↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23 23
This group contains the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for Graphs
66 66
@ingroup graphs
67 67
\brief Adaptor classes for digraphs and graphs
68 68

	
69 69
This group contains several useful adaptor classes for digraphs and graphs.
70 70

	
71 71
The main parts of LEMON are the different graph structures, generic
72 72
graph algorithms, graph concepts, which couple them, and graph
73 73
adaptors. While the previous notions are more or less clear, the
74 74
latter one needs further explanation. Graph adaptors are graph classes
75 75
which serve for considering graph structures in different ways.
76 76

	
77 77
A short example makes this much clearer.  Suppose that we have an
78 78
instance \c g of a directed graph type, say ListDigraph and an algorithm
79 79
\code
80 80
template <typename Digraph>
81 81
int algorithm(const Digraph&);
82 82
\endcode
83 83
is needed to run on the reverse oriented graph.  It may be expensive
84 84
(in time or in memory usage) to copy \c g with the reversed
85 85
arcs.  In this case, an adaptor class is used, which (according
86 86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
87 87
The adaptor uses the original digraph structure and digraph operations when
88 88
methods of the reversed oriented graph are called.  This means that the adaptor
89 89
have minor memory usage, and do not perform sophisticated algorithmic
90 90
actions.  The purpose of it is to give a tool for the cases when a
91 91
graph have to be used in a specific alteration.  If this alteration is
92 92
obtained by a usual construction like filtering the node or the arc set or
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141 141
@defgroup maps Maps
142 142
@ingroup datas
143 143
\brief Map structures implemented in LEMON.
144 144

	
145 145
This group contains the map structures implemented in LEMON.
146 146

	
147 147
LEMON provides several special purpose maps and map adaptors that e.g. combine
148 148
new maps from existing ones.
149 149

	
150 150
<b>See also:</b> \ref map_concepts "Map Concepts".
151 151
*/
152 152

	
153 153
/**
154 154
@defgroup graph_maps Graph Maps
155 155
@ingroup maps
156 156
\brief Special graph-related maps.
157 157

	
158 158
This group contains maps that are specifically designed to assign
159 159
values to the nodes and arcs/edges of graphs.
160 160

	
161 161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
162 162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
163 163
*/
164 164

	
165 165
/**
166 166
\defgroup map_adaptors Map Adaptors
167 167
\ingroup maps
168 168
\brief Tools to create new maps from existing ones
169 169

	
170 170
This group contains map adaptors that are used to create "implicit"
171 171
maps from other maps.
172 172

	
173 173
Most of them are \ref concepts::ReadMap "read-only maps".
174 174
They can make arithmetic and logical operations between one or two maps
175 175
(negation, shifting, addition, multiplication, logical 'and', 'or',
176 176
'not' etc.) or e.g. convert a map to another one of different Value type.
177 177

	
178 178
The typical usage of this classes is passing implicit maps to
179 179
algorithms.  If a function type algorithm is called then the function
180 180
type map adaptors can be used comfortable. For example let's see the
181 181
usage of map adaptors with the \c graphToEps() function.
182 182
\code
183 183
  Color nodeColor(int deg) {
184 184
    if (deg >= 2) {
185 185
      return Color(0.5, 0.0, 0.5);
186 186
    } else if (deg == 1) {
187 187
      return Color(1.0, 0.5, 1.0);
188 188
    } else {
189 189
      return Color(0.0, 0.0, 0.0);
190 190
    }
191 191
  }
192 192

	
193 193
  Digraph::NodeMap<int> degree_map(graph);
194 194

	
195 195
  graphToEps(graph, "graph.eps")
196 196
    .coords(coords).scaleToA4().undirected()
197 197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
198 198
    .run();
199 199
\endcode
200 200
The \c functorToMap() function makes an \c int to \c Color map from the
201 201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
202 202
and the previously created map. The composed map is a proper function to
203 203
get the color of each node.
204 204

	
205 205
The usage with class type algorithms is little bit harder. In this
206 206
case the function type map adaptors can not be used, because the
207 207
function map adaptors give back temporary objects.
208 208
\code
209 209
  Digraph graph;
210 210

	
211 211
  typedef Digraph::ArcMap<double> DoubleArcMap;
212 212
  DoubleArcMap length(graph);
213 213
  DoubleArcMap speed(graph);
214 214

	
215 215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
216 216
  TimeMap time(length, speed);
217 217

	
218 218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
219 219
  dijkstra.run(source, target);
220 220
\endcode
221 221
We have a length map and a maximum speed map on the arcs of a digraph.
222 222
The minimum time to pass the arc can be calculated as the division of
223 223
the two maps which can be done implicitly with the \c DivMap template
224 224
class. We use the implicit minimum time map as the length map of the
225 225
\c Dijkstra algorithm.
226 226
*/
227 227

	
228 228
/**
229 229
@defgroup paths Path Structures
230 230
@ingroup datas
231 231
\brief %Path structures implemented in LEMON.
232 232

	
233 233
This group contains the path structures implemented in LEMON.
234 234

	
235 235
LEMON provides flexible data structures to work with paths.
236 236
All of them have similar interfaces and they can be copied easily with
237 237
assignment operators and copy constructors. This makes it easy and
238 238
efficient to have e.g. the Dijkstra algorithm to store its result in
239 239
any kind of path structure.
240 240

	
241 241
\sa lemon::concepts::Path
242 242
*/
243 243

	
244 244
/**
245 245
@defgroup auxdat Auxiliary Data Structures
246 246
@ingroup datas
247 247
\brief Auxiliary data structures implemented in LEMON.
248 248

	
249 249
This group contains some data structures implemented in LEMON in
250 250
order to make it easier to implement combinatorial algorithms.
251 251
*/
252 252

	
253 253
/**
254 254
@defgroup algs Algorithms
255 255
\brief This group contains the several algorithms
256 256
implemented in LEMON.
257 257

	
258 258
This group contains the several algorithms
259 259
implemented in LEMON.
260 260
*/
261 261

	
262 262
/**
263 263
@defgroup search Graph Search
264 264
@ingroup algs
265 265
\brief Common graph search algorithms.
266 266

	
267 267
This group contains the common graph search algorithms, namely
268 268
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
269 269
*/
270 270

	
271 271
/**
272 272
@defgroup shortest_path Shortest Path Algorithms
273 273
@ingroup algs
274 274
\brief Algorithms for finding shortest paths.
275 275

	
276 276
This group contains the algorithms for finding shortest paths in digraphs.
277 277

	
278
 - \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a 
278
 - \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a
279 279
   source node when all arc lengths are non-negative.
280 280
 - \ref Suurballe A successive shortest path algorithm for finding
281 281
   arc-disjoint paths between two nodes having minimum total length.
282 282
*/
283 283

	
284 284
/**
285 285
@defgroup max_flow Maximum Flow Algorithms
286 286
@ingroup algs
287 287
\brief Algorithms for finding maximum flows.
288 288

	
289 289
This group contains the algorithms for finding maximum flows and
290 290
feasible circulations.
291 291

	
292 292
The \e maximum \e flow \e problem is to find a flow of maximum value between
293 293
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
294 294
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
295 295
\f$s, t \in V\f$ source and target nodes.
296 296
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
297 297
following optimization problem.
298 298

	
299 299
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
300 300
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
301 301
    \quad \forall u\in V\setminus\{s,t\} \f]
302 302
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
303 303

	
304 304
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and
305 305
Tarjan for solving this problem. It also provides functions to query the
306 306
minimum cut, which is the dual problem of maximum flow.
307 307

	
308 308

	
309
\ref Circulation is a preflow push-relabel algorithm implemented directly 
309
\ref Circulation is a preflow push-relabel algorithm implemented directly
310 310
for finding feasible circulations, which is a somewhat different problem,
311 311
but it is strongly related to maximum flow.
312 312
For more information, see \ref Circulation.
313 313
*/
314 314

	
315 315
/**
316 316
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
317 317
@ingroup algs
318 318

	
319 319
\brief Algorithms for finding minimum cost flows and circulations.
320 320

	
321 321
This group contains the algorithms for finding minimum cost flows and
322 322
circulations. For more information about this problem and its dual
323 323
solution see \ref min_cost_flow "Minimum Cost Flow Problem".
324 324

	
325 325
\ref NetworkSimplex is an efficient implementation of the primal Network
326 326
Simplex algorithm for finding minimum cost flows. It also provides dual
327 327
solution (node potentials), if an optimal flow is found.
328 328
*/
329 329

	
330 330
/**
331 331
@defgroup min_cut Minimum Cut Algorithms
332 332
@ingroup algs
333 333

	
334 334
\brief Algorithms for finding minimum cut in graphs.
335 335

	
336 336
This group contains the algorithms for finding minimum cut in graphs.
337 337

	
338 338
The \e minimum \e cut \e problem is to find a non-empty and non-complete
339 339
\f$X\f$ subset of the nodes with minimum overall capacity on
340 340
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
341 341
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
342 342
cut is the \f$X\f$ solution of the next optimization problem:
343 343

	
344 344
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
345 345
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
346 346

	
347 347
LEMON contains several algorithms related to minimum cut problems:
348 348

	
349 349
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
350 350
  in directed graphs.
351 351
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
352 352
  all-pairs minimum cut in undirected graphs.
353 353

	
354 354
If you want to find minimum cut just between two distinict nodes,
355 355
see the \ref max_flow "maximum flow problem".
356 356
*/
357 357

	
358 358
/**
359 359
@defgroup graph_properties Connectivity and Other Graph Properties
360 360
@ingroup algs
361 361
\brief Algorithms for discovering the graph properties
362 362

	
363 363
This group contains the algorithms for discovering the graph properties
364 364
like connectivity, bipartiteness, euler property, simplicity etc.
365 365

	
366 366
\image html edge_biconnected_components.png
367 367
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
368 368
*/
369 369

	
370 370
/**
371 371
@defgroup matching Matching Algorithms
372 372
@ingroup algs
373 373
\brief Algorithms for finding matchings in graphs and bipartite graphs.
374 374

	
375 375
This group contains the algorithms for calculating matchings in graphs.
376 376
The general matching problem is finding a subset of the edges for which
377 377
each node has at most one incident edge.
378 378

	
379 379
There are several different algorithms for calculate matchings in
380 380
graphs. The goal of the matching optimization
381 381
can be finding maximum cardinality, maximum weight or minimum cost
382 382
matching. The search can be constrained to find perfect or
383 383
maximum cardinality matching.
384 384

	
385 385
The matching algorithms implemented in LEMON:
386 386
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
387 387
  maximum cardinality matching in general graphs.
388 388
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
389 389
  maximum weighted matching in general graphs.
390 390
- \ref MaxWeightedPerfectMatching
391 391
  Edmond's blossom shrinking algorithm for calculating maximum weighted
392 392
  perfect matching in general graphs.
393 393

	
394 394
\image html bipartite_matching.png
395 395
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
396 396
*/
397 397

	
398 398
/**
399 399
@defgroup spantree Minimum Spanning Tree Algorithms
400 400
@ingroup algs
401 401
\brief Algorithms for finding minimum cost spanning trees and arborescences.
402 402

	
403 403
This group contains the algorithms for finding minimum cost spanning
404 404
trees and arborescences.
405 405
*/
406 406

	
407 407
/**
408 408
@defgroup auxalg Auxiliary Algorithms
409 409
@ingroup algs
410 410
\brief Auxiliary algorithms implemented in LEMON.
411 411

	
412 412
This group contains some algorithms implemented in LEMON
413 413
in order to make it easier to implement complex algorithms.
414 414
*/
415 415

	
416 416
/**
417 417
@defgroup gen_opt_group General Optimization Tools
418 418
\brief This group contains some general optimization frameworks
419 419
implemented in LEMON.
420 420

	
421 421
This group contains some general optimization frameworks
422 422
implemented in LEMON.
423 423
*/
424 424

	
425 425
/**
426 426
@defgroup lp_group Lp and Mip Solvers
427 427
@ingroup gen_opt_group
428 428
\brief Lp and Mip solver interfaces for LEMON.
429 429

	
430 430
This group contains Lp and Mip solver interfaces for LEMON. The
431 431
various LP solvers could be used in the same manner with this
432 432
interface.
433 433
*/
434 434

