| 2083 | 2083 |
|
| 2084 | 2084 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
| 2085 | 2085 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
|
| 2086 | 2086 |
|
| 2087 | 2087 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2088 |
: _forward(*adaptor._digraph, value), |
|
| 2088 |
: _forward(*adaptor._digraph, value), |
|
| 2089 | 2089 |
_backward(*adaptor._digraph, value) {}
|
| 2090 | 2090 |
|
| 2091 | 2091 |
void set(const Arc& a, const V& value) {
|
| 2092 | 2092 |
if (direction(a)) {
|
| 2093 | 2093 |
_forward.set(a, value); |
| 2094 | 2094 |
} else {
|
| 2095 | 2095 |
_backward.set(a, value); |
| 2096 | 2096 |
} |
| 2097 | 2097 |
} |
| 2098 | 2098 |
|
| 2099 | 2099 |
ConstReturnValue operator[](const Arc& a) const {
|
| 2100 | 2100 |
if (direction(a)) {
|
| 2101 | 2101 |
return _forward[a]; |
| 2102 | 2102 |
} else {
|
| 2103 | 2103 |
return _backward[a]; |
| 2104 | 2104 |
} |
| 2105 | 2105 |
} |
| 2106 | 2106 |
|
| 2107 | 2107 |
ReturnValue operator[](const Arc& a) {
|
| 2108 | 2108 |
if (direction(a)) {
|
| 2109 | 2109 |
return _forward[a]; |
| 2110 | 2110 |
} else {
|
| 2111 | 2111 |
return _backward[a]; |
| 2112 | 2112 |
} |
| 2113 | 2113 |
} |
| 2114 | 2114 |
|
| 2115 | 2115 |
protected: |
| 2116 | 2116 |
|
| 2117 | 2117 |
MapImpl _forward, _backward; |
| 2118 | 2118 |
|
| 2119 | 2119 |
}; |
| 2120 | 2120 |
|
| 2121 | 2121 |
public: |
| 2122 | 2122 |
|
| 2123 | 2123 |
template <typename V> |
| 2124 | 2124 |
class NodeMap : public DGR::template NodeMap<V> {
|
| 2125 | 2125 |
typedef typename DGR::template NodeMap<V> Parent; |
| 2126 | 2126 |
|
| 2127 | 2127 |
public: |
| 2128 | 2128 |
typedef V Value; |
| 2129 | 2129 |
|
| 2130 | 2130 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
| 2131 | 2131 |
: Parent(*adaptor._digraph) {}
|
| 2132 | 2132 |
|
| 2133 | 2133 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2134 | 2134 |
: Parent(*adaptor._digraph, value) { }
|
| 2135 | 2135 |
|
| 2136 | 2136 |
private: |
| ... | ... |
@@ -2158,97 +2158,97 @@ |
| 2158 | 2158 |
: Parent(adaptor) {}
|
| 2159 | 2159 |
|
| 2160 | 2160 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2161 | 2161 |
: Parent(adaptor, value) {}
|
| 2162 | 2162 |
|
| 2163 | 2163 |
private: |
| 2164 | 2164 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 2165 | 2165 |
return operator=<ArcMap>(cmap); |
| 2166 | 2166 |
} |
| 2167 | 2167 |
|
| 2168 | 2168 |
template <typename CMap> |
| 2169 | 2169 |
ArcMap& operator=(const CMap& cmap) {
|
| 2170 | 2170 |
Parent::operator=(cmap); |
| 2171 | 2171 |
return *this; |
| 2172 | 2172 |
} |
| 2173 | 2173 |
}; |
| 2174 | 2174 |
|
| 2175 | 2175 |
template <typename V> |
| 2176 | 2176 |
class EdgeMap : public Digraph::template ArcMap<V> {
|
| 2177 | 2177 |
typedef typename Digraph::template ArcMap<V> Parent; |
| 2178 | 2178 |
|
| 2179 | 2179 |
public: |
| 2180 | 2180 |
typedef V Value; |
| 2181 | 2181 |
|
| 2182 | 2182 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
| 2183 | 2183 |
: Parent(*adaptor._digraph) {}
|
| 2184 | 2184 |
|
| 2185 | 2185 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2186 | 2186 |
: Parent(*adaptor._digraph, value) {}
|
| 2187 | 2187 |
|
| 2188 | 2188 |
private: |
| 2189 | 2189 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 2190 | 2190 |
return operator=<EdgeMap>(cmap); |
| 2191 | 2191 |
} |
| 2192 | 2192 |
|
| 2193 | 2193 |
template <typename CMap> |
| 2194 | 2194 |
EdgeMap& operator=(const CMap& cmap) {
|
| 2195 | 2195 |
Parent::operator=(cmap); |
| 2196 | 2196 |
return *this; |
| 2197 | 2197 |
} |
| 2198 | 2198 |
|
| 2199 | 2199 |
}; |
| 2200 | 2200 |
|
| 2201 | 2201 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 2202 | 2202 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 2203 | 2203 |
|
| 2204 | 2204 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
| 2205 | 2205 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
|
| 2206 |
|
|
| 2206 |
|
|
| 2207 | 2207 |
typedef EdgeNotifier ArcNotifier; |
| 2208 | 2208 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
|
| 2209 | 2209 |
|
| 2210 | 2210 |
protected: |
| 2211 | 2211 |
|
| 2212 | 2212 |
UndirectorBase() : _digraph(0) {}
|
| 2213 | 2213 |
|
| 2214 | 2214 |
DGR* _digraph; |
| 2215 | 2215 |
|
| 2216 | 2216 |
void initialize(DGR& digraph) {
|
| 2217 | 2217 |
_digraph = &digraph; |
| 2218 | 2218 |
} |
| 2219 | 2219 |
|
| 2220 | 2220 |
}; |
| 2221 | 2221 |
|
| 2222 | 2222 |
/// \ingroup graph_adaptors |
| 2223 | 2223 |
/// |
| 2224 | 2224 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
| 2225 | 2225 |
/// |
| 2226 | 2226 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
| 2227 | 2227 |
/// graph. All arcs of the underlying digraph are showed in the |
| 2228 | 2228 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
| 2229 | 2229 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2230 | 2230 |
/// |
| 2231 | 2231 |
/// The adapted digraph can also be modified through this adaptor |
| 2232 | 2232 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2233 | 2233 |
/// parameter is set to be \c const. |
| 2234 | 2234 |
/// |
| 2235 | 2235 |
/// \tparam DGR The type of the adapted digraph. |
| 2236 | 2236 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2237 | 2237 |
/// It can also be specified to be \c const. |
| 2238 | 2238 |
/// |
| 2239 | 2239 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2240 | 2240 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
| 2241 | 2241 |
/// and the \c Arc type of the adapted digraph are also convertible to |
| 2242 | 2242 |
/// each other. |
| 2243 | 2243 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
| 2244 | 2244 |
/// of the adapted digraph.) |
| 2245 | 2245 |
template<typename DGR> |
| 2246 | 2246 |
#ifdef DOXYGEN |
| 2247 | 2247 |
class Undirector {
|
| 2248 | 2248 |
#else |
| 2249 | 2249 |
class Undirector : |
| 2250 | 2250 |
public GraphAdaptorExtender<UndirectorBase<DGR> > {
|
| 2251 | 2251 |
#endif |
| 2252 | 2252 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
| 2253 | 2253 |
public: |
| 2254 | 2254 |
/// The type of the adapted digraph. |
| ... | ... |
@@ -2662,236 +2662,236 @@ |
| 2662 | 2662 |
/// |
| 2663 | 2663 |
/// \brief Adaptor class for composing the residual digraph for directed |
| 2664 | 2664 |
/// flow and circulation problems. |
| 2665 | 2665 |
/// |
| 2666 | 2666 |
/// ResidualDigraph can be used for composing the \e residual digraph |
| 2667 | 2667 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
| 2668 | 2668 |
/// be a directed graph and let \f$ F \f$ be a number type. |
| 2669 | 2669 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
| 2670 | 2670 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
| 2671 | 2671 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$,
|
| 2672 | 2672 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
|
| 2673 | 2673 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
|
| 2674 | 2674 |
/// called residual digraph. |
| 2675 | 2675 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
|
| 2676 | 2676 |
/// multiplicities are counted, i.e. the adaptor has exactly |
| 2677 | 2677 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
|
| 2678 | 2678 |
/// arcs). |
| 2679 | 2679 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2680 | 2680 |
/// |
| 2681 | 2681 |
/// \tparam DGR The type of the adapted digraph. |
| 2682 | 2682 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2683 | 2683 |
/// It is implicitly \c const. |
| 2684 | 2684 |
/// \tparam CM The type of the capacity map. |
| 2685 | 2685 |
/// It must be an arc map of some numerical type, which defines |
| 2686 | 2686 |
/// the capacities in the flow problem. It is implicitly \c const. |
| 2687 | 2687 |
/// The default type is |
| 2688 | 2688 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 2689 | 2689 |
/// \tparam FM The type of the flow map. |
| 2690 | 2690 |
/// It must be an arc map of some numerical type, which defines |
| 2691 | 2691 |
/// the flow values in the flow problem. The default type is \c CM. |
| 2692 | 2692 |
/// \tparam TL The tolerance type for handling inexact computation. |
| 2693 | 2693 |
/// The default tolerance type depends on the value type of the |
| 2694 | 2694 |
/// capacity map. |
| 2695 | 2695 |
/// |
| 2696 | 2696 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
| 2697 | 2697 |
/// adaptors. |
| 2698 | 2698 |
/// |
| 2699 | 2699 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2700 | 2700 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
| 2701 | 2701 |
/// is convertible to the \c Arc type of the adapted digraph. |
| 2702 | 2702 |
#ifdef DOXYGEN |
| 2703 | 2703 |
template<typename DGR, typename CM, typename FM, typename TL> |
| 2704 | 2704 |
class ResidualDigraph |
| 2705 | 2705 |
#else |
| 2706 | 2706 |
template<typename DGR, |
| 2707 | 2707 |
typename CM = typename DGR::template ArcMap<int>, |
| 2708 | 2708 |
typename FM = CM, |
| 2709 | 2709 |
typename TL = Tolerance<typename CM::Value> > |
| 2710 |
class ResidualDigraph |
|
| 2710 |
class ResidualDigraph |
|
| 2711 | 2711 |
: public SubDigraph< |
| 2712 | 2712 |
Undirector<const DGR>, |
| 2713 | 2713 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
| 2714 | 2714 |
typename Undirector<const DGR>::template CombinedArcMap< |
| 2715 | 2715 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
| 2716 | 2716 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
| 2717 | 2717 |
#endif |
| 2718 | 2718 |
{
|
| 2719 | 2719 |
public: |
| 2720 | 2720 |
|
| 2721 | 2721 |
/// The type of the underlying digraph. |
| 2722 | 2722 |
typedef DGR Digraph; |
| 2723 | 2723 |
/// The type of the capacity map. |
| 2724 | 2724 |
typedef CM CapacityMap; |
| 2725 | 2725 |
/// The type of the flow map. |
| 2726 | 2726 |
typedef FM FlowMap; |
| 2727 | 2727 |
/// The tolerance type. |
| 2728 | 2728 |
typedef TL Tolerance; |
| 2729 | 2729 |
|
| 2730 | 2730 |
typedef typename CapacityMap::Value Value; |
| 2731 | 2731 |
typedef ResidualDigraph Adaptor; |
| 2732 | 2732 |
|
| 2733 | 2733 |
protected: |
| 2734 | 2734 |
|
| 2735 | 2735 |
typedef Undirector<const Digraph> Undirected; |
| 2736 | 2736 |
|
| 2737 | 2737 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
| 2738 | 2738 |
|
| 2739 | 2739 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
| 2740 | 2740 |
FM, TL> ForwardFilter; |
| 2741 | 2741 |
|
| 2742 | 2742 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
| 2743 | 2743 |
FM, TL> BackwardFilter; |
| 2744 | 2744 |
|
| 2745 | 2745 |
typedef typename Undirected:: |
| 2746 | 2746 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
| 2747 | 2747 |
|
| 2748 | 2748 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
| 2749 | 2749 |
|
| 2750 | 2750 |
const CapacityMap* _capacity; |
| 2751 | 2751 |
FlowMap* _flow; |
| 2752 | 2752 |
|
| 2753 | 2753 |
Undirected _graph; |
| 2754 | 2754 |
NodeFilter _node_filter; |
| 2755 | 2755 |
ForwardFilter _forward_filter; |
| 2756 | 2756 |
BackwardFilter _backward_filter; |
| 2757 | 2757 |
ArcFilter _arc_filter; |
| 2758 | 2758 |
|
| 2759 | 2759 |
public: |
| 2760 | 2760 |
|
| 2761 | 2761 |
/// \brief Constructor |
| 2762 | 2762 |
/// |
| 2763 | 2763 |
/// Constructor of the residual digraph adaptor. The parameters are the |
| 2764 | 2764 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
| 2765 | 2765 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
| 2766 | 2766 |
FM& flow, const TL& tolerance = Tolerance()) |
| 2767 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2767 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
| 2768 | 2768 |
_graph(digraph), _node_filter(), |
| 2769 | 2769 |
_forward_filter(capacity, flow, tolerance), |
| 2770 | 2770 |
_backward_filter(capacity, flow, tolerance), |
| 2771 | 2771 |
_arc_filter(_forward_filter, _backward_filter) |
| 2772 | 2772 |
{
|
| 2773 | 2773 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
| 2774 | 2774 |
} |
| 2775 | 2775 |
|
| 2776 | 2776 |
typedef typename Parent::Arc Arc; |
| 2777 | 2777 |
|
| 2778 | 2778 |
/// \brief Returns the residual capacity of the given arc. |
| 2779 | 2779 |
/// |
| 2780 | 2780 |
/// Returns the residual capacity of the given arc. |
| 2781 | 2781 |
Value residualCapacity(const Arc& a) const {
|
| 2782 | 2782 |
if (Undirected::direction(a)) {
|
| 2783 | 2783 |
return (*_capacity)[a] - (*_flow)[a]; |
| 2784 | 2784 |
} else {
|
| 2785 | 2785 |
return (*_flow)[a]; |
| 2786 | 2786 |
} |
| 2787 | 2787 |
} |
| 2788 | 2788 |
|
| 2789 | 2789 |
/// \brief Augments on the given arc in the residual digraph. |
| 2790 | 2790 |
/// |
| 2791 | 2791 |
/// Augments on the given arc in the residual digraph. It increases |
| 2792 | 2792 |
/// or decreases the flow value on the original arc according to the |
| 2793 | 2793 |
/// direction of the residual arc. |
| 2794 | 2794 |
void augment(const Arc& a, const Value& v) const {
|
| 2795 | 2795 |
if (Undirected::direction(a)) {
|
| 2796 | 2796 |
_flow->set(a, (*_flow)[a] + v); |
| 2797 | 2797 |
} else {
|
| 2798 | 2798 |
_flow->set(a, (*_flow)[a] - v); |
| 2799 | 2799 |
} |
| 2800 | 2800 |
} |
| 2801 | 2801 |
|
| 2802 | 2802 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
| 2803 | 2803 |
/// |
| 2804 | 2804 |
/// Returns \c true if the given residual arc has the same orientation |
| 2805 | 2805 |
/// as the original arc, i.e. it is a so called forward arc. |
| 2806 | 2806 |
static bool forward(const Arc& a) {
|
| 2807 | 2807 |
return Undirected::direction(a); |
| 2808 | 2808 |
} |
| 2809 | 2809 |
|
| 2810 | 2810 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
| 2811 | 2811 |
/// |
| 2812 | 2812 |
/// Returns \c true if the given residual arc has the opposite orientation |
| 2813 | 2813 |
/// than the original arc, i.e. it is a so called backward arc. |
| 2814 | 2814 |
static bool backward(const Arc& a) {
|
| 2815 | 2815 |
return !Undirected::direction(a); |
| 2816 | 2816 |
} |
| 2817 | 2817 |
|
| 2818 | 2818 |
/// \brief Returns the forward oriented residual arc. |
| 2819 | 2819 |
/// |
| 2820 | 2820 |
/// Returns the forward oriented residual arc related to the given |
| 2821 | 2821 |
/// arc of the underlying digraph. |
| 2822 | 2822 |
static Arc forward(const typename Digraph::Arc& a) {
|
| 2823 | 2823 |
return Undirected::direct(a, true); |
| 2824 | 2824 |
} |
| 2825 | 2825 |
|
| 2826 | 2826 |
/// \brief Returns the backward oriented residual arc. |
| 2827 | 2827 |
/// |
| 2828 | 2828 |
/// Returns the backward oriented residual arc related to the given |
| 2829 | 2829 |
/// arc of the underlying digraph. |
| 2830 | 2830 |
static Arc backward(const typename Digraph::Arc& a) {
|
| 2831 | 2831 |
return Undirected::direct(a, false); |
| 2832 | 2832 |
} |
| 2833 | 2833 |
|
| 2834 | 2834 |
/// \brief Residual capacity map. |
| 2835 | 2835 |
/// |
| 2836 | 2836 |
/// This map adaptor class can be used for obtaining the residual |
| 2837 | 2837 |
/// capacities as an arc map of the residual digraph. |
| 2838 | 2838 |
/// Its value type is inherited from the capacity map. |
| 2839 | 2839 |
class ResidualCapacity {
|
| 2840 | 2840 |
protected: |
| 2841 | 2841 |
const Adaptor* _adaptor; |
| 2842 | 2842 |
public: |
| 2843 | 2843 |
/// The key type of the map |
| 2844 | 2844 |
typedef Arc Key; |
| 2845 | 2845 |
/// The value type of the map |
| 2846 | 2846 |
typedef typename CapacityMap::Value Value; |
| 2847 | 2847 |
|
| 2848 | 2848 |
/// Constructor |
| 2849 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2849 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
| 2850 | 2850 |
: _adaptor(&adaptor) {}
|
| 2851 | 2851 |
|
| 2852 | 2852 |
/// Returns the value associated with the given residual arc |
| 2853 | 2853 |
Value operator[](const Arc& a) const {
|
| 2854 | 2854 |
return _adaptor->residualCapacity(a); |
| 2855 | 2855 |
} |
| 2856 | 2856 |
|
| 2857 | 2857 |
}; |
| 2858 | 2858 |
|
| 2859 | 2859 |
/// \brief Returns a residual capacity map |
| 2860 | 2860 |
/// |
| 2861 | 2861 |
/// This function just returns a residual capacity map. |
| 2862 | 2862 |
ResidualCapacity residualCapacity() const {
|
| 2863 | 2863 |
return ResidualCapacity(*this); |
| 2864 | 2864 |
} |
| 2865 | 2865 |
|
| 2866 | 2866 |
}; |
| 2867 | 2867 |
|
| 2868 | 2868 |
/// \brief Returns a (read-only) Residual adaptor |
| 2869 | 2869 |
/// |
| 2870 | 2870 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
| 2871 | 2871 |
/// \ingroup graph_adaptors |
| 2872 | 2872 |
/// \relates ResidualDigraph |
| 2873 | 2873 |
template<typename DGR, typename CM, typename FM> |
| 2874 | 2874 |
ResidualDigraph<DGR, CM, FM> |
| 2875 | 2875 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
|
| 2876 | 2876 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
| 2877 | 2877 |
} |
| 2878 | 2878 |
|
| 2879 | 2879 |
|
| 2880 | 2880 |
template <typename DGR> |
| 2881 | 2881 |
class SplitNodesBase {
|
| 2882 | 2882 |
typedef DigraphAdaptorBase<const DGR> Parent; |
| 2883 | 2883 |
|
| 2884 | 2884 |
public: |
| 2885 | 2885 |
|
| 2886 | 2886 |
typedef DGR Digraph; |
| 2887 | 2887 |
typedef SplitNodesBase Adaptor; |
| 2888 | 2888 |
|
| 2889 | 2889 |
typedef typename DGR::Node DigraphNode; |
| 2890 | 2890 |
typedef typename DGR::Arc DigraphArc; |
| 2891 | 2891 |
|
| 2892 | 2892 |
class Node; |
| 2893 | 2893 |
class Arc; |
| 2894 | 2894 |
|
| 2895 | 2895 |
private: |
| 2896 | 2896 |
|
| 2897 | 2897 |
template <typename T> class NodeMapBase; |
| ... | ... |
@@ -3378,97 +3378,97 @@ |
| 3378 | 3378 |
return Parent::origArc(a); |
| 3379 | 3379 |
} |
| 3380 | 3380 |
|
| 3381 | 3381 |
/// \brief Returns \c true if the given arc is a bind arc. |
| 3382 | 3382 |
/// |
| 3383 | 3383 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
| 3384 | 3384 |
/// an in-node and an out-node. |
| 3385 | 3385 |
static bool bindArc(const Arc& a) {
|
| 3386 | 3386 |
return Parent::bindArc(a); |
| 3387 | 3387 |
} |
| 3388 | 3388 |
|
| 3389 | 3389 |
/// \brief Returns the in-node created from the given original node. |
| 3390 | 3390 |
/// |
| 3391 | 3391 |
/// Returns the in-node created from the given original node. |
| 3392 | 3392 |
static Node inNode(const DigraphNode& n) {
|
| 3393 | 3393 |
return Parent::inNode(n); |
| 3394 | 3394 |
} |
| 3395 | 3395 |
|
| 3396 | 3396 |
/// \brief Returns the out-node created from the given original node. |
| 3397 | 3397 |
/// |
| 3398 | 3398 |
/// Returns the out-node created from the given original node. |
| 3399 | 3399 |
static Node outNode(const DigraphNode& n) {
|
| 3400 | 3400 |
return Parent::outNode(n); |
| 3401 | 3401 |
} |
| 3402 | 3402 |
|
| 3403 | 3403 |
/// \brief Returns the bind arc that corresponds to the given |
| 3404 | 3404 |
/// original node. |
| 3405 | 3405 |
/// |
| 3406 | 3406 |
/// Returns the bind arc in the adaptor that corresponds to the given |
| 3407 | 3407 |
/// original node, i.e. the arc connecting the in-node and out-node |
| 3408 | 3408 |
/// of \c n. |
| 3409 | 3409 |
static Arc arc(const DigraphNode& n) {
|
| 3410 | 3410 |
return Parent::arc(n); |
| 3411 | 3411 |
} |
| 3412 | 3412 |
|
| 3413 | 3413 |
/// \brief Returns the arc that corresponds to the given original arc. |
| 3414 | 3414 |
/// |
| 3415 | 3415 |
/// Returns the arc in the adaptor that corresponds to the given |
| 3416 | 3416 |
/// original arc. |
| 3417 | 3417 |
static Arc arc(const DigraphArc& a) {
|
| 3418 | 3418 |
return Parent::arc(a); |
| 3419 | 3419 |
} |
| 3420 | 3420 |
|
| 3421 | 3421 |
/// \brief Node map combined from two original node maps |
| 3422 | 3422 |
/// |
| 3423 | 3423 |
/// This map adaptor class adapts two node maps of the original digraph |
| 3424 | 3424 |
/// to get a node map of the split digraph. |
| 3425 | 3425 |
/// Its value type is inherited from the first node map type (\c IN). |
| 3426 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3426 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3427 | 3427 |
/// \tparam OUT The type of the node map for the out-nodes. |
| 3428 | 3428 |
template <typename IN, typename OUT> |
| 3429 | 3429 |
class CombinedNodeMap {
|
| 3430 | 3430 |
public: |
| 3431 | 3431 |
|
| 3432 | 3432 |
/// The key type of the map |
| 3433 | 3433 |
typedef Node Key; |
| 3434 | 3434 |
/// The value type of the map |
| 3435 | 3435 |
typedef typename IN::Value Value; |
| 3436 | 3436 |
|
| 3437 | 3437 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
| 3438 | 3438 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
| 3439 | 3439 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
| 3440 | 3440 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
| 3441 | 3441 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
| 3442 | 3442 |
|
| 3443 | 3443 |
/// Constructor |
| 3444 | 3444 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
| 3445 | 3445 |
: _in_map(in_map), _out_map(out_map) {}
|
| 3446 | 3446 |
|
| 3447 | 3447 |
/// Returns the value associated with the given key. |
| 3448 | 3448 |
Value operator[](const Key& key) const {
|
| 3449 | 3449 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3450 | 3450 |
return _in_map[key]; |
| 3451 | 3451 |
} else {
|
| 3452 | 3452 |
return _out_map[key]; |
| 3453 | 3453 |
} |
| 3454 | 3454 |
} |
| 3455 | 3455 |
|
| 3456 | 3456 |
/// Returns a reference to the value associated with the given key. |
| 3457 | 3457 |
Value& operator[](const Key& key) {
|
| 3458 | 3458 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3459 | 3459 |
return _in_map[key]; |
| 3460 | 3460 |
} else {
|
| 3461 | 3461 |
return _out_map[key]; |
| 3462 | 3462 |
} |
| 3463 | 3463 |
} |
| 3464 | 3464 |
|
| 3465 | 3465 |
/// Sets the value associated with the given key. |
| 3466 | 3466 |
void set(const Key& key, const Value& value) {
|
| 3467 | 3467 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3468 | 3468 |
_in_map.set(key, value); |
| 3469 | 3469 |
} else {
|
| 3470 | 3470 |
_out_map.set(key, value); |
| 3471 | 3471 |
} |
| 3472 | 3472 |
} |
| 3473 | 3473 |
|
| 3474 | 3474 |
private: |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Binary Heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
///\ingroup auxdat |
| 33 | 33 |
/// |
| 34 | 34 |
///\brief A Binary Heap implementation. |
| 35 | 35 |
/// |
| 36 | 36 |
///This class implements the \e binary \e heap data structure. |
| 37 | 37 |
/// |
| 38 | 38 |
///A \e heap is a data structure for storing items with specified values |
| 39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
| 40 | 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
| 41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
| 42 | 42 |
///item, etc. |
| 43 | 43 |
/// |
| 44 | 44 |
///\tparam PR Type of the priority of the items. |
| 45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
| 46 | 46 |
///to handle the cross references. |
| 47 | 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
| 48 | 48 |
///The default is \c std::less<PR>. |
| 49 | 49 |
/// |
| 50 | 50 |
///\sa FibHeap |
| 51 | 51 |
///\sa Dijkstra |
| 52 | 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 53 | 53 |
class BinHeap {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
| 20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <memory> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/traits.h> |
| 25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
// \ingroup graphbits |
| 30 | 30 |
// \file |
| 31 | 31 |
// \brief Graph map based on the array storage. |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
// \ingroup graphbits |
| 36 | 36 |
// |
| 37 | 37 |
// \brief Graph map based on the array storage. |
| 38 | 38 |
// |
| 39 | 39 |
// The ArrayMap template class is graph map structure that automatically |
| 40 | 40 |
// updates the map when a key is added to or erased from the graph. |
| 41 | 41 |
// This map uses the allocators to implement the container functionality. |
| 42 | 42 |
// |
| 43 | 43 |
// The template parameters are the Graph, the current Item type and |
| 44 | 44 |
// the Value type of the map. |
| 45 | 45 |
template <typename _Graph, typename _Item, typename _Value> |
| 46 | 46 |
class ArrayMap |
| 47 | 47 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
|
| 48 | 48 |
public: |
| 49 | 49 |
// The graph type. |
| 50 | 50 |
typedef _Graph GraphType; |
| 51 | 51 |
// The item type. |
| 52 | 52 |
typedef _Item Item; |
| 53 | 53 |
// The reference map tag. |
| 54 | 54 |
typedef True ReferenceMapTag; |
| 55 | 55 |
|
| 56 | 56 |
// The key type of the map. |
| 57 | 57 |
typedef _Item Key; |
| 58 | 58 |
// The value type of the map. |
| 59 | 59 |
typedef _Value Value; |
| 60 | 60 |
|
| 61 | 61 |
// The const reference type of the map. |
| 62 | 62 |
typedef const _Value& ConstReference; |
| 63 | 63 |
// The reference type of the map. |
| 64 | 64 |
typedef _Value& Reference; |
| 65 | 65 |
|
| 66 | 66 |
// The map type. |
| 67 | 67 |
typedef ArrayMap Map; |
| 68 | 68 |
|
| 69 | 69 |
// The notifier type. |
| 70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 71 | 71 |
|
| 72 | 72 |
private: |
| 73 |
|
|
| 73 |
|
|
| 74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
| 75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
| 76 | 76 |
|
| 77 | 77 |
typedef std::allocator<Value> Allocator; |
| 78 | 78 |
|
| 79 | 79 |
public: |
| 80 | 80 |
|
| 81 | 81 |
// \brief Graph initialized map constructor. |
| 82 | 82 |
// |
| 83 | 83 |
// Graph initialized map constructor. |
| 84 | 84 |
explicit ArrayMap(const GraphType& graph) {
|
| 85 | 85 |
Parent::attach(graph.notifier(Item())); |
| 86 | 86 |
allocate_memory(); |
| 87 | 87 |
Notifier* nf = Parent::notifier(); |
| 88 | 88 |
Item it; |
| 89 | 89 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 90 | 90 |
int id = nf->id(it);; |
| 91 | 91 |
allocator.construct(&(values[id]), Value()); |
| 92 | 92 |
} |
| 93 | 93 |
} |
| 94 | 94 |
|
| 95 | 95 |
// \brief Constructor to use default value to initialize the map. |
| 96 | 96 |
// |
| 97 | 97 |
// It constructs a map and initialize all of the the map. |
| 98 | 98 |
ArrayMap(const GraphType& graph, const Value& value) {
|
| 99 | 99 |
Parent::attach(graph.notifier(Item())); |
| 100 | 100 |
allocate_memory(); |
| 101 | 101 |
Notifier* nf = Parent::notifier(); |
| 102 | 102 |
Item it; |
| 103 | 103 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 104 | 104 |
int id = nf->id(it);; |
| 105 | 105 |
allocator.construct(&(values[id]), value); |
| 106 | 106 |
} |
| 107 | 107 |
} |
| 108 | 108 |
|
| 109 | 109 |
private: |
| 110 | 110 |
// \brief Constructor to copy a map of the same map type. |
| 111 | 111 |
// |
| 112 | 112 |
// Constructor to copy a map of the same map type. |
| 113 | 113 |
ArrayMap(const ArrayMap& copy) : Parent() {
|
| 114 | 114 |
if (copy.attached()) {
|
| 115 | 115 |
attach(*copy.notifier()); |
| 116 | 116 |
} |
| 117 | 117 |
capacity = copy.capacity; |
| 118 | 118 |
if (capacity == 0) return; |
| 119 | 119 |
values = allocator.allocate(capacity); |
| 120 | 120 |
Notifier* nf = Parent::notifier(); |
| 121 | 121 |
Item it; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
| 20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/config.h> |
| 23 | 23 |
#include <lemon/bits/array_map.h> |
| 24 | 24 |
#include <lemon/bits/vector_map.h> |
| 25 | 25 |
//#include <lemon/bits/debug_map.h> |
| 26 | 26 |
|
| 27 | 27 |
//\ingroup graphbits |
| 28 | 28 |
//\file |
| 29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
|
| 34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
| 35 | 35 |
|
| 36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
| 37 | 37 |
struct DefaultMapSelector {
|