	
435 435
/**
436 436
@defgroup utils Tools and Utilities
437 437
\brief Tools and utilities for programming in LEMON
438 438

	
439 439
Tools and utilities for programming in LEMON.
440 440
*/
441 441

	
442 442
/**
443 443
@defgroup gutils Basic Graph Utilities
444 444
@ingroup utils
445 445
\brief Simple basic graph utilities.
446 446

	
447 447
This group contains some simple basic graph utilities.
448 448
*/
449 449

	
450 450
/**
451 451
@defgroup misc Miscellaneous Tools
452 452
@ingroup utils
453 453
\brief Tools for development, debugging and testing.
454 454

	
455 455
This group contains several useful tools for development,
456 456
debugging and testing.
457 457
*/
458 458

	
459 459
/**
460 460
@defgroup timecount Time Measuring and Counting
461 461
@ingroup misc
462 462
\brief Simple tools for measuring the performance of algorithms.
463 463

	
464 464
This group contains simple tools for measuring the performance
465 465
of algorithms.
466 466
*/
467 467

	
468 468
/**
469 469
@defgroup exceptions Exceptions
470 470
@ingroup utils
471 471
\brief Exceptions defined in LEMON.
472 472

	
473 473
This group contains the exceptions defined in LEMON.
474 474
*/
475 475

	
476 476
/**
477 477
@defgroup io_group Input-Output
478 478
\brief Graph Input-Output methods
479 479

	
480 480
This group contains the tools for importing and exporting graphs
481 481
and graph related data. Now it supports the \ref lgf-format
482 482
"LEMON Graph Format", the \c DIMACS format and the encapsulated
483 483
postscript (EPS) format.
484 484
*/
485 485

	
486 486
/**
487 487
@defgroup lemon_io LEMON Graph Format
488 488
@ingroup io_group
489 489
\brief Reading and writing LEMON Graph Format.
490 490

	
491 491
This group contains methods for reading and writing
492 492
\ref lgf-format "LEMON Graph Format".
493 493
*/
494 494

	
495 495
/**
496 496
@defgroup eps_io Postscript Exporting
497 497
@ingroup io_group
498 498
\brief General \c EPS drawer and graph exporter
499 499

	
500 500
This group contains general \c EPS drawing methods and special
501 501
graph exporting tools.
502 502
*/
503 503

	
504 504
/**
505 505
@defgroup dimacs_group DIMACS format
506 506
@ingroup io_group
507 507
\brief Read and write files in DIMACS format
508 508

	
509 509
Tools to read a digraph from or write it to a file in DIMACS format data.
510 510
*/
511 511

	
512 512
/**
513 513
@defgroup nauty_group NAUTY Format
514 514
@ingroup io_group
515 515
\brief Read \e Nauty format
516 516

	
517 517
Tool to read graphs from \e Nauty format data.
518 518
*/
519 519

	
520 520
/**
521 521
@defgroup concept Concepts
522 522
\brief Skeleton classes and concept checking classes
523 523

	
524 524
This group contains the data/algorithm skeletons and concept checking
525 525
classes implemented in LEMON.
526 526

	
527 527
The purpose of the classes in this group is fourfold.
528 528

	
529 529
- These classes contain the documentations of the %concepts. In order
530 530
  to avoid document multiplications, an implementation of a concept
531 531
  simply refers to the corresponding concept class.
532 532

	
533 533
- These classes declare every functions, <tt>typedef</tt>s etc. an
534 534
  implementation of the %concepts should provide, however completely
535 535
  without implementations and real data structures behind the
536 536
  interface. On the other hand they should provide nothing else. All
537 537
  the algorithms working on a data structure meeting a certain concept
538 538
  should compile with these classes. (Though it will not run properly,
539 539
  of course.) In this way it is easily to check if an algorithm
540 540
  doesn't use any extra feature of a certain implementation.
541 541

	
542 542
- The concept descriptor classes also provide a <em>checker class</em>
543 543
  that makes it possible to check whether a certain implementation of a
544 544
  concept indeed provides all the required features.
545 545

	
546 546
- Finally, They can serve as a skeleton of a new implementation of a concept.
547 547
*/
548 548

	
549 549
/**
550 550
@defgroup graph_concepts Graph Structure Concepts
551 551
@ingroup concept
552 552
\brief Skeleton and concept checking classes for graph structures
553 553

	
554 554
This group contains the skeletons and concept checking classes of LEMON's
555 555
graph structures and helper classes used to implement these.
556 556
*/
557 557

	
558 558
/**
559 559
@defgroup map_concepts Map Concepts
560 560
@ingroup concept
561 561
\brief Skeleton and concept checking classes for maps
562 562

	
563 563
This group contains the skeletons and concept checking classes of maps.
564 564
*/
565 565

	
566 566
/**
567 567
\anchor demoprograms
568 568

	
569 569
@defgroup demos Demo Programs
570 570

	
571 571
Some demo programs are listed here. Their full source codes can be found in
572 572
the \c demo subdirectory of the source tree.
573 573

	
574 574
In order to compile them, use the <tt>make demo</tt> or the
575 575
<tt>make check</tt> commands.
576 576
*/
577 577

	
578 578
/**
579 579
@defgroup tools Standalone Utility Applications
580 580

	
581 581
Some utility applications are listed here.
582 582

	
583 583
The standard compilation procedure (<tt>./configure;make</tt>) will compile
584 584
them, as well.
585 585
*/
586 586

	
587 587
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section, it
67 67
again starts with a header line describing the names of the maps, but
68 68
the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are the source
70 70
and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81 81
If there is no map in the \c \@arcs section at all, then it must be
82 82
indicated by a sole '-' sign in the first line.
83 83

	
84 84
\code
85 85
 @arcs
86 86
         -
87 87
 1   2
88 88
 1   3
89 89
 2   3
90 90
\endcode
91 91

	
92 92
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
93 93
also store the edge set of an undirected graph. In such case there is
94 94
a conventional method for store arc maps in the file, if two columns
95 95
have the same caption with \c '+' and \c '-' prefix, then these columns
96 96
can be regarded as the values of an arc map.
97 97

	
98 98
The \c \@attributes section contains key-value pairs, each line
99 99
consists of two tokens, an attribute name, and then an attribute
100 100
value. The value of the attribute could be also a label value of a
101 101
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
102 102
which regards to the forward or backward directed arc of the
103 103
corresponding edge.
104 104

	
105 105
\code
106 106
 @attributes
107 107
 source 1
108 108
 target 3
109 109
 caption "LEMON test digraph"
110 110
\endcode
111 111

	
112 112
The \e LGF can contain extra sections, but there is no restriction on
113 113
the format of such sections.
114 114

	
115 115
*/
116 116
}
117 117

	
118 118
//  LocalWords:  whitespace whitespaces
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
\page min_cost_flow Minimum Cost Flow Problem
23 23

	
24 24
\section mcf_def Definition (GEQ form)
25 25

	
26 26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27 27
minimum total cost from a set of supply nodes to a set of demand nodes
28 28
in a network with capacity constraints (lower and upper bounds)
29 29
and arc costs.
30 30

	
31 31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32 32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33 33
upper bounds for the flow values on the arcs, for which
34 34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35 35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
36 36
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
37 37
signed supply values of the nodes.
38 38
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
39 39
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
40 40
\f$-sup(u)\f$ demand.
41 41
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
42 42
of the following optimization problem.
43 43

	
44 44
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
45 45
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
46 46
    sup(u) \quad \forall u\in V \f]
47 47
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
48 48

	
49 49
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
50 50
zero or negative in order to have a feasible solution (since the sum
51 51
of the expressions on the left-hand side of the inequalities is zero).
52 52
It means that the total demand must be greater or equal to the total
53 53
supply and all the supplies have to be carried out from the supply nodes,
54 54
but there could be demands that are not satisfied.
55 55
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
56 56
constraints have to be satisfied with equality, i.e. all demands
57 57
have to be satisfied and all supplies have to be used.
58 58

	
59 59

	
60 60
\section mcf_algs Algorithms
61 61

	
62 62
LEMON contains several algorithms for solving this problem, for more
63 63
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms".
64 64

	
65 65
A feasible solution for this problem can be found using \ref Circulation.
66 66

	
67 67

	
68 68
\section mcf_dual Dual Solution
69 69

	
70 70
The dual solution of the minimum cost flow problem is represented by
71 71
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
72 72
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
73 73
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
74 74
the following \e complementary \e slackness optimality conditions hold.
75 75

	
76 76
 - For all \f$uv\in A\f$ arcs:
77 77
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
78 78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79 79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80 80
 - For all \f$u\in V\f$ nodes:
81 81
   - \f$\pi(u)<=0\f$;
82 82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83 83
     then \f$\pi(u)=0\f$.
84
 
84

	
85 85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86 86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87 87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88 88

	
89 89
All algorithms provide dual solution (node potentials), as well,
90 90
if an optimal flow is found.
91 91

	
92 92

	
93 93
\section mcf_eq Equality Form
94 94

	
95 95
The above \ref mcf_def "definition" is actually more general than the
96 96
usual formulation of the minimum cost flow problem, in which strict
97 97
equalities are required in the supply/demand contraints.
98 98

	
99 99
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
100 100
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
101 101
    sup(u) \quad \forall u\in V \f]
102 102
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
103 103

	
104 104
However if the sum of the supply values is zero, then these two problems
105 105
are equivalent.
106 106
The \ref min_cost_flow_algs "algorithms" in LEMON support the general
107 107
form, so if you need the equality form, you have to ensure this additional
108 108
contraint manually.
109 109

	
110 110

	
111 111
\section mcf_leq Opposite Inequalites (LEQ Form)
112 112

	
113 113
Another possible definition of the minimum cost flow problem is
114 114
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints,
115 115
instead of the <em>"greater or equal"</em> (GEQ) constraints.
116 116

	
117 117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118 118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119 119
    sup(u) \quad \forall u\in V \f]
120 120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121 121

	
122
It means that the total demand must be less or equal to the 
122
It means that the total demand must be less or equal to the
123 123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124 124
positive) and all the demands have to be satisfied, but there
125 125
could be supplies that are not carried out from the supply
126 126
nodes.
127 127
The equality form is also a special case of this form, of course.
128 128

	
129 129
You could easily transform this case to the \ref mcf_def "GEQ form"
130 130
of the problem by reversing the direction of the arcs and taking the
131 131
negative of the supply values (e.g. using \ref ReverseDigraph and
132 132
\ref NegMap adaptors).
133 133
However \ref NetworkSimplex algorithm also supports this form directly
134 134
for the sake of convenience.
135 135

	
136 136
Note that the optimality conditions for this supply constraint type are
137 137
slightly differ from the conditions that are discussed for the GEQ form,
138 138
namely the potentials have to be non-negative instead of non-positive.
139 139
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
140 140
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
141 141
node potentials the following conditions hold.
142 142

	
143 143
 - For all \f$uv\in A\f$ arcs:
144 144
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
145 145
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
146 146
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
147 147
 - For all \f$u\in V\f$ nodes:
148 148
   - \f$\pi(u)>=0\f$;
149 149
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
150 150
     then \f$\pi(u)=0\f$.
151 151

	
152 152
*/
153 153
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ADAPTORS_H
20 20
#define LEMON_ADAPTORS_H
21 21

	
22 22
/// \ingroup graph_adaptors
23 23
/// \file
24 24
/// \brief Adaptor classes for digraphs and graphs
25 25
///
26 26
/// This file contains several useful adaptors for digraphs and graphs.
27 27

	
28 28
#include <lemon/core.h>
29 29
#include <lemon/maps.h>
30 30
#include <lemon/bits/variant.h>
31 31

	
32 32
#include <lemon/bits/graph_adaptor_extender.h>
33 33
#include <lemon/bits/map_extender.h>
34 34
#include <lemon/tolerance.h>
35 35

	
36 36
#include <algorithm>
37 37

	
38 38
namespace lemon {
39 39

	
40 40
#ifdef _MSC_VER
41 41
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
42 42
#else
43 43
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
44 44
#endif
45 45

	
46 46
  template<typename DGR>
47 47
  class DigraphAdaptorBase {
48 48
  public:
49 49
    typedef DGR Digraph;
50 50
    typedef DigraphAdaptorBase Adaptor;
51 51

	
52 52
  protected:
53 53
    DGR* _digraph;
54 54
    DigraphAdaptorBase() : _digraph(0) { }
55 55
    void initialize(DGR& digraph) { _digraph = &digraph; }
56 56

	
57 57
  public:
58 58
    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
59 59

	
60 60
    typedef typename DGR::Node Node;
61 61
    typedef typename DGR::Arc Arc;
62 62

	
63 63
    void first(Node& i) const { _digraph->first(i); }
64 64
    void first(Arc& i) const { _digraph->first(i); }
65 65
    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
66 66
    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
67 67

	
68 68
    void next(Node& i) const { _digraph->next(i); }
69 69
    void next(Arc& i) const { _digraph->next(i); }
70 70
    void nextIn(Arc& i) const { _digraph->nextIn(i); }
71 71
    void nextOut(Arc& i) const { _digraph->nextOut(i); }
72 72

	
73 73
    Node source(const Arc& a) const { return _digraph->source(a); }
74 74
    Node target(const Arc& a) const { return _digraph->target(a); }
75 75

	
76 76
    typedef NodeNumTagIndicator<DGR> NodeNumTag;
77 77
    int nodeNum() const { return _digraph->nodeNum(); }
78 78

	
79 79
    typedef ArcNumTagIndicator<DGR> ArcNumTag;
80 80
    int arcNum() const { return _digraph->arcNum(); }
81 81

	
82 82
    typedef FindArcTagIndicator<DGR> FindArcTag;
83 83
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
84 84
      return _digraph->findArc(u, v, prev);
85 85
    }
86 86

	
87 87
    Node addNode() { return _digraph->addNode(); }
88 88
    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
89 89

	
90 90
    void erase(const Node& n) { _digraph->erase(n); }
91 91
    void erase(const Arc& a) { _digraph->erase(a); }
92 92

	
93 93
    void clear() { _digraph->clear(); }
94 94

	
95 95
    int id(const Node& n) const { return _digraph->id(n); }
96 96
    int id(const Arc& a) const { return _digraph->id(a); }
97 97

	
98 98
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
99 99
    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
100 100

	
101 101
    int maxNodeId() const { return _digraph->maxNodeId(); }
102 102
    int maxArcId() const { return _digraph->maxArcId(); }
103 103

	
104 104
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
105 105
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
106 106

	
107 107
    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
108 108
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
109 109

	
110 110
    template <typename V>
111 111
    class NodeMap : public DGR::template NodeMap<V> {
112 112
      typedef typename DGR::template NodeMap<V> Parent;
113 113

	
114 114
    public:
115 115
      explicit NodeMap(const Adaptor& adaptor)
116 116
        : Parent(*adaptor._digraph) {}
117 117
      NodeMap(const Adaptor& adaptor, const V& value)
118 118
        : Parent(*adaptor._digraph, value) { }
119 119

	
120 120
    private:
121 121
      NodeMap& operator=(const NodeMap& cmap) {
122 122
        return operator=<NodeMap>(cmap);
123 123
      }
124 124

	
125 125
      template <typename CMap>
126 126
      NodeMap& operator=(const CMap& cmap) {
127 127
        Parent::operator=(cmap);
128 128
        return *this;
129 129
      }
130 130

	
131 131
    };
132 132

	
133 133
    template <typename V>
134 134
    class ArcMap : public DGR::template ArcMap<V> {
135 135
      typedef typename DGR::template ArcMap<V> Parent;
136 136

	
137 137
    public:
138 138
      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
139 139
        : Parent(*adaptor._digraph) {}
140 140
      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
141 141
        : Parent(*adaptor._digraph, value) {}
142 142

	
143 143
    private:
144 144
      ArcMap& operator=(const ArcMap& cmap) {
145 145
        return operator=<ArcMap>(cmap);
146 146
      }
147 147

	
148 148
      template <typename CMap>
149 149
      ArcMap& operator=(const CMap& cmap) {
150 150
        Parent::operator=(cmap);
151 151
        return *this;
152 152
      }
153 153

	
154 154
    };
155 155

	
156 156
  };
157 157

	
158 158
  template<typename GR>
159 159
  class GraphAdaptorBase {
160 160
  public:
161 161
    typedef GR Graph;
162 162

	
163 163
  protected:
164 164
    GR* _graph;
165 165

	
166 166
    GraphAdaptorBase() : _graph(0) {}
167 167

	
168 168
    void initialize(GR& graph) { _graph = &graph; }
169 169

	
170 170
  public:
171 171
    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
172 172

	
173 173
    typedef typename GR::Node Node;
174 174
    typedef typename GR::Arc Arc;
175 175
    typedef typename GR::Edge Edge;
176 176

	
177 177
    void first(Node& i) const { _graph->first(i); }
178 178
    void first(Arc& i) const { _graph->first(i); }
179 179
    void first(Edge& i) const { _graph->first(i); }
180 180
    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
181 181
    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
182 182
    void firstInc(Edge &i, bool &d, const Node &n) const {
183 183
      _graph->firstInc(i, d, n);
184 184
    }
185 185

	
186 186
    void next(Node& i) const { _graph->next(i); }
187 187
    void next(Arc& i) const { _graph->next(i); }
188 188
    void next(Edge& i) const { _graph->next(i); }
189 189
    void nextIn(Arc& i) const { _graph->nextIn(i); }
190 190
    void nextOut(Arc& i) const { _graph->nextOut(i); }
191 191
    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
192 192

	
193 193
    Node u(const Edge& e) const { return _graph->u(e); }
194 194
    Node v(const Edge& e) const { return _graph->v(e); }
195 195

	
196 196
    Node source(const Arc& a) const { return _graph->source(a); }
197 197
    Node target(const Arc& a) const { return _graph->target(a); }
198 198

	
199 199
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
200 200
    int nodeNum() const { return _graph->nodeNum(); }
201 201

	
202 202
    typedef ArcNumTagIndicator<Graph> ArcNumTag;
203 203
    int arcNum() const { return _graph->arcNum(); }
204 204

	
205 205
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
206 206
    int edgeNum() const { return _graph->edgeNum(); }
207 207

	
208 208
    typedef FindArcTagIndicator<Graph> FindArcTag;
209 209
    Arc findArc(const Node& u, const Node& v,
210 210
                const Arc& prev = INVALID) const {
211 211
      return _graph->findArc(u, v, prev);
212 212
    }
213 213

	
214 214
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
215 215
    Edge findEdge(const Node& u, const Node& v,
216 216
                  const Edge& prev = INVALID) const {
217 217
      return _graph->findEdge(u, v, prev);
218 218
    }
219 219

	
220 220
    Node addNode() { return _graph->addNode(); }
221 221
    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
222 222

	
223 223
    void erase(const Node& i) { _graph->erase(i); }
224 224
    void erase(const Edge& i) { _graph->erase(i); }
225 225

	
226 226
    void clear() { _graph->clear(); }
227 227

	
228 228
    bool direction(const Arc& a) const { return _graph->direction(a); }
229 229
    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
230 230

	
231 231
    int id(const Node& v) const { return _graph->id(v); }
232 232
    int id(const Arc& a) const { return _graph->id(a); }
233 233
    int id(const Edge& e) const { return _graph->id(e); }
234 234

	
235 235
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
236 236
    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
237 237
    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
238 238

	
239 239
    int maxNodeId() const { return _graph->maxNodeId(); }
240 240
    int maxArcId() const { return _graph->maxArcId(); }
241 241
    int maxEdgeId() const { return _graph->maxEdgeId(); }
242 242

	
243 243
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
244 244
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
245 245

	
246 246
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
247 247
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
248 248

	
249 249
    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
250 250
    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
251 251

	
252 252
    template <typename V>
253 253
    class NodeMap : public GR::template NodeMap<V> {
254 254
      typedef typename GR::template NodeMap<V> Parent;
255 255

	
256 256
    public:
257 257
      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
258 258
        : Parent(*adapter._graph) {}
259 259
      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
260 260
        : Parent(*adapter._graph, value) {}
261 261

	
262 262
    private:
263 263
      NodeMap& operator=(const NodeMap& cmap) {
264 264
        return operator=<NodeMap>(cmap);
265 265
      }
266 266

	
267 267
      template <typename CMap>
268 268
      NodeMap& operator=(const CMap& cmap) {
269 269
        Parent::operator=(cmap);
270 270
        return *this;
271 271
      }
272 272

	
273 273
    };
274 274

	
275 275
    template <typename V>
276 276
    class ArcMap : public GR::template ArcMap<V> {
277 277
      typedef typename GR::template ArcMap<V> Parent;
278 278

	
279 279
    public:
280 280
      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
281 281
        : Parent(*adapter._graph) {}
282 282
      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
283 283
        : Parent(*adapter._graph, value) {}
284 284

	
285 285
    private:
286 286
      ArcMap& operator=(const ArcMap& cmap) {
287 287
        return operator=<ArcMap>(cmap);
288 288
      }
289 289

	
290 290
      template <typename CMap>
291 291
      ArcMap& operator=(const CMap& cmap) {
292 292
        Parent::operator=(cmap);
293 293
        return *this;
294 294
      }
295 295
    };
296 296

	
297 297
    template <typename V>
298 298
    class EdgeMap : public GR::template EdgeMap<V> {
299 299
      typedef typename GR::template EdgeMap<V> Parent;
300 300

	
301 301
    public:
302 302
      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
303 303
        : Parent(*adapter._graph) {}
304 304
      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
305 305
        : Parent(*adapter._graph, value) {}
306 306

	
307 307
    private:
308 308
      EdgeMap& operator=(const EdgeMap& cmap) {
309 309
        return operator=<EdgeMap>(cmap);
310 310
      }
311 311

	
312 312
      template <typename CMap>
313 313
      EdgeMap& operator=(const CMap& cmap) {
314 314
        Parent::operator=(cmap);
315 315
        return *this;
316 316
      }
317 317
    };
318 318

	
319 319
  };
320 320

	
321 321
  template <typename DGR>
322 322
  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
323 323
    typedef DigraphAdaptorBase<DGR> Parent;
324 324
  public:
325 325
    typedef DGR Digraph;
326 326
  protected:
327 327
    ReverseDigraphBase() : Parent() { }
328 328
  public:
329 329
    typedef typename Parent::Node Node;
330 330
    typedef typename Parent::Arc Arc;
331 331

	
332 332
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
333 333
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
334 334

	
335 335
    void nextIn(Arc& a) const { Parent::nextOut(a); }
336 336
    void nextOut(Arc& a) const { Parent::nextIn(a); }
337 337

	
338 338
    Node source(const Arc& a) const { return Parent::target(a); }
339 339
    Node target(const Arc& a) const { return Parent::source(a); }
340 340

	
341 341
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
342 342

	
343 343
    typedef FindArcTagIndicator<DGR> FindArcTag;
344 344
    Arc findArc(const Node& u, const Node& v,
345 345
                const Arc& prev = INVALID) const {
346 346
      return Parent::findArc(v, u, prev);
347 347
    }
348 348

	
349 349
  };
350 350

	
351 351
  /// \ingroup graph_adaptors
352 352
  ///
353 353
  /// \brief Adaptor class for reversing the orientation of the arcs in
354 354
  /// a digraph.
355 355
  ///
356 356
  /// ReverseDigraph can be used for reversing the arcs in a digraph.
357 357
  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
358 358
  ///
359 359
  /// The adapted digraph can also be modified through this adaptor
360 360
  /// by adding or removing nodes or arcs, unless the \c GR template
361 361
  /// parameter is set to be \c const.
362 362
  ///
363 363
  /// \tparam DGR The type of the adapted digraph.
364 364
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
365 365
  /// It can also be specified to be \c const.
366 366
  ///
367 367
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
368 368
  /// digraph are convertible to each other.
369 369
  template<typename DGR>
370 370
#ifdef DOXYGEN
371 371
  class ReverseDigraph {
372 372
#else
373 373
  class ReverseDigraph :
374 374
    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
375 375
#endif
376 376
    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
377 377
  public:
378 378
    /// The type of the adapted digraph.
379 379
    typedef DGR Digraph;
380 380
  protected:
381 381
    ReverseDigraph() { }
382 382
  public:
383 383