| 38 | 38 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
| 39 | 39 |
}; |
| 40 | 40 |
|
| 41 | 41 |
// bool |
| 42 | 42 |
template <typename _Graph, typename _Item> |
| 43 | 43 |
struct DefaultMapSelector<_Graph, _Item, bool> {
|
| 44 | 44 |
typedef VectorMap<_Graph, _Item, bool> Map; |
| 45 | 45 |
}; |
| 46 | 46 |
|
| 47 | 47 |
// char |
| 48 | 48 |
template <typename _Graph, typename _Item> |
| 49 | 49 |
struct DefaultMapSelector<_Graph, _Item, char> {
|
| 50 | 50 |
typedef VectorMap<_Graph, _Item, char> Map; |
| 51 | 51 |
}; |
| 52 | 52 |
|
| 53 | 53 |
template <typename _Graph, typename _Item> |
| ... | ... |
@@ -112,71 +112,71 @@ |
| 112 | 112 |
|
| 113 | 113 |
#endif |
| 114 | 114 |
|
| 115 | 115 |
|
| 116 | 116 |
// float |
| 117 | 117 |
template <typename _Graph, typename _Item> |
| 118 | 118 |
struct DefaultMapSelector<_Graph, _Item, float> {
|
| 119 | 119 |
typedef VectorMap<_Graph, _Item, float> Map; |
| 120 | 120 |
}; |
| 121 | 121 |
|
| 122 | 122 |
|
| 123 | 123 |
// double |
| 124 | 124 |
template <typename _Graph, typename _Item> |
| 125 | 125 |
struct DefaultMapSelector<_Graph, _Item, double> {
|
| 126 | 126 |
typedef VectorMap<_Graph, _Item, double> Map; |
| 127 | 127 |
}; |
| 128 | 128 |
|
| 129 | 129 |
|
| 130 | 130 |
// long double |
| 131 | 131 |
template <typename _Graph, typename _Item> |
| 132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> {
|
| 133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
| 134 | 134 |
}; |
| 135 | 135 |
|
| 136 | 136 |
|
| 137 | 137 |
// pointer |
| 138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
| 139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
|
| 140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
| 141 | 141 |
}; |
| 142 | 142 |
|
| 143 | 143 |
// #else |
| 144 | 144 |
|
| 145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
| 146 | 146 |
// struct DefaultMapSelector {
|
| 147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
| 148 | 148 |
// }; |
| 149 | 149 |
|
| 150 | 150 |
// #endif |
| 151 | 151 |
|
| 152 | 152 |
// DefaultMap class |
| 153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
| 154 | 154 |
class DefaultMap |
| 155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map {
|
| 156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
| 157 | 157 |
|
| 158 | 158 |
public: |
| 159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
| 160 |
|
|
| 160 |
|
|
| 161 | 161 |
typedef typename Parent::GraphType GraphType; |
| 162 | 162 |
typedef typename Parent::Value Value; |
| 163 | 163 |
|
| 164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {}
|
| 165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
| 166 | 166 |
: Parent(graph, value) {}
|
| 167 | 167 |
|
| 168 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) {
|
| 169 | 169 |
return operator=<DefaultMap>(cmap); |
| 170 | 170 |
} |
| 171 | 171 |
|
| 172 | 172 |
template <typename CMap> |
| 173 | 173 |
DefaultMap& operator=(const CMap& cmap) {
|
| 174 | 174 |
Parent::operator=(cmap); |
| 175 | 175 |
return *this; |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
}; |
| 179 | 179 |
|
| 180 | 180 |
} |
| 181 | 181 |
|
| 182 | 182 |
#endif |
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
#include <lemon/bits/default_map.h> |
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
|
| 27 | 27 |
//\ingroup digraphbits |
| 28 | 28 |
//\file |
| 29 | 29 |
//\brief Extenders for the arc set types |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
// \ingroup digraphbits |
| 33 | 33 |
// |
| 34 | 34 |
// \brief Extender for the ArcSets |
| 35 | 35 |
template <typename Base> |
| 36 | 36 |
class ArcSetExtender : public Base {
|
| 37 | 37 |
typedef Base Parent; |
| 38 | 38 |
|
| 39 | 39 |
public: |
| 40 | 40 |
|
| 41 | 41 |
typedef ArcSetExtender Digraph; |
| 42 | 42 |
|
| 43 | 43 |
// Base extensions |
| 44 | 44 |
|
| 45 | 45 |
typedef typename Parent::Node Node; |
| 46 | 46 |
typedef typename Parent::Arc Arc; |
| 47 | 47 |
|
| 48 | 48 |
int maxId(Node) const {
|
| 49 | 49 |
return Parent::maxNodeId(); |
| 50 | 50 |
} |
| 51 | 51 |
|
| 52 | 52 |
int maxId(Arc) const {
|
| 53 | 53 |
return Parent::maxArcId(); |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
Node fromId(int id, Node) const {
|
| 57 | 57 |
return Parent::nodeFromId(id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
Arc fromId(int id, Arc) const {
|
| 61 | 61 |
return Parent::arcFromId(id); |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 65 | 65 |
if (n == Parent::source(e)) |
| 66 |
|
|
| 66 |
return Parent::target(e); |
|
| 67 | 67 |
else if(n==Parent::target(e)) |
| 68 |
|
|
| 68 |
return Parent::source(e); |
|
| 69 | 69 |
else |
| 70 |
|
|
| 70 |
return INVALID; |
|
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
|
| 74 | 74 |
// Alteration notifier extensions |
| 75 | 75 |
|
| 76 | 76 |
// The arc observer registry. |
| 77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
| 78 | 78 |
|
| 79 | 79 |
protected: |
| 80 | 80 |
|
| 81 | 81 |
mutable ArcNotifier arc_notifier; |
| 82 | 82 |
|
| 83 | 83 |
public: |
| 84 | 84 |
|
| 85 | 85 |
using Parent::notifier; |
| 86 | 86 |
|
| 87 | 87 |
// Gives back the arc alteration notifier. |
| 88 | 88 |
ArcNotifier& notifier(Arc) const {
|
| 89 | 89 |
return arc_notifier; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
// Iterable extensions |
| 93 | 93 |
|
| 94 |
class NodeIt : public Node {
|
|
| 94 |
class NodeIt : public Node {
|
|
| 95 | 95 |
const Digraph* digraph; |
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
NodeIt() {}
|
| 99 | 99 |
|
| 100 | 100 |
NodeIt(Invalid i) : Node(i) { }
|
| 101 | 101 |
|
| 102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 103 |
|
|
| 103 |
_graph.first(static_cast<Node&>(*this)); |
|
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
| 107 |
: Node(node), digraph(&_graph) {}
|
|
| 108 | 108 |
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
|
|
| 109 |
NodeIt& operator++() {
|
|
| 110 |
digraph->next(*this); |
|
| 111 |
return *this; |
|
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
}; |
| 115 | 115 |
|
| 116 | 116 |
|
| 117 |
class ArcIt : public Arc {
|
|
| 117 |
class ArcIt : public Arc {
|
|
| 118 | 118 |
const Digraph* digraph; |
| 119 | 119 |
public: |
| 120 | 120 |
|
| 121 | 121 |
ArcIt() { }
|
| 122 | 122 |
|
| 123 | 123 |
ArcIt(Invalid i) : Arc(i) { }
|
| 124 | 124 |
|
| 125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 126 |
|
|
| 126 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
| 130 |
Arc(e), digraph(&_graph) { }
|
|
| 131 | 131 |
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
|
|
| 132 |
ArcIt& operator++() {
|
|
| 133 |
digraph->next(*this); |
|
| 134 |
return *this; |
|
| 135 | 135 |
} |
| 136 | 136 |
|
| 137 | 137 |
}; |
| 138 | 138 |
|
| 139 | 139 |
|
| 140 |
class OutArcIt : public Arc {
|
|
| 140 |
class OutArcIt : public Arc {
|
|
| 141 | 141 |
const Digraph* digraph; |
| 142 | 142 |
public: |
| 143 | 143 |
|
| 144 | 144 |
OutArcIt() { }
|
| 145 | 145 |
|
| 146 | 146 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 147 | 147 |
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
|
|
| 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
| 149 |
: digraph(&_graph) {
|
|
| 150 |
_graph.firstOut(*this, node); |
|
| 151 | 151 |
} |
| 152 | 152 |
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
| 154 |
: Arc(arc), digraph(&_graph) {}
|
|
| 155 | 155 |
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
|
|
| 156 |
OutArcIt& operator++() {
|
|
| 157 |
digraph->nextOut(*this); |
|
| 158 |
return *this; |
|
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
}; |
| 162 | 162 |
|
| 163 | 163 |
|
| 164 |
class InArcIt : public Arc {
|
|
| 164 |
class InArcIt : public Arc {
|
|
| 165 | 165 |
const Digraph* digraph; |
| 166 | 166 |
public: |
| 167 | 167 |
|
| 168 | 168 |
InArcIt() { }
|
| 169 | 169 |
|
| 170 | 170 |
InArcIt(Invalid i) : Arc(i) { }
|
| 171 | 171 |
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
|
|
| 172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
| 173 |
: digraph(&_graph) {
|
|
| 174 |
_graph.firstIn(*this, node); |
|
| 175 | 175 |
} |
| 176 | 176 |
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
| 178 |
Arc(arc), digraph(&_graph) {}
|
|
| 179 | 179 |
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
|
|
| 180 |
InArcIt& operator++() {
|
|
| 181 |
digraph->nextIn(*this); |
|
| 182 |
return *this; |
|
| 183 | 183 |
} |
| 184 | 184 |
|
| 185 | 185 |
}; |
| 186 | 186 |
|
| 187 | 187 |
// \brief Base node of the iterator |
| 188 | 188 |
// |
| 189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
| 190 | 190 |
Node baseNode(const OutArcIt &e) const {
|
| 191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
| 192 | 192 |
} |
| 193 | 193 |
// \brief Running node of the iterator |
| 194 | 194 |
// |
| 195 | 195 |
// Returns the running node (ie. the target in this case) of the |
| 196 | 196 |
// iterator |
| 197 | 197 |
Node runningNode(const OutArcIt &e) const {
|
| 198 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
// \brief Base node of the iterator |
| 202 | 202 |
// |
| 203 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
| 204 | 204 |
Node baseNode(const InArcIt &e) const {
|
| 205 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
| 206 | 206 |
} |
| 207 | 207 |
// \brief Running node of the iterator |
| 208 | 208 |
// |
| 209 | 209 |
// Returns the running node (ie. the source in this case) of the |
| 210 | 210 |
// iterator |
| 211 | 211 |
Node runningNode(const InArcIt &e) const {
|
| 212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
using Parent::first; |
| 216 | 216 |
|
| 217 | 217 |
// Mappable extension |
| 218 |
|
|
| 218 |
|
|
| 219 | 219 |
template <typename _Value> |
| 220 |
class ArcMap |
|
| 220 |
class ArcMap |
|
| 221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 223 | 223 |
|
| 224 | 224 |
public: |
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 225 |
explicit ArcMap(const Digraph& _g) |
|
| 226 |
: Parent(_g) {}
|
|
| 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
| 228 |
: Parent(_g, _v) {}
|
|
| 229 | 229 |
|
| 230 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 |
|
|
| 231 |
return operator=<ArcMap>(cmap); |
|
| 232 | 232 |
} |
| 233 | 233 |
|
| 234 | 234 |
template <typename CMap> |
| 235 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 236 |
Parent::operator=(cmap); |
| 237 |
|
|
| 237 |
return *this; |
|
| 238 | 238 |
} |
| 239 | 239 |
|
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
|
| 243 | 243 |
// Alteration extension |
| 244 | 244 |
|
| 245 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 246 |
Arc arc = Parent::addArc(from, to); |
| 247 | 247 |
notifier(Arc()).add(arc); |
| 248 | 248 |
return arc; |
| 249 | 249 |
} |
| 250 |
|
|
| 250 |
|
|
| 251 | 251 |
void clear() {
|
| 252 | 252 |
notifier(Arc()).clear(); |
| 253 | 253 |
Parent::clear(); |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
void erase(const Arc& arc) {
|
| 257 | 257 |
notifier(Arc()).erase(arc); |
| 258 | 258 |
Parent::erase(arc); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
ArcSetExtender() {
|
| 262 | 262 |
arc_notifier.setContainer(*this); |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 | 265 |
~ArcSetExtender() {
|
| 266 | 266 |
arc_notifier.clear(); |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
|
| 272 | 272 |
// \ingroup digraphbits |
| 273 | 273 |
// |
| 274 | 274 |
// \brief Extender for the EdgeSets |
| 275 | 275 |
template <typename Base> |
| 276 | 276 |
class EdgeSetExtender : public Base {
|
| 277 | 277 |
typedef Base Parent; |
| 278 | 278 |
|
| 279 | 279 |
public: |
| 280 | 280 |
|
| 281 | 281 |
typedef EdgeSetExtender Graph; |
| 282 | 282 |
|
| 283 | 283 |
typedef True UndirectedTag; |
| 284 | 284 |
|
| 285 | 285 |
typedef typename Parent::Node Node; |
| 286 | 286 |
typedef typename Parent::Arc Arc; |
| 287 | 287 |
typedef typename Parent::Edge Edge; |
| 288 | 288 |
|
| 289 | 289 |
int maxId(Node) const {
|
| 290 | 290 |
return Parent::maxNodeId(); |
| 291 | 291 |
} |
| 292 | 292 |
|
| 293 | 293 |
int maxId(Arc) const {
|
| 294 | 294 |
return Parent::maxArcId(); |
| 295 | 295 |
} |
| 296 | 296 |
|
| 297 | 297 |
int maxId(Edge) const {
|
| 298 | 298 |
return Parent::maxEdgeId(); |
| 299 | 299 |
} |
| 300 | 300 |
|
| 301 | 301 |
Node fromId(int id, Node) const {
|
| 302 | 302 |
return Parent::nodeFromId(id); |
| 303 | 303 |
} |
| 304 | 304 |
|
| 305 | 305 |
Arc fromId(int id, Arc) const {
|
| 306 | 306 |
return Parent::arcFromId(id); |
| 307 | 307 |
} |
| 308 | 308 |
|
| 309 | 309 |
Edge fromId(int id, Edge) const {
|
| 310 | 310 |
return Parent::edgeFromId(id); |
| 311 | 311 |
} |
| 312 | 312 |
|
| 313 | 313 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 314 | 314 |
if( n == Parent::u(e)) |
| 315 |
|
|
| 315 |
return Parent::v(e); |
|
| 316 | 316 |
else if( n == Parent::v(e)) |
| 317 |
|
|
| 317 |
return Parent::u(e); |
|
| 318 | 318 |
else |
| 319 |
|
|
| 319 |
return INVALID; |
|
| 320 | 320 |
} |
| 321 | 321 |
|
| 322 | 322 |
Arc oppositeArc(const Arc &e) const {
|
| 323 | 323 |
return Parent::direct(e, !Parent::direction(e)); |
| 324 | 324 |
} |
| 325 | 325 |
|
| 326 | 326 |
using Parent::direct; |
| 327 | 327 |
Arc direct(const Edge &e, const Node &s) const {
|
| 328 | 328 |
return Parent::direct(e, Parent::u(e) == s); |
| 329 | 329 |
} |
| 330 | 330 |
|
| 331 | 331 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 332 | 332 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 333 | 333 |
|
| 334 | 334 |
|
| 335 | 335 |
protected: |
| 336 | 336 |
|
| 337 | 337 |
mutable ArcNotifier arc_notifier; |
| 338 | 338 |
mutable EdgeNotifier edge_notifier; |
| 339 | 339 |
|
| 340 | 340 |
public: |
| 341 | 341 |
|
| 342 | 342 |
using Parent::notifier; |
| 343 |
|
|
| 343 |
|
|
| 344 | 344 |
ArcNotifier& notifier(Arc) const {
|
| 345 | 345 |
return arc_notifier; |
| 346 | 346 |
} |
| 347 | 347 |
|
| 348 | 348 |
EdgeNotifier& notifier(Edge) const {
|
| 349 | 349 |
return edge_notifier; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
|
| 353 |
class NodeIt : public Node {
|
|
| 353 |
class NodeIt : public Node {
|
|
| 354 | 354 |
const Graph* graph; |
| 355 | 355 |
public: |
| 356 | 356 |
|
| 357 | 357 |
NodeIt() {}
|
| 358 | 358 |
|
| 359 | 359 |
NodeIt(Invalid i) : Node(i) { }
|
| 360 | 360 |
|
| 361 | 361 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) {
|
| 362 |
|
|
| 362 |
_graph.first(static_cast<Node&>(*this)); |
|
| 363 | 363 |
} |
| 364 | 364 |
|
| 365 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 366 |
: Node(node), graph(&_graph) {}
|
|
| 365 |
NodeIt(const Graph& _graph, const Node& node) |
|
| 366 |
: Node(node), graph(&_graph) {}
|
|
| 367 | 367 |
|
| 368 |
NodeIt& operator++() {
|
|
| 369 |
graph->next(*this); |
|
| 370 |
|
|
| 368 |
NodeIt& operator++() {
|
|
| 369 |
graph->next(*this); |
|
| 370 |
return *this; |
|
| 371 | 371 |
} |
| 372 | 372 |
|
| 373 | 373 |
}; |
| 374 | 374 |
|
| 375 | 375 |
|
| 376 |
class ArcIt : public Arc {
|
|
| 376 |
class ArcIt : public Arc {
|
|
| 377 | 377 |
const Graph* graph; |
| 378 | 378 |
public: |
| 379 | 379 |
|
| 380 | 380 |
ArcIt() { }
|
| 381 | 381 |
|
| 382 | 382 |
ArcIt(Invalid i) : Arc(i) { }
|
| 383 | 383 |
|
| 384 | 384 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) {
|
| 385 |
|
|
| 385 |
_graph.first(static_cast<Arc&>(*this)); |
|
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 389 |
Arc(e), graph(&_graph) { }
|
|
| 388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
| 389 |
Arc(e), graph(&_graph) { }
|
|
| 390 | 390 |
|
| 391 |
ArcIt& operator++() {
|
|
| 392 |
graph->next(*this); |
|
| 393 |
|
|
| 391 |
ArcIt& operator++() {
|
|
| 392 |
graph->next(*this); |
|
| 393 |
return *this; |
|
| 394 | 394 |
} |
| 395 | 395 |
|
| 396 | 396 |
}; |
| 397 | 397 |
|
| 398 | 398 |
|
| 399 |
class OutArcIt : public Arc {
|
|
| 399 |
class OutArcIt : public Arc {
|
|
| 400 | 400 |
const Graph* graph; |
| 401 | 401 |
public: |
| 402 | 402 |
|
| 403 | 403 |
OutArcIt() { }
|
| 404 | 404 |
|
| 405 | 405 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 406 | 406 |
|
| 407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 408 |
: graph(&_graph) {
|
|
| 409 |
|
|
| 407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
| 408 |
: graph(&_graph) {
|
|
| 409 |
_graph.firstOut(*this, node); |
|
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 413 |
: Arc(arc), graph(&_graph) {}
|
|
| 412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
| 413 |
: Arc(arc), graph(&_graph) {}
|
|
| 414 | 414 |
|
| 415 |
OutArcIt& operator++() {
|
|
| 416 |
graph->nextOut(*this); |
|
| 417 |
|
|
| 415 |
OutArcIt& operator++() {
|
|
| 416 |
graph->nextOut(*this); |
|
| 417 |
return *this; |
|
| 418 | 418 |
} |
| 419 | 419 |
|
| 420 | 420 |
}; |
| 421 | 421 |
|
| 422 | 422 |
|
| 423 |
class InArcIt : public Arc {
|
|
| 423 |
class InArcIt : public Arc {
|
|
| 424 | 424 |
const Graph* graph; |
| 425 | 425 |
public: |
| 426 | 426 |
|
| 427 | 427 |
InArcIt() { }
|
| 428 | 428 |
|
| 429 | 429 |
InArcIt(Invalid i) : Arc(i) { }
|
| 430 | 430 |
|
| 431 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 432 |
: graph(&_graph) {
|
|
| 433 |
|
|
| 431 |
InArcIt(const Graph& _graph, const Node& node) |
|
| 432 |
: graph(&_graph) {
|
|
| 433 |
_graph.firstIn(*this, node); |
|
| 434 | 434 |
} |
| 435 | 435 |
|
| 436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 437 |
Arc(arc), graph(&_graph) {}
|
|
| 436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
| 437 |
Arc(arc), graph(&_graph) {}
|
|
| 438 | 438 |
|
| 439 |
InArcIt& operator++() {
|
|
| 440 |
graph->nextIn(*this); |
|
| 441 |
|
|
| 439 |
InArcIt& operator++() {
|
|
| 440 |
graph->nextIn(*this); |
|
| 441 |
return *this; |
|
| 442 | 442 |
} |
| 443 | 443 |
|
| 444 | 444 |
}; |
| 445 | 445 |
|
| 446 | 446 |
|
| 447 |
class EdgeIt : public Parent::Edge {
|
|
| 447 |
class EdgeIt : public Parent::Edge {
|
|
| 448 | 448 |
const Graph* graph; |
| 449 | 449 |
public: |
| 450 | 450 |
|
| 451 | 451 |
EdgeIt() { }
|
| 452 | 452 |
|
| 453 | 453 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 454 | 454 |
|
| 455 | 455 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
|
| 456 |
|
|
| 456 |
_graph.first(static_cast<Edge&>(*this)); |
|
| 457 | 457 |
} |
| 458 | 458 |
|
| 459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 460 |
Edge(e), graph(&_graph) { }
|
|
| 459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
| 460 |
Edge(e), graph(&_graph) { }
|
|
| 461 | 461 |
|
| 462 |
EdgeIt& operator++() {
|
|
| 463 |
graph->next(*this); |
|
| 464 |
|
|
| 462 |
EdgeIt& operator++() {
|
|
| 463 |
graph->next(*this); |
|
| 464 |
return *this; |
|
| 465 | 465 |
} |
| 466 | 466 |
|
| 467 | 467 |
}; |
| 468 | 468 |
|
| 469 | 469 |
class IncEdgeIt : public Parent::Edge {
|
| 470 | 470 |
friend class EdgeSetExtender; |
| 471 | 471 |
const Graph* graph; |
| 472 | 472 |
bool direction; |
| 473 | 473 |
public: |
| 474 | 474 |
|
| 475 | 475 |
IncEdgeIt() { }
|
| 476 | 476 |
|
| 477 | 477 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 478 | 478 |
|
| 479 | 479 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
|
| 480 |
|
|
| 480 |
_graph.firstInc(*this, direction, n); |
|
| 481 | 481 |
} |
| 482 | 482 |
|
| 483 | 483 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
| 484 |
: graph(&_graph), Edge(ue) {
|
|
| 485 |
direction = (_graph.source(ue) == n); |
|
| 484 |
: graph(&_graph), Edge(ue) {
|
|
| 485 |
direction = (_graph.source(ue) == n); |
|
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
IncEdgeIt& operator++() {
|
| 489 |
graph->nextInc(*this, direction); |
|
| 490 |
return *this; |
|
| 489 |
graph->nextInc(*this, direction); |
|
| 490 |
return *this; |
|
| 491 | 491 |
} |
| 492 | 492 |
}; |
| 493 | 493 |
|
| 494 | 494 |
// \brief Base node of the iterator |
| 495 | 495 |
// |
| 496 | 496 |
// Returns the base node (ie. the source in this case) of the iterator |
| 497 | 497 |
Node baseNode(const OutArcIt &e) const {
|
| 498 | 498 |
return Parent::source(static_cast<const Arc&>(e)); |
| 499 | 499 |
} |
| 500 | 500 |
// \brief Running node of the iterator |
| 501 | 501 |
// |
| 502 | 502 |
// Returns the running node (ie. the target in this case) of the |
| 503 | 503 |
// iterator |
| 504 | 504 |
Node runningNode(const OutArcIt &e) const {
|
| 505 | 505 |
return Parent::target(static_cast<const Arc&>(e)); |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
// \brief Base node of the iterator |
| 509 | 509 |
// |
| 510 | 510 |
// Returns the base node (ie. the target in this case) of the iterator |
| 511 | 511 |
Node baseNode(const InArcIt &e) const {
|
| 512 | 512 |
return Parent::target(static_cast<const Arc&>(e)); |
| 513 | 513 |
} |
| 514 | 514 |
// \brief Running node of the iterator |
| 515 | 515 |
// |
| 516 | 516 |
// Returns the running node (ie. the source in this case) of the |
| 517 | 517 |
// iterator |
| 518 | 518 |
Node runningNode(const InArcIt &e) const {
|
| 519 | 519 |
return Parent::source(static_cast<const Arc&>(e)); |
| 520 | 520 |
} |
| 521 | 521 |
|
| 522 | 522 |
// Base node of the iterator |
| 523 | 523 |
// |
| 524 | 524 |
// Returns the base node of the iterator |
| 525 | 525 |
Node baseNode(const IncEdgeIt &e) const {
|
| 526 | 526 |
return e.direction ? u(e) : v(e); |
| 527 | 527 |
} |
| 528 | 528 |
// Running node of the iterator |
| 529 | 529 |
// |
| 530 | 530 |
// Returns the running node of the iterator |
| 531 | 531 |
Node runningNode(const IncEdgeIt &e) const {
|
| 532 | 532 |
return e.direction ? v(e) : u(e); |
| 533 | 533 |
} |
| 534 | 534 |
|
| 535 | 535 |
|
| 536 | 536 |
template <typename _Value> |
| 537 |
class ArcMap |
|
| 537 |
class ArcMap |
|
| 538 | 538 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > {
|
| 539 | 539 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
| 540 | 540 |
|
| 541 | 541 |
public: |
| 542 |
explicit ArcMap(const Graph& _g) |
|
| 543 |
: Parent(_g) {}
|
|
| 544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 545 |
: Parent(_g, _v) {}
|
|
| 542 |
explicit ArcMap(const Graph& _g) |
|
| 543 |
: Parent(_g) {}
|
|
| 544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
| 545 |
: Parent(_g, _v) {}
|
|
| 546 | 546 |
|
| 547 | 547 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 548 |
|
|
| 548 |
return operator=<ArcMap>(cmap); |
|
| 549 | 549 |
} |
| 550 | 550 |
|
| 551 | 551 |
template <typename CMap> |
| 552 | 552 |
ArcMap& operator=(const CMap& cmap) {
|
| 553 | 553 |
Parent::operator=(cmap); |
| 554 |
|
|
| 554 |
return *this; |
|
| 555 | 555 |
} |
| 556 | 556 |
|
| 557 | 557 |
}; |
| 558 | 558 |
|
| 559 | 559 |
|
| 560 | 560 |
template <typename _Value> |
| 561 |
class EdgeMap |
|
| 561 |
class EdgeMap |
|
| 562 | 562 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > {
|
| 563 | 563 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
| 564 | 564 |
|
| 565 | 565 |
public: |
| 566 |
explicit EdgeMap(const Graph& _g) |
|
| 567 |
: Parent(_g) {}
|
|
| 566 |
explicit EdgeMap(const Graph& _g) |
|
| 567 |
: Parent(_g) {}
|
|
| 568 | 568 |
|
| 569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 570 |
: Parent(_g, _v) {}
|
|
| 569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
| 570 |
: Parent(_g, _v) {}
|
|
| 571 | 571 |
|
| 572 | 572 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 573 |
|
|
| 573 |
return operator=<EdgeMap>(cmap); |
|
| 574 | 574 |
} |
| 575 | 575 |
|
| 576 | 576 |
template <typename CMap> |
| 577 | 577 |
EdgeMap& operator=(const CMap& cmap) {
|
| 578 | 578 |
Parent::operator=(cmap); |
| 579 |
|
|
| 579 |
return *this; |
|
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
}; |
| 583 | 583 |
|
| 584 | 584 |
|
| 585 | 585 |
// Alteration extension |
| 586 | 586 |
|
| 587 | 587 |
Edge addEdge(const Node& from, const Node& to) {
|
| 588 | 588 |
Edge edge = Parent::addEdge(from, to); |
| 589 | 589 |
notifier(Edge()).add(edge); |
| 590 | 590 |
std::vector<Arc> arcs; |
| 591 | 591 |
arcs.push_back(Parent::direct(edge, true)); |
| 592 | 592 |
arcs.push_back(Parent::direct(edge, false)); |
| 593 | 593 |
notifier(Arc()).add(arcs); |
| 594 | 594 |
return edge; |
| 595 | 595 |
} |
| 596 |
|
|
| 596 |
|
|
| 597 | 597 |
void clear() {
|
| 598 | 598 |
notifier(Arc()).clear(); |
| 599 | 599 |
notifier(Edge()).clear(); |
| 600 | 600 |
Parent::clear(); |
| 601 | 601 |
} |
| 602 | 602 |
|
| 603 | 603 |
void erase(const Edge& edge) {
|
| 604 | 604 |
std::vector<Arc> arcs; |
| 605 | 605 |
arcs.push_back(Parent::direct(edge, true)); |
| 606 | 606 |
arcs.push_back(Parent::direct(edge, false)); |
| 607 | 607 |
notifier(Arc()).erase(arcs); |
| 608 | 608 |
notifier(Edge()).erase(edge); |
| 609 | 609 |
Parent::erase(edge); |
| 610 | 610 |
} |
| 611 | 611 |
|
| 612 | 612 |
|
| 613 | 613 |
EdgeSetExtender() {
|
| 614 | 614 |
arc_notifier.setContainer(*this); |
| 615 | 615 |
edge_notifier.setContainer(*this); |
| 616 | 616 |
} |
| 617 | 617 |
|
| 618 | 618 |
~EdgeSetExtender() {
|
| 619 | 619 |
edge_notifier.clear(); |
| 620 | 620 |
arc_notifier.clear(); |
| 621 | 621 |
} |
| 622 |
|
|
| 622 |
|
|
| 623 | 623 |
}; |
| 624 | 624 |
|
| 625 | 625 |
} |
| 626 | 626 |
|
| 627 | 627 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
|
| 25 | 25 |
namespace lemon {
|
| 26 | 26 |
|
| 27 | 27 |
template <typename _Digraph> |
| 28 | 28 |
class DigraphAdaptorExtender : public _Digraph {
|
| 29 | 29 |
typedef _Digraph Parent; |
| 30 | 30 |
|
| 31 | 31 |
public: |
| 32 | 32 |
|
| 33 | 33 |
typedef _Digraph Digraph; |
| 34 | 34 |
typedef DigraphAdaptorExtender Adaptor; |
| 35 | 35 |
|
| 36 | 36 |
// Base extensions |
| 37 | 37 |
|
| 38 | 38 |
typedef typename Parent::Node Node; |
| 39 | 39 |
typedef typename Parent::Arc Arc; |
| 40 | 40 |
|
| 41 | 41 |
int maxId(Node) const {
|
| 42 | 42 |
return Parent::maxNodeId(); |
| 43 | 43 |
} |
| 44 | 44 |
|
| 45 | 45 |
int maxId(Arc) const {
|
| 46 | 46 |
return Parent::maxArcId(); |
| 47 | 47 |
} |
| 48 | 48 |
|
| 49 | 49 |
Node fromId(int id, Node) const {
|
| 50 | 50 |
return Parent::nodeFromId(id); |
| 51 | 51 |
} |
| 52 | 52 |
|
| 53 | 53 |
Arc fromId(int id, Arc) const {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/bits/traits.h> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
//\file |
| 30 | 30 |
//\brief Extenders for iterable maps. |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
// \ingroup graphbits |
| 35 | 35 |
// |
| 36 | 36 |
// \brief Extender for maps |
| 37 | 37 |
template <typename _Map> |
| 38 | 38 |
class MapExtender : public _Map {
|
| 39 | 39 |
typedef _Map Parent; |
| 40 | 40 |
typedef typename Parent::GraphType GraphType; |
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef MapExtender Map; |
| 45 | 45 |
typedef typename Parent::Key Item; |
| 46 | 46 |
|
| 47 | 47 |
typedef typename Parent::Key Key; |
| 48 | 48 |
typedef typename Parent::Value Value; |
| 49 | 49 |
typedef typename Parent::Reference Reference; |
| 50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
| 51 | 51 |
|
| 52 | 52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
| 53 | 53 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_PATH_DUMP_H |
| 20 | 20 |
#define LEMON_BITS_PATH_DUMP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/concept_check.h> |
| 24 | 24 |
|
| 25 | 25 |
namespace lemon {
|
| 26 | 26 |
|
| 27 | 27 |
template <typename _Digraph, typename _PredMap> |
| 28 | 28 |
class PredMapPath {
|
| 29 | 29 |
public: |
| 30 | 30 |