	
384 384
    /// \brief Constructor
385 385
    ///
386 386
    /// Creates a reverse digraph adaptor for the given digraph.
387 387
    explicit ReverseDigraph(DGR& digraph) {
388 388
      Parent::initialize(digraph);
389 389
    }
390 390
  };
391 391

	
392 392
  /// \brief Returns a read-only ReverseDigraph adaptor
393 393
  ///
394 394
  /// This function just returns a read-only \ref ReverseDigraph adaptor.
395 395
  /// \ingroup graph_adaptors
396 396
  /// \relates ReverseDigraph
397 397
  template<typename DGR>
398 398
  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
399 399
    return ReverseDigraph<const DGR>(digraph);
400 400
  }
401 401

	
402 402

	
403 403
  template <typename DGR, typename NF, typename AF, bool ch = true>
404 404
  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
405 405
    typedef DigraphAdaptorBase<DGR> Parent;
406 406
  public:
407 407
    typedef DGR Digraph;
408 408
    typedef NF NodeFilterMap;
409 409
    typedef AF ArcFilterMap;
410 410

	
411 411
    typedef SubDigraphBase Adaptor;
412 412
  protected:
413 413
    NF* _node_filter;
414 414
    AF* _arc_filter;
415 415
    SubDigraphBase()
416 416
      : Parent(), _node_filter(0), _arc_filter(0) { }
417 417

	
418 418
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
419 419
      Parent::initialize(digraph);
420 420
      _node_filter = &node_filter;
421
      _arc_filter = &arc_filter;      
421
      _arc_filter = &arc_filter;
422 422
    }
423 423

	
424 424
  public:
425 425

	
426 426
    typedef typename Parent::Node Node;
427 427
    typedef typename Parent::Arc Arc;
428 428

	
429 429
    void first(Node& i) const {
430 430
      Parent::first(i);
431 431
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
432 432
    }
433 433

	
434 434
    void first(Arc& i) const {
435 435
      Parent::first(i);
436 436
      while (i != INVALID && (!(*_arc_filter)[i]
437 437
                              || !(*_node_filter)[Parent::source(i)]
438 438
                              || !(*_node_filter)[Parent::target(i)]))
439 439
        Parent::next(i);
440 440
    }
441 441

	
442 442
    void firstIn(Arc& i, const Node& n) const {
443 443
      Parent::firstIn(i, n);
444 444
      while (i != INVALID && (!(*_arc_filter)[i]
445 445
                              || !(*_node_filter)[Parent::source(i)]))
446 446
        Parent::nextIn(i);
447 447
    }
448 448

	
449 449
    void firstOut(Arc& i, const Node& n) const {
450 450
      Parent::firstOut(i, n);
451 451
      while (i != INVALID && (!(*_arc_filter)[i]
452 452
                              || !(*_node_filter)[Parent::target(i)]))
453 453
        Parent::nextOut(i);
454 454
    }
455 455

	
456 456
    void next(Node& i) const {
457 457
      Parent::next(i);
458 458
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
459 459
    }
460 460

	
461 461
    void next(Arc& i) const {
462 462
      Parent::next(i);
463 463
      while (i != INVALID && (!(*_arc_filter)[i]
464 464
                              || !(*_node_filter)[Parent::source(i)]
465 465
                              || !(*_node_filter)[Parent::target(i)]))
466 466
        Parent::next(i);
467 467
    }
468 468

	
469 469
    void nextIn(Arc& i) const {
470 470
      Parent::nextIn(i);
471 471
      while (i != INVALID && (!(*_arc_filter)[i]
472 472
                              || !(*_node_filter)[Parent::source(i)]))
473 473
        Parent::nextIn(i);
474 474
    }
475 475

	
476 476
    void nextOut(Arc& i) const {
477 477
      Parent::nextOut(i);
478 478
      while (i != INVALID && (!(*_arc_filter)[i]
479 479
                              || !(*_node_filter)[Parent::target(i)]))
480 480
        Parent::nextOut(i);
481 481
    }
482 482

	
483 483
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
484 484
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
485 485

	
486 486
    bool status(const Node& n) const { return (*_node_filter)[n]; }
487 487
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
488 488

	
489 489
    typedef False NodeNumTag;
490 490
    typedef False ArcNumTag;
491 491

	
492 492
    typedef FindArcTagIndicator<DGR> FindArcTag;
493 493
    Arc findArc(const Node& source, const Node& target,
494 494
                const Arc& prev = INVALID) const {
495 495
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
496 496
        return INVALID;
497 497
      }
498 498
      Arc arc = Parent::findArc(source, target, prev);
499 499
      while (arc != INVALID && !(*_arc_filter)[arc]) {
500 500
        arc = Parent::findArc(source, target, arc);
501 501
      }
502 502
      return arc;
503 503
    }
504 504

	
505 505
  public:
506 506

	
507 507
    template <typename V>
508
    class NodeMap 
509
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, 
510
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
508
    class NodeMap
509
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
510
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
511 511
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
512
	LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
512
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
513 513

	
514 514
    public:
515 515
      typedef V Value;
516 516

	
517 517
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
518 518
        : Parent(adaptor) {}
519 519
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
520 520
        : Parent(adaptor, value) {}
521 521

	
522 522
    private:
523 523
      NodeMap& operator=(const NodeMap& cmap) {
524 524
        return operator=<NodeMap>(cmap);
525 525
      }
526 526

	
527 527
      template <typename CMap>
528 528
      NodeMap& operator=(const CMap& cmap) {
529 529
        Parent::operator=(cmap);
530 530
        return *this;
531 531
      }
532 532
    };
533 533

	
534 534
    template <typename V>
535
    class ArcMap 
535
    class ArcMap
536 536
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
537
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
537
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
538 538
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
539 539
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
540 540

	
541 541
    public:
542 542
      typedef V Value;
543 543

	
544 544
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
545 545
        : Parent(adaptor) {}
546 546
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
547 547
        : Parent(adaptor, value) {}
548 548

	
549 549
    private:
550 550
      ArcMap& operator=(const ArcMap& cmap) {
551 551
        return operator=<ArcMap>(cmap);
552 552
      }
553 553

	
554 554
      template <typename CMap>
555 555
      ArcMap& operator=(const CMap& cmap) {
556 556
        Parent::operator=(cmap);
557 557
        return *this;
558 558
      }
559 559
    };
560 560

	
561 561
  };
562 562

	
563 563
  template <typename DGR, typename NF, typename AF>
564 564
  class SubDigraphBase<DGR, NF, AF, false>
565 565
    : public DigraphAdaptorBase<DGR> {
566 566
    typedef DigraphAdaptorBase<DGR> Parent;
567 567
  public:
568 568
    typedef DGR Digraph;
569 569
    typedef NF NodeFilterMap;
570 570
    typedef AF ArcFilterMap;
571 571

	
572 572
    typedef SubDigraphBase Adaptor;
573 573
  protected:
574 574
    NF* _node_filter;
575 575
    AF* _arc_filter;
576 576
    SubDigraphBase()
577 577
      : Parent(), _node_filter(0), _arc_filter(0) { }
578 578

	
579 579
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
580 580
      Parent::initialize(digraph);
581 581
      _node_filter = &node_filter;
582
      _arc_filter = &arc_filter;      
582
      _arc_filter = &arc_filter;
583 583
    }
584 584

	
585 585
  public:
586 586

	
587 587
    typedef typename Parent::Node Node;
588 588
    typedef typename Parent::Arc Arc;
589 589

	
590 590
    void first(Node& i) const {
591 591
      Parent::first(i);
592 592
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
593 593
    }
594 594

	
595 595
    void first(Arc& i) const {
596 596
      Parent::first(i);
597 597
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
598 598
    }
599 599

	
600 600
    void firstIn(Arc& i, const Node& n) const {
601 601
      Parent::firstIn(i, n);
602 602
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
603 603
    }
604 604

	
605 605
    void firstOut(Arc& i, const Node& n) const {
606 606
      Parent::firstOut(i, n);
607 607
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
608 608
    }
609 609

	
610 610
    void next(Node& i) const {
611 611
      Parent::next(i);
612 612
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
613 613
    }
614 614
    void next(Arc& i) const {
615 615
      Parent::next(i);
616 616
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
617 617
    }
618 618
    void nextIn(Arc& i) const {
619 619
      Parent::nextIn(i);
620 620
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
621 621
    }
622 622

	
623 623
    void nextOut(Arc& i) const {
624 624
      Parent::nextOut(i);
625 625
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
626 626
    }
627 627

	
628 628
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
629 629
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
630 630

	
631 631
    bool status(const Node& n) const { return (*_node_filter)[n]; }
632 632
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
633 633

	
634 634
    typedef False NodeNumTag;
635 635
    typedef False ArcNumTag;
636 636

	
637 637
    typedef FindArcTagIndicator<DGR> FindArcTag;
638 638
    Arc findArc(const Node& source, const Node& target,
639 639
                const Arc& prev = INVALID) const {
640 640
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
641 641
        return INVALID;
642 642
      }
643 643
      Arc arc = Parent::findArc(source, target, prev);
644 644
      while (arc != INVALID && !(*_arc_filter)[arc]) {
645 645
        arc = Parent::findArc(source, target, arc);
646 646
      }
647 647
      return arc;
648 648
    }
649 649

	
650 650
    template <typename V>
651
    class NodeMap 
651
    class NodeMap
652 652
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
653 653
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
654
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, 
654
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
655 655
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
656 656

	
657 657
    public:
658 658
      typedef V Value;
659 659

	
660 660
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
661 661
        : Parent(adaptor) {}
662 662
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
663 663
        : Parent(adaptor, value) {}
664 664

	
665 665
    private:
666 666
      NodeMap& operator=(const NodeMap& cmap) {
667 667
        return operator=<NodeMap>(cmap);
668 668
      }
669 669

	
670 670
      template <typename CMap>
671 671
      NodeMap& operator=(const CMap& cmap) {
672 672
        Parent::operator=(cmap);
673 673
        return *this;
674 674
      }
675 675
    };
676 676

	
677 677
    template <typename V>
678
    class ArcMap 
678
    class ArcMap
679 679
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
680 680
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
681 681
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
682 682
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
683 683

	
684 684
    public:
685 685
      typedef V Value;
686 686

	
687 687
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
688 688
        : Parent(adaptor) {}
689 689
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
690 690
        : Parent(adaptor, value) {}
691 691

	
692 692
    private:
693 693
      ArcMap& operator=(const ArcMap& cmap) {
694 694
        return operator=<ArcMap>(cmap);
695 695
      }
696 696

	
697 697
      template <typename CMap>
698 698
      ArcMap& operator=(const CMap& cmap) {
699 699
        Parent::operator=(cmap);
700 700
        return *this;
701 701
      }
702 702
    };
703 703

	
704 704
  };
705 705

	
706 706
  /// \ingroup graph_adaptors
707 707
  ///
708 708
  /// \brief Adaptor class for hiding nodes and arcs in a digraph
709 709
  ///
710 710
  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
711 711
  /// A \c bool node map and a \c bool arc map must be specified, which
712 712
  /// define the filters for nodes and arcs.
713 713
  /// Only the nodes and arcs with \c true filter value are
714 714
  /// shown in the subdigraph. The arcs that are incident to hidden
715 715
  /// nodes are also filtered out.
716 716
  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
717 717
  ///
718 718
  /// The adapted digraph can also be modified through this adaptor
719 719
  /// by adding or removing nodes or arcs, unless the \c GR template
720 720
  /// parameter is set to be \c const.
721 721
  ///
722 722
  /// \tparam DGR The type of the adapted digraph.
723 723
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
724 724
  /// It can also be specified to be \c const.
725 725
  /// \tparam NF The type of the node filter map.
726 726
  /// It must be a \c bool (or convertible) node map of the
727 727
  /// adapted digraph. The default type is
728 728
  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
729 729
  /// \tparam AF The type of the arc filter map.
730 730
  /// It must be \c bool (or convertible) arc map of the
731 731
  /// adapted digraph. The default type is
732 732
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
733 733
  ///
734 734
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
735 735
  /// digraph are convertible to each other.
736 736
  ///
737 737
  /// \see FilterNodes
738 738
  /// \see FilterArcs
739 739
#ifdef DOXYGEN
740 740
  template<typename DGR, typename NF, typename AF>
741 741
  class SubDigraph {
742 742
#else
743 743
  template<typename DGR,
744 744
           typename NF = typename DGR::template NodeMap<bool>,
745 745
           typename AF = typename DGR::template ArcMap<bool> >
746 746
  class SubDigraph :
747 747
    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
748 748
#endif
749 749
  public:
750 750
    /// The type of the adapted digraph.
751 751
    typedef DGR Digraph;
752 752
    /// The type of the node filter map.
753 753
    typedef NF NodeFilterMap;
754 754
    /// The type of the arc filter map.
755 755
    typedef AF ArcFilterMap;
756 756