typedef True RevPathTag; |
| 31 | 31 |
|
| 32 | 32 |
typedef _Digraph Digraph; |
| 33 | 33 |
typedef typename Digraph::Arc Arc; |
| 34 | 34 |
typedef _PredMap PredMap; |
| 35 | 35 |
|
| 36 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
| 37 | 37 |
typename Digraph::Node _target) |
| 38 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {}
|
| 39 | 39 |
|
| 40 | 40 |
int length() const {
|
| 41 | 41 |
int len = 0; |
| 42 | 42 |
typename Digraph::Node node = target; |
| 43 | 43 |
typename Digraph::Arc arc; |
| 44 | 44 |
while ((arc = predMap[node]) != INVALID) {
|
| 45 | 45 |
node = digraph.source(arc); |
| 46 | 46 |
++len; |
| 47 | 47 |
} |
| 48 | 48 |
return len; |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
bool empty() const {
|
| 52 | 52 |
return predMap[target] == INVALID; |
| 53 | 53 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
| 20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
|
| 24 | 24 |
namespace lemon {
|
| 25 | 25 |
|
| 26 | 26 |
namespace _solver_bits {
|
| 27 | 27 |
|
| 28 | 28 |
class VarIndex {
|
| 29 | 29 |
private: |
| 30 | 30 |
struct ItemT {
|
| 31 | 31 |
int prev, next; |
| 32 | 32 |
int index; |
| 33 | 33 |
}; |
| 34 | 34 |
std::vector<ItemT> items; |
| 35 | 35 |
int first_item, last_item, first_free_item; |
| 36 | 36 |
|
| 37 | 37 |
std::vector<int> cross; |
| 38 | 38 |
|
| 39 | 39 |
public: |
| 40 | 40 |
|
| 41 | 41 |
VarIndex() |
| 42 | 42 |
: first_item(-1), last_item(-1), first_free_item(-1) {
|
| 43 | 43 |
} |
| 44 | 44 |
|
| 45 | 45 |
void clear() {
|
| 46 | 46 |
first_item = -1; |
| 47 | 47 |
first_free_item = -1; |
| 48 | 48 |
items.clear(); |
| 49 | 49 |
cross.clear(); |
| 50 | 50 |
} |
| 51 | 51 |
|
| 52 | 52 |
int addIndex(int idx) {
|
| 53 | 53 |
int n; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\file |
| 20 | 20 |
///\brief Some basic non-inline functions and static global data. |
| 21 | 21 |
|
| 22 | 22 |
#include<lemon/bits/windows.h> |
| 23 | 23 |
|
| 24 | 24 |
#ifdef WIN32 |
| 25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
| 26 | 26 |
#define WIN32_LEAN_AND_MEAN |
| 27 | 27 |
#endif |
| 28 | 28 |
#ifndef NOMINMAX |
| 29 | 29 |
#define NOMINMAX |
| 30 | 30 |
#endif |
| 31 | 31 |
#ifdef UNICODE |
| 32 | 32 |
#undef UNICODE |
| 33 | 33 |
#endif |
| 34 | 34 |
#include <windows.h> |
| 35 | 35 |
#ifdef LOCALE_INVARIANT |
| 36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
| 37 | 37 |
#else |
| 38 | 38 |
#define MY_LOCALE LOCALE_NEUTRAL |
| 39 | 39 |
#endif |
| 40 | 40 |
#else |
| 41 | 41 |
#include <unistd.h> |
| 42 | 42 |
#include <ctime> |
| 43 | 43 |
#ifndef WIN32 |
| 44 | 44 |
#include <sys/times.h> |
| 45 | 45 |
#endif |
| 46 | 46 |
#include <sys/time.h> |
| 47 | 47 |
#endif |
| 48 | 48 |
|
| 49 | 49 |
#include <cmath> |
| 50 | 50 |
#include <sstream> |
| 51 | 51 |
|
| 52 | 52 |
namespace lemon {
|
| 53 | 53 |
namespace bits {
|
| 54 | 54 |
void getWinProcTimes(double &rtime, |
| 55 | 55 |
double &utime, double &stime, |
| 56 | 56 |
double &cutime, double &cstime) |
| 57 | 57 |
{
|
| 58 | 58 |
#ifdef WIN32 |
| 59 | 59 |
static const double ch = 4294967296.0e-7; |
| 60 | 60 |
static const double cl = 1.0e-7; |
| 61 | 61 |
|
| 62 | 62 |
FILETIME system; |
| 63 | 63 |
GetSystemTimeAsFileTime(&system); |
| 64 | 64 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
| 65 | 65 |
|
| 66 | 66 |
FILETIME create, exit, kernel, user; |
| 67 | 67 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
|
| 68 | 68 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
| 69 | 69 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
| 70 | 70 |
cutime = 0; |
| 71 | 71 |
cstime = 0; |
| 72 | 72 |
} else {
|
| 73 | 73 |
rtime = 0; |
| 74 | 74 |
utime = 0; |
| 75 | 75 |
stime = 0; |
| 76 | 76 |
cutime = 0; |
| 77 | 77 |
cstime = 0; |
| 78 | 78 |
} |
| 79 | 79 |
#else |
| 80 | 80 |
timeval tv; |
| 81 | 81 |
gettimeofday(&tv, 0); |
| 82 | 82 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
| 83 | 83 |
|
| 84 | 84 |
tms ts; |
| 85 | 85 |
double tck=sysconf(_SC_CLK_TCK); |
| 86 | 86 |
times(&ts); |
| 87 | 87 |
utime=ts.tms_utime/tck; |
| 88 | 88 |
stime=ts.tms_stime/tck; |
| 89 | 89 |
cutime=ts.tms_cutime/tck; |
| 90 | 90 |
cstime=ts.tms_cstime/tck; |
| 91 | 91 |
#endif |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
std::string getWinFormattedDate() |
| 95 | 95 |
{
|
| 96 | 96 |
std::ostringstream os; |
| 97 | 97 |
#ifdef WIN32 |
| 98 | 98 |
SYSTEMTIME time; |
| 99 | 99 |
GetSystemTime(&time); |
| 100 | 100 |
char buf1[11], buf2[9], buf3[5]; |
| 101 |
|
|
| 101 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
|
| 102 | 102 |
("ddd MMM dd"), buf1, 11) &&
|
| 103 | 103 |
GetTimeFormat(MY_LOCALE, 0, &time, |
| 104 | 104 |
("HH':'mm':'ss"), buf2, 9) &&
|
| 105 | 105 |
GetDateFormat(MY_LOCALE, 0, &time, |
| 106 | 106 |
("yyyy"), buf3, 5)) {
|
| 107 | 107 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
| 108 | 108 |
} |
| 109 | 109 |
else os << "unknown"; |
| 110 | 110 |
#else |
| 111 | 111 |
timeval tv; |
| 112 | 112 |
gettimeofday(&tv, 0); |
| 113 | 113 |
|
| 114 | 114 |
char cbuf[26]; |
| 115 | 115 |
ctime_r(&tv.tv_sec,cbuf); |
| 116 | 116 |
os << cbuf; |
| 117 | 117 |
#endif |
| 118 | 118 |
return os.str(); |
| 119 | 119 |
} |
| 120 | 120 |
|
| 121 | 121 |
int getWinRndSeed() |
| 122 | 122 |
{
|
| 123 | 123 |
#ifdef WIN32 |
| 124 | 124 |
FILETIME time; |
| 125 | 125 |
GetSystemTimeAsFileTime(&time); |
| 126 | 126 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
| 127 | 127 |
#else |
| 128 | 128 |
timeval tv; |
| 129 | 129 |
gettimeofday(&tv, 0); |
| 130 | 130 |
return getpid() + tv.tv_sec + tv.tv_usec; |
| 131 | 131 |
#endif |
| 132 | 132 |
} |
| 133 | 133 |
} |
| 134 | 134 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
// -*- C++ -*- |
| 20 | 20 |
#ifndef LEMON_CBC_H |
| 21 | 21 |
#define LEMON_CBC_H |
| 22 | 22 |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Header of the LEMON-CBC mip solver interface. |
| 25 | 25 |
///\ingroup lp_group |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/lp_base.h> |
| 28 | 28 |
|
| 29 | 29 |
class CoinModel; |
| 30 | 30 |
class OsiSolverInterface; |
| 31 | 31 |
class CbcModel; |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \brief Interface for the CBC MIP solver |
| 36 | 36 |
/// |
| 37 | 37 |
/// This class implements an interface for the CBC MIP solver. |
| 38 | 38 |
///\ingroup lp_group |
| 39 | 39 |
class CbcMip : public MipSolver {
|
| 40 | 40 |
protected: |
| 41 | 41 |
|
| 42 | 42 |
CoinModel *_prob; |
| 43 | 43 |
OsiSolverInterface *_osi_solver; |
| 44 | 44 |
CbcModel *_cbc_model; |
| 45 | 45 |
|
| 46 | 46 |
public: |
| 47 | 47 |
|
| 48 | 48 |
/// \e |
| 49 | 49 |
CbcMip(); |
| 50 | 50 |
/// \e |
| 51 | 51 |
CbcMip(const CbcMip&); |
| 52 | 52 |
/// \e |
| 53 | 53 |
~CbcMip(); |
| ... | ... |
@@ -75,55 +75,55 @@ |
| 75 | 75 |
|
| 76 | 76 |
virtual void _getRowName(int row, std::string& name) const; |
| 77 | 77 |
virtual void _setRowName(int row, const std::string& name); |
| 78 | 78 |
virtual int _rowByName(const std::string& name) const; |
| 79 | 79 |
|
| 80 | 80 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 81 | 81 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 82 | 82 |
|
| 83 | 83 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 84 | 84 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 85 | 85 |
|
| 86 | 86 |
virtual void _setCoeff(int row, int col, Value value); |
| 87 | 87 |
virtual Value _getCoeff(int row, int col) const; |
| 88 | 88 |
|
| 89 | 89 |
virtual void _setColLowerBound(int i, Value value); |
| 90 | 90 |
virtual Value _getColLowerBound(int i) const; |
| 91 | 91 |
virtual void _setColUpperBound(int i, Value value); |
| 92 | 92 |
virtual Value _getColUpperBound(int i) const; |
| 93 | 93 |
|
| 94 | 94 |
virtual void _setRowLowerBound(int i, Value value); |
| 95 | 95 |
virtual Value _getRowLowerBound(int i) const; |
| 96 | 96 |
virtual void _setRowUpperBound(int i, Value value); |
| 97 | 97 |
virtual Value _getRowUpperBound(int i) const; |
| 98 | 98 |
|
| 99 | 99 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 100 | 100 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 101 | 101 |
|
| 102 | 102 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 103 | 103 |
virtual Value _getObjCoeff(int i) const; |
| 104 | 104 |
|
| 105 | 105 |
virtual void _setSense(Sense sense); |
| 106 | 106 |
virtual Sense _getSense() const; |
| 107 | 107 |
|
| 108 | 108 |
virtual ColTypes _getColType(int col) const; |
| 109 | 109 |
virtual void _setColType(int col, ColTypes col_type); |
| 110 | 110 |
|
| 111 | 111 |
virtual SolveExitStatus _solve(); |
| 112 | 112 |
virtual ProblemType _getType() const; |
| 113 | 113 |
virtual Value _getSol(int i) const; |
| 114 | 114 |
virtual Value _getSolValue() const; |
| 115 | 115 |
|
| 116 | 116 |
virtual void _clear(); |
| 117 | 117 |
|
| 118 | 118 |
virtual void _messageLevel(MessageLevel level); |
| 119 | 119 |
void _applyMessageLevel(); |
| 120 | 120 |
|
| 121 | 121 |
int _message_level; |
| 122 | 122 |
|
| 123 |
|
|
| 123 |
|
|
| 124 | 124 |
|
| 125 | 125 |
}; |
| 126 | 126 |
|
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 | 129 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 62 |
/// The type of the map that stores the signed supply values of the |
|
| 63 |
/// nodes. |
|
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 | 75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 76 | 76 |
|
| 77 | 77 |
/// \brief Instantiates a FlowMap. |
| 78 | 78 |
/// |
| 79 | 79 |
/// This function instantiates a \ref FlowMap. |
| 80 | 80 |
/// \param digraph The digraph for which we would like to define |
| 81 | 81 |
/// the flow map. |
| 82 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 83 | 83 |
return new FlowMap(digraph); |
| 84 | 84 |
} |
| 85 | 85 |
|
| 86 | 86 |
/// \brief The elevator type used by the algorithm. |
| 87 | 87 |
/// |
| 88 | 88 |
/// The elevator type used by the algorithm. |
| 89 | 89 |
/// |
| 90 | 90 |
/// \sa Elevator |
| 91 | 91 |
/// \sa LinkedElevator |
| 92 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 93 | 93 |
|
| 94 | 94 |
/// \brief Instantiates an Elevator. |
| 95 | 95 |
/// |
| 96 | 96 |
/// This function instantiates an \ref Elevator. |
| 97 | 97 |
/// \param digraph The digraph for which we would like to define |
| 98 | 98 |
/// the elevator. |
| 99 | 99 |
/// \param max_level The maximum level of the elevator. |
| 100 | 100 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 101 | 101 |
return new Elevator(digraph, max_level); |
| 102 | 102 |
} |
| 103 | 103 |
|
| 104 | 104 |
/// \brief The tolerance used by the algorithm |
| 105 | 105 |
/// |
| 106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 107 | 107 |
typedef lemon::Tolerance<Value> Tolerance; |
| 108 | 108 |
|
| 109 | 109 |
}; |
| 110 | 110 |
|
| 111 | 111 |
/** |
| 112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
| 113 | 113 |
|
| 114 | 114 |
\ingroup max_flow |
| 115 | 115 |
This class implements a push-relabel algorithm for the \e network |
| 116 | 116 |
\e circulation problem. |
| 117 | 117 |
It is to find a feasible circulation when lower and upper bounds |
| 118 | 118 |
are given for the flow values on the arcs and lower bounds are |
| 119 | 119 |
given for the difference between the outgoing and incoming flow |
| 120 | 120 |
at the nodes. |
| 121 | 121 |
|
| 122 | 122 |
The exact formulation of this problem is the following. |
| 123 | 123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 124 | 124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 125 | 125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 126 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 127 | 127 |
denotes the signed supply values of the nodes. |
| 128 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 129 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 130 | 130 |
\f$-sup(u)\f$ demand. |
| 131 | 131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 132 | 132 |
solution of the following problem. |
| 133 | 133 |
|
| 134 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 135 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
| 136 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 137 |
|
|
| 137 |
|
|
| 138 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 139 | 139 |
zero or negative in order to have a feasible solution (since the sum |
| 140 | 140 |
of the expressions on the left-hand side of the inequalities is zero). |
| 141 | 141 |
It means that the total demand must be greater or equal to the total |
| 142 | 142 |
supply and all the supplies have to be carried out from the supply nodes, |
| 143 | 143 |
but there could be demands that are not satisfied. |
| 144 | 144 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 145 | 145 |
constraints have to be satisfied with equality, i.e. all demands |
| 146 | 146 |
have to be satisfied and all supplies have to be used. |
| 147 |
|
|
| 147 |
|
|
| 148 | 148 |
If you need the opposite inequalities in the supply/demand constraints |
| 149 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
| 150 | 150 |
have to be satisfied while there could be supplies that are not used), |
| 151 | 151 |
then you could easily transform the problem to the above form by reversing |
| 152 | 152 |
the direction of the arcs and taking the negative of the supply values |
| 153 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 154 | 154 |
|
| 155 | 155 |
This algorithm either calculates a feasible circulation, or provides |
| 156 | 156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 157 | 157 |
cannot exist. |
| 158 | 158 |
|
| 159 | 159 |
Note that this algorithm also provides a feasible solution for the |
| 160 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
| 161 | 161 |
|
| 162 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
| 163 | 163 |
\tparam LM The type of the lower bound map. The default |
| 164 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 165 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
| 166 | 166 |
The default map type is \c LM. |
| 167 | 167 |
\tparam SM The type of the supply map. The default map type is |
| 168 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 169 | 169 |
*/ |
| 170 | 170 |
#ifdef DOXYGEN |
| 171 | 171 |
template< typename GR, |
| 172 | 172 |
typename LM, |
| 173 | 173 |
typename UM, |
| 174 | 174 |
typename SM, |
| 175 | 175 |
typename TR > |
| 176 | 176 |
#else |
| 177 | 177 |
template< typename GR, |
| 178 | 178 |
typename LM = typename GR::template ArcMap<int>, |
| 179 | 179 |
typename UM = LM, |
| 180 | 180 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 181 | 181 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 182 | 182 |
#endif |
| 183 | 183 |
class Circulation {
|
| 184 | 184 |
public: |
| 185 | 185 |
|
| 186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 187 | 187 |
typedef TR Traits; |
| 188 | 188 |
///The type of the digraph the algorithm runs on. |
| 189 | 189 |
typedef typename Traits::Digraph Digraph; |
| 190 | 190 |
///The type of the flow and supply values. |
| 191 | 191 |
typedef typename Traits::Value Value; |
| 192 | 192 |
|
| 193 | 193 |
///The type of the lower bound map. |
| 194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
| 195 | 195 |
///The type of the upper bound (capacity) map. |
| ... | ... |
@@ -280,97 +280,97 @@ |
| 280 | 280 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 281 | 281 |
SetElevatorTraits<T> > {
|
| 282 | 282 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 283 | 283 |
SetElevatorTraits<T> > Create; |
| 284 | 284 |
}; |
| 285 | 285 |
|
| 286 | 286 |
template <typename T> |
| 287 | 287 |
struct SetStandardElevatorTraits : public Traits {
|
| 288 | 288 |
typedef T Elevator; |
| 289 | 289 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 290 | 290 |
return new Elevator(digraph, max_level); |
| 291 | 291 |
} |
| 292 | 292 |
}; |
| 293 | 293 |
|
| 294 | 294 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 295 | 295 |
/// Elevator type with automatic allocation |
| 296 | 296 |
/// |
| 297 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 298 |
/// type with automatic allocation. |
| 299 | 299 |
/// The Elevator should have standard constructor interface to be |
| 300 | 300 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 301 |
/// digraph and the maximum level should be passed to it). |
| 302 | 302 |
/// However an external elevator object could also be passed to the |
| 303 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 304 |
/// before calling \ref run() or \ref init(). |
| 305 | 305 |
/// \sa SetElevator |
| 306 | 306 |
template <typename T> |
| 307 | 307 |
struct SetStandardElevator |
| 308 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 309 | 309 |
SetStandardElevatorTraits<T> > {
|
| 310 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 311 | 311 |
SetStandardElevatorTraits<T> > Create; |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
/// @} |
| 315 | 315 |
|
| 316 | 316 |
protected: |
| 317 | 317 |
|
| 318 | 318 |
Circulation() {}
|
| 319 | 319 |
|
| 320 | 320 |
public: |
| 321 | 321 |
|
| 322 | 322 |
/// Constructor. |
| 323 | 323 |
|
| 324 | 324 |
/// The constructor of the class. |
| 325 | 325 |
/// |
| 326 | 326 |
/// \param graph The digraph the algorithm runs on. |
| 327 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 328 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 328 |
/// \param upper The upper bounds (capacities) for the flow values |
|
| 329 | 329 |
/// on the arcs. |
| 330 | 330 |
/// \param supply The signed supply values of the nodes. |
| 331 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 332 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
| 333 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 334 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 335 | 335 |
_excess(NULL) {}
|
| 336 | 336 |
|
| 337 | 337 |
/// Destructor. |
| 338 | 338 |
~Circulation() {
|
| 339 | 339 |
destroyStructures(); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
|
| 343 | 343 |
private: |
| 344 | 344 |
|
| 345 | 345 |
bool checkBoundMaps() {
|
| 346 | 346 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 347 | 347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 348 | 348 |
} |
| 349 | 349 |
return true; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
void createStructures() {
|
| 353 | 353 |
_node_num = _el = countNodes(_g); |
| 354 | 354 |
|
| 355 | 355 |
if (!_flow) {
|
| 356 | 356 |
_flow = Traits::createFlowMap(_g); |
| 357 | 357 |
_local_flow = true; |
| 358 | 358 |
} |
| 359 | 359 |
if (!_level) {
|
| 360 | 360 |
_level = Traits::createElevator(_g, _node_num); |
| 361 | 361 |
_local_level = true; |
| 362 | 362 |
} |
| 363 | 363 |
if (!_excess) {
|
| 364 | 364 |
_excess = new ExcessMap(_g); |
| 365 | 365 |
} |
| 366 | 366 |
} |
| 367 | 367 |
|
| 368 | 368 |
void destroyStructures() {
|
| 369 | 369 |
if (_local_flow) {
|
| 370 | 370 |
delete _flow; |
| 371 | 371 |
} |
| 372 | 372 |
if (_local_level) {
|
| 373 | 373 |
delete _level; |
| 374 | 374 |
} |
| 375 | 375 |
if (_excess) {
|
| 376 | 376 |
delete _excess; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/clp.h> |
| 20 | 20 |
#include <coin/ClpSimplex.hpp> |
| 21 | 21 |
|
| 22 | 22 |
namespace lemon {
|
| 23 | 23 |
|
| 24 | 24 |
ClpLp::ClpLp() {
|
| 25 | 25 |
_prob = new ClpSimplex(); |
| 26 | 26 |
_init_temporals(); |
| 27 | 27 |
messageLevel(MESSAGE_NOTHING); |
| 28 | 28 |
} |
| 29 | 29 |
|
| 30 | 30 |
ClpLp::ClpLp(const ClpLp& other) {
|
| 31 | 31 |
_prob = new ClpSimplex(*other._prob); |
| 32 | 32 |
rows = other.rows; |
| 33 | 33 |
cols = other.cols; |
| 34 | 34 |
_init_temporals(); |
| 35 | 35 |
messageLevel(MESSAGE_NOTHING); |
| 36 | 36 |
} |
| 37 | 37 |
|
| 38 | 38 |
ClpLp::~ClpLp() {
|
| 39 | 39 |
delete _prob; |
| 40 | 40 |
_clear_temporals(); |
| 41 | 41 |
} |
| 42 | 42 |
|
| 43 | 43 |
void ClpLp::_init_temporals() {
|
| 44 | 44 |
_primal_ray = 0; |
| 45 | 45 |
_dual_ray = 0; |
| 46 | 46 |
} |
| 47 | 47 |
|
| 48 | 48 |
void ClpLp::_clear_temporals() {
|
| 49 | 49 |
if (_primal_ray) {
|
| 50 | 50 |
delete[] _primal_ray; |
| 51 | 51 |
_primal_ray = 0; |
| 52 | 52 |
} |
| 53 | 53 |
if (_dual_ray) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CLP_H |
| 20 | 20 |
#define LEMON_CLP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
| 24 | 24 |
|
| 25 | 25 |
#include <vector> |
| 26 | 26 |
#include <string> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/lp_base.h> |
| 29 | 29 |
|
| 30 | 30 |
class ClpSimplex; |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup lp_group |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Interface for the CLP solver |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class implements an interface for the Clp LP solver. The |
| 39 | 39 |
/// Clp library is an object oriented lp solver library developed at |
| 40 | 40 |
/// the IBM. The CLP is part of the COIN-OR package and it can be |
| 41 | 41 |
/// used with Common Public License. |
| 42 | 42 |
class ClpLp : public LpSolver {
|
| 43 | 43 |
protected: |
| 44 | 44 |
|
| 45 | 45 |
ClpSimplex* _prob; |
| 46 | 46 |
|
| 47 | 47 |
std::map<std::string, int> _col_names_ref; |
| 48 | 48 |
std::map<std::string, int> _row_names_ref; |
| 49 | 49 |
|
| 50 | 50 |
public: |
| 51 | 51 |
|
| 52 | 52 |
/// \e |
| 53 | 53 |
ClpLp(); |
| ... | ... |
@@ -92,72 +92,72 @@ |
| 92 | 92 |
|
| 93 | 93 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 94 | 94 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 95 | 95 |
|
| 96 | 96 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 97 | 97 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 98 | 98 |
|
| 99 | 99 |
virtual void _setCoeff(int row, int col, Value value); |
| 100 | 100 |
virtual Value _getCoeff(int row, int col) const; |
| 101 | 101 |
|
| 102 | 102 |
virtual void _setColLowerBound(int i, Value value); |
| 103 | 103 |
virtual Value _getColLowerBound(int i) const; |
| 104 | 104 |
virtual void _setColUpperBound(int i, Value value); |
| 105 | 105 |
virtual Value _getColUpperBound(int i) const; |
| 106 | 106 |
|
| 107 | 107 |
virtual void _setRowLowerBound(int i, Value value); |
| 108 | 108 |
virtual Value _getRowLowerBound(int i) const; |
| 109 | 109 |
virtual void _setRowUpperBound(int i, Value value); |
| 110 | 110 |
virtual Value _getRowUpperBound(int i) const; |
| 111 | 111 |
|
| 112 | 112 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
| 113 | 113 |
virtual void _getObjCoeffs(InsertIterator) const; |
| 114 | 114 |
|
| 115 | 115 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 116 | 116 |
virtual Value _getObjCoeff(int i) const; |
| 117 | 117 |
|
| 118 | 118 |
virtual void _setSense(Sense sense); |
| 119 | 119 |
virtual Sense _getSense() const; |
| 120 | 120 |
|
| 121 | 121 |
virtual SolveExitStatus _solve(); |
| 122 | 122 |
|
| 123 | 123 |
virtual Value _getPrimal(int i) const; |
| 124 | 124 |
virtual Value _getDual(int i) const; |
| 125 | 125 |
|
| 126 | 126 |
virtual Value _getPrimalValue() const; |
| 127 | 127 |
|
| 128 | 128 |
virtual Value _getPrimalRay(int i) const; |
| 129 | 129 |
virtual Value _getDualRay(int i) const; |
| 130 | 130 |
|
| 131 | 131 |
virtual VarStatus _getColStatus(int i) const; |
| 132 | 132 |
virtual VarStatus _getRowStatus(int i) const; |
| 133 | 133 |
|
| 134 | 134 |
virtual ProblemType _getPrimalType() const; |
| 135 | 135 |
virtual ProblemType _getDualType() const; |
| 136 | 136 |
|
| 137 | 137 |
virtual void _clear(); |
| 138 | 138 |
|
| 139 | 139 |
virtual void _messageLevel(MessageLevel); |
| 140 |
|
|
| 140 |
|
|
| 141 | 141 |
public: |
| 142 | 142 |
|
| 143 | 143 |
///Solves LP with primal simplex method. |
| 144 | 144 |
SolveExitStatus solvePrimal(); |
| 145 | 145 |
|
| 146 | 146 |
///Solves LP with dual simplex method. |
| 147 | 147 |
SolveExitStatus solveDual(); |
| 148 | 148 |
|
| 149 | 149 |
///Solves LP with barrier method. |
| 150 | 150 |
SolveExitStatus solveBarrier(); |
| 151 | 151 |
|
| 152 | 152 |
///Returns the constraint identifier understood by CLP. |
| 153 | 153 |
int clpRow(Row r) const { return rows(id(r)); }
|
| 154 | 154 |
|
| 155 | 155 |
///Returns the variable identifier understood by CLP. |
| 156 | 156 |
int clpCol(Col c) const { return cols(id(c)); }
|
| 157 | 157 |
|
| 158 | 158 |
}; |
| 159 | 159 |
|
| 160 | 160 |
} //END OF NAMESPACE LEMON |
| 161 | 161 |
|
| 162 | 162 |
#endif //LEMON_CLP_H |
| 163 | 163 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
| 20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graph_concepts |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of directed graphs. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/graph_components.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class describes the \ref concept "concept" of the |
| 39 | 39 |
/// immutable directed digraphs. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
| 42 | 42 |
/// @ref SmartDigraph may have several additional functionality. |
| 43 | 43 |
/// |
| 44 | 44 |
/// \sa concept |
| 45 | 45 |
class Digraph {
|
| 46 | 46 |
private: |
| 47 | 47 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
| 48 | 48 |
|
| 49 | 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
| 50 | 50 |
/// |
| 51 | 51 |
Digraph(const Digraph &) {};
|
| 52 | 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
| 53 | 53 |
///\e not allowed. Use DigraphCopy() instead. |
| ... | ... |
@@ -390,97 +390,97 @@ |
| 390 | 390 |
// Dummy parameter. |
| 391 | 391 |
int maxId(Node) const { return -1; }
|
| 392 | 392 |
// Dummy parameter. |
| 393 | 393 |
int maxId(Arc) const { return -1; }
|
| 394 | 394 |
|
| 395 | 395 |
/// \brief The base node of the iterator. |
| 396 | 396 |
/// |
| 397 | 397 |
/// Gives back the base node of the iterator. |
| 398 | 398 |
/// It is always the target of the pointed arc. |
| 399 | 399 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
| 400 | 400 |
|
| 401 | 401 |
/// \brief The running node of the iterator. |
| 402 | 402 |
/// |
| 403 | 403 |
/// Gives back the running node of the iterator. |
| 404 | 404 |
/// It is always the source of the pointed arc. |
| 405 | 405 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
| 406 | 406 |
|
| 407 | 407 |
/// \brief The base node of the iterator. |
| 408 | 408 |
/// |
| 409 | 409 |
/// Gives back the base node of the iterator. |
| 410 | 410 |
/// It is always the source of the pointed arc. |
| 411 | 411 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
| 412 | 412 |
|
| 413 | 413 |
/// \brief The running node of the iterator. |
| 414 | 414 |
/// |
| 415 | 415 |
/// Gives back the running node of the iterator. |
| 416 | 416 |
/// It is always the target of the pointed arc. |
| 417 | 417 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
| 418 | 418 |
|
| 419 | 419 |
/// \brief The opposite node on the given arc. |
| 420 | 420 |
/// |
| 421 | 421 |
/// Gives back the opposite node on the given arc. |
| 422 | 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
| 423 | 423 |
|
| 424 | 424 |
/// \brief Reference map of the nodes to type \c T. |
| 425 | 425 |
/// |
| 426 | 426 |
/// Reference map of the nodes to type \c T. |
| 427 | 427 |
template<class T> |
| 428 | 428 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 429 | 429 |
public: |
| 430 | 430 |
|
| 431 | 431 |
///\e |
| 432 | 432 |
NodeMap(const Digraph&) { }
|
| 433 | 433 |
///\e |
| 434 | 434 |
NodeMap(const Digraph&, T) { }
|
| 435 | 435 |
|
| 436 | 436 |
private: |
| 437 | 437 |
///Copy constructor |
| 438 |
NodeMap(const NodeMap& nm) : |
|
| 438 |
NodeMap(const NodeMap& nm) : |
|
| 439 | 439 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 440 | 440 |
///Assignment operator |
| 441 | 441 |
template <typename CMap> |
| 442 | 442 |
NodeMap& operator=(const CMap&) {
|
| 443 | 443 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 444 | 444 |
return *this; |
| 445 | 445 |
} |
| 446 | 446 |
}; |
| 447 | 447 |
|
| 448 | 448 |
/// \brief Reference map of the arcs to type \c T. |
| 449 | 449 |
/// |
| 450 | 450 |
/// Reference map of the arcs to type \c T. |
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 | 455 |
///\e |
| 456 | 456 |
ArcMap(const Digraph&) { }
|
| 457 | 457 |
///\e |
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 | 459 |
private: |
| 460 | 460 |
///Copy constructor |
| 461 | 461 |
ArcMap(const ArcMap& em) : |
| 462 | 462 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 463 | 463 |
///Assignment operator |
| 464 | 464 |
template <typename CMap> |
| 465 | 465 |
ArcMap& operator=(const CMap&) {
|
| 466 | 466 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 467 | 467 |
return *this; |
| 468 | 468 |
} |
| 469 | 469 |
}; |
| 470 | 470 |
|
| 471 | 471 |
template <typename _Digraph> |
| 472 | 472 |
struct Constraints {
|
| 473 | 473 |
void constraints() {
|
| 474 | 474 |
checkConcept<BaseDigraphComponent, _Digraph>(); |
| 475 | 475 |
checkConcept<IterableDigraphComponent<>, _Digraph>(); |
| 476 | 476 |
checkConcept<IDableDigraphComponent<>, _Digraph>(); |
| 477 | 477 |
checkConcept<MappableDigraphComponent<>, _Digraph>(); |
| 478 | 478 |
} |
| 479 | 479 |
}; |
| 480 | 480 |
|
| 481 | 481 |
}; |
| 482 | 482 |
|
| 483 | 483 |
} //namespace concepts |
| 484 | 484 |
} //namespace lemon |
| 485 | 485 |
|
| 486 | 486 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of graph components. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| 48 | 48 |
public: |
| 49 | 49 |
/// \brief Default constructor. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Default constructor. |
| 52 | 52 |
/// \warning The default constructor is not required to set |
| 53 | 53 |
/// the item to some well-defined value. So you should consider it |
| 54 | 54 |
/// as uninitialized. |
| 55 | 55 |
GraphItem() {}
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Copy constructor. |
| 58 | 58 |
/// |
| 59 | 59 |
/// Copy constructor. |
| 60 | 60 |
GraphItem(const GraphItem &) {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
| 63 | 63 |
/// |
| 64 | 64 |
/// Constructor for conversion from \c INVALID. |
| 65 | 65 |
/// It initializes the item to be invalid. |
| 66 | 66 |
/// \sa Invalid for more details. |
| 67 | 67 |
GraphItem(Invalid) {}
|
| 68 | 68 |
|
| 69 | 69 |
/// \brief Assignment operator. |
| 70 | 70 |
/// |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Assignment operator for INVALID. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This operator makes the item invalid. |
| 77 | 77 |
GraphItem& operator=(Invalid) { return *this; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Equality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Equality operator. |
| 82 | 82 |
bool operator==(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Inequality operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 92 |
/// It makes possible to use graph item types as key types in |
|
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 | 95 |
/// \note This operator only have to define some strict ordering of |
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| 102 | 102 |
void constraints() {
|
| 103 | 103 |
_GraphItem i1; |
| 104 | 104 |
i1=INVALID; |
| 105 | 105 |
_GraphItem i2 = i1; |
| 106 | 106 |
_GraphItem i3 = INVALID; |
| 107 | 107 |
|
| 108 | 108 |
i1 = i2 = i3; |
| 109 | 109 |
|
| 110 | 110 |
bool b; |
| 111 | 111 |
b = (ia == ib) && (ia != ib); |
| 112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
| 113 | 113 |
b = (ia < ib); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
const _GraphItem &ia; |
| 117 | 117 |
const _GraphItem &ib; |
| 118 | 118 |
}; |
| 119 | 119 |
}; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Base skeleton class for directed graphs. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This class describes the base interface of directed graph types. |
| 124 | 124 |
/// All digraph %concepts have to conform to this class. |
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 125 |
/// It just provides types for nodes and arcs and functions |
|
| 126 | 126 |
/// to get the source and the target nodes of arcs. |
| 127 | 127 |
class BaseDigraphComponent {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
typedef BaseDigraphComponent Digraph; |
| 131 | 131 |
|
| 132 | 132 |
/// \brief Node class of the digraph. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This class represents the nodes of the digraph. |
| 135 | 135 |
typedef GraphItem<'n'> Node; |
| 136 | 136 |
|
| 137 | 137 |
/// \brief Arc class of the digraph. |
| 138 | 138 |
/// |
| 139 | 139 |
/// This class represents the arcs of the digraph. |
| 140 | 140 |
typedef GraphItem<'a'> Arc; |
| 141 | 141 |
|
| 142 | 142 |
/// \brief Return the source node of an arc. |
| 143 | 143 |
/// |
| 144 | 144 |
/// This function returns the source node of an arc. |
| 145 | 145 |
Node source(const Arc&) const { return INVALID; }
|
| 146 | 146 |
|
| 147 | 147 |
/// \brief Return the target node of an arc. |
| 148 | 148 |
/// |
| 149 | 149 |
/// This function returns the target node of an arc. |
| 150 | 150 |
Node target(const Arc&) const { return INVALID; }
|
| 151 | 151 |
|
| 152 | 152 |
/// \brief Return the opposite node on the given arc. |
| 153 | 153 |
/// |
| 154 | 154 |
/// This function returns the opposite node on the given arc. |
| 155 | 155 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 156 | 156 |
return INVALID; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 | 159 |
template <typename _Digraph> |
| 160 | 160 |
struct Constraints {
|
| 161 | 161 |
typedef typename _Digraph::Node Node; |
| 162 | 162 |
typedef typename _Digraph::Arc Arc; |
| 163 | 163 |
|
| 164 | 164 |
void constraints() {
|
| 165 | 165 |
checkConcept<GraphItem<'n'>, Node>(); |
| 166 | 166 |
checkConcept<GraphItem<'a'>, Arc>(); |
| 167 | 167 |
{
|
| 168 | 168 |
Node n; |
| 169 | 169 |
Arc e(INVALID); |
| 170 | 170 |
n = digraph.source(e); |
| 171 | 171 |
n = digraph.target(e); |
| 172 | 172 |
n = digraph.oppositeNode(n, e); |
| 173 | 173 |
} |
| ... | ... |
@@ -381,204 +381,204 @@ |
| 381 | 381 |
/// This concept is part of the Graph concept. |
| 382 | 382 |
template <typename BAS = BaseGraphComponent> |
| 383 | 383 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
|
| 384 | 384 |
public: |
| 385 | 385 |
|
| 386 | 386 |
typedef BAS Base; |
| 387 | 387 |
typedef typename Base::Edge Edge; |
| 388 | 388 |
|
| 389 | 389 |
using IDableDigraphComponent<Base>::id; |
| 390 | 390 |
|
| 391 | 391 |
/// \brief Return a unique integer id for the given edge. |
| 392 | 392 |
/// |
| 393 | 393 |
/// This function returns a unique integer id for the given edge. |
| 394 | 394 |
int id(const Edge&) const { return -1; }
|
| 395 | 395 |
|
| 396 | 396 |
/// \brief Return the edge by its unique id. |
| 397 | 397 |
/// |
| 398 | 398 |
/// This function returns the edge by its unique id. |
| 399 | 399 |
/// If the graph does not contain an edge with the given id, |
| 400 | 400 |
/// then the result of the function is undefined. |
| 401 | 401 |
Edge edgeFromId(int) const { return INVALID; }
|
| 402 | 402 |
|
| 403 | 403 |
/// \brief Return an integer greater or equal to the maximum |
| 404 | 404 |
/// edge id. |
| 405 | 405 |
/// |
| 406 | 406 |
/// This function returns an integer greater or equal to the |
| 407 | 407 |
/// maximum edge id. |
| 408 | 408 |
int maxEdgeId() const { return -1; }
|
| 409 | 409 |
|
| 410 | 410 |
template <typename _Graph> |
| 411 | 411 |
struct Constraints {
|
| 412 | 412 |
|
| 413 | 413 |
void constraints() {
|
| 414 | 414 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 415 | 415 |
typename _Graph::Edge edge; |
| 416 | 416 |
int ueid = graph.id(edge); |
| 417 | 417 |
ueid = graph.id(edge); |
| 418 | 418 |
edge = graph.edgeFromId(ueid); |
| 419 | 419 |
ueid = graph.maxEdgeId(); |
| 420 | 420 |
ignore_unused_variable_warning(ueid); |
| 421 | 421 |
} |
| 422 | 422 |
|
| 423 | 423 |
const _Graph& graph; |
| 424 | 424 |
}; |
| 425 | 425 |
}; |
| 426 | 426 |
|
| 427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 428 | 428 |
/// |
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
| 430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 431 | 431 |
template <typename GR, typename Item> |
| 432 | 432 |
class GraphItemIt : public Item {
|
| 433 | 433 |
public: |
| 434 | 434 |
/// \brief Default constructor. |
| 435 | 435 |
/// |
| 436 | 436 |
/// Default constructor. |
| 437 | 437 |
/// \warning The default constructor is not required to set |
| 438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
| 439 | 439 |
/// as uninitialized. |
| 440 | 440 |
GraphItemIt() {}
|
| 441 | 441 |
|
| 442 | 442 |
/// \brief Copy constructor. |
| 443 | 443 |
/// |
| 444 | 444 |
/// Copy constructor. |
| 445 | 445 |
GraphItemIt(const GraphItemIt& it) : Item(it) {}
|
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor that sets the iterator to the first item. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Constructor that sets the iterator to the first item. |
| 450 | 450 |
explicit GraphItemIt(const GR&) {}
|
| 451 | 451 |
|
| 452 | 452 |
/// \brief Constructor for conversion from \c INVALID. |
| 453 | 453 |
/// |
| 454 | 454 |
/// Constructor for conversion from \c INVALID. |
| 455 | 455 |
/// It initializes the iterator to be invalid. |
| 456 | 456 |
/// \sa Invalid for more details. |
| 457 | 457 |
GraphItemIt(Invalid) {}
|
| 458 | 458 |
|
| 459 | 459 |
/// \brief Assignment operator. |
| 460 | 460 |
/// |
| 461 | 461 |
/// Assignment operator for the iterator. |
| 462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 463 | 463 |
|
| 464 | 464 |
/// \brief Increment the iterator. |
| 465 | 465 |
/// |
| 466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
| 467 | 467 |
/// next item. |
| 468 | 468 |
GraphItemIt& operator++() { return *this; }
|
| 469 |
|
|
| 469 |
|
|
| 470 | 470 |
/// \brief Equality operator |
| 471 | 471 |
/// |
| 472 | 472 |
/// Equality operator. |
| 473 | 473 |
/// Two iterators are equal if and only if they point to the |
| 474 | 474 |
/// same object or both are invalid. |
| 475 | 475 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 476 | 476 |
|
| 477 | 477 |
/// \brief Inequality operator |
| 478 | 478 |
/// |
| 479 | 479 |
/// Inequality operator. |
| 480 | 480 |
/// Two iterators are equal if and only if they point to the |
| 481 | 481 |
/// same object or both are invalid. |
| 482 | 482 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 483 | 483 |
|
| 484 | 484 |
template<typename _GraphItemIt> |
| 485 | 485 |
struct Constraints {
|
| 486 | 486 |
void constraints() {
|
| 487 | 487 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
| 488 | 488 |
_GraphItemIt it1(g); |
| 489 | 489 |
_GraphItemIt it2; |
| 490 | 490 |
_GraphItemIt it3 = it1; |
| 491 | 491 |
_GraphItemIt it4 = INVALID; |
| 492 | 492 |
|
| 493 | 493 |
it2 = ++it1; |
| 494 | 494 |
++it2 = it1; |
| 495 | 495 |
++(++it1); |
| 496 | 496 |
|
| 497 | 497 |
Item bi = it1; |
| 498 | 498 |
bi = it2; |
| 499 | 499 |
} |
| 500 | 500 |
const GR& g; |
| 501 | 501 |
}; |
| 502 | 502 |
}; |
| 503 | 503 |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
| 505 | 505 |
/// \c IncEdgeIt types. |
| 506 | 506 |
/// |
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
| 508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 509 | 509 |
/// |
| 510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
| 511 | 511 |
/// base class, there is an additional template parameter (selector) |
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
| 513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 514 | 514 |
template <typename GR, |
| 515 | 515 |
typename Item = typename GR::Arc, |
| 516 | 516 |
typename Base = typename GR::Node, |
| 517 | 517 |
char sel = '0'> |
| 518 | 518 |
class GraphIncIt : public Item {
|
| 519 | 519 |
public: |
| 520 | 520 |
/// \brief Default constructor. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Default constructor. |
| 523 | 523 |
/// \warning The default constructor is not required to set |
| 524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
| 525 | 525 |
/// as uninitialized. |
| 526 | 526 |
GraphIncIt() {}
|
| 527 | 527 |
|
| 528 | 528 |
/// \brief Copy constructor. |
| 529 | 529 |
/// |
| 530 | 530 |
/// Copy constructor. |
| 531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 532 | 532 |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 533 |
/// \brief Constructor that sets the iterator to the first |
|
| 534 | 534 |
/// incoming or outgoing arc. |
| 535 | 535 |
/// |
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 536 |
/// Constructor that sets the iterator to the first arc |
|
| 537 | 537 |
/// incoming to or outgoing from the given node. |
| 538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 539 | 539 |
|
| 540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
| 541 | 541 |
/// |
| 542 | 542 |
/// Constructor for conversion from \c INVALID. |
| 543 | 543 |
/// It initializes the iterator to be invalid. |
| 544 | 544 |
/// \sa Invalid for more details. |
| 545 | 545 |
GraphIncIt(Invalid) {}
|
| 546 | 546 |
|
| 547 | 547 |
/// \brief Assignment operator. |
| 548 | 548 |
/// |
| 549 | 549 |
/// Assignment operator for the iterator. |
| 550 | 550 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
|
| 551 | 551 |
|
| 552 | 552 |
/// \brief Increment the iterator. |
| 553 | 553 |
/// |
| 554 | 554 |
/// This operator increments the iterator, i.e. assigns it to the |
| 555 | 555 |
/// next arc incoming to or outgoing from the given node. |
| 556 | 556 |
GraphIncIt& operator++() { return *this; }
|
| 557 | 557 |
|
| 558 | 558 |
/// \brief Equality operator |
| 559 | 559 |
/// |
| 560 | 560 |
/// Equality operator. |
| 561 | 561 |
/// Two iterators are equal if and only if they point to the |
| 562 | 562 |
/// same object or both are invalid. |
| 563 | 563 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 564 | 564 |
|
| 565 | 565 |
/// \brief Inequality operator |
| 566 | 566 |
/// |
| 567 | 567 |
/// Inequality operator. |
| 568 | 568 |
/// Two iterators are equal if and only if they point to the |
| 569 | 569 |
/// same object or both are invalid. |
| 570 | 570 |
bool operator!=(const GraphIncIt&) const { return true;}
|
| 571 | 571 |
|
| 572 | 572 |
template <typename _GraphIncIt> |
| 573 | 573 |
struct Constraints {
|
| 574 | 574 |
void constraints() {
|
| 575 | 575 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
| 576 | 576 |
_GraphIncIt it1(graph, node); |
| 577 | 577 |
_GraphIncIt it2; |
| 578 | 578 |
_GraphIncIt it3 = it1; |
| 579 | 579 |
_GraphIncIt it4 = INVALID; |
| 580 | 580 |
|
| 581 | 581 |
it2 = ++it1; |
| 582 | 582 |
++it2 = it1; |
| 583 | 583 |
++(++it1); |
| 584 | 584 |
Item e = it1; |
| ... | ... |
@@ -759,106 +759,106 @@ |
| 759 | 759 |
n = digraph.runningNode(oait); |
| 760 | 760 |
ignore_unused_variable_warning(n); |
| 761 | 761 |
} |
| 762 | 762 |
} |
| 763 | 763 |
|
| 764 | 764 |
const _Digraph& digraph; |
| 765 | 765 |
}; |
| 766 | 766 |
}; |
| 767 | 767 |
|
| 768 | 768 |
/// \brief Skeleton class for iterable undirected graphs. |
| 769 | 769 |
/// |
| 770 | 770 |
/// This class describes the interface of iterable undirected |
| 771 | 771 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
| 772 | 772 |
/// iterable interface of undirected graphs. |
| 773 | 773 |
/// This concept is part of the Graph concept. |
| 774 | 774 |
template <typename BAS = BaseGraphComponent> |
| 775 | 775 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
| 776 | 776 |
public: |
| 777 | 777 |
|
| 778 | 778 |
typedef BAS Base; |
| 779 | 779 |
typedef typename Base::Node Node; |
| 780 | 780 |
typedef typename Base::Arc Arc; |
| 781 | 781 |
typedef typename Base::Edge Edge; |
| 782 | 782 |
|
| 783 | 783 |
|
| 784 | 784 |
typedef IterableGraphComponent Graph; |
| 785 | 785 |
|
| 786 | 786 |
/// \name Base Iteration |
| 787 | 787 |
/// |
| 788 | 788 |
/// This interface provides functions for iteration on edges. |
| 789 | 789 |
/// |
| 790 | 790 |
/// @{
|
| 791 | 791 |
|
| 792 | 792 |
using IterableDigraphComponent<Base>::first; |
| 793 | 793 |
using IterableDigraphComponent<Base>::next; |
| 794 | 794 |
|
| 795 | 795 |
/// \brief Return the first edge. |
| 796 | 796 |
/// |
| 797 | 797 |
/// This function gives back the first edge in the iteration order. |
| 798 | 798 |
void first(Edge&) const {}
|
| 799 | 799 |
|
| 800 | 800 |
/// \brief Return the next edge. |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function gives back the next edge in the iteration order. |
| 803 | 803 |
void next(Edge&) const {}
|
| 804 | 804 |
|
| 805 | 805 |
/// \brief Return the first edge incident to the given node. |
| 806 | 806 |
/// |
| 807 |
/// This function gives back the first edge incident to the given |
|
| 807 |
/// This function gives back the first edge incident to the given |
|
| 808 | 808 |
/// node. The bool parameter gives back the direction for which the |
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 809 |
/// source node of the directed arc representing the edge is the |
|
| 810 | 810 |
/// given node. |
| 811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 812 | 812 |
|
| 813 | 813 |
/// \brief Gives back the next of the edges from the |
| 814 | 814 |
/// given node. |
| 815 | 815 |
/// |
| 816 |
/// This function gives back the next edge incident to the given |
|
| 816 |
/// This function gives back the next edge incident to the given |
|
| 817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 818 | 818 |
void nextInc(Edge&, bool&) const {}
|
| 819 | 819 |
|
| 820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
| 821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
| 822 | 822 |
|
| 823 | 823 |
/// @} |
| 824 | 824 |
|
| 825 | 825 |
/// \name Class Based Iteration |
| 826 | 826 |
/// |
| 827 | 827 |
/// This interface provides iterator classes for edges. |
| 828 | 828 |
/// |
| 829 | 829 |
/// @{
|
| 830 | 830 |
|
| 831 | 831 |
/// \brief This iterator goes through each edge. |
| 832 | 832 |
/// |
| 833 | 833 |
/// This iterator goes through each edge. |
| 834 | 834 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 835 | 835 |
|
| 836 | 836 |
/// \brief This iterator goes trough the incident edges of a |
| 837 | 837 |
/// node. |
| 838 | 838 |
/// |
| 839 | 839 |
/// This iterator goes trough the incident edges of a certain |
| 840 | 840 |
/// node of a graph. |
| 841 | 841 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
| 842 | 842 |
|
| 843 | 843 |
/// \brief The base node of the iterator. |
| 844 | 844 |
/// |
| 845 | 845 |
/// This function gives back the base node of the iterator. |
| 846 | 846 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 847 | 847 |
|
| 848 | 848 |
/// \brief The running node of the iterator. |
| 849 | 849 |
/// |
| 850 | 850 |
/// This function gives back the running node of the iterator. |
| 851 | 851 |
Node runningNode(const IncEdgeIt&) const { return INVALID; }
|
| 852 | 852 |
|
| 853 | 853 |
/// @} |
| 854 | 854 |
|
| 855 | 855 |
template <typename _Graph> |
| 856 | 856 |
struct Constraints {
|
| 857 | 857 |
void constraints() {
|
| 858 | 858 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
| 859 | 859 |
|
| 860 | 860 |
{
|
| 861 | 861 |
typename _Graph::Node node(INVALID); |
| 862 | 862 |
typename _Graph::Edge edge(INVALID); |
| 863 | 863 |
bool dir; |
| 864 | 864 |
{
|
| ... | ... |
@@ -945,175 +945,175 @@ |
| 945 | 945 |
const _Digraph& digraph; |
| 946 | 946 |
}; |
| 947 | 947 |
}; |
| 948 | 948 |
|
| 949 | 949 |
/// \brief Skeleton class for alterable undirected graphs. |
| 950 | 950 |
/// |
| 951 | 951 |
/// This class describes the interface of alterable undirected |
| 952 | 952 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
| 953 | 953 |
/// notifier interface of undirected graphs. It implements |
| 954 | 954 |
/// an observer-notifier pattern for the edges. More |
| 955 | 955 |
/// obsevers can be registered into the notifier and whenever an |
| 956 | 956 |
/// alteration occured in the graph all the observers will be |
| 957 | 957 |
/// notified about it. |
| 958 | 958 |
template <typename BAS = BaseGraphComponent> |
| 959 | 959 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
|
| 960 | 960 |
public: |
| 961 | 961 |
|
| 962 | 962 |
typedef BAS Base; |
| 963 | 963 |
typedef typename Base::Edge Edge; |
| 964 | 964 |
|
| 965 | 965 |
|
| 966 | 966 |
/// Edge alteration notifier class. |
| 967 | 967 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 968 | 968 |
EdgeNotifier; |
| 969 | 969 |
|
| 970 | 970 |
/// \brief Return the edge alteration notifier. |
| 971 | 971 |
/// |
| 972 | 972 |
/// This function gives back the edge alteration notifier. |
| 973 | 973 |
EdgeNotifier& notifier(Edge) const {
|
| 974 | 974 |
return EdgeNotifier(); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
template <typename _Graph> |
| 978 | 978 |
struct Constraints {
|
| 979 | 979 |
void constraints() {
|
| 980 | 980 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
| 981 | 981 |
typename _Graph::EdgeNotifier& uen |
| 982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
| 983 | 983 |
ignore_unused_variable_warning(uen); |
| 984 | 984 |
} |
| 985 | 985 |
|
| 986 | 986 |
const _Graph& graph; |
| 987 | 987 |
}; |
| 988 | 988 |
}; |
| 989 | 989 |
|
| 990 | 990 |
/// \brief Concept class for standard graph maps. |
| 991 | 991 |
/// |
| 992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
| 994 | 994 |
/// graph types, which can be used for associating data to graph items. |
| 995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 996 | 996 |
template <typename GR, typename K, typename V> |
| 997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
| 999 | 999 |
|
| 1000 | 1000 |
public: |
| 1001 | 1001 |
|
| 1002 | 1002 |
/// The key type of the map. |
| 1003 | 1003 |
typedef K Key; |
| 1004 | 1004 |
/// The value type of the map. |
| 1005 | 1005 |
typedef V Value; |
| 1006 | 1006 |
/// The reference type of the map. |
| 1007 | 1007 |
typedef Value& Reference; |
| 1008 | 1008 |
/// The const reference type of the map. |
| 1009 | 1009 |
typedef const Value& ConstReference; |
| 1010 | 1010 |
|
| 1011 | 1011 |
// The reference map tag. |
| 1012 | 1012 |
typedef True ReferenceMapTag; |
| 1013 | 1013 |
|
| 1014 | 1014 |
/// \brief Construct a new map. |
| 1015 | 1015 |
/// |
| 1016 | 1016 |
/// Construct a new map for the graph. |
| 1017 | 1017 |
explicit GraphMap(const GR&) {}
|
| 1018 | 1018 |
/// \brief Construct a new map with default value. |
| 1019 | 1019 |
/// |
| 1020 | 1020 |
/// Construct a new map for the graph and initalize the values. |
| 1021 | 1021 |
GraphMap(const GR&, const Value&) {}
|
| 1022 | 1022 |
|
| 1023 | 1023 |
private: |
| 1024 | 1024 |
/// \brief Copy constructor. |
| 1025 | 1025 |
/// |
| 1026 | 1026 |
/// Copy Constructor. |
| 1027 | 1027 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1028 | 1028 |
|
| 1029 | 1029 |
/// \brief Assignment operator. |
| 1030 | 1030 |
/// |
| 1031 | 1031 |
/// Assignment operator. It does not mofify the underlying graph, |
| 1032 | 1032 |
/// it just iterates on the current item set and set the map |
| 1033 | 1033 |
/// with the value returned by the assigned map. |
| 1034 | 1034 |
template <typename CMap> |
| 1035 | 1035 |
GraphMap& operator=(const CMap&) {
|
| 1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1037 | 1037 |
return *this; |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
public: |
| 1041 | 1041 |
template<typename _Map> |
| 1042 | 1042 |
struct Constraints {
|
| 1043 | 1043 |
void constraints() {
|
| 1044 | 1044 |
checkConcept |
| 1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1046 | 1046 |
_Map m1(g); |
| 1047 | 1047 |
_Map m2(g,t); |
| 1048 |
|
|
| 1048 |
|
|
| 1049 | 1049 |
// Copy constructor |
| 1050 | 1050 |
// _Map m3(m); |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Assignment operator |
| 1053 | 1053 |
// ReadMap<Key, Value> cmap; |
| 1054 | 1054 |
// m3 = cmap; |
| 1055 | 1055 |
|
| 1056 | 1056 |
ignore_unused_variable_warning(m1); |
| 1057 | 1057 |
ignore_unused_variable_warning(m2); |
| 1058 | 1058 |
// ignore_unused_variable_warning(m3); |
| 1059 | 1059 |
} |
| 1060 | 1060 |
|
| 1061 | 1061 |
const _Map &m; |
| 1062 | 1062 |
const GR &g; |
| 1063 | 1063 |
const typename GraphMap::Value &t; |
| 1064 | 1064 |
}; |
| 1065 | 1065 |
|
| 1066 | 1066 |
}; |
| 1067 | 1067 |
|
| 1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
| 1069 | 1069 |
/// |
| 1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
| 1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
| 1073 | 1073 |
/// This concept is part of the Digraph concept. |
| 1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
| 1075 | 1075 |
class MappableDigraphComponent : public BAS {
|
| 1076 | 1076 |
public: |
| 1077 | 1077 |
|
| 1078 | 1078 |
typedef BAS Base; |
| 1079 | 1079 |
typedef typename Base::Node Node; |
| 1080 | 1080 |
typedef typename Base::Arc Arc; |
| 1081 | 1081 |
|
| 1082 | 1082 |
typedef MappableDigraphComponent Digraph; |
| 1083 | 1083 |
|
| 1084 | 1084 |
/// \brief Standard graph map for the nodes. |
| 1085 | 1085 |
/// |
| 1086 | 1086 |
/// Standard graph map for the nodes. |
| 1087 | 1087 |
/// It conforms to the ReferenceMap concept. |
| 1088 | 1088 |
template <typename V> |
| 1089 | 1089 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
|
| 1090 | 1090 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
| 1091 | 1091 |
|
| 1092 | 1092 |
public: |
| 1093 | 1093 |
/// \brief Construct a new map. |
| 1094 | 1094 |
/// |
| 1095 | 1095 |
/// Construct a new map for the digraph. |
| 1096 | 1096 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
| 1097 | 1097 |
: Parent(digraph) {}
|
| 1098 | 1098 |
|
| 1099 | 1099 |
/// \brief Construct a new map with default value. |
| 1100 | 1100 |
/// |
| 1101 | 1101 |
/// Construct a new map for the digraph and initalize the values. |
| 1102 | 1102 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
| 1103 | 1103 |
: Parent(digraph, value) {}
|
| 1104 | 1104 |
|
| 1105 | 1105 |
private: |
| 1106 | 1106 |
/// \brief Copy constructor. |
| 1107 | 1107 |
/// |
| 1108 | 1108 |
/// Copy Constructor. |
| 1109 | 1109 |
NodeMap(const NodeMap& nm) : Parent(nm) {}
|
| 1110 | 1110 |
|
| 1111 | 1111 |
/// \brief Assignment operator. |
| 1112 | 1112 |
/// |
| 1113 | 1113 |
/// Assignment operator. |
| 1114 | 1114 |
template <typename CMap> |
| 1115 | 1115 |
NodeMap& operator=(const CMap&) {
|
| 1116 | 1116 |
checkConcept<ReadMap<Node, V>, CMap>(); |
| 1117 | 1117 |
return *this; |
| 1118 | 1118 |
} |
| 1119 | 1119 |
|
| ... | ... |
@@ -1160,309 +1160,309 @@ |
| 1160 | 1160 |
|
| 1161 | 1161 |
template <typename _Digraph> |
| 1162 | 1162 |
struct Constraints {
|
| 1163 | 1163 |
|
| 1164 | 1164 |
struct Dummy {
|
| 1165 | 1165 |
int value; |
| 1166 | 1166 |
Dummy() : value(0) {}
|
| 1167 | 1167 |
Dummy(int _v) : value(_v) {}
|