	
757 757
    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
758 758
      Parent;
759 759

	
760 760
    typedef typename Parent::Node Node;
761 761
    typedef typename Parent::Arc Arc;
762 762

	
763 763
  protected:
764 764
    SubDigraph() { }
765 765
  public:
766 766

	
767 767
    /// \brief Constructor
768 768
    ///
769 769
    /// Creates a subdigraph for the given digraph with the
770 770
    /// given node and arc filter maps.
771 771
    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
772 772
      Parent::initialize(digraph, node_filter, arc_filter);
773 773
    }
774 774

	
775 775
    /// \brief Sets the status of the given node
776 776
    ///
777 777
    /// This function sets the status of the given node.
778 778
    /// It is done by simply setting the assigned value of \c n
779 779
    /// to \c v in the node filter map.
780 780
    void status(const Node& n, bool v) const { Parent::status(n, v); }
781 781

	
782 782
    /// \brief Sets the status of the given arc
783 783
    ///
784 784
    /// This function sets the status of the given arc.
785 785
    /// It is done by simply setting the assigned value of \c a
786 786
    /// to \c v in the arc filter map.
787 787
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
788 788

	
789 789
    /// \brief Returns the status of the given node
790 790
    ///
791 791
    /// This function returns the status of the given node.
792 792
    /// It is \c true if the given node is enabled (i.e. not hidden).
793 793
    bool status(const Node& n) const { return Parent::status(n); }
794 794

	
795 795
    /// \brief Returns the status of the given arc
796 796
    ///
797 797
    /// This function returns the status of the given arc.
798 798
    /// It is \c true if the given arc is enabled (i.e. not hidden).
799 799
    bool status(const Arc& a) const { return Parent::status(a); }
800 800

	
801 801
    /// \brief Disables the given node
802 802
    ///
803 803
    /// This function disables the given node in the subdigraph,
804 804
    /// so the iteration jumps over it.
805 805
    /// It is the same as \ref status() "status(n, false)".
806 806
    void disable(const Node& n) const { Parent::status(n, false); }
807 807

	
808 808
    /// \brief Disables the given arc
809 809
    ///
810 810
    /// This function disables the given arc in the subdigraph,
811 811
    /// so the iteration jumps over it.
812 812
    /// It is the same as \ref status() "status(a, false)".
813 813
    void disable(const Arc& a) const { Parent::status(a, false); }
814 814

	
815 815
    /// \brief Enables the given node
816 816
    ///
817 817
    /// This function enables the given node in the subdigraph.
818 818
    /// It is the same as \ref status() "status(n, true)".
819 819
    void enable(const Node& n) const { Parent::status(n, true); }
820 820

	
821 821
    /// \brief Enables the given arc
822 822
    ///
823 823
    /// This function enables the given arc in the subdigraph.
824 824
    /// It is the same as \ref status() "status(a, true)".
825 825
    void enable(const Arc& a) const { Parent::status(a, true); }
826 826

	
827 827
  };
828 828

	
829 829
  /// \brief Returns a read-only SubDigraph adaptor
830 830
  ///
831 831
  /// This function just returns a read-only \ref SubDigraph adaptor.
832 832
  /// \ingroup graph_adaptors
833 833
  /// \relates SubDigraph
834 834
  template<typename DGR, typename NF, typename AF>
835 835
  SubDigraph<const DGR, NF, AF>
836 836
  subDigraph(const DGR& digraph,
837 837
             NF& node_filter, AF& arc_filter) {
838 838
    return SubDigraph<const DGR, NF, AF>
839 839
      (digraph, node_filter, arc_filter);
840 840
  }
841 841

	
842 842
  template<typename DGR, typename NF, typename AF>
843 843
  SubDigraph<const DGR, const NF, AF>
844 844
  subDigraph(const DGR& digraph,
845 845
             const NF& node_filter, AF& arc_filter) {
846 846
    return SubDigraph<const DGR, const NF, AF>
847 847
      (digraph, node_filter, arc_filter);
848 848
  }
849 849

	
850 850
  template<typename DGR, typename NF, typename AF>
851 851
  SubDigraph<const DGR, NF, const AF>
852 852
  subDigraph(const DGR& digraph,
853 853
             NF& node_filter, const AF& arc_filter) {
854 854
    return SubDigraph<const DGR, NF, const AF>
855 855
      (digraph, node_filter, arc_filter);
856 856
  }
857 857

	
858 858
  template<typename DGR, typename NF, typename AF>
859 859
  SubDigraph<const DGR, const NF, const AF>
860 860
  subDigraph(const DGR& digraph,
861 861
             const NF& node_filter, const AF& arc_filter) {
862 862
    return SubDigraph<const DGR, const NF, const AF>
863 863
      (digraph, node_filter, arc_filter);
864 864
  }
865 865

	
866 866

	
867 867
  template <typename GR, typename NF, typename EF, bool ch = true>
868 868
  class SubGraphBase : public GraphAdaptorBase<GR> {
869 869
    typedef GraphAdaptorBase<GR> Parent;
870 870
  public:
871 871
    typedef GR Graph;
872 872
    typedef NF NodeFilterMap;
873 873
    typedef EF EdgeFilterMap;
874 874

	
875 875
    typedef SubGraphBase Adaptor;
876 876
  protected:
877 877

	
878 878
    NF* _node_filter;
879 879
    EF* _edge_filter;
880 880

	
881 881
    SubGraphBase()
882 882
      : Parent(), _node_filter(0), _edge_filter(0) { }
883 883

	
884 884
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
885 885
      Parent::initialize(graph);
886 886
      _node_filter = &node_filter;
887 887
      _edge_filter = &edge_filter;
888 888
    }
889 889

	
890 890
  public:
891 891

	
892 892
    typedef typename Parent::Node Node;
893 893
    typedef typename Parent::Arc Arc;
894 894
    typedef typename Parent::Edge Edge;
895 895

	
896 896
    void first(Node& i) const {
897 897
      Parent::first(i);
898 898
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
899 899
    }
900 900

	
901 901
    void first(Arc& i) const {
902 902
      Parent::first(i);
903 903
      while (i!=INVALID && (!(*_edge_filter)[i]
904 904
                            || !(*_node_filter)[Parent::source(i)]
905 905
                            || !(*_node_filter)[Parent::target(i)]))
906 906
        Parent::next(i);
907 907
    }
908 908

	
909 909
    void first(Edge& i) const {
910 910
      Parent::first(i);
911 911
      while (i!=INVALID && (!(*_edge_filter)[i]
912 912
                            || !(*_node_filter)[Parent::u(i)]
913 913
                            || !(*_node_filter)[Parent::v(i)]))
914 914
        Parent::next(i);
915 915
    }
916 916

	
917 917
    void firstIn(Arc& i, const Node& n) const {
918 918
      Parent::firstIn(i, n);
919 919
      while (i!=INVALID && (!(*_edge_filter)[i]
920 920
                            || !(*_node_filter)[Parent::source(i)]))
921 921
        Parent::nextIn(i);
922 922
    }
923 923

	
924 924
    void firstOut(Arc& i, const Node& n) const {
925 925
      Parent::firstOut(i, n);
926 926
      while (i!=INVALID && (!(*_edge_filter)[i]
927 927
                            || !(*_node_filter)[Parent::target(i)]))
928 928
        Parent::nextOut(i);
929 929
    }
930 930

	
931 931
    void firstInc(Edge& i, bool& d, const Node& n) const {
932 932
      Parent::firstInc(i, d, n);
933 933
      while (i!=INVALID && (!(*_edge_filter)[i]
934 934
                            || !(*_node_filter)[Parent::u(i)]
935 935
                            || !(*_node_filter)[Parent::v(i)]))
936 936
        Parent::nextInc(i, d);
937 937
    }
938 938

	
939 939
    void next(Node& i) const {
940 940
      Parent::next(i);
941 941
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
942 942
    }
943 943

	
944 944
    void next(Arc& i) const {
945 945
      Parent::next(i);
946 946
      while (i!=INVALID && (!(*_edge_filter)[i]
947 947
                            || !(*_node_filter)[Parent::source(i)]
948 948
                            || !(*_node_filter)[Parent::target(i)]))
949 949
        Parent::next(i);
950 950
    }
951 951

	
952 952
    void next(Edge& i) const {
953 953
      Parent::next(i);
954 954
      while (i!=INVALID && (!(*_edge_filter)[i]
955 955
                            || !(*_node_filter)[Parent::u(i)]
956 956
                            || !(*_node_filter)[Parent::v(i)]))
957 957
        Parent::next(i);
958 958
    }
959 959

	
960 960
    void nextIn(Arc& i) const {
961 961
      Parent::nextIn(i);
962 962
      while (i!=INVALID && (!(*_edge_filter)[i]
963 963
                            || !(*_node_filter)[Parent::source(i)]))
964 964
        Parent::nextIn(i);
965 965
    }
966 966

	
967 967
    void nextOut(Arc& i) const {
968 968
      Parent::nextOut(i);
969 969
      while (i!=INVALID && (!(*_edge_filter)[i]
970 970
                            || !(*_node_filter)[Parent::target(i)]))
971 971
        Parent::nextOut(i);
972 972
    }
973 973

	
974 974
    void nextInc(Edge& i, bool& d) const {
975 975
      Parent::nextInc(i, d);
976 976
      while (i!=INVALID && (!(*_edge_filter)[i]
977 977
                            || !(*_node_filter)[Parent::u(i)]
978 978
                            || !(*_node_filter)[Parent::v(i)]))
979 979
        Parent::nextInc(i, d);
980 980
    }
981 981

	
982 982
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
983 983
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
984 984

	
985 985
    bool status(const Node& n) const { return (*_node_filter)[n]; }
986 986
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
987 987

	
988 988
    typedef False NodeNumTag;
989 989
    typedef False ArcNumTag;
990 990
    typedef False EdgeNumTag;
991 991

	
992 992
    typedef FindArcTagIndicator<Graph> FindArcTag;
993 993
    Arc findArc(const Node& u, const Node& v,
994 994
                const Arc& prev = INVALID) const {
995 995
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
996 996
        return INVALID;
997 997
      }
998 998
      Arc arc = Parent::findArc(u, v, prev);
999 999
      while (arc != INVALID && !(*_edge_filter)[arc]) {
1000 1000
        arc = Parent::findArc(u, v, arc);
1001 1001
      }
1002 1002
      return arc;
1003 1003
    }
1004 1004

	
1005 1005
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1006 1006
    Edge findEdge(const Node& u, const Node& v,
1007 1007
                  const Edge& prev = INVALID) const {
1008 1008
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
1009 1009
        return INVALID;
1010 1010
      }
1011 1011
      Edge edge = Parent::findEdge(u, v, prev);
1012 1012
      while (edge != INVALID && !(*_edge_filter)[edge]) {
1013 1013
        edge = Parent::findEdge(u, v, edge);
1014 1014
      }
1015 1015
      return edge;
1016 1016
    }
1017 1017

	
1018 1018
    template <typename V>
1019
    class NodeMap 
1019
    class NodeMap
1020 1020
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1021 1021
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1022
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1022
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1023 1023
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1024 1024

	
1025 1025
    public:
1026 1026
      typedef V Value;
1027 1027

	
1028 1028
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1029 1029
        : Parent(adaptor) {}
1030 1030
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1031 1031
        : Parent(adaptor, value) {}
1032 1032