| 1168 | 1168 |
}; |
| 1169 | 1169 |
|
| 1170 | 1170 |
void constraints() {
|
| 1171 | 1171 |
checkConcept<Base, _Digraph>(); |
| 1172 | 1172 |
{ // int map test
|
| 1173 | 1173 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
| 1174 | 1174 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
| 1175 | 1175 |
IntNodeMap >(); |
| 1176 | 1176 |
} { // bool map test
|
| 1177 | 1177 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
| 1178 | 1178 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
| 1179 | 1179 |
BoolNodeMap >(); |
| 1180 | 1180 |
} { // Dummy map test
|
| 1181 | 1181 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
| 1182 | 1182 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
| 1183 | 1183 |
DummyNodeMap >(); |
| 1184 | 1184 |
} |
| 1185 | 1185 |
|
| 1186 | 1186 |
{ // int map test
|
| 1187 | 1187 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
| 1188 | 1188 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
| 1189 | 1189 |
IntArcMap >(); |
| 1190 | 1190 |
} { // bool map test
|
| 1191 | 1191 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
| 1192 | 1192 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
| 1193 | 1193 |
BoolArcMap >(); |
| 1194 | 1194 |
} { // Dummy map test
|
| 1195 | 1195 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
| 1196 | 1196 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
| 1197 | 1197 |
DummyArcMap >(); |
| 1198 | 1198 |
} |
| 1199 | 1199 |
} |
| 1200 | 1200 |
|
| 1201 | 1201 |
const _Digraph& digraph; |
| 1202 | 1202 |
}; |
| 1203 | 1203 |
}; |
| 1204 | 1204 |
|
| 1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
| 1209 | 1209 |
/// map class for edges (\c EdgeMap). |
| 1210 | 1210 |
/// This concept is part of the Graph concept. |
| 1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
| 1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
| 1213 | 1213 |
public: |
| 1214 | 1214 |
|
| 1215 | 1215 |
typedef BAS Base; |
| 1216 | 1216 |
typedef typename Base::Edge Edge; |
| 1217 | 1217 |
|
| 1218 | 1218 |
typedef MappableGraphComponent Graph; |
| 1219 | 1219 |
|
| 1220 | 1220 |
/// \brief Standard graph map for the edges. |
| 1221 | 1221 |
/// |
| 1222 | 1222 |
/// Standard graph map for the edges. |
| 1223 | 1223 |
/// It conforms to the ReferenceMap concept. |
| 1224 | 1224 |
template <typename V> |
| 1225 | 1225 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
|
| 1226 | 1226 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
| 1227 | 1227 |
|
| 1228 | 1228 |
public: |
| 1229 | 1229 |
/// \brief Construct a new map. |
| 1230 | 1230 |
/// |
| 1231 | 1231 |
/// Construct a new map for the graph. |
| 1232 | 1232 |
explicit EdgeMap(const MappableGraphComponent& graph) |
| 1233 | 1233 |
: Parent(graph) {}
|
| 1234 | 1234 |
|
| 1235 | 1235 |
/// \brief Construct a new map with default value. |
| 1236 | 1236 |
/// |
| 1237 | 1237 |
/// Construct a new map for the graph and initalize the values. |
| 1238 | 1238 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
| 1239 | 1239 |
: Parent(graph, value) {}
|
| 1240 | 1240 |
|
| 1241 | 1241 |
private: |
| 1242 | 1242 |
/// \brief Copy constructor. |
| 1243 | 1243 |
/// |
| 1244 | 1244 |
/// Copy Constructor. |
| 1245 | 1245 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
|
| 1246 | 1246 |
|
| 1247 | 1247 |
/// \brief Assignment operator. |
| 1248 | 1248 |
/// |
| 1249 | 1249 |
/// Assignment operator. |
| 1250 | 1250 |
template <typename CMap> |
| 1251 | 1251 |
EdgeMap& operator=(const CMap&) {
|
| 1252 | 1252 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
| 1253 | 1253 |
return *this; |
| 1254 | 1254 |
} |
| 1255 | 1255 |
|
| 1256 | 1256 |
}; |
| 1257 | 1257 |
|
| 1258 | 1258 |
|
| 1259 | 1259 |
template <typename _Graph> |
| 1260 | 1260 |
struct Constraints {
|
| 1261 | 1261 |
|
| 1262 | 1262 |
struct Dummy {
|
| 1263 | 1263 |
int value; |
| 1264 | 1264 |
Dummy() : value(0) {}
|
| 1265 | 1265 |
Dummy(int _v) : value(_v) {}
|
| 1266 | 1266 |
}; |
| 1267 | 1267 |
|
| 1268 | 1268 |
void constraints() {
|
| 1269 | 1269 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
| 1270 | 1270 |
|
| 1271 | 1271 |
{ // int map test
|
| 1272 | 1272 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
| 1273 | 1273 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
| 1274 | 1274 |
IntEdgeMap >(); |
| 1275 | 1275 |
} { // bool map test
|
| 1276 | 1276 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
| 1277 | 1277 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
| 1278 | 1278 |
BoolEdgeMap >(); |
| 1279 | 1279 |
} { // Dummy map test
|
| 1280 | 1280 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
| 1281 | 1281 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
| 1282 | 1282 |
DummyEdgeMap >(); |
| 1283 | 1283 |
} |
| 1284 | 1284 |
} |
| 1285 | 1285 |
|
| 1286 | 1286 |
const _Graph& graph; |
| 1287 | 1287 |
}; |
| 1288 | 1288 |
}; |
| 1289 | 1289 |
|
| 1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
| 1291 | 1291 |
/// |
| 1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
| 1294 | 1294 |
/// nodes and arcs to the digraph. |
| 1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
| 1297 | 1297 |
class ExtendableDigraphComponent : public BAS {
|
| 1298 | 1298 |
public: |
| 1299 | 1299 |
typedef BAS Base; |
| 1300 | 1300 |
|
| 1301 | 1301 |
typedef typename Base::Node Node; |
| 1302 | 1302 |
typedef typename Base::Arc Arc; |
| 1303 | 1303 |
|
| 1304 | 1304 |
/// \brief Add a new node to the digraph. |
| 1305 | 1305 |
/// |
| 1306 | 1306 |
/// This function adds a new node to the digraph. |
| 1307 | 1307 |
Node addNode() {
|
| 1308 | 1308 |
return INVALID; |
| 1309 | 1309 |
} |
| 1310 | 1310 |
|
| 1311 | 1311 |
/// \brief Add a new arc connecting the given two nodes. |
| 1312 | 1312 |
/// |
| 1313 | 1313 |
/// This function adds a new arc connecting the given two nodes |
| 1314 | 1314 |
/// of the digraph. |
| 1315 | 1315 |
Arc addArc(const Node&, const Node&) {
|
| 1316 | 1316 |
return INVALID; |
| 1317 | 1317 |
} |
| 1318 | 1318 |
|
| 1319 | 1319 |
template <typename _Digraph> |
| 1320 | 1320 |
struct Constraints {
|
| 1321 | 1321 |
void constraints() {
|
| 1322 | 1322 |
checkConcept<Base, _Digraph>(); |
| 1323 | 1323 |
typename _Digraph::Node node_a, node_b; |
| 1324 | 1324 |
node_a = digraph.addNode(); |
| 1325 | 1325 |
node_b = digraph.addNode(); |
| 1326 | 1326 |
typename _Digraph::Arc arc; |
| 1327 | 1327 |
arc = digraph.addArc(node_a, node_b); |
| 1328 | 1328 |
} |
| 1329 | 1329 |
|
| 1330 | 1330 |
_Digraph& digraph; |
| 1331 | 1331 |
}; |
| 1332 | 1332 |
}; |
| 1333 | 1333 |
|
| 1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
| 1335 | 1335 |
/// |
| 1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
| 1338 | 1338 |
/// nodes and edges to the graph. |
| 1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
| 1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
| 1341 | 1341 |
class ExtendableGraphComponent : public BAS {
|
| 1342 | 1342 |
public: |
| 1343 | 1343 |
|
| 1344 | 1344 |
typedef BAS Base; |
| 1345 | 1345 |
typedef typename Base::Node Node; |
| 1346 | 1346 |
typedef typename Base::Edge Edge; |
| 1347 | 1347 |
|
| 1348 | 1348 |
/// \brief Add a new node to the digraph. |
| 1349 | 1349 |
/// |
| 1350 | 1350 |
/// This function adds a new node to the digraph. |
| 1351 | 1351 |
Node addNode() {
|
| 1352 | 1352 |
return INVALID; |
| 1353 | 1353 |
} |
| 1354 | 1354 |
|
| 1355 | 1355 |
/// \brief Add a new edge connecting the given two nodes. |
| 1356 | 1356 |
/// |
| 1357 | 1357 |
/// This function adds a new edge connecting the given two nodes |
| 1358 | 1358 |
/// of the graph. |
| 1359 | 1359 |
Edge addEdge(const Node&, const Node&) {
|
| 1360 | 1360 |
return INVALID; |
| 1361 | 1361 |
} |
| 1362 | 1362 |
|
| 1363 | 1363 |
template <typename _Graph> |
| 1364 | 1364 |
struct Constraints {
|
| 1365 | 1365 |
void constraints() {
|
| 1366 | 1366 |
checkConcept<Base, _Graph>(); |
| 1367 | 1367 |
typename _Graph::Node node_a, node_b; |
| 1368 | 1368 |
node_a = graph.addNode(); |
| 1369 | 1369 |
node_b = graph.addNode(); |
| 1370 | 1370 |
typename _Graph::Edge edge; |
| 1371 | 1371 |
edge = graph.addEdge(node_a, node_b); |
| 1372 | 1372 |
} |
| 1373 | 1373 |
|
| 1374 | 1374 |
_Graph& graph; |
| 1375 | 1375 |
}; |
| 1376 | 1376 |
}; |
| 1377 | 1377 |
|
| 1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
| 1379 | 1379 |
/// |
| 1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
| 1382 | 1382 |
/// nodes and arcs from the digraph. |
| 1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
| 1385 | 1385 |
class ErasableDigraphComponent : public BAS {
|
| 1386 | 1386 |
public: |
| 1387 | 1387 |
|
| 1388 | 1388 |
typedef BAS Base; |
| 1389 | 1389 |
typedef typename Base::Node Node; |
| 1390 | 1390 |
typedef typename Base::Arc Arc; |
| 1391 | 1391 |
|
| 1392 | 1392 |
/// \brief Erase a node from the digraph. |
| 1393 | 1393 |
/// |
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1394 |
/// This function erases the given node from the digraph and all arcs |
|
| 1395 | 1395 |
/// connected to the node. |
| 1396 | 1396 |
void erase(const Node&) {}
|
| 1397 | 1397 |
|
| 1398 | 1398 |
/// \brief Erase an arc from the digraph. |
| 1399 | 1399 |
/// |
| 1400 | 1400 |
/// This function erases the given arc from the digraph. |
| 1401 | 1401 |
void erase(const Arc&) {}
|
| 1402 | 1402 |
|
| 1403 | 1403 |
template <typename _Digraph> |
| 1404 | 1404 |
struct Constraints {
|
| 1405 | 1405 |
void constraints() {
|
| 1406 | 1406 |
checkConcept<Base, _Digraph>(); |
| 1407 | 1407 |
const typename _Digraph::Node node(INVALID); |
| 1408 | 1408 |
digraph.erase(node); |
| 1409 | 1409 |
const typename _Digraph::Arc arc(INVALID); |
| 1410 | 1410 |
digraph.erase(arc); |
| 1411 | 1411 |
} |
| 1412 | 1412 |
|
| 1413 | 1413 |
_Digraph& digraph; |
| 1414 | 1414 |
}; |
| 1415 | 1415 |
}; |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
| 1418 | 1418 |
/// |
| 1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
| 1421 | 1421 |
/// nodes and edges from the graph. |
| 1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
| 1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
| 1424 | 1424 |
class ErasableGraphComponent : public BAS {
|
| 1425 | 1425 |
public: |
| 1426 | 1426 |
|
| 1427 | 1427 |
typedef BAS Base; |
| 1428 | 1428 |
typedef typename Base::Node Node; |
| 1429 | 1429 |
typedef typename Base::Edge Edge; |
| 1430 | 1430 |
|
| 1431 | 1431 |
/// \brief Erase a node from the graph. |
| 1432 | 1432 |
/// |
| 1433 | 1433 |
/// This function erases the given node from the graph and all edges |
| 1434 | 1434 |
/// connected to the node. |
| 1435 | 1435 |
void erase(const Node&) {}
|
| 1436 | 1436 |
|
| 1437 | 1437 |
/// \brief Erase an edge from the digraph. |
| 1438 | 1438 |
/// |
| 1439 | 1439 |
/// This function erases the given edge from the digraph. |
| 1440 | 1440 |
void erase(const Edge&) {}
|
| 1441 | 1441 |
|
| 1442 | 1442 |
template <typename _Graph> |
| 1443 | 1443 |
struct Constraints {
|
| 1444 | 1444 |
void constraints() {
|
| 1445 | 1445 |
checkConcept<Base, _Graph>(); |
| 1446 | 1446 |
const typename _Graph::Node node(INVALID); |
| 1447 | 1447 |
graph.erase(node); |
| 1448 | 1448 |
const typename _Graph::Edge edge(INVALID); |
| 1449 | 1449 |
graph.erase(edge); |
| 1450 | 1450 |
} |
| 1451 | 1451 |
|
| 1452 | 1452 |
_Graph& graph; |
| 1453 | 1453 |
}; |
| 1454 | 1454 |
}; |
| 1455 | 1455 |
|
| 1456 | 1456 |
/// \brief Skeleton class for clearable directed graphs. |
| 1457 | 1457 |
/// |
| 1458 | 1458 |
/// This class describes the interface of clearable directed graphs. |
| 1459 | 1459 |
/// It extends \ref BaseDigraphComponent with a function for clearing |
| 1460 | 1460 |
/// the digraph. |
| 1461 | 1461 |
/// This concept requires \ref AlterableDigraphComponent. |
| 1462 | 1462 |
template <typename BAS = BaseDigraphComponent> |
| 1463 | 1463 |
class ClearableDigraphComponent : public BAS {
|
| 1464 | 1464 |
public: |
| 1465 | 1465 |
|
| 1466 | 1466 |
typedef BAS Base; |
| 1467 | 1467 |
|
| 1468 | 1468 |
/// \brief Erase all nodes and arcs from the digraph. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
| 20 | 20 |
#define LEMON_CONCEPTS_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/concept_check.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup map_concepts |
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief The concept of maps. |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup map_concepts |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// Readable map concept |
| 37 | 37 |
|
| 38 | 38 |
/// Readable map concept. |
| 39 | 39 |
/// |
| 40 | 40 |
template<typename K, typename T> |
| 41 | 41 |
class ReadMap |
| 42 | 42 |
{
|
| 43 | 43 |
public: |
| 44 | 44 |
/// The key type of the map. |
| 45 | 45 |
typedef K Key; |
| 46 | 46 |
/// \brief The value type of the map. |
| 47 | 47 |
/// (The type of objects associated with the keys). |
| 48 | 48 |
typedef T Value; |
| 49 | 49 |
|
| 50 | 50 |
/// Returns the value associated with the given key. |
| 51 | 51 |
Value operator[](const Key &) const {
|
| 52 | 52 |
return *static_cast<Value *>(0); |
| 53 | 53 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
| 20 | 20 |
#define LEMON_CONNECTIVITY_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/dfs.h> |
| 23 | 23 |
#include <lemon/bfs.h> |
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/maps.h> |
| 26 | 26 |
#include <lemon/adaptors.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concepts/digraph.h> |
| 29 | 29 |
#include <lemon/concepts/graph.h> |
| 30 | 30 |
#include <lemon/concept_check.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <stack> |
| 33 | 33 |
#include <functional> |
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup graph_properties |
| 36 | 36 |
/// \file |
| 37 | 37 |
/// \brief Connectivity algorithms |
| 38 | 38 |
/// |
| 39 | 39 |
/// Connectivity algorithms |
| 40 | 40 |
|
| 41 | 41 |
namespace lemon {
|
| 42 | 42 |
|
| 43 | 43 |
/// \ingroup graph_properties |
| 44 | 44 |
/// |
| 45 | 45 |
/// \brief Check whether an undirected graph is connected. |
| 46 | 46 |
/// |
| 47 | 47 |
/// This function checks whether the given undirected graph is connected, |
| 48 | 48 |
/// i.e. there is a path between any two nodes in the graph. |
| 49 | 49 |
/// |
| 50 | 50 |
/// \return \c true if the graph is connected. |
| 51 | 51 |
/// \note By definition, the empty graph is connected. |
| 52 | 52 |
/// |
| 53 | 53 |
/// \see countConnectedComponents(), connectedComponents() |
| ... | ... |
@@ -213,149 +213,149 @@ |
| 213 | 213 |
public: |
| 214 | 214 |
typedef typename Digraph::Node Node; |
| 215 | 215 |
typedef typename Digraph::Arc Arc; |
| 216 | 216 |
|
| 217 | 217 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
| 218 | 218 |
ArcMap& cutMap, |
| 219 | 219 |
int& cutNum) |
| 220 | 220 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| 221 | 221 |
_compMap(digraph, -1), _num(-1) {
|
| 222 | 222 |
} |
| 223 | 223 |
|
| 224 | 224 |
void start(const Node&) {
|
| 225 | 225 |
++_num; |
| 226 | 226 |
} |
| 227 | 227 |
|
| 228 | 228 |
void reach(const Node& node) {
|
| 229 | 229 |
_compMap.set(node, _num); |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
void examine(const Arc& arc) {
|
| 233 | 233 |
if (_compMap[_digraph.source(arc)] != |
| 234 | 234 |
_compMap[_digraph.target(arc)]) {
|
| 235 | 235 |
_cutMap.set(arc, true); |
| 236 | 236 |
++_cutNum; |
| 237 | 237 |
} |
| 238 | 238 |
} |
| 239 | 239 |
private: |
| 240 | 240 |
const Digraph& _digraph; |
| 241 | 241 |
ArcMap& _cutMap; |
| 242 | 242 |
int& _cutNum; |
| 243 | 243 |
|
| 244 | 244 |
typename Digraph::template NodeMap<int> _compMap; |
| 245 | 245 |
int _num; |
| 246 | 246 |
}; |
| 247 | 247 |
|
| 248 | 248 |
} |
| 249 | 249 |
|
| 250 | 250 |
|
| 251 | 251 |
/// \ingroup graph_properties |
| 252 | 252 |
/// |
| 253 | 253 |
/// \brief Check whether a directed graph is strongly connected. |
| 254 | 254 |
/// |
| 255 | 255 |
/// This function checks whether the given directed graph is strongly |
| 256 | 256 |
/// connected, i.e. any two nodes of the digraph are |
| 257 | 257 |
/// connected with directed paths in both direction. |
| 258 | 258 |
/// |
| 259 | 259 |
/// \return \c true if the digraph is strongly connected. |
| 260 | 260 |
/// \note By definition, the empty digraph is strongly connected. |
| 261 |
/// |
|
| 261 |
/// |
|
| 262 | 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
| 263 | 263 |
/// \see connected() |
| 264 | 264 |
template <typename Digraph> |
| 265 | 265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 266 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
| 267 | 267 |
|
| 268 | 268 |
typedef typename Digraph::Node Node; |
| 269 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
| 270 | 270 |
|
| 271 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
| 272 | 272 |
if (source == INVALID) return true; |
| 273 | 273 |
|
| 274 | 274 |
using namespace _connectivity_bits; |
| 275 | 275 |
|
| 276 | 276 |
typedef DfsVisitor<Digraph> Visitor; |
| 277 | 277 |
Visitor visitor; |
| 278 | 278 |
|
| 279 | 279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 280 | 280 |
dfs.init(); |
| 281 | 281 |
dfs.addSource(source); |
| 282 | 282 |
dfs.start(); |
| 283 | 283 |
|
| 284 | 284 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 285 | 285 |
if (!dfs.reached(it)) {
|
| 286 | 286 |
return false; |
| 287 | 287 |
} |
| 288 | 288 |
} |
| 289 | 289 |
|
| 290 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 291 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 292 | 292 |
RDigraph rdigraph(digraph); |
| 293 | 293 |
|
| 294 | 294 |
typedef DfsVisitor<RDigraph> RVisitor; |
| 295 | 295 |
RVisitor rvisitor; |
| 296 | 296 |
|
| 297 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 298 | 298 |
rdfs.init(); |
| 299 | 299 |
rdfs.addSource(source); |
| 300 | 300 |
rdfs.start(); |
| 301 | 301 |
|
| 302 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 303 | 303 |
if (!rdfs.reached(it)) {
|
| 304 | 304 |
return false; |
| 305 | 305 |
} |
| 306 | 306 |
} |
| 307 | 307 |
|
| 308 | 308 |
return true; |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
/// \ingroup graph_properties |
| 312 | 312 |
/// |
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 314 | 314 |
/// directed graph |
| 315 | 315 |
/// |
| 316 | 316 |
/// This function counts the number of strongly connected components of |
| 317 | 317 |
/// the given directed graph. |
| 318 | 318 |
/// |
| 319 | 319 |
/// The strongly connected components are the classes of an |
| 320 | 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
| 321 | 321 |
/// the same class if they are connected with directed paths in both |
| 322 | 322 |
/// direction. |
| 323 | 323 |
/// |
| 324 | 324 |
/// \return The number of strongly connected components. |
| 325 | 325 |
/// \note By definition, the empty digraph has zero |
| 326 | 326 |
/// strongly connected components. |
| 327 | 327 |
/// |
| 328 | 328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
| 329 | 329 |
template <typename Digraph> |
| 330 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 331 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
| 332 | 332 |
|
| 333 | 333 |
using namespace _connectivity_bits; |
| 334 | 334 |
|
| 335 | 335 |
typedef typename Digraph::Node Node; |
| 336 | 336 |
typedef typename Digraph::Arc Arc; |
| 337 | 337 |
typedef typename Digraph::NodeIt NodeIt; |
| 338 | 338 |
typedef typename Digraph::ArcIt ArcIt; |
| 339 | 339 |
|
| 340 | 340 |
typedef std::vector<Node> Container; |
| 341 | 341 |
typedef typename Container::iterator Iterator; |
| 342 | 342 |
|
| 343 | 343 |
Container nodes(countNodes(digraph)); |
| 344 | 344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 345 | 345 |
Visitor visitor(nodes.begin()); |
| 346 | 346 |
|
| 347 | 347 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 348 | 348 |
dfs.init(); |
| 349 | 349 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 350 | 350 |
if (!dfs.reached(it)) {
|
| 351 | 351 |
dfs.addSource(it); |
| 352 | 352 |
dfs.start(); |
| 353 | 353 |
} |
| 354 | 354 |
} |
| 355 | 355 |
|
| 356 | 356 |
typedef typename Container::reverse_iterator RIterator; |
| 357 | 357 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 358 | 358 |
|
| 359 | 359 |
RDigraph rdigraph(digraph); |
| 360 | 360 |
|
| 361 | 361 |
typedef DfsVisitor<Digraph> RVisitor; |
| ... | ... |
@@ -699,211 +699,211 @@ |
| 699 | 699 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 700 | 700 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 701 | 701 |
} |
| 702 | 702 |
} |
| 703 | 703 |
|
| 704 | 704 |
void backtrack(const Arc& edge) {
|
| 705 | 705 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 706 | 706 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 707 | 707 |
} |
| 708 | 708 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 709 | 709 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
| 710 | 710 |
if (!_cutMap[_graph.source(edge)]) {
|
| 711 | 711 |
_cutMap.set(_graph.source(edge), true); |
| 712 | 712 |
++_cutNum; |
| 713 | 713 |
} |
| 714 | 714 |
} else if (rootCut) {
|
| 715 | 715 |
if (!_cutMap[_graph.source(edge)]) {
|
| 716 | 716 |
_cutMap.set(_graph.source(edge), true); |
| 717 | 717 |
++_cutNum; |
| 718 | 718 |
} |
| 719 | 719 |
} else {
|
| 720 | 720 |
rootCut = true; |
| 721 | 721 |
} |
| 722 | 722 |
} |
| 723 | 723 |
} |
| 724 | 724 |
|
| 725 | 725 |
private: |
| 726 | 726 |
const Digraph& _graph; |
| 727 | 727 |
NodeMap& _cutMap; |
| 728 | 728 |
int& _cutNum; |
| 729 | 729 |
|
| 730 | 730 |
typename Digraph::template NodeMap<int> _numMap; |
| 731 | 731 |
typename Digraph::template NodeMap<int> _retMap; |
| 732 | 732 |
typename Digraph::template NodeMap<Node> _predMap; |
| 733 | 733 |
std::stack<Edge> _edgeStack; |
| 734 | 734 |
int _num; |
| 735 | 735 |
bool rootCut; |
| 736 | 736 |
}; |
| 737 | 737 |
|
| 738 | 738 |
} |
| 739 | 739 |
|
| 740 | 740 |
template <typename Graph> |
| 741 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
| 742 | 742 |
|
| 743 | 743 |
/// \ingroup graph_properties |
| 744 | 744 |
/// |
| 745 | 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
| 746 | 746 |
/// |
| 747 |
/// This function checks whether the given undirected graph is |
|
| 747 |
/// This function checks whether the given undirected graph is |
|
| 748 | 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
| 749 | 749 |
/// |
| 750 | 750 |
/// \return \c true if the graph bi-node-connected. |
| 751 | 751 |
/// \note By definition, the empty graph is bi-node-connected. |
| 752 | 752 |
/// |
| 753 | 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
| 754 | 754 |
template <typename Graph> |
| 755 | 755 |
bool biNodeConnected(const Graph& graph) {
|
| 756 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
| 757 | 757 |
} |
| 758 | 758 |
|
| 759 | 759 |
/// \ingroup graph_properties |
| 760 | 760 |
/// |
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 762 | 762 |
/// undirected graph. |
| 763 | 763 |
/// |
| 764 | 764 |
/// This function counts the number of bi-node-connected components of |
| 765 | 765 |
/// the given undirected graph. |
| 766 | 766 |
/// |
| 767 | 767 |
/// The bi-node-connected components are the classes of an equivalence |
| 768 | 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
| 769 | 769 |
/// same class if they are on same circle. |
| 770 | 770 |
/// |
| 771 | 771 |
/// \return The number of bi-node-connected components. |
| 772 | 772 |
/// |
| 773 | 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
| 774 | 774 |
template <typename Graph> |
| 775 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 776 | 776 |
checkConcept<concepts::Graph, Graph>(); |
| 777 | 777 |
typedef typename Graph::NodeIt NodeIt; |
| 778 | 778 |
|
| 779 | 779 |
using namespace _connectivity_bits; |
| 780 | 780 |
|
| 781 | 781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
| 782 | 782 |
|
| 783 | 783 |
int compNum = 0; |
| 784 | 784 |
Visitor visitor(graph, compNum); |
| 785 | 785 |
|
| 786 | 786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 787 | 787 |
dfs.init(); |
| 788 | 788 |
|
| 789 | 789 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 790 | 790 |
if (!dfs.reached(it)) {
|
| 791 | 791 |
dfs.addSource(it); |
| 792 | 792 |
dfs.start(); |
| 793 | 793 |
} |
| 794 | 794 |
} |
| 795 | 795 |
return compNum; |
| 796 | 796 |
} |
| 797 | 797 |
|
| 798 | 798 |
/// \ingroup graph_properties |
| 799 | 799 |
/// |
| 800 | 800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function finds the bi-node-connected components of the given |
| 803 | 803 |
/// undirected graph. |
| 804 | 804 |
/// |
| 805 | 805 |
/// The bi-node-connected components are the classes of an equivalence |
| 806 | 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
| 807 | 807 |
/// same class if they are on same circle. |
| 808 | 808 |
/// |
| 809 | 809 |
/// \image html node_biconnected_components.png |
| 810 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
| 811 | 811 |
/// |
| 812 | 812 |
/// \param graph The undirected graph. |
| 813 | 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
| 814 | 814 |
/// to the number of the bi-node-connected components minus one. Each |
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 816 | 816 |
/// certain component will be set continuously. |
| 817 | 817 |
/// \return The number of bi-node-connected components. |
| 818 | 818 |
/// |
| 819 | 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
| 820 | 820 |
template <typename Graph, typename EdgeMap> |
| 821 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
| 822 | 822 |
EdgeMap& compMap) {
|
| 823 | 823 |
checkConcept<concepts::Graph, Graph>(); |
| 824 | 824 |
typedef typename Graph::NodeIt NodeIt; |
| 825 | 825 |
typedef typename Graph::Edge Edge; |
| 826 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
| 827 | 827 |
|
| 828 | 828 |
using namespace _connectivity_bits; |
| 829 | 829 |
|
| 830 | 830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
| 831 | 831 |
|
| 832 | 832 |
int compNum = 0; |
| 833 | 833 |
Visitor visitor(graph, compMap, compNum); |
| 834 | 834 |
|
| 835 | 835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 836 | 836 |
dfs.init(); |
| 837 | 837 |
|
| 838 | 838 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 839 | 839 |
if (!dfs.reached(it)) {
|
| 840 | 840 |
dfs.addSource(it); |
| 841 | 841 |
dfs.start(); |
| 842 | 842 |
} |
| 843 | 843 |
} |
| 844 | 844 |
return compNum; |
| 845 | 845 |
} |
| 846 | 846 |
|
| 847 | 847 |
/// \ingroup graph_properties |
| 848 | 848 |
/// |
| 849 | 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
| 850 | 850 |
/// |
| 851 | 851 |
/// This function finds the bi-node-connected cut nodes in the given |
| 852 | 852 |
/// undirected graph. |
| 853 | 853 |
/// |
| 854 | 854 |
/// The bi-node-connected components are the classes of an equivalence |
| 855 | 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
| 856 | 856 |
/// same class if they are on same circle. |
| 857 | 857 |
/// The bi-node-connected components are separted by the cut nodes of |
| 858 | 858 |
/// the components. |
| 859 | 859 |
/// |
| 860 | 860 |
/// \param graph The undirected graph. |
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 862 | 862 |
/// \c true for the nodes that separate two or more components |
| 863 | 863 |
/// (exactly once for each cut node), and will not be changed for |