	
1033 1033
    private:
1034 1034
      NodeMap& operator=(const NodeMap& cmap) {
1035 1035
        return operator=<NodeMap>(cmap);
1036 1036
      }
1037 1037

	
1038 1038
      template <typename CMap>
1039 1039
      NodeMap& operator=(const CMap& cmap) {
1040 1040
        Parent::operator=(cmap);
1041 1041
        return *this;
1042 1042
      }
1043 1043
    };
1044 1044

	
1045 1045
    template <typename V>
1046
    class ArcMap 
1046
    class ArcMap
1047 1047
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1048 1048
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1049
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1049
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1050 1050
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1051 1051

	
1052 1052
    public:
1053 1053
      typedef V Value;
1054 1054

	
1055 1055
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1056 1056
        : Parent(adaptor) {}
1057 1057
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1058 1058
        : Parent(adaptor, value) {}
1059 1059

	
1060 1060
    private:
1061 1061
      ArcMap& operator=(const ArcMap& cmap) {
1062 1062
        return operator=<ArcMap>(cmap);
1063 1063
      }
1064 1064

	
1065 1065
      template <typename CMap>
1066 1066
      ArcMap& operator=(const CMap& cmap) {
1067 1067
        Parent::operator=(cmap);
1068 1068
        return *this;
1069 1069
      }
1070 1070
    };
1071 1071

	
1072 1072
    template <typename V>
1073
    class EdgeMap 
1073
    class EdgeMap
1074 1074
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1075 1075
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1076
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1076
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1077 1077
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1078 1078

	
1079 1079
    public:
1080 1080
      typedef V Value;
1081 1081

	
1082 1082
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
1083 1083
        : Parent(adaptor) {}
1084 1084

	
1085 1085
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
1086 1086
        : Parent(adaptor, value) {}
1087 1087

	
1088 1088
    private:
1089 1089
      EdgeMap& operator=(const EdgeMap& cmap) {
1090 1090
        return operator=<EdgeMap>(cmap);
1091 1091
      }
1092 1092

	
1093 1093
      template <typename CMap>
1094 1094
      EdgeMap& operator=(const CMap& cmap) {
1095 1095
        Parent::operator=(cmap);
1096 1096
        return *this;
1097 1097
      }
1098 1098
    };
1099 1099

	
1100 1100
  };
1101 1101

	
1102 1102
  template <typename GR, typename NF, typename EF>
1103 1103
  class SubGraphBase<GR, NF, EF, false>
1104 1104
    : public GraphAdaptorBase<GR> {
1105 1105
    typedef GraphAdaptorBase<GR> Parent;
1106 1106
  public:
1107 1107
    typedef GR Graph;
1108 1108
    typedef NF NodeFilterMap;
1109 1109
    typedef EF EdgeFilterMap;
1110 1110

	
1111 1111
    typedef SubGraphBase Adaptor;
1112 1112
  protected:
1113 1113
    NF* _node_filter;
1114 1114
    EF* _edge_filter;
1115
    SubGraphBase() 
1116
	  : Parent(), _node_filter(0), _edge_filter(0) { }
1115
    SubGraphBase()
1116
          : Parent(), _node_filter(0), _edge_filter(0) { }
1117 1117

	
1118 1118
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1119 1119
      Parent::initialize(graph);
1120 1120
      _node_filter = &node_filter;
1121 1121
      _edge_filter = &edge_filter;
1122 1122
    }
1123 1123

	
1124 1124
  public:
1125 1125

	
1126 1126
    typedef typename Parent::Node Node;
1127 1127
    typedef typename Parent::Arc Arc;
1128 1128
    typedef typename Parent::Edge Edge;
1129 1129

	
1130 1130
    void first(Node& i) const {
1131 1131
      Parent::first(i);
1132 1132
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1133 1133
    }
1134 1134

	
1135 1135
    void first(Arc& i) const {
1136 1136
      Parent::first(i);
1137 1137
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1138 1138
    }
1139 1139

	
1140 1140
    void first(Edge& i) const {
1141 1141
      Parent::first(i);
1142 1142
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1143 1143
    }
1144 1144

	
1145 1145
    void firstIn(Arc& i, const Node& n) const {
1146 1146
      Parent::firstIn(i, n);
1147 1147
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1148 1148
    }
1149 1149

	
1150 1150
    void firstOut(Arc& i, const Node& n) const {
1151 1151
      Parent::firstOut(i, n);
1152 1152
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1153 1153
    }
1154 1154

	
1155 1155
    void firstInc(Edge& i, bool& d, const Node& n) const {
1156 1156
      Parent::firstInc(i, d, n);
1157 1157
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1158 1158
    }
1159 1159

	
1160 1160
    void next(Node& i) const {
1161 1161
      Parent::next(i);
1162 1162
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
1163 1163
    }
1164 1164
    void next(Arc& i) const {
1165 1165
      Parent::next(i);
1166 1166
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1167 1167
    }
1168 1168
    void next(Edge& i) const {
1169 1169
      Parent::next(i);
1170 1170
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
1171 1171
    }
1172 1172
    void nextIn(Arc& i) const {
1173 1173
      Parent::nextIn(i);
1174 1174
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
1175 1175
    }
1176 1176

	
1177 1177
    void nextOut(Arc& i) const {
1178 1178
      Parent::nextOut(i);
1179 1179
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
1180 1180
    }
1181 1181
    void nextInc(Edge& i, bool& d) const {
1182 1182
      Parent::nextInc(i, d);
1183 1183
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
1184 1184
    }
1185 1185

	
1186 1186
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
1187 1187
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
1188 1188

	
1189 1189
    bool status(const Node& n) const { return (*_node_filter)[n]; }
1190 1190
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
1191 1191

	
1192 1192
    typedef False NodeNumTag;
1193 1193
    typedef False ArcNumTag;
1194 1194
    typedef False EdgeNumTag;
1195 1195

	
1196 1196
    typedef FindArcTagIndicator<Graph> FindArcTag;
1197 1197
    Arc findArc(const Node& u, const Node& v,
1198 1198
                const Arc& prev = INVALID) const {
1199 1199
      Arc arc = Parent::findArc(u, v, prev);
1200 1200
      while (arc != INVALID && !(*_edge_filter)[arc]) {
1201 1201
        arc = Parent::findArc(u, v, arc);
1202 1202
      }
1203 1203
      return arc;
1204 1204
    }
1205 1205

	
1206 1206
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
1207 1207
    Edge findEdge(const Node& u, const Node& v,
1208 1208
                  const Edge& prev = INVALID) const {
1209 1209
      Edge edge = Parent::findEdge(u, v, prev);
1210 1210
      while (edge != INVALID && !(*_edge_filter)[edge]) {
1211 1211
        edge = Parent::findEdge(u, v, edge);
1212 1212
      }
1213 1213
      return edge;
1214 1214
    }
1215 1215

	
1216 1216
    template <typename V>
1217
    class NodeMap 
1217
    class NodeMap
1218 1218
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1219 1219
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1220
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1220
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1221 1221
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1222 1222

	
1223 1223
    public:
1224 1224
      typedef V Value;
1225 1225

	
1226 1226
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1227 1227
        : Parent(adaptor) {}
1228 1228
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1229 1229
        : Parent(adaptor, value) {}
1230 1230

	
1231 1231
    private:
1232 1232
      NodeMap& operator=(const NodeMap& cmap) {
1233 1233
        return operator=<NodeMap>(cmap);
1234 1234
      }
1235 1235

	
1236 1236
      template <typename CMap>
1237 1237
      NodeMap& operator=(const CMap& cmap) {
1238 1238
        Parent::operator=(cmap);
1239 1239
        return *this;
1240 1240
      }
1241 1241
    };
1242 1242

	
1243 1243
    template <typename V>
1244
    class ArcMap 
1244
    class ArcMap
1245 1245
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1246 1246
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1247
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1247
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1248 1248
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1249 1249

	
1250 1250
    public:
1251 1251
      typedef V Value;
1252 1252

	
1253 1253
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1254 1254
        : Parent(adaptor) {}
1255 1255
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1256 1256
        : Parent(adaptor, value) {}
1257 1257

	
1258 1258
    private:
1259 1259
      ArcMap& operator=(const ArcMap& cmap) {
1260 1260
        return operator=<ArcMap>(cmap);
1261 1261
      }
1262 1262

	
1263 1263
      template <typename CMap>
1264 1264
      ArcMap& operator=(const CMap& cmap) {
1265 1265
        Parent::operator=(cmap);
1266 1266
        return *this;
1267 1267
      }
1268 1268
    };
1269 1269

	
1270 1270
    template <typename V>
1271
    class EdgeMap 
1271
    class EdgeMap
1272 1272
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1273 1273
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1274
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1275
	LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1274
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1275
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1276 1276

	
1277 1277
    public:
1278 1278
      typedef V Value;
1279 1279

	
1280 1280
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1281 1281
        : Parent(adaptor) {}
1282 1282

	
1283 1283
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
1284 1284
        : Parent(adaptor, value) {}
1285 1285

	
1286 1286
    private:
1287 1287
      EdgeMap& operator=(const EdgeMap& cmap) {
1288 1288
        return operator=<EdgeMap>(cmap);
1289 1289
      }
1290 1290

	
1291 1291
      template <typename CMap>
1292 1292
      EdgeMap& operator=(const CMap& cmap) {
1293 1293
        Parent::operator=(cmap);
1294 1294
        return *this;
1295 1295
      }
1296 1296
    };
1297 1297

	
1298 1298
  };
1299 1299

	
1300 1300
  /// \ingroup graph_adaptors
1301 1301
  ///
1302 1302
  /// \brief Adaptor class for hiding nodes and edges in an undirected
1303 1303
  /// graph.
1304 1304
  ///
1305 1305
  /// SubGraph can be used for hiding nodes and edges in a graph.
1306 1306
  /// A \c bool node map and a \c bool edge map must be specified, which
1307 1307
  /// define the filters for nodes and edges.
1308 1308
  /// Only the nodes and edges with \c true filter value are
1309 1309
  /// shown in the subgraph. The edges that are incident to hidden
1310 1310
  /// nodes are also filtered out.
1311 1311
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
1312 1312
  ///
1313 1313
  /// The adapted graph can also be modified through this adaptor
1314 1314
  /// by adding or removing nodes or edges, unless the \c GR template
1315 1315
  /// parameter is set to be \c const.
1316 1316
  ///
1317 1317
  /// \tparam GR The type of the adapted graph.
1318 1318
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1319 1319
  /// It can also be specified to be \c const.
1320 1320
  /// \tparam NF The type of the node filter map.
1321 1321
  /// It must be a \c bool (or convertible) node map of the
1322 1322
  /// adapted graph. The default type is
1323 1323
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1324 1324
  /// \tparam EF The type of the edge filter map.
1325 1325
  /// It must be a \c bool (or convertible) edge map of the
1326 1326
  /// adapted graph. The default type is
1327 1327
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1328 1328
  ///
1329 1329
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1330 1330
  /// adapted graph are convertible to each other.
1331 1331
  ///
1332 1332
  /// \see FilterNodes
1333 1333
  /// \see FilterEdges
1334 1334
#ifdef DOXYGEN
1335 1335
  template<typename GR, typename NF, typename EF>
1336 1336
  class SubGraph {
1337 1337
#else
1338 1338
  template<typename GR,
1339 1339
           typename NF = typename GR::template NodeMap<bool>,
1340 1340
           typename EF = typename GR::template EdgeMap<bool> >
1341 1341
  class SubGraph :
1342 1342
    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
1343 1343
#endif
1344 1344
  public:
1345 1345
    /// The type of the adapted graph.
1346 1346
    typedef GR Graph;
1347 1347
    /// The type of the node filter map.
1348 1348
    typedef NF NodeFilterMap;
1349 1349
    /// The type of the edge filter map.
1350 1350
    typedef EF EdgeFilterMap;
1351 1351

	
1352 1352
    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
1353 1353
      Parent;
1354 1354

	
1355 1355
    typedef typename Parent::Node Node;
1356 1356
    typedef typename Parent::Edge Edge;
1357 1357

	
1358 1358
  protected:
1359 1359
    SubGraph() { }
1360 1360
  public:
1361 1361

	
1362 1362
    /// \brief Constructor
1363 1363
    ///
1364 1364
    /// Creates a subgraph for the given graph with the given node
1365 1365
    /// and edge filter maps.
1366 1366
    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
1367 1367
      initialize(graph, node_filter, edge_filter);
1368 1368
    }
1369 1369

	
1370 1370
    /// \brief Sets the status of the given node
1371 1371
    ///
1372 1372
    /// This function sets the status of the given node.
1373 1373
    /// It is done by simply setting the assigned value of \c n
1374 1374
    /// to \c v in the node filter map.
1375 1375
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1376 1376

	
1377 1377
    /// \brief Sets the status of the given edge
1378 1378
    ///
1379 1379
    /// This function sets the status of the given edge.
1380 1380
    /// It is done by simply setting the assigned value of \c e
1381 1381
    /// to \c v in the edge filter map.
1382 1382
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1383 1383

	
1384 1384
    /// \brief Returns the status of the given node
1385 1385
    ///
1386 1386
    /// This function returns the status of the given node.
1387 1387
    /// It is \c true if the given node is enabled (i.e. not hidden).
1388 1388
    bool status(const Node& n) const { return Parent::status(n); }
1389 1389

	
1390 1390
    /// \brief Returns the status of the given edge
1391 1391
    ///
1392 1392
    /// This function returns the status of the given edge.
1393 1393
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1394 1394
    bool status(const Edge& e) const { return Parent::status(e); }
1395 1395

	
1396 1396
    /// \brief Disables the given node
1397 1397
    ///
1398 1398
    /// This function disables the given node in the subdigraph,
1399 1399
    /// so the iteration jumps over it.
1400 1400
    /// It is the same as \ref status() "status(n, false)".
1401 1401
    void disable(const Node& n) const { Parent::status(n, false); }
1402 1402

	
1403 1403
    /// \brief Disables the given edge
1404 1404
    ///
1405 1405
    /// This function disables the given edge in the subgraph,
1406 1406
    /// so the iteration jumps over it.
1407 1407
    /// It is the same as \ref status() "status(e, false)".
1408 1408
    void disable(const Edge& e) const { Parent::status(e, false); }
1409 1409

	
1410 1410
    /// \brief Enables the given node
1411 1411
    ///
1412 1412
    /// This function enables the given node in the subdigraph.
1413 1413
    /// It is the same as \ref status() "status(n, true)".
1414 1414
    void enable(const Node& n) const { Parent::status(n, true); }
1415 1415

	
1416 1416
    /// \brief Enables the given edge
1417 1417
    ///
1418 1418
    /// This function enables the given edge in the subgraph.
1419 1419
    /// It is the same as \ref status() "status(e, true)".
1420 1420
    void enable(const Edge& e) const { Parent::status(e, true); }
1421 1421

	
1422 1422
  };
1423 1423

	
1424 1424
  /// \brief Returns a read-only SubGraph adaptor
1425 1425
  ///
1426 1426
  /// This function just returns a read-only \ref SubGraph adaptor.
1427 1427
  /// \ingroup graph_adaptors
1428 1428
  /// \relates SubGraph
1429 1429
  template<typename GR, typename NF, typename EF>
1430 1430
  SubGraph<const GR, NF, EF>
1431 1431
  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
1432 1432
    return SubGraph<const GR, NF, EF>
1433 1433
      (graph, node_filter, edge_filter);
1434 1434
  }
1435 1435

	
1436 1436
  template<typename GR, typename NF, typename EF>
1437 1437
  SubGraph<const GR, const NF, EF>
1438 1438
  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
1439 1439
    return SubGraph<const GR, const NF, EF>
1440 1440
      (graph, node_filter, edge_filter);
1441 1441
  }
1442 1442

	
1443 1443
  template<typename GR, typename NF, typename EF>
1444 1444
  SubGraph<const GR, NF, const EF>
1445 1445
  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
1446 1446
    return SubGraph<const GR, NF, const EF>
1447 1447
      (graph, node_filter, edge_filter);
1448 1448
  }
1449 1449

	
1450 1450
  template<typename GR, typename NF, typename EF>
1451 1451
  SubGraph<const GR, const NF, const EF>
1452 1452
  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
1453 1453
    return SubGraph<const GR, const NF, const EF>
1454 1454
      (graph, node_filter, edge_filter);
1455 1455
  }
1456 1456

	
1457 1457

	
1458 1458
  /// \ingroup graph_adaptors
1459 1459
  ///
1460 1460
  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
1461 1461
  ///
1462 1462
  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
1463 1463
  /// graph. A \c bool node map must be specified, which defines the filter
1464 1464
  /// for the nodes. Only the nodes with \c true filter value and the
1465 1465
  /// arcs/edges incident to nodes both with \c true filter value are shown
1466 1466
  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
1467 1467
  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
1468 1468
  /// depending on the \c GR template parameter.
1469 1469
  ///
1470 1470
  /// The adapted (di)graph can also be modified through this adaptor
1471 1471
  /// by adding or removing nodes or arcs/edges, unless the \c GR template
1472 1472
  /// parameter is set to be \c const.
1473 1473
  ///
1474 1474
  /// \tparam GR The type of the adapted digraph or graph.
1475 1475
  /// It must conform to the \ref concepts::Digraph "Digraph" concept
1476 1476
  /// or the \ref concepts::Graph "Graph" concept.
1477 1477
  /// It can also be specified to be \c const.
1478 1478
  /// \tparam NF The type of the node filter map.
1479 1479
  /// It must be a \c bool (or convertible) node map of the
1480 1480
  /// adapted (di)graph. The default type is
1481 1481
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
1482 1482
  ///
1483 1483
  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
1484 1484
  /// adapted (di)graph are convertible to each other.
1485 1485
#ifdef DOXYGEN
1486 1486
  template<typename GR, typename NF>
1487 1487
  class FilterNodes {
1488 1488
#else
1489 1489
  template<typename GR,
1490 1490
           typename NF = typename GR::template NodeMap<bool>,
1491 1491
           typename Enable = void>
1492 1492
  class FilterNodes :
1493 1493
    public DigraphAdaptorExtender<
1494 1494
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1495 1495
                     true> > {
1496 1496
#endif
1497 1497
    typedef DigraphAdaptorExtender<
1498
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, 
1498
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1499 1499
                     true> > Parent;
1500 1500

	
1501 1501
  public:
1502 1502

	
1503 1503
    typedef GR Digraph;
1504 1504
    typedef NF NodeFilterMap;
1505 1505

	
1506 1506
    typedef typename Parent::Node Node;
1507 1507

	
1508 1508
  protected:
1509 1509
    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
1510 1510

	
1511 1511
    FilterNodes() : const_true_map() {}
1512 1512

	
1513 1513
  public:
1514 1514

	
1515 1515
    /// \brief Constructor
1516 1516
    ///
1517 1517
    /// Creates a subgraph for the given digraph or graph with the
1518 1518
    /// given node filter map.
1519
    FilterNodes(GR& graph, NF& node_filter) 
1519
    FilterNodes(GR& graph, NF& node_filter)
1520 1520
      : Parent(), const_true_map()
1521 1521
    {
1522 1522
      Parent::initialize(graph, node_filter, const_true_map);
1523 1523
    }
1524 1524

	
1525 1525
    /// \brief Sets the status of the given node
1526 1526
    ///
1527 1527
    /// This function sets the status of the given node.
1528 1528
    /// It is done by simply setting the assigned value of \c n
1529 1529
    /// to \c v in the node filter map.
1530 1530
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1531 1531

	
1532 1532
    /// \brief Returns the status of the given node
1533 1533
    ///
1534 1534
    /// This function returns the status of the given node.
1535 1535
    /// It is \c true if the given node is enabled (i.e. not hidden).
1536 1536
    bool status(const Node& n) const { return Parent::status(n); }
1537 1537

	
1538 1538
    /// \brief Disables the given node
1539 1539
    ///
1540 1540
    /// This function disables the given node, so the iteration
1541 1541
    /// jumps over it.
1542 1542
    /// It is the same as \ref status() "status(n, false)".
1543 1543
    void disable(const Node& n) const { Parent::status(n, false); }
1544 1544

	
1545 1545
    /// \brief Enables the given node
1546 1546
    ///
1547 1547
    /// This function enables the given node.
1548 1548
    /// It is the same as \ref status() "status(n, true)".
1549 1549
    void enable(const Node& n) const { Parent::status(n, true); }
1550 1550

	
1551 1551
  };
1552 1552

	
1553 1553
  template<typename GR, typename NF>
1554 1554
  class FilterNodes<GR, NF,
1555 1555
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1556 1556
    public GraphAdaptorExtender<
1557
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1557
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1558 1558
                   true> > {
1559 1559

	
1560 1560
    typedef GraphAdaptorExtender<
1561
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1561
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1562 1562
                   true> > Parent;
1563 1563

	
1564 1564
  public:
1565 1565

	
1566 1566
    typedef GR Graph;
1567 1567
    typedef NF NodeFilterMap;
1568 1568

	
1569 1569
    typedef typename Parent::Node Node;
1570 1570

	
1571 1571
  protected:
1572 1572
    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
1573 1573

	
1574 1574
    FilterNodes() : const_true_map() {}
1575 1575

	
1576 1576
  public:
1577 1577

	
1578 1578
    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
1579 1579
      Parent(), const_true_map() {
1580 1580
      Parent::initialize(graph, node_filter, const_true_map);
1581 1581
    }
1582 1582

	
1583 1583
    void status(const Node& n, bool v) const { Parent::status(n, v); }
1584 1584
    bool status(const Node& n) const { return Parent::status(n); }
1585 1585
    void disable(const Node& n) const { Parent::status(n, false); }
1586 1586
    void enable(const Node& n) const { Parent::status(n, true); }
1587 1587

	
1588 1588
  };
1589 1589

	
1590 1590

	
1591 1591
  /// \brief Returns a read-only FilterNodes adaptor
1592 1592
  ///
1593 1593
  /// This function just returns a read-only \ref FilterNodes adaptor.
1594 1594
  /// \ingroup graph_adaptors
1595 1595
  /// \relates FilterNodes
1596 1596
  template<typename GR, typename NF>
1597 1597
  FilterNodes<const GR, NF>
1598 1598
  filterNodes(const GR& graph, NF& node_filter) {
1599 1599
    return FilterNodes<const GR, NF>(graph, node_filter);
1600 1600
  }
1601 1601

	
1602 1602
  template<typename GR, typename NF>
1603 1603
  FilterNodes<const GR, const NF>
1604 1604
  filterNodes(const GR& graph, const NF& node_filter) {
1605 1605
    return FilterNodes<const GR, const NF>(graph, node_filter);
1606 1606
  }
1607 1607

	
1608 1608
  /// \ingroup graph_adaptors
1609 1609
  ///
1610 1610
  /// \brief Adaptor class for hiding arcs in a digraph.
1611 1611
  ///
1612 1612
  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
1613 1613
  /// A \c bool arc map must be specified, which defines the filter for
1614 1614
  /// the arcs. Only the arcs with \c true filter value are shown in the
1615 1615
  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
1616 1616
  /// "Digraph" concept.
1617 1617
  ///
1618 1618
  /// The adapted digraph can also be modified through this adaptor
1619 1619
  /// by adding or removing nodes or arcs, unless the \c GR template
1620 1620
  /// parameter is set to be \c const.
1621 1621
  ///
1622 1622
  /// \tparam DGR The type of the adapted digraph.
1623 1623
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
1624 1624
  /// It can also be specified to be \c const.
1625 1625
  /// \tparam AF The type of the arc filter map.
1626 1626
  /// It must be a \c bool (or convertible) arc map of the
1627 1627
  /// adapted digraph. The default type is
1628 1628
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
1629 1629
  ///
1630 1630
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
1631 1631
  /// digraph are convertible to each other.
1632 1632
#ifdef DOXYGEN
1633 1633
  template<typename DGR,
1634 1634
           typename AF>
1635 1635
  class FilterArcs {
1636 1636
#else
1637 1637
  template<typename DGR,
1638 1638
           typename AF = typename DGR::template ArcMap<bool> >
1639 1639
  class FilterArcs :
1640 1640
    public DigraphAdaptorExtender<
1641 1641
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1642 1642
                     AF, false> > {
1643 1643
#endif
1644 1644
    typedef DigraphAdaptorExtender<
1645
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, 
1645
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1646 1646
                     AF, false> > Parent;
1647 1647