| 864 | 864 |
/// other nodes. |
| 865 | 865 |
/// \return The number of the cut nodes. |
| 866 | 866 |
/// |
| 867 | 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
| 868 | 868 |
template <typename Graph, typename NodeMap> |
| 869 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 870 | 870 |
checkConcept<concepts::Graph, Graph>(); |
| 871 | 871 |
typedef typename Graph::Node Node; |
| 872 | 872 |
typedef typename Graph::NodeIt NodeIt; |
| 873 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| 874 | 874 |
|
| 875 | 875 |
using namespace _connectivity_bits; |
| 876 | 876 |
|
| 877 | 877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
| 878 | 878 |
|
| 879 | 879 |
int cutNum = 0; |
| 880 | 880 |
Visitor visitor(graph, cutMap, cutNum); |
| 881 | 881 |
|
| 882 | 882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 883 | 883 |
dfs.init(); |
| 884 | 884 |
|
| 885 | 885 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 886 | 886 |
if (!dfs.reached(it)) {
|
| 887 | 887 |
dfs.addSource(it); |
| 888 | 888 |
dfs.start(); |
| 889 | 889 |
} |
| 890 | 890 |
} |
| 891 | 891 |
return cutNum; |
| 892 | 892 |
} |
| 893 | 893 |
|
| 894 | 894 |
namespace _connectivity_bits {
|
| 895 | 895 |
|
| 896 | 896 |
template <typename Digraph> |
| 897 | 897 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 898 | 898 |
public: |
| 899 | 899 |
typedef typename Digraph::Node Node; |
| 900 | 900 |
typedef typename Digraph::Arc Arc; |
| 901 | 901 |
typedef typename Digraph::Edge Edge; |
| 902 | 902 |
|
| 903 | 903 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 904 | 904 |
: _graph(graph), _compNum(compNum), |
| 905 | 905 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 906 | 906 |
|
| 907 | 907 |
void start(const Node& node) {
|
| 908 | 908 |
_predMap.set(node, INVALID); |
| 909 | 909 |
} |
| ... | ... |
@@ -1040,97 +1040,97 @@ |
| 1040 | 1040 |
|
| 1041 | 1041 |
void leave(const Node& node) {
|
| 1042 | 1042 |
if (_numMap[node] <= _retMap[node]) {
|
| 1043 | 1043 |
if (_predMap[node] != INVALID) {
|
| 1044 | 1044 |
_cutMap.set(_predMap[node], true); |
| 1045 | 1045 |
++_cutNum; |
| 1046 | 1046 |
} |
| 1047 | 1047 |
} |
| 1048 | 1048 |
} |
| 1049 | 1049 |
|
| 1050 | 1050 |
void discover(const Arc& edge) {
|
| 1051 | 1051 |
_predMap.set(_graph.target(edge), edge); |
| 1052 | 1052 |
} |
| 1053 | 1053 |
|
| 1054 | 1054 |
void examine(const Arc& edge) {
|
| 1055 | 1055 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 1056 | 1056 |
return; |
| 1057 | 1057 |
} |
| 1058 | 1058 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1059 | 1059 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1060 | 1060 |
} |
| 1061 | 1061 |
} |
| 1062 | 1062 |
|
| 1063 | 1063 |
void backtrack(const Arc& edge) {
|
| 1064 | 1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1065 | 1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 1066 | 1066 |
} |
| 1067 | 1067 |
} |
| 1068 | 1068 |
|
| 1069 | 1069 |
private: |
| 1070 | 1070 |
const Digraph& _graph; |
| 1071 | 1071 |
ArcMap& _cutMap; |
| 1072 | 1072 |
int& _cutNum; |
| 1073 | 1073 |
|
| 1074 | 1074 |
typename Digraph::template NodeMap<int> _numMap; |
| 1075 | 1075 |
typename Digraph::template NodeMap<int> _retMap; |
| 1076 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 1077 | 1077 |
int _num; |
| 1078 | 1078 |
}; |
| 1079 | 1079 |
} |
| 1080 | 1080 |
|
| 1081 | 1081 |
template <typename Graph> |
| 1082 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
| 1083 | 1083 |
|
| 1084 | 1084 |
/// \ingroup graph_properties |
| 1085 | 1085 |
/// |
| 1086 | 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
| 1087 | 1087 |
/// |
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1089 | 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
| 1090 | 1090 |
/// two edge-disjoint paths. |
| 1091 | 1091 |
/// |
| 1092 | 1092 |
/// \return \c true if the graph is bi-edge-connected. |
| 1093 | 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
| 1094 | 1094 |
/// |
| 1095 | 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
| 1096 | 1096 |
template <typename Graph> |
| 1097 | 1097 |
bool biEdgeConnected(const Graph& graph) {
|
| 1098 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
| 1099 | 1099 |
} |
| 1100 | 1100 |
|
| 1101 | 1101 |
/// \ingroup graph_properties |
| 1102 | 1102 |
/// |
| 1103 | 1103 |
/// \brief Count the number of bi-edge-connected components of an |
| 1104 | 1104 |
/// undirected graph. |
| 1105 | 1105 |
/// |
| 1106 | 1106 |
/// This function counts the number of bi-edge-connected components of |
| 1107 | 1107 |
/// the given undirected graph. |
| 1108 | 1108 |
/// |
| 1109 | 1109 |
/// The bi-edge-connected components are the classes of an equivalence |
| 1110 | 1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
| 1111 | 1111 |
/// same class if they are connected with at least two edge-disjoint |
| 1112 | 1112 |
/// paths. |
| 1113 | 1113 |
/// |
| 1114 | 1114 |
/// \return The number of bi-edge-connected components. |
| 1115 | 1115 |
/// |
| 1116 | 1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
| 1117 | 1117 |
template <typename Graph> |
| 1118 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1119 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
| 1120 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
| 1121 | 1121 |
|
| 1122 | 1122 |
using namespace _connectivity_bits; |
| 1123 | 1123 |
|
| 1124 | 1124 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| 1125 | 1125 |
|
| 1126 | 1126 |
int compNum = 0; |
| 1127 | 1127 |
Visitor visitor(graph, compNum); |
| 1128 | 1128 |
|
| 1129 | 1129 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1130 | 1130 |
dfs.init(); |
| 1131 | 1131 |
|
| 1132 | 1132 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1133 | 1133 |
if (!dfs.reached(it)) {
|
| 1134 | 1134 |
dfs.addSource(it); |
| 1135 | 1135 |
dfs.start(); |
| 1136 | 1136 |
} |
| ... | ... |
@@ -1147,97 +1147,97 @@ |
| 1147 | 1147 |
/// |
| 1148 | 1148 |
/// The bi-edge-connected components are the classes of an equivalence |
| 1149 | 1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
| 1150 | 1150 |
/// same class if they are connected with at least two edge-disjoint |
| 1151 | 1151 |
/// paths. |
| 1152 | 1152 |
/// |
| 1153 | 1153 |
/// \image html edge_biconnected_components.png |
| 1154 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 1155 | 1155 |
/// |
| 1156 | 1156 |
/// \param graph The undirected graph. |
| 1157 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1158 | 1158 |
/// the number of the bi-edge-connected components minus one. Each value |
| 1159 | 1159 |
/// of the map will be set exactly once, and the values of a certain |
| 1160 | 1160 |
/// component will be set continuously. |
| 1161 | 1161 |
/// \return The number of bi-edge-connected components. |
| 1162 | 1162 |
/// |
| 1163 | 1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
| 1164 | 1164 |
template <typename Graph, typename NodeMap> |
| 1165 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1166 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
| 1167 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
| 1168 | 1168 |
typedef typename Graph::Node Node; |
| 1169 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 1170 | 1170 |
|
| 1171 | 1171 |
using namespace _connectivity_bits; |
| 1172 | 1172 |
|
| 1173 | 1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| 1174 | 1174 |
|
| 1175 | 1175 |
int compNum = 0; |
| 1176 | 1176 |
Visitor visitor(graph, compMap, compNum); |
| 1177 | 1177 |
|
| 1178 | 1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1179 | 1179 |
dfs.init(); |
| 1180 | 1180 |
|
| 1181 | 1181 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1182 | 1182 |
if (!dfs.reached(it)) {
|
| 1183 | 1183 |
dfs.addSource(it); |
| 1184 | 1184 |
dfs.start(); |
| 1185 | 1185 |
} |
| 1186 | 1186 |
} |
| 1187 | 1187 |
return compNum; |
| 1188 | 1188 |
} |
| 1189 | 1189 |
|
| 1190 | 1190 |
/// \ingroup graph_properties |
| 1191 | 1191 |
/// |
| 1192 | 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
| 1193 | 1193 |
/// |
| 1194 | 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
| 1195 |
/// undirected graph. |
|
| 1195 |
/// undirected graph. |
|
| 1196 | 1196 |
/// |
| 1197 | 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
| 1198 | 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
| 1199 | 1199 |
/// same class if they are connected with at least two edge-disjoint |
| 1200 | 1200 |
/// paths. |
| 1201 | 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
| 1202 | 1202 |
/// the components. |
| 1203 | 1203 |
/// |
| 1204 | 1204 |
/// \param graph The undirected graph. |
| 1205 | 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
| 1206 | 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
| 1207 | 1207 |
/// changed for other edges. |
| 1208 | 1208 |
/// \return The number of cut edges. |
| 1209 | 1209 |
/// |
| 1210 | 1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
| 1211 | 1211 |
template <typename Graph, typename EdgeMap> |
| 1212 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1213 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
| 1214 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
| 1215 | 1215 |
typedef typename Graph::Edge Edge; |
| 1216 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| 1217 | 1217 |
|
| 1218 | 1218 |
using namespace _connectivity_bits; |
| 1219 | 1219 |
|
| 1220 | 1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| 1221 | 1221 |
|
| 1222 | 1222 |
int cutNum = 0; |
| 1223 | 1223 |
Visitor visitor(graph, cutMap, cutNum); |
| 1224 | 1224 |
|
| 1225 | 1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1226 | 1226 |
dfs.init(); |
| 1227 | 1227 |
|
| 1228 | 1228 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1229 | 1229 |
if (!dfs.reached(it)) {
|
| 1230 | 1230 |
dfs.addSource(it); |
| 1231 | 1231 |
dfs.start(); |
| 1232 | 1232 |
} |
| 1233 | 1233 |
} |
| 1234 | 1234 |
return cutNum; |
| 1235 | 1235 |
} |
| 1236 | 1236 |
|
| 1237 | 1237 |
|
| 1238 | 1238 |
namespace _connectivity_bits {
|
| 1239 | 1239 |
|
| 1240 | 1240 |
template <typename Digraph, typename IntNodeMap> |
| 1241 | 1241 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
| 1242 | 1242 |
public: |
| 1243 | 1243 |
typedef typename Digraph::Node Node; |
| ... | ... |
@@ -1304,97 +1304,97 @@ |
| 1304 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1305 | 1305 |
/// |
| 1306 | 1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
| 1307 | 1307 |
/// into topolgical order. |
| 1308 | 1308 |
/// |
| 1309 | 1309 |
/// \param digraph The digraph, which must be DAG. |
| 1310 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1311 | 1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
| 1312 | 1312 |
/// map will be set exactly once, and the values will be set descending |
| 1313 | 1313 |
/// order. |
| 1314 | 1314 |
/// |
| 1315 | 1315 |
/// \see dag(), checkedTopologicalSort() |
| 1316 | 1316 |
template <typename Digraph, typename NodeMap> |
| 1317 | 1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1318 | 1318 |
using namespace _connectivity_bits; |
| 1319 | 1319 |
|
| 1320 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1321 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1322 | 1322 |
|
| 1323 | 1323 |
typedef typename Digraph::Node Node; |
| 1324 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
| 1325 | 1325 |
typedef typename Digraph::Arc Arc; |
| 1326 | 1326 |
|
| 1327 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1328 | 1328 |
visitor(order, countNodes(digraph)); |
| 1329 | 1329 |
|
| 1330 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1331 | 1331 |
dfs(digraph, visitor); |
| 1332 | 1332 |
|
| 1333 | 1333 |
dfs.init(); |
| 1334 | 1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1335 | 1335 |
if (!dfs.reached(it)) {
|
| 1336 | 1336 |
dfs.addSource(it); |
| 1337 | 1337 |
dfs.start(); |
| 1338 | 1338 |
} |
| 1339 | 1339 |
} |
| 1340 | 1340 |
} |
| 1341 | 1341 |
|
| 1342 | 1342 |
/// \ingroup graph_properties |
| 1343 | 1343 |
/// |
| 1344 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1345 | 1345 |
/// |
| 1346 | 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
| 1347 | 1347 |
/// into topolgical order and also checks whether the given digraph |
| 1348 | 1348 |
/// is DAG. |
| 1349 | 1349 |
/// |
| 1350 | 1350 |
/// \param digraph The digraph. |
| 1351 | 1351 |
/// \retval order A readable and writable node map. The values will be |
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1353 | 1353 |
/// Each value of the map will be set exactly once, and the values will |
| 1354 | 1354 |
/// be set descending order. |
| 1355 | 1355 |
/// \return \c false if the digraph is not DAG. |
| 1356 | 1356 |
/// |
| 1357 | 1357 |
/// \see dag(), topologicalSort() |
| 1358 | 1358 |
template <typename Digraph, typename NodeMap> |
| 1359 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1360 | 1360 |
using namespace _connectivity_bits; |
| 1361 | 1361 |
|
| 1362 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1363 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1364 | 1364 |
NodeMap>(); |
| 1365 | 1365 |
|
| 1366 | 1366 |
typedef typename Digraph::Node Node; |
| 1367 | 1367 |
typedef typename Digraph::NodeIt NodeIt; |
| 1368 | 1368 |
typedef typename Digraph::Arc Arc; |
| 1369 | 1369 |
|
| 1370 | 1370 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1371 | 1371 |
order.set(it, -1); |
| 1372 | 1372 |
} |
| 1373 | 1373 |
|
| 1374 | 1374 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1375 | 1375 |
visitor(order, countNodes(digraph)); |
| 1376 | 1376 |
|
| 1377 | 1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1378 | 1378 |
dfs(digraph, visitor); |
| 1379 | 1379 |
|
| 1380 | 1380 |
dfs.init(); |
| 1381 | 1381 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1382 | 1382 |
if (!dfs.reached(it)) {
|
| 1383 | 1383 |
dfs.addSource(it); |
| 1384 | 1384 |
while (!dfs.emptyQueue()) {
|
| 1385 | 1385 |
Arc arc = dfs.nextArc(); |
| 1386 | 1386 |
Node target = digraph.target(arc); |
| 1387 | 1387 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1388 | 1388 |
return false; |
| 1389 | 1389 |
} |
| 1390 | 1390 |
dfs.processNextArc(); |
| 1391 | 1391 |
} |
| 1392 | 1392 |
} |
| 1393 | 1393 |
} |
| 1394 | 1394 |
return true; |
| 1395 | 1395 |
} |
| 1396 | 1396 |
|
| 1397 | 1397 |
/// \ingroup graph_properties |
| 1398 | 1398 |
/// |
| 1399 | 1399 |
/// \brief Check whether an undirected graph is acyclic. |
| 1400 | 1400 |
/// |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CORE_H |
| 20 | 20 |
#define LEMON_CORE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/config.h> |
| 26 | 26 |
#include <lemon/bits/enable_if.h> |
| 27 | 27 |
#include <lemon/bits/traits.h> |
| 28 | 28 |
#include <lemon/assert.h> |
| 29 | 29 |
|
| 30 | 30 |
// Disable the following warnings when compiling with MSVC: |
| 31 | 31 |
// C4250: 'class1' : inherits 'class2::member' via dominance |
| 32 | 32 |
// C4355: 'this' : used in base member initializer list |
| 33 | 33 |
// C4503: 'function' : decorated name length exceeded, name was truncated |
| 34 | 34 |
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
| 35 | 35 |
// C4996: 'function': was declared deprecated |
| 36 | 36 |
#ifdef _MSC_VER |
| 37 | 37 |
#pragma warning( disable : 4250 4355 4503 4800 4996 ) |
| 38 | 38 |
#endif |
| 39 | 39 |
|
| 40 | 40 |
///\file |
| 41 | 41 |
///\brief LEMON core utilities. |
| 42 | 42 |
/// |
| 43 | 43 |
///This header file contains core utilities for LEMON. |
| 44 | 44 |
///It is automatically included by all graph types, therefore it usually |
| 45 | 45 |
///do not have to be included directly. |
| 46 | 46 |
|
| 47 | 47 |
namespace lemon {
|
| 48 | 48 |
|
| 49 | 49 |
/// \brief Dummy type to make it easier to create invalid iterators. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Dummy type to make it easier to create invalid iterators. |
| 52 | 52 |
/// See \ref INVALID for the usage. |
| 53 | 53 |
struct Invalid {
|
| ... | ... |
@@ -1196,136 +1196,137 @@ |
| 1196 | 1196 |
ConEdgeIt& operator++() {
|
| 1197 | 1197 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
| 1198 | 1198 |
return *this; |
| 1199 | 1199 |
} |
| 1200 | 1200 |
private: |
| 1201 | 1201 |
const GR& _graph; |
| 1202 | 1202 |
Node _u, _v; |
| 1203 | 1203 |
}; |
| 1204 | 1204 |
|
| 1205 | 1205 |
|
| 1206 | 1206 |
///Dynamic arc look-up between given endpoints. |
| 1207 | 1207 |
|
| 1208 | 1208 |
///Using this class, you can find an arc in a digraph from a given |
| 1209 | 1209 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
| 1210 | 1210 |
///where <em>d</em> is the out-degree of the source node. |
| 1211 | 1211 |
/// |
| 1212 | 1212 |
///It is possible to find \e all parallel arcs between two nodes with |
| 1213 | 1213 |
///the \c operator() member. |
| 1214 | 1214 |
/// |
| 1215 | 1215 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
| 1216 | 1216 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
| 1217 | 1217 |
/// |
| 1218 | 1218 |
///This class uses a self-adjusting binary search tree, the Splay tree |
| 1219 | 1219 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
| 1220 | 1220 |
///time bound for arc look-ups. This class also guarantees the |
| 1221 | 1221 |
///optimal time bound in a constant factor for any distribution of |
| 1222 | 1222 |
///queries. |
| 1223 | 1223 |
/// |
| 1224 | 1224 |
///\tparam GR The type of the underlying digraph. |
| 1225 | 1225 |
/// |
| 1226 | 1226 |
///\sa ArcLookUp |
| 1227 | 1227 |
///\sa AllArcLookUp |
| 1228 | 1228 |
template <typename GR> |
| 1229 | 1229 |
class DynArcLookUp |
| 1230 | 1230 |
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
| 1231 | 1231 |
{
|
| 1232 | 1232 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
| 1233 | 1233 |
::ItemNotifier::ObserverBase Parent; |
| 1234 | 1234 |
|
| 1235 | 1235 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 1236 | 1236 |
|
| 1237 | 1237 |
public: |
| 1238 | 1238 |
|
| 1239 | 1239 |
/// The Digraph type |
| 1240 | 1240 |
typedef GR Digraph; |
| 1241 | 1241 |
|
| 1242 | 1242 |
protected: |
| 1243 | 1243 |
|
| 1244 |
class AutoNodeMap : |
|
| 1244 |
class AutoNodeMap : |
|
| 1245 |
public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
|
|
| 1245 | 1246 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
| 1246 | 1247 |
|
| 1247 | 1248 |
public: |
| 1248 | 1249 |
|
| 1249 | 1250 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
|
| 1250 | 1251 |
|
| 1251 | 1252 |
virtual void add(const Node& node) {
|
| 1252 | 1253 |
Parent::add(node); |
| 1253 | 1254 |
Parent::set(node, INVALID); |
| 1254 | 1255 |
} |
| 1255 | 1256 |
|
| 1256 | 1257 |
virtual void add(const std::vector<Node>& nodes) {
|
| 1257 | 1258 |
Parent::add(nodes); |
| 1258 | 1259 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 1259 | 1260 |
Parent::set(nodes[i], INVALID); |
| 1260 | 1261 |
} |
| 1261 | 1262 |
} |
| 1262 | 1263 |
|
| 1263 | 1264 |
virtual void build() {
|
| 1264 | 1265 |
Parent::build(); |
| 1265 | 1266 |
Node it; |
| 1266 | 1267 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 1267 | 1268 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 1268 | 1269 |
Parent::set(it, INVALID); |
| 1269 | 1270 |
} |
| 1270 | 1271 |
} |
| 1271 | 1272 |
}; |
| 1272 | 1273 |
|
| 1273 | 1274 |
class ArcLess {
|
| 1274 | 1275 |
const Digraph &g; |
| 1275 | 1276 |
public: |
| 1276 | 1277 |
ArcLess(const Digraph &_g) : g(_g) {}
|
| 1277 | 1278 |
bool operator()(Arc a,Arc b) const |
| 1278 | 1279 |
{
|
| 1279 | 1280 |
return g.target(a)<g.target(b); |
| 1280 | 1281 |
} |
| 1281 | 1282 |
}; |
| 1282 | 1283 |
|
| 1283 |
protected: |
|
| 1284 |
protected: |
|
| 1284 | 1285 |
|
| 1285 | 1286 |
const Digraph &_g; |
| 1286 | 1287 |
AutoNodeMap _head; |
| 1287 | 1288 |
typename Digraph::template ArcMap<Arc> _parent; |
| 1288 | 1289 |
typename Digraph::template ArcMap<Arc> _left; |
| 1289 | 1290 |
typename Digraph::template ArcMap<Arc> _right; |
| 1290 | 1291 |
|
| 1291 | 1292 |
public: |
| 1292 | 1293 |
|
| 1293 | 1294 |
///Constructor |
| 1294 | 1295 |
|
| 1295 | 1296 |
///Constructor. |
| 1296 | 1297 |
/// |
| 1297 | 1298 |
///It builds up the search database. |
| 1298 | 1299 |
DynArcLookUp(const Digraph &g) |
| 1299 | 1300 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
| 1300 | 1301 |
{
|
| 1301 | 1302 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
| 1302 | 1303 |
refresh(); |
| 1303 | 1304 |
} |
| 1304 | 1305 |
|
| 1305 | 1306 |
protected: |
| 1306 | 1307 |
|
| 1307 | 1308 |
virtual void add(const Arc& arc) {
|
| 1308 | 1309 |
insert(arc); |
| 1309 | 1310 |
} |
| 1310 | 1311 |
|
| 1311 | 1312 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 1312 | 1313 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1313 | 1314 |
insert(arcs[i]); |
| 1314 | 1315 |
} |
| 1315 | 1316 |
} |
| 1316 | 1317 |
|
| 1317 | 1318 |
virtual void erase(const Arc& arc) {
|
| 1318 | 1319 |
remove(arc); |
| 1319 | 1320 |
} |
| 1320 | 1321 |
|
| 1321 | 1322 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 1322 | 1323 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1323 | 1324 |
remove(arcs[i]); |
| 1324 | 1325 |
} |
| 1325 | 1326 |
} |
| 1326 | 1327 |
|
| 1327 | 1328 |
virtual void build() {
|
| 1328 | 1329 |
refresh(); |
| 1329 | 1330 |
} |
| 1330 | 1331 |
|
| 1331 | 1332 |
virtual void clear() {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
#include <vector> |
| 21 | 21 |
#include <cstring> |
| 22 | 22 |
|
| 23 | 23 |
#include <lemon/cplex.h> |
| 24 | 24 |
|
| 25 | 25 |
extern "C" {
|
| 26 | 26 |
#include <ilcplex/cplex.h> |
| 27 | 27 |
} |
| 28 | 28 |
|
| 29 | 29 |
|
| 30 | 30 |
///\file |
| 31 | 31 |
///\brief Implementation of the LEMON-CPLEX lp solver interface. |
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
CplexEnv::LicenseError::LicenseError(int status) {
|
| 35 | 35 |
if (!CPXgeterrorstring(0, status, _message)) {
|
| 36 | 36 |
std::strcpy(_message, "Cplex unknown error"); |
| 37 | 37 |
} |
| 38 | 38 |
} |
| 39 | 39 |
|
| 40 | 40 |
CplexEnv::CplexEnv() {
|
| 41 | 41 |
int status; |
| 42 | 42 |
_cnt = new int; |
| 43 | 43 |
_env = CPXopenCPLEX(&status); |
| 44 | 44 |
if (_env == 0) {
|
| 45 | 45 |
delete _cnt; |
| 46 | 46 |
_cnt = 0; |
| 47 | 47 |
throw LicenseError(status); |
| 48 | 48 |
} |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
CplexEnv::CplexEnv(const CplexEnv& other) {
|
| 52 | 52 |
_env = other._env; |
| 53 | 53 |
_cnt = other._cnt; |
| ... | ... |
@@ -411,97 +411,97 @@ |
| 411 | 411 |
} |
| 412 | 412 |
|
| 413 | 413 |
void CplexBase::_setSense(CplexBase::Sense sense) {
|
| 414 | 414 |
switch (sense) {
|
| 415 | 415 |
case MIN: |
| 416 | 416 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MIN); |
| 417 | 417 |
break; |
| 418 | 418 |
case MAX: |
| 419 | 419 |
CPXchgobjsen(cplexEnv(), _prob, CPX_MAX); |
| 420 | 420 |
break; |
| 421 | 421 |
} |
| 422 | 422 |
} |
| 423 | 423 |
|
| 424 | 424 |
CplexBase::Sense CplexBase::_getSense() const {
|
| 425 | 425 |
switch (CPXgetobjsen(cplexEnv(), _prob)) {
|
| 426 | 426 |
case CPX_MIN: |
| 427 | 427 |
return MIN; |
| 428 | 428 |
case CPX_MAX: |
| 429 | 429 |
return MAX; |
| 430 | 430 |
default: |
| 431 | 431 |
LEMON_ASSERT(false, "Invalid sense"); |
| 432 | 432 |
return CplexBase::Sense(); |
| 433 | 433 |
} |
| 434 | 434 |
} |
| 435 | 435 |
|
| 436 | 436 |
void CplexBase::_clear() {
|
| 437 | 437 |
CPXfreeprob(cplexEnv(),&_prob); |
| 438 | 438 |
int status; |
| 439 | 439 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
| 440 | 440 |
rows.clear(); |
| 441 | 441 |
cols.clear(); |
| 442 | 442 |
} |
| 443 | 443 |
|
| 444 | 444 |
void CplexBase::_messageLevel(MessageLevel level) {
|
| 445 | 445 |
switch (level) {
|
| 446 | 446 |
case MESSAGE_NOTHING: |
| 447 | 447 |
_message_enabled = false; |
| 448 | 448 |
break; |
| 449 | 449 |
case MESSAGE_ERROR: |
| 450 | 450 |
case MESSAGE_WARNING: |
| 451 | 451 |
case MESSAGE_NORMAL: |
| 452 | 452 |
case MESSAGE_VERBOSE: |
| 453 | 453 |
_message_enabled = true; |
| 454 | 454 |
break; |
| 455 | 455 |
} |
| 456 | 456 |
} |
| 457 | 457 |
|
| 458 | 458 |
void CplexBase::_applyMessageLevel() {
|
| 459 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
| 459 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
| 460 | 460 |
_message_enabled ? CPX_ON : CPX_OFF); |
| 461 | 461 |
} |
| 462 | 462 |
|
| 463 | 463 |
// CplexLp members |
| 464 | 464 |
|
| 465 | 465 |
CplexLp::CplexLp() |
| 466 | 466 |
: LpBase(), LpSolver(), CplexBase() {}
|
| 467 | 467 |
|
| 468 | 468 |
CplexLp::CplexLp(const CplexEnv& env) |
| 469 | 469 |
: LpBase(), LpSolver(), CplexBase(env) {}
|
| 470 | 470 |
|
| 471 | 471 |
CplexLp::CplexLp(const CplexLp& other) |
| 472 | 472 |
: LpBase(), LpSolver(), CplexBase(other) {}
|
| 473 | 473 |
|
| 474 | 474 |
CplexLp::~CplexLp() {}
|
| 475 | 475 |
|
| 476 | 476 |
CplexLp* CplexLp::newSolver() const { return new CplexLp; }
|
| 477 | 477 |
CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); }
|
| 478 | 478 |
|
| 479 | 479 |
const char* CplexLp::_solverName() const { return "CplexLp"; }
|
| 480 | 480 |
|
| 481 | 481 |
void CplexLp::_clear_temporals() {
|
| 482 | 482 |
_col_status.clear(); |
| 483 | 483 |
_row_status.clear(); |
| 484 | 484 |
_primal_ray.clear(); |
| 485 | 485 |
_dual_ray.clear(); |
| 486 | 486 |
} |
| 487 | 487 |
|
| 488 | 488 |
// The routine returns zero unless an error occurred during the |
| 489 | 489 |
// optimization. Examples of errors include exhausting available |
| 490 | 490 |
// memory (CPXERR_NO_MEMORY) or encountering invalid data in the |
| 491 | 491 |
// CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a |
| 492 | 492 |
// user-specified CPLEX limit, or proving the model infeasible or |
| 493 | 493 |
// unbounded, are not considered errors. Note that a zero return |
| 494 | 494 |
// value does not necessarily mean that a solution exists. Use query |
| 495 | 495 |
// routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain |
| 496 | 496 |
// further information about the status of the optimization. |
| 497 | 497 |
CplexLp::SolveExitStatus CplexLp::convertStatus(int status) {
|
| 498 | 498 |
#if CPX_VERSION >= 800 |
| 499 | 499 |
if (status == 0) {
|
| 500 | 500 |
switch (CPXgetstat(cplexEnv(), _prob)) {
|
| 501 | 501 |
case CPX_STAT_OPTIMAL: |
| 502 | 502 |
case CPX_STAT_INFEASIBLE: |
| 503 | 503 |
case CPX_STAT_UNBOUNDED: |
| 504 | 504 |
return SOLVED; |
| 505 | 505 |
default: |
| 506 | 506 |
return UNSOLVED; |
| 507 | 507 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIMACS_H |
| 20 | 20 |
#define LEMON_DIMACS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
#include <string> |
| 24 | 24 |
#include <vector> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
#include <lemon/maps.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
/// \ingroup dimacs_group |
| 29 | 29 |
/// \file |
| 30 | 30 |
/// \brief DIMACS file format reader. |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \addtogroup dimacs_group |
| 35 | 35 |
/// @{
|
| 36 | 36 |
|
| 37 | 37 |
/// DIMACS file type descriptor. |
| 38 | 38 |
struct DimacsDescriptor |
| 39 | 39 |
{
|
| 40 | 40 |
///\brief DIMACS file type enum |
| 41 | 41 |
/// |
| 42 | 42 |
///DIMACS file type enum. |
| 43 | 43 |
enum Type {
|
| 44 | 44 |
NONE, ///< Undefined type. |
| 45 | 45 |
MIN, ///< DIMACS file type for minimum cost flow problems. |
| 46 | 46 |
MAX, ///< DIMACS file type for maximum flow problems. |
| 47 | 47 |
SP, ///< DIMACS file type for shostest path problems. |
| 48 | 48 |
MAT ///< DIMACS file type for plain graphs and matching problems. |
| 49 | 49 |
}; |
| 50 | 50 |
///The file type |
| 51 | 51 |
Type type; |
| 52 | 52 |
///The number of nodes in the graph |
| 53 | 53 |
int nodeNum; |
| 54 | 54 |
///The number of edges in the graph |
| 55 | 55 |
int edgeNum; |
| 56 | 56 |
int lineShift; |
| 57 | 57 |
///Constructor. It sets the type to \c NONE. |
| 58 | 58 |
DimacsDescriptor() : type(NONE) {}
|
| 59 | 59 |
}; |
| 60 | 60 |
|
| 61 | 61 |
///Discover the type of a DIMACS file |
| 62 | 62 |
|
| 63 | 63 |
///This function starts seeking the beginning of the given file for the |
| 64 |
///problem type and size info. |
|
| 64 |
///problem type and size info. |
|
| 65 | 65 |
///The found data is returned in a special struct that can be evaluated |
| 66 | 66 |
///and passed to the appropriate reader function. |
| 67 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
| 68 | 68 |
{
|
| 69 | 69 |
DimacsDescriptor r; |
| 70 | 70 |
std::string problem,str; |
| 71 | 71 |
char c; |
| 72 | 72 |
r.lineShift=0; |
| 73 | 73 |
while (is >> c) |
| 74 | 74 |
switch(c) |
| 75 | 75 |
{
|
| 76 | 76 |
case 'p': |
| 77 | 77 |
if(is >> problem >> r.nodeNum >> r.edgeNum) |
| 78 | 78 |
{
|
| 79 | 79 |
getline(is, str); |
| 80 | 80 |
r.lineShift++; |
| 81 | 81 |
if(problem=="min") r.type=DimacsDescriptor::MIN; |
| 82 | 82 |
else if(problem=="max") r.type=DimacsDescriptor::MAX; |
| 83 | 83 |
else if(problem=="sp") r.type=DimacsDescriptor::SP; |
| 84 | 84 |
else if(problem=="mat") r.type=DimacsDescriptor::MAT; |
| 85 | 85 |
else throw FormatError("Unknown problem type");
|
| 86 | 86 |
return r; |
| 87 | 87 |
} |
| 88 | 88 |
else |
| 89 | 89 |
{
|
| 90 | 90 |
throw FormatError("Missing or wrong problem type declaration.");
|
| 91 | 91 |
} |
| 92 | 92 |
break; |
| 93 | 93 |
case 'c': |
| 94 | 94 |
getline(is, str); |
| 95 | 95 |
r.lineShift++; |
| 96 | 96 |
break; |
| 97 | 97 |
default: |
| 98 | 98 |
throw FormatError("Unknown DIMACS declaration.");
|
| 99 | 99 |
} |
| 100 | 100 |
throw FormatError("Missing problem type declaration.");
|
| 101 | 101 |
} |
| 102 | 102 |
|
| 103 | 103 |
|
| 104 | 104 |
/// \brief DIMACS minimum cost flow reader function. |
| 105 | 105 |
/// |
| 106 | 106 |
/// This function reads a minimum cost flow instance from DIMACS format, |
| 107 | 107 |
/// i.e. from a DIMACS file having a line starting with |
| 108 | 108 |
/// \code |
| 109 | 109 |
/// p min |
| 110 | 110 |
/// \endcode |
| 111 | 111 |
/// At the beginning, \c g is cleared by \c g.clear(). The supply |
| 112 | 112 |
/// amount of the nodes are written to the \c supply node map |
| ... | ... |
@@ -167,122 +167,122 @@ |
| 167 | 167 |
getline(is, str); |
| 168 | 168 |
break; |
| 169 | 169 |
case 'n': // node definition line |
| 170 | 170 |
is >> i >> sup; |
| 171 | 171 |
getline(is, str); |
| 172 | 172 |
supply.set(nodes[i], sup); |
| 173 | 173 |
break; |
| 174 | 174 |
case 'a': // arc definition line |
| 175 | 175 |
is >> i >> j >> low >> cap >> co; |
| 176 | 176 |
getline(is, str); |
| 177 | 177 |
e = g.addArc(nodes[i], nodes[j]); |
| 178 | 178 |
lower.set(e, low); |
| 179 | 179 |
if (cap >= low) |
| 180 | 180 |
capacity.set(e, cap); |
| 181 | 181 |
else |
| 182 | 182 |
capacity.set(e, infty); |
| 183 | 183 |
cost.set(e, co); |
| 184 | 184 |
break; |
| 185 | 185 |
} |
| 186 | 186 |
} |
| 187 | 187 |
} |
| 188 | 188 |
|
| 189 | 189 |
template<typename Digraph, typename CapacityMap> |
| 190 | 190 |
void _readDimacs(std::istream& is, |
| 191 | 191 |
Digraph &g, |
| 192 | 192 |
CapacityMap& capacity, |
| 193 | 193 |
typename Digraph::Node &s, |
| 194 | 194 |
typename Digraph::Node &t, |
| 195 | 195 |
typename CapacityMap::Value infty = 0, |
| 196 | 196 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 197 | 197 |
g.clear(); |
| 198 | 198 |
s=t=INVALID; |
| 199 | 199 |
std::vector<typename Digraph::Node> nodes; |
| 200 | 200 |
typename Digraph::Arc e; |
| 201 | 201 |
char c, d; |
| 202 | 202 |
int i, j; |
| 203 | 203 |
typename CapacityMap::Value _cap; |
| 204 | 204 |
std::string str; |
| 205 | 205 |
nodes.resize(desc.nodeNum + 1); |
| 206 | 206 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 207 | 207 |
nodes[k] = g.addNode(); |
| 208 | 208 |
} |
| 209 | 209 |
typedef typename CapacityMap::Value Capacity; |
| 210 | 210 |
|
| 211 | 211 |
if(infty==0) |
| 212 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
| 213 | 213 |
std::numeric_limits<Capacity>::infinity() : |
| 214 | 214 |
std::numeric_limits<Capacity>::max(); |
| 215 |
|
|
| 215 |
|
|
| 216 | 216 |
while (is >> c) {
|
| 217 | 217 |
switch (c) {
|
| 218 | 218 |
case 'c': // comment line |
| 219 | 219 |
getline(is, str); |
| 220 | 220 |
break; |
| 221 | 221 |
case 'n': // node definition line |
| 222 | 222 |
if (desc.type==DimacsDescriptor::SP) { // shortest path problem
|
| 223 | 223 |
is >> i; |
| 224 | 224 |
getline(is, str); |
| 225 | 225 |
s = nodes[i]; |
| 226 | 226 |
} |
| 227 | 227 |
if (desc.type==DimacsDescriptor::MAX) { // max flow problem
|
| 228 | 228 |
is >> i >> d; |
| 229 | 229 |
getline(is, str); |
| 230 | 230 |
if (d == 's') s = nodes[i]; |
| 231 | 231 |
if (d == 't') t = nodes[i]; |
| 232 | 232 |
} |
| 233 | 233 |
break; |
| 234 | 234 |
case 'a': // arc definition line |
| 235 | 235 |
if (desc.type==DimacsDescriptor::SP) {
|
| 236 | 236 |
is >> i >> j >> _cap; |
| 237 | 237 |
getline(is, str); |
| 238 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
| 239 | 239 |
capacity.set(e, _cap); |
| 240 |
} |
|
| 240 |
} |
|
| 241 | 241 |
else if (desc.type==DimacsDescriptor::MAX) {
|
| 242 | 242 |
is >> i >> j >> _cap; |
| 243 | 243 |
getline(is, str); |
| 244 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
| 245 | 245 |
if (_cap >= 0) |
| 246 | 246 |
capacity.set(e, _cap); |
| 247 | 247 |
else |
| 248 | 248 |
capacity.set(e, infty); |
| 249 | 249 |
} |
| 250 | 250 |
else {
|
| 251 | 251 |
is >> i >> j; |
| 252 | 252 |
getline(is, str); |
| 253 | 253 |
g.addArc(nodes[i], nodes[j]); |
| 254 | 254 |
} |
| 255 | 255 |
break; |
| 256 | 256 |
} |
| 257 | 257 |
} |
| 258 | 258 |
} |
| 259 | 259 |
|
| 260 | 260 |
/// \brief DIMACS maximum flow reader function. |
| 261 | 261 |
/// |
| 262 | 262 |
/// This function reads a maximum flow instance from DIMACS format, |
| 263 | 263 |
/// i.e. from a DIMACS file having a line starting with |
| 264 | 264 |
/// \code |
| 265 | 265 |
/// p max |
| 266 | 266 |
/// \endcode |
| 267 | 267 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
| 268 | 268 |
/// capacities are written to the \c capacity arc map and \c s and |
| 269 | 269 |
/// \c t are set to the source and the target nodes. |
| 270 | 270 |
/// |
| 271 | 271 |
/// If the capacity of an arc is negative, it will |
| 272 | 272 |
/// be set to "infinite" instead. The actual value of "infinite" is |
| 273 | 273 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
| 274 | 274 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
| 275 | 275 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
| 276 | 276 |
/// a non-zero value, that value will be used as "infinite". |
| 277 | 277 |
/// |
| 278 | 278 |
/// If the file type was previously evaluated by dimacsType(), then |
| 279 | 279 |
/// the descriptor struct should be given by the \c dest parameter. |
| 280 | 280 |
template<typename Digraph, typename CapacityMap> |
| 281 | 281 |
void readDimacsMax(std::istream& is, |
| 282 | 282 |
Digraph &g, |
| 283 | 283 |
CapacityMap& capacity, |
| 284 | 284 |
typename Digraph::Node &s, |
| 285 | 285 |
typename Digraph::Node &t, |
| 286 | 286 |
typename CapacityMap::Value infty = 0, |
| 287 | 287 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 288 | 288 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| ... | ... |
@@ -317,127 +317,127 @@ |
| 317 | 317 |
_readDimacs(is, g, length, s, t, 0, desc); |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
/// \brief DIMACS capacitated digraph reader function. |
| 321 | 321 |
/// |
| 322 | 322 |
/// This function reads an arc capacitated digraph instance from |
| 323 | 323 |
/// DIMACS 'max' or 'sp' format. |
| 324 | 324 |
/// At the beginning, \c g is cleared by \c g.clear() |
| 325 | 325 |
/// and the arc capacities/lengths are written to the \c capacity |
| 326 | 326 |
/// arc map. |
| 327 | 327 |
/// |
| 328 | 328 |
/// In case of the 'max' format, if the capacity of an arc is negative, |
| 329 | 329 |
/// it will |
| 330 | 330 |
/// be set to "infinite" instead. The actual value of "infinite" is |
| 331 | 331 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
| 332 | 332 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
| 333 | 333 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
| 334 | 334 |
/// a non-zero value, that value will be used as "infinite". |
| 335 | 335 |
/// |
| 336 | 336 |
/// If the file type was previously evaluated by dimacsType(), then |
| 337 | 337 |
/// the descriptor struct should be given by the \c dest parameter. |
| 338 | 338 |
template<typename Digraph, typename CapacityMap> |
| 339 | 339 |
void readDimacsCap(std::istream& is, |
| 340 | 340 |
Digraph &g, |
| 341 | 341 |
CapacityMap& capacity, |
| 342 | 342 |
typename CapacityMap::Value infty = 0, |
| 343 | 343 |
DimacsDescriptor desc=DimacsDescriptor()) {
|
| 344 | 344 |
typename Digraph::Node u,v; |
| 345 | 345 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 346 | 346 |
if(desc.type!=DimacsDescriptor::MAX || desc.type!=DimacsDescriptor::SP) |
| 347 | 347 |
throw FormatError("Problem type mismatch");
|
| 348 | 348 |
_readDimacs(is, g, capacity, u, v, infty, desc); |
| 349 | 349 |
} |
| 350 | 350 |
|
| 351 | 351 |
template<typename Graph> |
| 352 | 352 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
| 353 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
| 354 | 354 |
dummy<0> = 0) |
| 355 | 355 |
{
|
| 356 | 356 |
g.addEdge(s,t); |
| 357 | 357 |
} |
| 358 | 358 |
template<typename Graph> |
| 359 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
| 360 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
| 361 | 361 |
dummy<1> = 1) |
| 362 | 362 |
{
|
| 363 | 363 |
g.addArc(s,t); |
| 364 | 364 |
} |
| 365 |
|
|
| 365 |
|
|
| 366 | 366 |
/// \brief DIMACS plain (di)graph reader function. |
| 367 | 367 |
/// |
| 368 | 368 |
/// This function reads a plain (di)graph without any designated nodes |
| 369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
| 369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
| 370 | 370 |
/// DIMACS files having a line starting with |
| 371 | 371 |
/// \code |
| 372 | 372 |
/// p mat |
| 373 | 373 |
/// \endcode |
| 374 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
| 375 | 375 |
/// |
| 376 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
| 377 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
| 378 | 378 |
template<typename Graph> |
| 379 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
| 380 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
| 381 | 381 |
{
|
| 382 | 382 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
| 383 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
| 384 | 384 |
throw FormatError("Problem type mismatch");
|
| 385 | 385 |
|
| 386 | 386 |
g.clear(); |
| 387 | 387 |
std::vector<typename Graph::Node> nodes; |
| 388 | 388 |
char c; |
| 389 | 389 |
int i, j; |
| 390 | 390 |
std::string str; |
| 391 | 391 |
nodes.resize(desc.nodeNum + 1); |
| 392 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) {
|
| 393 | 393 |
nodes[k] = g.addNode(); |
| 394 | 394 |
} |
| 395 |
|
|
| 395 |
|
|
| 396 | 396 |
while (is >> c) {
|
| 397 | 397 |
switch (c) {
|
| 398 | 398 |
case 'c': // comment line |
| 399 | 399 |
getline(is, str); |
| 400 | 400 |
break; |
| 401 | 401 |
case 'n': // node definition line |
| 402 | 402 |
break; |
| 403 | 403 |
case 'a': // arc definition line |
| 404 | 404 |
is >> i >> j; |
| 405 | 405 |
getline(is, str); |
| 406 | 406 |
_addArcEdge(g,nodes[i], nodes[j]); |
| 407 | 407 |
break; |
| 408 | 408 |
} |
| 409 | 409 |
} |
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 | 412 |
/// DIMACS plain digraph writer function. |
| 413 | 413 |
/// |
| 414 | 414 |
/// This function writes a digraph without any designated nodes and |
| 415 | 415 |
/// maps into DIMACS format, i.e. into DIMACS file having a line |
| 416 | 416 |
/// starting with |
| 417 | 417 |
/// \code |
| 418 | 418 |
/// p mat |
| 419 | 419 |
/// \endcode |
| 420 | 420 |
/// If \c comment is not empty, then it will be printed in the first line |
| 421 | 421 |
/// prefixed by 'c'. |
| 422 | 422 |
template<typename Digraph> |
| 423 | 423 |
void writeDimacsMat(std::ostream& os, const Digraph &g, |
| 424 | 424 |
std::string comment="") {
|
| 425 | 425 |
typedef typename Digraph::NodeIt NodeIt; |
| 426 | 426 |
typedef typename Digraph::ArcIt ArcIt; |
| 427 | 427 |
|
| 428 | 428 |
if(!comment.empty()) |
| 429 | 429 |
os << "c " << comment << std::endl; |
| 430 | 430 |
os << "p mat " << g.nodeNum() << " " << g.arcNum() << std::endl; |
| 431 | 431 |
|
| 432 | 432 |
typename Digraph::template NodeMap<int> nodes(g); |
| 433 | 433 |
int i = 1; |
| 434 | 434 |
for(NodeIt v(g); v != INVALID; ++v) {
|
| 435 | 435 |
nodes.set(v, i); |
| 436 | 436 |
++i; |
| 437 | 437 |
} |
| 438 | 438 |
for(ArcIt e(g); e != INVALID; ++e) {
|
| 439 | 439 |
os << "a " << nodes[g.source(e)] << " " << nodes[g.target(e)] |
| 440 | 440 |
<< std::endl; |
| 441 | 441 |
} |
| 442 | 442 |
} |
| 443 | 443 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_EDGE_SET_H |
| 20 | 20 |
#define LEMON_EDGE_SET_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
/// \ingroup graphs |
| 26 | 26 |
/// \file |
| 27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
| 28 | 28 |
/// |
| 29 | 29 |
/// Graphs which use another graph's node-set as own. |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
template <typename GR> |
| 33 | 33 |
class ListArcSetBase {
|
| 34 | 34 |
public: |
| 35 | 35 |
|
| 36 | 36 |
typedef typename GR::Node Node; |
| 37 | 37 |
typedef typename GR::NodeIt NodeIt; |
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
|
| 41 | 41 |
struct NodeT {
|
| 42 | 42 |
int first_out, first_in; |
| 43 | 43 |
NodeT() : first_out(-1), first_in(-1) {}
|
| 44 | 44 |
}; |
| 45 | 45 |
|
| 46 | 46 |
typedef typename ItemSetTraits<GR, Node>:: |
| 47 | 47 |
template Map<NodeT>::Type NodesImplBase; |
| 48 | 48 |
|
| 49 | 49 |
NodesImplBase* _nodes; |
| 50 | 50 |
|
| 51 | 51 |
struct ArcT {
|
| 52 | 52 |
Node source, target; |
| 53 | 53 |
int next_out, next_in; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_EULER_H |
| 20 | 20 |
#define LEMON_EULER_H |
| 21 | 21 |
|
| 22 | 22 |
#include<lemon/core.h> |
| 23 | 23 |
#include<lemon/adaptors.h> |
| 24 | 24 |
#include<lemon/connectivity.h> |
| 25 | 25 |
#include <list> |
| 26 | 26 |
|
| 27 | 27 |
/// \ingroup graph_properties |
| 28 | 28 |
/// \file |
| 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
| 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
| 30 | 30 |
/// property. |
| 31 | 31 |
/// |
| 32 | 32 |
///This file provides Euler tour iterators and a function to check |
| 33 | 33 |
///if a (di)graph is \e Eulerian. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
///Euler tour iterator for digraphs. |
| 38 | 38 |
|
| 39 | 39 |
/// \ingroup graph_prop |
| 40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
| 41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
| 44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
| 44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
| 45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
| 46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
| 47 | 47 |
///\code |
| 48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
| 49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
| 50 | 50 |
/// et.push_back(e); |
| 51 | 51 |
///\endcode |
| 52 | 52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
| 53 | 53 |
///or not contain all arcs. |
| 54 | 54 |
///\sa EulerIt |
| 55 | 55 |
template<typename GR> |
| 56 | 56 |
class DiEulerIt |
| 57 | 57 |
{
|
| 58 | 58 |
typedef typename GR::Node Node; |
| 59 | 59 |
typedef typename GR::NodeIt NodeIt; |
| 60 | 60 |
typedef typename GR::Arc Arc; |
| 61 | 61 |
typedef typename GR::ArcIt ArcIt; |
| 62 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
| 63 | 63 |
typedef typename GR::InArcIt InArcIt; |
| 64 | 64 |
|
| 65 | 65 |
const GR &g; |
| 66 | 66 |
typename GR::template NodeMap<OutArcIt> narc; |
| 67 | 67 |
std::list<Arc> euler; |
| 68 | 68 |
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
///Constructor |
| 72 | 72 |
|
| 73 | 73 |
///Constructor. |
| 74 | 74 |
///\param gr A digraph. |
| 75 | 75 |
///\param start The starting point of the tour. If it is not given, |
| 76 | 76 |
///the tour will start from the first node that has an outgoing arc. |
| 77 | 77 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
| 78 | 78 |
: g(gr), narc(g) |
| 79 | 79 |
{
|
| 80 | 80 |
if (start==INVALID) {
|
| 81 | 81 |
NodeIt n(g); |
| 82 | 82 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
| 83 | 83 |
start=n; |
| 84 | 84 |
} |
| 85 | 85 |
if (start!=INVALID) {
|
| 86 | 86 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
| 87 | 87 |
while (narc[start]!=INVALID) {
|
| 88 | 88 |
euler.push_back(narc[start]); |
| 89 | 89 |
Node next=g.target(narc[start]); |
| 90 | 90 |
++narc[start]; |
| 91 | 91 |
start=next; |
| 92 | 92 |
} |
| 93 | 93 |
} |
| 94 | 94 |
} |
| 95 | 95 |
|
| 96 | 96 |
///Arc conversion |
| 97 | 97 |
operator Arc() { return euler.empty()?INVALID:euler.front(); }
|
| 98 | 98 |
///Compare with \c INVALID |
| 99 | 99 |
bool operator==(Invalid) { return euler.empty(); }
|
| 100 | 100 |
///Compare with \c INVALID |
| 101 | 101 |
bool operator!=(Invalid) { return !euler.empty(); }
|
| 102 | 102 |
|
| 103 | 103 |
///Next arc of the tour |
| 104 | 104 |
|
| 105 | 105 |
///Next arc of the tour |
| 106 | 106 |
/// |
| 107 | 107 |
DiEulerIt &operator++() {
|
| 108 | 108 |
Node s=g.target(euler.front()); |
| 109 | 109 |
euler.pop_front(); |
| 110 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
| 111 | 111 |
while(narc[s]!=INVALID) {
|
| 112 | 112 |
euler.insert(next,narc[s]); |
| 113 | 113 |
Node n=g.target(narc[s]); |
| 114 | 114 |
++narc[s]; |
| 115 | 115 |
s=n; |
| 116 | 116 |
} |
| 117 | 117 |
return *this; |
| 118 | 118 |
} |
| 119 | 119 |
///Postfix incrementation |
| 120 | 120 |
|
| 121 | 121 |
/// Postfix incrementation. |
| 122 | 122 |
/// |
| 123 | 123 |
///\warning This incrementation |
| 124 | 124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
| 125 | 125 |
///expect. |
| 126 | 126 |
Arc operator++(int) |
| 127 | 127 |
{
|
| 128 | 128 |
Arc e=*this; |
| 129 | 129 |
++(*this); |
| 130 | 130 |
return e; |
| 131 | 131 |
} |
| 132 | 132 |
}; |
| 133 | 133 |
|
| 134 | 134 |
///Euler tour iterator for graphs. |
| 135 | 135 |
|
| 136 | 136 |
/// \ingroup graph_properties |
| 137 | 137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
| 138 | 138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
| 139 | 139 |
///and \c Edge types of the graph. |
| 140 | 140 |
/// |
| 141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
| 141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
| 142 | 142 |
///non-trivial component and the degree of each node is even), |
| 143 | 143 |
///the following code will print the arc IDs according to an |
| 144 | 144 |
///Euler tour of \c g. |
| 145 | 145 |
///\code |
| 146 | 146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
|
| 147 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
| 148 | 148 |
/// } |
| 149 | 149 |
///\endcode |
| 150 |
///Although this iterator is for undirected graphs, it still returns |
|
| 150 |
///Although this iterator is for undirected graphs, it still returns |
|
| 151 | 151 |
///arcs in order to indicate the direction of the tour. |
| 152 | 152 |
///(But arcs convert to edges, of course.) |
| 153 | 153 |
/// |
| 154 | 154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
| 155 | 155 |
///or not contain all edges. |
| 156 | 156 |
template<typename GR> |
| 157 | 157 |
class EulerIt |
| 158 | 158 |
{
|
| 159 | 159 |
typedef typename GR::Node Node; |
| 160 | 160 |
typedef typename GR::NodeIt NodeIt; |
| 161 | 161 |
typedef typename GR::Arc Arc; |
| 162 | 162 |
typedef typename GR::Edge Edge; |
| 163 | 163 |
typedef typename GR::ArcIt ArcIt; |
| 164 | 164 |
typedef typename GR::OutArcIt OutArcIt; |
| 165 | 165 |
typedef typename GR::InArcIt InArcIt; |
| 166 | 166 |
|
| 167 | 167 |
const GR &g; |
| 168 | 168 |
typename GR::template NodeMap<OutArcIt> narc; |
| 169 | 169 |
typename GR::template EdgeMap<bool> visited; |
| 170 | 170 |
std::list<Arc> euler; |
| 171 | 171 |
|
| 172 | 172 |
public: |
| 173 | 173 |
|
| 174 | 174 |
///Constructor |
| 175 | 175 |
|
| 176 | 176 |
///Constructor. |
| 177 | 177 |
///\param gr A graph. |
| 178 | 178 |
///\param start The starting point of the tour. If it is not given, |
| 179 | 179 |
///the tour will start from the first node that has an incident edge. |
| 180 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
| 181 | 181 |
: g(gr), narc(g), visited(g, false) |
| 182 | 182 |
{
|
| 183 | 183 |
if (start==INVALID) {
|
| 184 | 184 |
NodeIt n(g); |
| 185 | 185 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
| 186 | 186 |
start=n; |
| 187 | 187 |
} |
| 188 | 188 |
if (start!=INVALID) {
|
| 189 | 189 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
| 190 | 190 |
while(narc[start]!=INVALID) {
|
| 191 | 191 |
euler.push_back(narc[start]); |
| 192 | 192 |
visited[narc[start]]=true; |
| 193 | 193 |
Node next=g.target(narc[start]); |
| 194 | 194 |
++narc[start]; |
| 195 | 195 |
start=next; |
| 196 | 196 |
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; |
| 197 | 197 |
} |
| 198 | 198 |
} |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
///Arc conversion |
| 202 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); }
|
| 203 | 203 |
///Edge conversion |
| 204 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); }
|
| 205 | 205 |
///Compare with \c INVALID |
| 206 | 206 |
bool operator==(Invalid) const { return euler.empty(); }
|
| 207 | 207 |
///Compare with \c INVALID |
| 208 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); }
|
| 209 | 209 |
|
| 210 | 210 |
///Next arc of the tour |
| 211 | 211 |
|
| 212 | 212 |
///Next arc of the tour |
| 213 | 213 |
/// |
| 214 | 214 |
EulerIt &operator++() {
|
| 215 | 215 |
Node s=g.target(euler.front()); |
| 216 | 216 |
euler.pop_front(); |
| 217 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
| 218 | 218 |
while(narc[s]!=INVALID) {
|
| 219 | 219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
| 220 | 220 |
if(narc[s]==INVALID) break; |
| 221 | 221 |
else {
|
| 222 | 222 |
euler.insert(next,narc[s]); |
| 223 | 223 |
visited[narc[s]]=true; |
| 224 | 224 |
Node n=g.target(narc[s]); |
| 225 | 225 |
++narc[s]; |
| 226 | 226 |
s=n; |
| 227 | 227 |
} |
| 228 | 228 |
} |
| 229 | 229 |
return *this; |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
///Postfix incrementation |
| 233 | 233 |
|
| 234 | 234 |
/// Postfix incrementation. |
| 235 | 235 |
/// |
| 236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
| 236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
| 237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
| 238 | 238 |
Arc operator++(int) |
| 239 | 239 |
{
|
| 240 | 240 |
Arc e=*this; |
| 241 | 241 |
++(*this); |
| 242 | 242 |
return e; |
| 243 | 243 |
} |
| 244 | 244 |
}; |
| 245 | 245 |
|
| 246 | 246 |
|
| 247 | 247 |
///Check if the given graph is Eulerian |
| 248 | 248 |
|
| 249 | 249 |
/// \ingroup graph_properties |
| 250 | 250 |
///This function checks if the given graph is Eulerian. |
| 251 | 251 |
///It works for both directed and undirected graphs. |
| 252 | 252 |
/// |
| 253 | 253 |
///By definition, a digraph is called \e Eulerian if |
| 254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
| 255 | 255 |
///arcs are the same for each node. |
| 256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
| 257 | 257 |
///and only if it is connected and the number of incident edges is even |
| 258 | 258 |
///for each node. |
| 259 | 259 |
/// |
| 260 | 260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
| 261 | 261 |
/// Euler tour, since they may contain isolated nodes. |
| 262 | 262 |
/// |
| 263 | 263 |
///\sa DiEulerIt, EulerIt |
| 264 | 264 |
template<typename GR> |
| 265 | 265 |
#ifdef DOXYGEN |
| 266 | 266 |
bool |
| 267 | 267 |
#else |
| 268 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
| 269 | 269 |
eulerian(const GR &g) |
| 270 | 270 |
{
|
| 271 | 271 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
| 272 | 272 |
if(countIncEdges(g,n)%2) return false; |
| 273 | 273 |
return connected(g); |
| 274 | 274 |
} |
| 275 | 275 |
template<class GR> |
| 276 | 276 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
| 277 | 277 |
#endif |
| 278 | 278 |
eulerian(const GR &g) |
| 279 | 279 |
{
|
| 280 | 280 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
| 281 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
| 282 | 282 |
return connected(undirector(g)); |
| 283 | 283 |
} |
| 284 | 284 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GLPK_H |
| 20 | 20 |
#define LEMON_GLPK_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
| 24 | 24 |
///\ingroup lp_group |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/lp_base.h> |
| 27 | 27 |
|
| 28 | 28 |
namespace lemon {
|
| 29 | 29 |
|
| 30 | 30 |
namespace _solver_bits {
|
| 31 | 31 |
class VoidPtr {
|
| 32 | 32 |
private: |
| 33 |
void *_ptr; |
|
| 33 |
void *_ptr; |
|
| 34 | 34 |
public: |
| 35 | 35 |
VoidPtr() : _ptr(0) {}
|
| 36 | 36 |
|
| 37 | 37 |
template <typename T> |
| 38 | 38 |
VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {}
|
| 39 | 39 |
|
| 40 | 40 |
template <typename T> |
| 41 |
VoidPtr& operator=(T* ptr) {
|
|
| 42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
| 41 |
VoidPtr& operator=(T* ptr) {
|
|
| 42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
| 43 | 43 |
return *this; |
| 44 | 44 |
} |
| 45 | 45 |
|
| 46 | 46 |
template <typename T> |
| 47 | 47 |
operator T*() const { return reinterpret_cast<T*>(_ptr); }
|
| 48 | 48 |
}; |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
/// \brief Base interface for the GLPK LP and MIP solver |
| 52 | 52 |
/// |
| 53 | 53 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
| 54 | 54 |
/// \ingroup lp_group |
| 55 | 55 |
class GlpkBase : virtual public LpBase {
|
| 56 | 56 |
protected: |
| 57 | 57 |
|
| 58 | 58 |
_solver_bits::VoidPtr lp; |
| 59 | 59 |
|
| 60 | 60 |
GlpkBase(); |
| 61 | 61 |
GlpkBase(const GlpkBase&); |
| 62 | 62 |
virtual ~GlpkBase(); |
| 63 | 63 |
|
| 64 | 64 |
protected: |
| 65 | 65 |
|
| 66 | 66 |
virtual int _addCol(); |
| 67 | 67 |
virtual int _addRow(); |
| 68 | 68 |
|
| 69 | 69 |
virtual void _eraseCol(int i); |
| 70 | 70 |
virtual void _eraseRow(int i); |
| 71 | 71 |
|
| 72 | 72 |
virtual void _eraseColId(int i); |
| 73 | 73 |
virtual void _eraseRowId(int i); |
| 74 | 74 |
|
| 75 | 75 |
virtual void _getColName(int col, std::string& name) const; |
| 76 | 76 |
virtual void _setColName(int col, const std::string& name); |
| 77 | 77 |
virtual int _colByName(const std::string& name) const; |
| 78 | 78 |
|
| 79 | 79 |
virtual void _getRowName(int row, std::string& name) const; |
| 80 | 80 |
virtual void _setRowName(int row, const std::string& name); |
| 81 | 81 |
virtual int _rowByName(const std::string& name) const; |
| 82 | 82 |
|
| 83 | 83 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 84 | 84 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 85 | 85 |
|
| 86 | 86 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 87 | 87 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 88 | 88 |
|
| 89 | 89 |
virtual void _setCoeff(int row, int col, Value value); |
| 90 | 90 |
virtual Value _getCoeff(int row, int col) const; |
| 91 | 91 |
|
| 92 | 92 |
virtual void _setColLowerBound(int i, Value value); |
| 93 | 93 |
virtual Value _getColLowerBound(int i) const; |
| 94 | 94 |
|
| 95 | 95 |
virtual void _setColUpperBound(int i, Value value); |
| 96 | 96 |
virtual Value _getColUpperBound(int i) const; |
| 97 | 97 |
|
| 98 | 98 |
virtual void _setRowLowerBound(int i, Value value); |
| 99 | 99 |
virtual Value _getRowLowerBound(int i) const; |
| 100 | 100 |
|
| 101 | 101 |
virtual void _setRowUpperBound(int i, Value value); |
| 102 | 102 |
virtual Value _getRowUpperBound(int i) const; |
| 103 | 103 |
|
| 104 | 104 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
| 105 | 105 |
virtual void _getObjCoeffs(InsertIterator b) const; |
| 106 | 106 |
|
| 107 | 107 |
virtual void _setObjCoeff(int i, Value obj_coef); |
| 108 | 108 |
virtual Value _getObjCoeff(int i) const; |
| 109 | 109 |
|
| 110 | 110 |
virtual void _setSense(Sense); |
| 111 | 111 |
virtual Sense _getSense() const; |
| 112 | 112 |
|
| 113 | 113 |
virtual void _clear(); |
| 114 | 114 |
|
| 115 | 115 |
virtual void _messageLevel(MessageLevel level); |
| 116 | 116 |
|
| 117 | 117 |
private: |
| 118 | 118 |
|
| 119 | 119 |
static void freeEnv(); |
| 120 | 120 |
|
| 121 | 121 |
struct FreeEnvHelper {
|
| 122 | 122 |
~FreeEnvHelper() {
|
| 123 | 123 |
freeEnv(); |
| 124 | 124 |
} |
| 125 | 125 |
}; |
| 126 |
|
|
| 126 |
|
|
| 127 | 127 |
static FreeEnvHelper freeEnvHelper; |
| 128 | 128 |
|
| 129 | 129 |
protected: |
| 130 |
|
|
| 130 |
|
|
| 131 | 131 |
int _message_level; |
| 132 |
|
|
| 132 |
|
|
| 133 | 133 |
public: |
| 134 | 134 |
|
| 135 | 135 |
///Pointer to the underlying GLPK data structure. |
| 136 | 136 |
_solver_bits::VoidPtr lpx() {return lp;}
|
| 137 | 137 |
///Const pointer to the underlying GLPK data structure. |
| 138 | 138 |
_solver_bits::VoidPtr lpx() const {return lp;}
|
| 139 | 139 |
|
| 140 | 140 |
///Returns the constraint identifier understood by GLPK. |
| 141 | 141 |
int lpxRow(Row r) const { return rows(id(r)); }
|
| 142 | 142 |
|
| 143 | 143 |
///Returns the variable identifier understood by GLPK. |
| 144 | 144 |
int lpxCol(Col c) const { return cols(id(c)); }
|
| 145 | 145 |
|
| 146 | 146 |
}; |
| 147 | 147 |
|
| 148 | 148 |
/// \brief Interface for the GLPK LP solver |
| 149 | 149 |
/// |
| 150 | 150 |
/// This class implements an interface for the GLPK LP solver. |
| 151 | 151 |
///\ingroup lp_group |
| 152 | 152 |
class GlpkLp : public LpSolver, public GlpkBase {
|
| 153 | 153 |
public: |
| 154 | 154 |
|
| 155 | 155 |
///\e |
| 156 | 156 |
GlpkLp(); |
| 157 | 157 |
///\e |
| 158 | 158 |
GlpkLp(const GlpkLp&); |
| 159 | 159 |
|
| 160 | 160 |
///\e |
| 161 | 161 |
virtual GlpkLp* cloneSolver() const; |
| 162 | 162 |
///\e |
| 163 | 163 |
virtual GlpkLp* newSolver() const; |
| 164 | 164 |
|
| 165 | 165 |
private: |
| 166 | 166 |
|
| 167 | 167 |
mutable std::vector<double> _primal_ray; |
| 168 | 168 |
mutable std::vector<double> _dual_ray; |
| 169 | 169 |
|
| 170 | 170 |
void _clear_temporals(); |
| 171 | 171 |
|
| 172 | 172 |
protected: |
| 173 | 173 |
|
| 174 | 174 |
virtual const char* _solverName() const; |
| 175 | 175 |
|
| 176 | 176 |
virtual SolveExitStatus _solve(); |
| 177 | 177 |
virtual Value _getPrimal(int i) const; |
| 178 | 178 |
virtual Value _getDual(int i) const; |
| 179 | 179 |
|
| 180 | 180 |
virtual Value _getPrimalValue() const; |
| 1 |
/* -*- C++ -*- |
|
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 | 2 |
* |
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
| 20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
| 21 | 21 |
|
| 22 | 22 |
#include <limits> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/preflow.h> |
| 26 | 26 |
#include <lemon/concept_check.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
/// \ingroup min_cut |
| 30 |
/// \file |
|
| 30 |
/// \file |
|
| 31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup min_cut |
| 36 | 36 |
/// |
| 37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
| 38 | 38 |
/// |
| 39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
| 40 | 40 |
/// may contain edges which are not in the original graph. It has the |
| 41 |
/// property that the minimum capacity edge of the path between two nodes |
|
| 41 |
/// property that the minimum capacity edge of the path between two nodes |
|
| 42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
| 43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
| 44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
| 45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
| 46 | 46 |
/// of nodes can easily be obtained. |
| 47 |
/// |
|
| 47 |
/// |
|
| 48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
| 49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall
|
| 50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
| 51 | 51 |
/// The structure of the tree and the edge weights can be |
| 52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
| 53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
| 54 | 54 |
/// the minimum cut and the minimum cut value between any two nodes |
| 55 | 55 |
/// in the graph. You can also list (iterate on) the nodes and the |
| 56 | 56 |
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
| 59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
| 60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
| 61 | 61 |
#ifdef DOXYGEN |
| 62 | 62 |
template <typename GR, |
| 63 |
|
|
| 63 |
typename CAP> |
|
| 64 | 64 |
#else |
| 65 | 65 |
template <typename GR, |
| 66 |
|
|
| 66 |
typename CAP = typename GR::template EdgeMap<int> > |
|
| 67 | 67 |
#endif |
| 68 | 68 |
class GomoryHu {
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
/// The graph type of the algorithm |
| 72 | 72 |
typedef GR Graph; |
| 73 | 73 |
/// The capacity map type of the algorithm |
| 74 | 74 |
typedef CAP Capacity; |
| 75 | 75 |
/// The value type of capacities |
| 76 | 76 |
typedef typename Capacity::Value Value; |
| 77 |
|
|
| 77 |
|
|
| 78 | 78 |
private: |
| 79 | 79 |
|
| 80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 81 | 81 |
|
| 82 | 82 |
const Graph& _graph; |
| 83 | 83 |
const Capacity& _capacity; |
| 84 | 84 |
|
| 85 | 85 |
Node _root; |
| 86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
| 87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
| 88 | 88 |
typename Graph::template NodeMap<int>* _order; |
| 89 | 89 |
|
| 90 | 90 |
void createStructures() {
|
| 91 | 91 |
if (!_pred) {
|
| 92 |
|
|
| 92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
|
| 93 | 93 |
} |
| 94 | 94 |
if (!_weight) {
|
| 95 |
|
|
| 95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
|
| 96 | 96 |
} |
| 97 | 97 |
if (!_order) {
|
| 98 |
|
|
| 98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
|
| 99 | 99 |
} |
| 100 | 100 |
} |
| 101 | 101 |
|
| 102 | 102 |
void destroyStructures() {
|
| 103 | 103 |
if (_pred) {
|
| 104 |
|
|
| 104 |
delete _pred; |
|
| 105 | 105 |
} |
| 106 | 106 |
if (_weight) {
|
| 107 |
|
|
| 107 |
delete _weight; |
|
| 108 | 108 |
} |
| 109 | 109 |
if (_order) {
|
| 110 |
|
|
| 110 |
delete _order; |
|
| 111 | 111 |
} |
| 112 | 112 |
} |
| 113 |
|
|
| 113 |
|
|
| 114 | 114 |
public: |
| 115 | 115 |
|
| 116 | 116 |
/// \brief Constructor |
| 117 | 117 |
/// |
| 118 | 118 |
/// Constructor. |
| 119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
| 120 | 120 |
/// \param capacity The edge capacity map. |
| 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
| 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
| 122 | 122 |
: _graph(graph), _capacity(capacity), |
| 123 |
|
|
| 123 |
_pred(0), _weight(0), _order(0) |
|
| 124 | 124 |
{
|
| 125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
| 126 | 126 |
} |
| 127 | 127 |
|
| 128 | 128 |
|
| 129 | 129 |
/// \brief Destructor |
| 130 | 130 |
/// |
| 131 | 131 |
/// Destructor. |
| 132 | 132 |
~GomoryHu() {
|
| 133 | 133 |
destroyStructures(); |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
private: |
| 137 |
|
|
| 137 |
|
|
| 138 | 138 |
// Initialize the internal data structures |
| 139 | 139 |
void init() {
|
| 140 | 140 |
createStructures(); |
| 141 | 141 |
|
| 142 | 142 |
_root = NodeIt(_graph); |
| 143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 144 | 144 |
(*_pred)[n] = _root; |
| 145 | 145 |
(*_order)[n] = -1; |
| 146 | 146 |
} |
| 147 | 147 |
(*_pred)[_root] = INVALID; |
| 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
| 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
|
| 152 | 152 |
// Start the algorithm |
| 153 | 153 |
void start() {
|
| 154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
| 155 | 155 |
|
| 156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 157 |
|
|
| 157 |
if (n == _root) continue; |
|
| 158 | 158 |
|
| 159 |
Node pn = (*_pred)[n]; |
|
| 160 |
fa.source(n); |
|
| 161 |
|
|
| 159 |
Node pn = (*_pred)[n]; |
|
| 160 |
fa.source(n); |
|
| 161 |
fa.target(pn); |
|
| 162 | 162 |
|
| 163 |
|
|
| 163 |
fa.runMinCut(); |
|
| 164 | 164 |
|
| 165 |
|
|
| 165 |
(*_weight)[n] = fa.flowValue(); |
|
| 166 | 166 |
|
| 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
|
| 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
|
| 169 |
(*_pred)[nn] = n; |
|
| 170 |
} |
|
| 171 |
} |
|
| 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
|
| 173 |
(*_pred)[n] = (*_pred)[pn]; |
|
| 174 |
(*_pred)[pn] = n; |
|
| 175 |
(*_weight)[n] = (*_weight)[pn]; |
|
| 176 |
(*_weight)[pn] = fa.flowValue(); |
|
| 177 |
|
|
| 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
|
|
| 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
|
|
| 169 |
(*_pred)[nn] = n; |
|
| 170 |
} |
|
| 171 |
} |
|
| 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
|
|
| 173 |
(*_pred)[n] = (*_pred)[pn]; |
|
| 174 |
(*_pred)[pn] = n; |
|
| 175 |
(*_weight)[n] = (*_weight)[pn]; |
|
| 176 |
(*_weight)[pn] = fa.flowValue(); |
|
| 177 |
} |
|
| 178 | 178 |
} |
| 179 | 179 |
|
| 180 | 180 |
(*_order)[_root] = 0; |
| 181 | 181 |
int index = 1; |
| 182 | 182 |
|
| 183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 184 |
std::vector<Node> st; |
|
| 185 |
Node nn = n; |
|
| 186 |
while ((*_order)[nn] == -1) {
|
|
| 187 |
st.push_back(nn); |
|
| 188 |
nn = (*_pred)[nn]; |
|
| 189 |
} |
|
| 190 |
while (!st.empty()) {
|
|
| 191 |
(*_order)[st.back()] = index++; |
|
| 192 |
st.pop_back(); |
|
| 193 |
} |
|
| 184 |
std::vector<Node> st; |
|
| 185 |
Node nn = n; |
|
| 186 |
while ((*_order)[nn] == -1) {
|
|
| 187 |
st.push_back(nn); |
|
| 188 |
nn = (*_pred)[nn]; |
|
| 189 |
} |
|
| 190 |
while (!st.empty()) {
|
|
| 191 |
(*_order)[st.back()] = index++; |
|
| 192 |
st.pop_back(); |
|
| 193 |
} |
|
| 194 | 194 |
} |
| 195 | 195 |
} |
| 196 | 196 |
|
| 197 | 197 |
public: |
| 198 | 198 |
|
| 199 | 199 |
///\name Execution Control |
| 200 |
|
|
| 200 |
|
|
| 201 | 201 |
///@{
|
| 202 | 202 |
|
| 203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
| 204 | 204 |
/// |
| 205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
| 206 | 206 |
void run() {
|
| 207 | 207 |
init(); |
| 208 | 208 |
start(); |
| 209 | 209 |
} |
| 210 |
|
|
| 210 |
|
|
| 211 | 211 |
/// @} |
| 212 | 212 |
|
| 213 | 213 |
///\name Query Functions |
| 214 | 214 |
///The results of the algorithm can be obtained using these |
| 215 | 215 |
///functions.\n |
| 216 | 216 |
///\ref run() should be called before using them.\n |
| 217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
| 218 | 218 |
|
| 219 | 219 |
///@{
|
| 220 | 220 |
|
| 221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
| 222 | 222 |
/// |
| 223 | 223 |
/// This function returns the predecessor node of the given node |
| 224 | 224 |
/// in the Gomory-Hu tree. |
| 225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
| 226 | 226 |
/// |
| 227 | 227 |
/// \pre \ref run() must be called before using this function. |
| 228 | 228 |
Node predNode(const Node& node) const {
|
| 229 | 229 |
return (*_pred)[node]; |
| 230 | 230 |
} |
| 231 | 231 |
|
| 232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
| 233 | 233 |
/// Gomory-Hu tree. |
| 234 | 234 |
/// |
| 235 |
/// This function returns the weight of the predecessor edge of the |
|
| 235 |
/// This function returns the weight of the predecessor edge of the |
|
| 236 | 236 |
/// given node in the Gomory-Hu tree. |
| 237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
| 238 | 238 |
/// |
| 239 | 239 |
/// \pre \ref run() must be called before using this function. |
| 240 | 240 |
Value predValue(const Node& node) const {
|
| 241 | 241 |
return (*_weight)[node]; |
| 242 | 242 |
} |
| 243 | 243 |
|
| 244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
| 245 | 245 |
/// |
| 246 | 246 |
/// This function returns the distance of the given node from the root |
| 247 | 247 |
/// node in the Gomory-Hu tree. |
| 248 | 248 |
/// |
| 249 | 249 |
/// \pre \ref run() must be called before using this function. |
| 250 | 250 |
int rootDist(const Node& node) const {
|
| 251 | 251 |
return (*_order)[node]; |
| 252 | 252 |
} |
| 253 | 253 |
|
| 254 | 254 |
/// \brief Return the minimum cut value between two nodes |
| 255 | 255 |
/// |
| 256 | 256 |
/// This function returns the minimum cut value between the nodes |
| 257 |
/// \c s and \c t. |
|
| 257 |
/// \c s and \c t. |
|
| 258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
| 259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
| 260 | 260 |
/// paths to the ancestor. |
| 261 | 261 |
/// |
| 262 | 262 |
/// \pre \ref run() must be called before using this function. |
| 263 | 263 |
Value minCutValue(const Node& s, const Node& t) const {
|
| 264 | 264 |
Node sn = s, tn = t; |
| 265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
| 266 |
|
|
| 266 |
|
|
| 267 | 267 |
while (sn != tn) {
|
| 268 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
| 270 |
tn = (*_pred)[tn]; |
|
| 271 |
} else {
|
|
| 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
| 273 |
sn = (*_pred)[sn]; |
|
| 274 |
|
|
| 268 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
| 270 |
tn = (*_pred)[tn]; |
|
| 271 |
} else {
|
|
| 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
| 273 |
sn = (*_pred)[sn]; |
|
| 274 |
} |
|
| 275 | 275 |
} |
| 276 | 276 |
return value; |
| 277 | 277 |
} |
| 278 | 278 |
|
| 279 | 279 |
/// \brief Return the minimum cut between two nodes |
| 280 | 280 |
/// |
| 281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
| 282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
| 283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
| 284 | 284 |
/// |
| 285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
| 286 | 286 |
/// |
| 287 | 287 |
/// \param s The base node. |
| 288 | 288 |
/// \param t The node you want to separate from node \c s. |
| 289 | 289 |
/// \param cutMap The cut will be returned in this map. |
| 290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
| 291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
| 292 | 292 |
/// |
| 293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
| 294 | 294 |
/// |
| 295 | 295 |
/// \pre \ref run() must be called before using this function. |
| 296 | 296 |
template <typename CutMap> |
| 297 |
Value minCutMap(const Node& s, ///< |
|
| 297 |
Value minCutMap(const Node& s, ///< |
|
| 298 | 298 |
const Node& t, |
| 299 |
///< |
|
| 299 |
///< |
|
| 300 | 300 |
CutMap& cutMap |
| 301 |
///< |
|
| 301 |
///< |
|
| 302 | 302 |
) const {
|
| 303 | 303 |
Node sn = s, tn = t; |
| 304 | 304 |
bool s_root=false; |
| 305 | 305 |
Node rn = INVALID; |
| 306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
| 307 |
|
|
| 307 |
|
|
| 308 | 308 |
while (sn != tn) {
|
| 309 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 310 |
if ((*_weight)[tn] <= value) {
|
|
| 311 |
|
|
| 309 |
if ((*_order)[sn] < (*_order)[tn]) {
|
|
| 310 |
if ((*_weight)[tn] <= value) {
|
|
| 311 |
rn = tn; |
|
| 312 | 312 |
s_root = false; |
| 313 |
value = (*_weight)[tn]; |
|
| 314 |
} |
|
| 315 |
tn = (*_pred)[tn]; |
|
| 316 |
} else {
|
|
| 317 |
if ((*_weight)[sn] <= value) {
|
|
| 318 |
rn = sn; |
|
| 313 |
value = (*_weight)[tn]; |
|
| 314 |
} |
|
| 315 |
tn = (*_pred)[tn]; |
|
| 316 |
} else {
|
|
| 317 |
if ((*_weight)[sn] <= value) {
|
|
| 318 |
rn = sn; |
|
| 319 | 319 |
s_root = true; |
| 320 |
value = (*_weight)[sn]; |
|
| 321 |
} |
|
| 322 |
sn = (*_pred)[sn]; |
|
| 323 |
} |
|
| 320 |
value = (*_weight)[sn]; |
|
| 321 |
} |
|
| 322 |
sn = (*_pred)[sn]; |
|
| 323 |
} |
|
| 324 | 324 |
} |
| 325 | 325 |
|
| 326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
| 327 | 327 |
reached[_root] = true; |
| 328 | 328 |
cutMap.set(_root, !s_root); |
| 329 | 329 |
reached[rn] = true; |
| 330 | 330 |
cutMap.set(rn, s_root); |
| 331 | 331 |
|
| 332 | 332 |
std::vector<Node> st; |
| 333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 334 |
|
|
| 334 |
st.clear(); |
|
| 335 | 335 |
Node nn = n; |
| 336 |
while (!reached[nn]) {
|
|
| 337 |
st.push_back(nn); |
|
| 338 |
nn = (*_pred)[nn]; |
|
| 339 |
} |
|
| 340 |
while (!st.empty()) {
|
|
| 341 |
cutMap.set(st.back(), cutMap[nn]); |
|
| 342 |
st.pop_back(); |
|
| 343 |
} |
|
| 336 |
while (!reached[nn]) {
|
|
| 337 |
st.push_back(nn); |
|
| 338 |
nn = (*_pred)[nn]; |
|
| 339 |
} |
|
| 340 |
while (!st.empty()) {
|
|
| 341 |
cutMap.set(st.back(), cutMap[nn]); |
|
| 342 |
st.pop_back(); |
|
| 343 |
} |
|
| 344 | 344 |
} |
| 345 |
|
|
| 345 |
|
|
| 346 | 346 |
return value; |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
///@} |
| 350 | 350 |
|
| 351 | 351 |
friend class MinCutNodeIt; |
| 352 | 352 |
|
| 353 | 353 |
/// Iterate on the nodes of a minimum cut |
| 354 |
|
|
| 354 |
|
|
| 355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
| 356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 358 |
/// |
| 359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 360 |
/// \c t. |
| 361 | 361 |
/// \code |
| 362 | 362 |
/// GomoruHu<Graph> gom(g, capacities); |
| 363 | 363 |
/// gom.run(); |
| 364 | 364 |
/// int cnt=0; |
| 365 | 365 |
/// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
| 366 | 366 |
/// \endcode |
| 367 | 367 |
class MinCutNodeIt |
| 368 | 368 |
{
|
| 369 | 369 |
bool _side; |
| 370 | 370 |
typename Graph::NodeIt _node_it; |
| 371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
| 372 | 372 |
public: |
| 373 | 373 |
/// Constructor |
| 374 | 374 |
|
| 375 | 375 |
/// Constructor. |
| 376 | 376 |
/// |
| 377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
| 378 | 378 |
///< The GomoryHu class. You must call its |
| 379 | 379 |
/// run() method |
| 380 | 380 |
/// before initializing this iterator. |
| 381 | 381 |
const Node& s, ///< The base node. |
| 382 | 382 |
const Node& t, |
| 383 | 383 |
///< The node you want to separate from node \c s. |
| 384 | 384 |
bool side=true |
| 385 | 385 |
///< If it is \c true (default) then the iterator lists |
| 386 | 386 |
/// the nodes of the component containing \c s, |
| 387 | 387 |
/// otherwise it lists the other component. |
| 388 | 388 |
/// \note As the minimum cut is not always unique, |
| 389 | 389 |
/// \code |
| 390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
| 391 | 391 |
/// \endcode |
| 392 | 392 |
/// and |
| 393 | 393 |
/// \code |
| 394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
| 395 | 395 |
/// \endcode |
| 396 | 396 |
/// does not necessarily give the same set of nodes. |
| 397 | 397 |
/// However it is ensured that |
| 398 | 398 |
/// \code |
| 399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
| 400 | 400 |
/// \endcode |
| 401 | 401 |
/// and |
| 402 | 402 |
/// \code |
| 403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
| 404 | 404 |
/// \endcode |
| 405 | 405 |
/// together list each node exactly once. |
| 406 | 406 |
) |
| 407 | 407 |
: _side(side), _cut(gomory._graph) |
| 408 | 408 |
{
|
| 409 | 409 |
gomory.minCutMap(s,t,_cut); |
| 410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
| 411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
| 412 | 412 |
++_node_it) {}
|
| 413 | 413 |
} |
| 414 | 414 |
/// Conversion to \c Node |
| 415 | 415 |
|
| 416 | 416 |
/// Conversion to \c Node. |
| 417 | 417 |
/// |
| 418 | 418 |
operator typename Graph::Node() const |
| 419 | 419 |
{
|
| 420 | 420 |
return _node_it; |
| 421 | 421 |
} |
| 422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; }
|
| 423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; }
|
| 424 | 424 |
/// Next node |
| 425 | 425 |
|
| 426 | 426 |
/// Next node. |
| 427 | 427 |
/// |
| 428 | 428 |
MinCutNodeIt &operator++() |
| 429 | 429 |
{
|
| 430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
|
| 431 | 431 |
return *this; |
| 432 | 432 |
} |
| 433 | 433 |
/// Postfix incrementation |
| 434 | 434 |
|
| 435 | 435 |
/// Postfix incrementation. |
| 436 | 436 |
/// |
| 437 | 437 |
/// \warning This incrementation |
| 438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
| 439 | 439 |
/// expect. |
| 440 | 440 |
typename Graph::Node operator++(int) |
| 441 | 441 |
{
|
| 442 | 442 |
typename Graph::Node n=*this; |
| 443 | 443 |
++(*this); |
| 444 | 444 |
return n; |
| 445 | 445 |
} |
| 446 | 446 |
}; |
| 447 |
|
|
| 447 |
|
|
| 448 | 448 |
friend class MinCutEdgeIt; |
| 449 |
|
|
| 449 |
|
|
| 450 | 450 |
/// Iterate on the edges of a minimum cut |
| 451 |
|
|
| 451 |
|
|
| 452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
| 453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 455 |
/// |
| 456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 457 |
/// \c t. |
| 458 | 458 |
/// \code |
| 459 | 459 |
/// GomoruHu<Graph> gom(g, capacities); |
| 460 | 460 |
/// gom.run(); |
| 461 | 461 |
/// int value=0; |
| 462 | 462 |
/// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
| 463 | 463 |
/// value+=capacities[e]; |
| 464 | 464 |
/// \endcode |
| 465 | 465 |
/// The result will be the same as the value returned by |
| 466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 467 |
class MinCutEdgeIt |
| 468 | 468 |
{
|
| 469 | 469 |
bool _side; |
| 470 | 470 |
const Graph &_graph; |
| 471 | 471 |
typename Graph::NodeIt _node_it; |
| 472 | 472 |
typename Graph::OutArcIt _arc_it; |
| 473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
| 474 | 474 |
void step() |
| 475 | 475 |
{
|
| 476 | 476 |
++_arc_it; |
| 477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
| 478 | 478 |
{
|
| 479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
|
| 480 | 480 |
if(_node_it!=INVALID) |
| 481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
| 482 | 482 |
} |
| 483 | 483 |
} |
| 484 |
|
|
| 484 |
|
|
| 485 | 485 |
public: |
| 486 | 486 |
/// Constructor |
| 487 | 487 |
|
| 488 | 488 |
/// Constructor. |
| 489 | 489 |
/// |
| 490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
| 491 | 491 |
///< The GomoryHu class. You must call its |
| 492 | 492 |
/// run() method |
| 493 | 493 |
/// before initializing this iterator. |
| 494 | 494 |
const Node& s, ///< The base node. |
| 495 | 495 |
const Node& t, |
| 496 | 496 |
///< The node you want to separate from node \c s. |
| 497 | 497 |
bool side=true |
| 498 | 498 |
///< If it is \c true (default) then the listed arcs |
| 499 | 499 |
/// will be oriented from the |
| 500 | 500 |
/// nodes of the component containing \c s, |
| 501 | 501 |
/// otherwise they will be oriented in the opposite |
| 502 | 502 |
/// direction. |
| 503 | 503 |
) |
| 504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
| 505 | 505 |
{
|
| 506 | 506 |
gomory.minCutMap(s,t,_cut); |
| 507 | 507 |
if(!side) |
| 508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
| 509 | 509 |
_cut[n]=!_cut[n]; |
| 510 | 510 |
|
| 511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
| 512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
| 513 | 513 |
++_node_it) {}
|
| 514 | 514 |
_arc_it = _node_it!=INVALID ? |
| 515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
| 516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
| 517 | 517 |
{
|
| 518 | 518 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
|
| 519 | 519 |
if(_node_it!=INVALID) |
| 520 | 520 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
| 521 | 521 |
} |
| 522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
| 523 | 523 |
} |
| 524 | 524 |
/// Conversion to \c Arc |
| 525 | 525 |
|
| 526 | 526 |
/// Conversion to \c Arc. |
| 527 | 527 |
/// |
| 528 | 528 |
operator typename Graph::Arc() const |
| 529 | 529 |
{
|
| 530 | 530 |
return _arc_it; |
| 531 | 531 |
} |
| 532 | 532 |
/// Conversion to \c Edge |
| 533 | 533 |
|
| 534 | 534 |
/// Conversion to \c Edge. |
| 535 | 535 |
/// |
| 536 | 536 |
operator typename Graph::Edge() const |
| 537 | 537 |
{
|
| 538 | 538 |
return _arc_it; |
| 539 | 539 |
} |
| 540 | 540 |
bool operator==(Invalid) { return _node_it==INVALID; }
|
| 541 | 541 |
bool operator!=(Invalid) { return _node_it!=INVALID; }
|
| 542 | 542 |
/// Next edge |
| 543 | 543 |
|
| 544 | 544 |
/// Next edge. |
| 545 | 545 |
/// |
| 546 | 546 |
MinCutEdgeIt &operator++() |
| 547 | 547 |
{
|
| 548 | 548 |
step(); |
| 549 | 549 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
| 550 | 550 |
return *this; |
| 551 | 551 |
} |
| 552 | 552 |
/// Postfix incrementation |
| 553 |
|
|
| 553 |
|
|
| 554 | 554 |
/// Postfix incrementation. |
| 555 | 555 |
/// |
| 556 | 556 |
/// \warning This incrementation |
| 557 | 557 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
| 558 | 558 |
typename Graph::Arc operator++(int) |
| 559 | 559 |
{
|
| 560 | 560 |
typename Graph::Arc e=*this; |
| 561 | 561 |
++(*this); |
| 562 | 562 |
return e; |
| 563 | 563 |
} |
| 564 | 564 |
}; |
| 565 | 565 |
|
| 566 | 566 |
}; |
| 567 | 567 |
|
| 568 | 568 |
} |
| 569 | 569 |
|
| 570 | 570 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 |
* Copyright (C) 2003- |
|
| 5 |
* Copyright (C) 2003-2011 |
|
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
| 20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include<iostream> |
| 23 | 23 |
#include<fstream> |
| 24 | 24 |
#include<sstream> |
| 25 | 25 |
#include<algorithm> |
| 26 | 26 |
#include<vector> |
| 27 | 27 |
|
| 28 | 28 |
#ifndef WIN32 |
| 29 | 29 |
#include<sys/time.h> |
| 30 | 30 |
#include<ctime> |
| 31 | 31 |
#else |
| 32 | 32 |
#include<lemon/bits/windows.h> |
| 33 | 33 |
#endif |
| 34 | 34 |
|
| 35 | 35 |
#include<lemon/math.h> |
| 36 | 36 |
#include<lemon/core.h> |
| 37 | 37 |
#include<lemon/dim2.h> |
| 38 | 38 |
#include<lemon/maps.h> |
| 39 | 39 |
#include<lemon/color.h> |
| 40 | 40 |
#include<lemon/bits/bezier.h> |
| 41 | 41 |
#include<lemon/error.h> |
| 42 | 42 |
|
| 43 | 43 |
|
| 44 | 44 |
///\ingroup eps_io |
| 45 | 45 |
///\file |
| 46 | 46 |
///\brief A well configurable tool for visualizing graphs |
| 47 | 47 |
|
| 48 | 48 |
namespace lemon {
|
| 49 | 49 |
|
| 50 | 50 |
namespace _graph_to_eps_bits {
|
| 51 | 51 |
template<class MT> |
| 52 | 52 |
class _NegY {
|
| 53 | 53 |
public: |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)