	
1648 1648
  public:
1649 1649

	
1650 1650
    /// The type of the adapted digraph.
1651 1651
    typedef DGR Digraph;
1652 1652
    /// The type of the arc filter map.
1653 1653
    typedef AF ArcFilterMap;
1654 1654

	
1655 1655
    typedef typename Parent::Arc Arc;
1656 1656

	
1657 1657
  protected:
1658 1658
    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
1659 1659

	
1660 1660
    FilterArcs() : const_true_map() {}
1661 1661

	
1662 1662
  public:
1663 1663

	
1664 1664
    /// \brief Constructor
1665 1665
    ///
1666 1666
    /// Creates a subdigraph for the given digraph with the given arc
1667 1667
    /// filter map.
1668 1668
    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
1669 1669
      : Parent(), const_true_map() {
1670 1670
      Parent::initialize(digraph, const_true_map, arc_filter);
1671 1671
    }
1672 1672

	
1673 1673
    /// \brief Sets the status of the given arc
1674 1674
    ///
1675 1675
    /// This function sets the status of the given arc.
1676 1676
    /// It is done by simply setting the assigned value of \c a
1677 1677
    /// to \c v in the arc filter map.
1678 1678
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
1679 1679

	
1680 1680
    /// \brief Returns the status of the given arc
1681 1681
    ///
1682 1682
    /// This function returns the status of the given arc.
1683 1683
    /// It is \c true if the given arc is enabled (i.e. not hidden).
1684 1684
    bool status(const Arc& a) const { return Parent::status(a); }
1685 1685

	
1686 1686
    /// \brief Disables the given arc
1687 1687
    ///
1688 1688
    /// This function disables the given arc in the subdigraph,
1689 1689
    /// so the iteration jumps over it.
1690 1690
    /// It is the same as \ref status() "status(a, false)".
1691 1691
    void disable(const Arc& a) const { Parent::status(a, false); }
1692 1692

	
1693 1693
    /// \brief Enables the given arc
1694 1694
    ///
1695 1695
    /// This function enables the given arc in the subdigraph.
1696 1696
    /// It is the same as \ref status() "status(a, true)".
1697 1697
    void enable(const Arc& a) const { Parent::status(a, true); }
1698 1698

	
1699 1699
  };
1700 1700

	
1701 1701
  /// \brief Returns a read-only FilterArcs adaptor
1702 1702
  ///
1703 1703
  /// This function just returns a read-only \ref FilterArcs adaptor.
1704 1704
  /// \ingroup graph_adaptors
1705 1705
  /// \relates FilterArcs
1706 1706
  template<typename DGR, typename AF>
1707 1707
  FilterArcs<const DGR, AF>
1708 1708
  filterArcs(const DGR& digraph, AF& arc_filter) {
1709 1709
    return FilterArcs<const DGR, AF>(digraph, arc_filter);
1710 1710
  }
1711 1711

	
1712 1712
  template<typename DGR, typename AF>
1713 1713
  FilterArcs<const DGR, const AF>
1714 1714
  filterArcs(const DGR& digraph, const AF& arc_filter) {
1715 1715
    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
1716 1716
  }
1717 1717

	
1718 1718
  /// \ingroup graph_adaptors
1719 1719
  ///
1720 1720
  /// \brief Adaptor class for hiding edges in a graph.
1721 1721
  ///
1722 1722
  /// FilterEdges adaptor can be used for hiding edges in a graph.
1723 1723
  /// A \c bool edge map must be specified, which defines the filter for
1724 1724
  /// the edges. Only the edges with \c true filter value are shown in the
1725 1725
  /// subgraph. This adaptor conforms to the \ref concepts::Graph
1726 1726
  /// "Graph" concept.
1727 1727
  ///
1728 1728
  /// The adapted graph can also be modified through this adaptor
1729 1729
  /// by adding or removing nodes or edges, unless the \c GR template
1730 1730
  /// parameter is set to be \c const.
1731 1731
  ///
1732 1732
  /// \tparam GR The type of the adapted graph.
1733 1733
  /// It must conform to the \ref concepts::Graph "Graph" concept.
1734 1734
  /// It can also be specified to be \c const.
1735 1735
  /// \tparam EF The type of the edge filter map.
1736 1736
  /// It must be a \c bool (or convertible) edge map of the
1737 1737
  /// adapted graph. The default type is
1738 1738
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
1739 1739
  ///
1740 1740
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
1741 1741
  /// adapted graph are convertible to each other.
1742 1742
#ifdef DOXYGEN
1743 1743
  template<typename GR,
1744 1744
           typename EF>
1745 1745
  class FilterEdges {
1746 1746
#else
1747 1747
  template<typename GR,
1748 1748
           typename EF = typename GR::template EdgeMap<bool> >
1749 1749
  class FilterEdges :
1750 1750
    public GraphAdaptorExtender<
1751
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, 
1751
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1752 1752
                   EF, false> > {
1753 1753
#endif
1754 1754
    typedef GraphAdaptorExtender<
1755
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, 
1755
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1756 1756
                   EF, false> > Parent;
1757 1757

	
1758 1758
  public:
1759 1759

	
1760 1760
    /// The type of the adapted graph.
1761 1761
    typedef GR Graph;
1762 1762
    /// The type of the edge filter map.
1763 1763
    typedef EF EdgeFilterMap;
1764 1764

	
1765 1765
    typedef typename Parent::Edge Edge;
1766 1766

	
1767 1767
  protected:
1768 1768
    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
1769 1769

	
1770 1770
    FilterEdges() : const_true_map(true) {
1771 1771
      Parent::setNodeFilterMap(const_true_map);
1772 1772
    }
1773 1773

	
1774 1774
  public:
1775 1775

	
1776 1776
    /// \brief Constructor
1777 1777
    ///
1778 1778
    /// Creates a subgraph for the given graph with the given edge
1779 1779
    /// filter map.
1780
    FilterEdges(GR& graph, EF& edge_filter) 
1780
    FilterEdges(GR& graph, EF& edge_filter)
1781 1781
      : Parent(), const_true_map() {
1782 1782
      Parent::initialize(graph, const_true_map, edge_filter);
1783 1783
    }
1784 1784

	
1785 1785
    /// \brief Sets the status of the given edge
1786 1786
    ///
1787 1787
    /// This function sets the status of the given edge.
1788 1788
    /// It is done by simply setting the assigned value of \c e
1789 1789
    /// to \c v in the edge filter map.
1790 1790
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
1791 1791

	
1792 1792
    /// \brief Returns the status of the given edge
1793 1793
    ///
1794 1794
    /// This function returns the status of the given edge.
1795 1795
    /// It is \c true if the given edge is enabled (i.e. not hidden).
1796 1796
    bool status(const Edge& e) const { return Parent::status(e); }
1797 1797

	
1798 1798
    /// \brief Disables the given edge
1799 1799
    ///
1800 1800
    /// This function disables the given edge in the subgraph,
1801 1801
    /// so the iteration jumps over it.
1802 1802
    /// It is the same as \ref status() "status(e, false)".
1803 1803
    void disable(const Edge& e) const { Parent::status(e, false); }
1804 1804

	
1805 1805
    /// \brief Enables the given edge
1806 1806
    ///
1807 1807
    /// This function enables the given edge in the subgraph.
1808 1808
    /// It is the same as \ref status() "status(e, true)".
1809 1809
    void enable(const Edge& e) const { Parent::status(e, true); }
1810 1810

	
1811 1811
  };
1812 1812

	
1813 1813
  /// \brief Returns a read-only FilterEdges adaptor
1814 1814
  ///
1815 1815
  /// This function just returns a read-only \ref FilterEdges adaptor.
1816 1816
  /// \ingroup graph_adaptors
1817 1817
  /// \relates FilterEdges
1818 1818
  template<typename GR, typename EF>
1819 1819
  FilterEdges<const GR, EF>
1820 1820
  filterEdges(const GR& graph, EF& edge_filter) {
1821 1821
    return FilterEdges<const GR, EF>(graph, edge_filter);
1822 1822
  }
1823 1823

	
1824 1824
  template<typename GR, typename EF>
1825 1825
  FilterEdges<const GR, const EF>
1826 1826
  filterEdges(const GR& graph, const EF& edge_filter) {
1827 1827
    return FilterEdges<const GR, const EF>(graph, edge_filter);
1828 1828
  }
1829 1829

	
1830 1830

	
1831 1831
  template <typename DGR>
1832 1832
  class UndirectorBase {
1833 1833
  public:
1834 1834
    typedef DGR Digraph;
1835 1835
    typedef UndirectorBase Adaptor;
1836 1836

	
1837 1837
    typedef True UndirectedTag;
1838 1838

	
1839 1839
    typedef typename Digraph::Arc Edge;
1840 1840
    typedef typename Digraph::Node Node;
1841 1841

	
1842 1842
    class Arc {
1843 1843
      friend class UndirectorBase;
1844 1844
    protected:
1845 1845
      Edge _edge;
1846 1846
      bool _forward;
1847 1847

	
1848
      Arc(const Edge& edge, bool forward) 
1848
      Arc(const Edge& edge, bool forward)
1849 1849
        : _edge(edge), _forward(forward) {}
1850 1850

	
1851 1851
    public:
1852 1852
      Arc() {}
1853 1853

	
1854 1854
      Arc(Invalid) : _edge(INVALID), _forward(true) {}
1855 1855

	
1856 1856
      operator const Edge&() const { return _edge; }
1857 1857

	
1858 1858
      bool operator==(const Arc &other) const {
1859 1859
        return _forward == other._forward && _edge == other._edge;
1860 1860
      }
1861 1861
      bool operator!=(const Arc &other) const {
1862 1862
        return _forward != other._forward || _edge != other._edge;
1863 1863
      }
1864 1864
      bool operator<(const Arc &other) const {
1865 1865
        return _forward < other._forward ||
1866 1866
          (_forward == other._forward && _edge < other._edge);
1867 1867
      }
1868 1868
    };
1869 1869

	
1870 1870
    void first(Node& n) const {
1871 1871
      _digraph->first(n);
1872 1872
    }
1873 1873

	
1874 1874
    void next(Node& n) const {
1875 1875
      _digraph->next(n);
1876 1876
    }
1877 1877

	
1878 1878
    void first(Arc& a) const {
1879 1879
      _digraph->first(a._edge);
1880 1880
      a._forward = true;
1881 1881
    }
1882 1882

	
1883 1883
    void next(Arc& a) const {
1884 1884
      if (a._forward) {
1885 1885
        a._forward = false;
1886 1886
      } else {
1887 1887
        _digraph->next(a._edge);
1888 1888
        a._forward = true;
1889 1889
      }
1890 1890
    }
1891 1891

	
1892 1892
    void first(Edge& e) const {
1893 1893
      _digraph->first(e);
1894 1894
    }
1895 1895

	
1896 1896
    void next(Edge& e) const {
1897 1897
      _digraph->next(e);
1898 1898
    }
1899 1899

	
1900 1900
    void firstOut(Arc& a, const Node& n) const {
1901 1901
      _digraph->firstIn(a._edge, n);
1902 1902
      if (a._edge != INVALID ) {
1903 1903
        a._forward = false;
1904 1904
      } else {
1905 1905
        _digraph->firstOut(a._edge, n);
1906 1906
        a._forward = true;
1907 1907
      }
1908 1908
    }
1909 1909
    void nextOut(Arc &a) const {
1910 1910
      if (!a._forward) {
1911 1911
        Node n = _digraph->target(a._edge);
1912 1912
        _digraph->nextIn(a._edge);
1913 1913
        if (a._edge == INVALID) {
1914 1914
          _digraph->firstOut(a._edge, n);
1915 1915
          a._forward = true;
1916 1916
        }
1917 1917
      }
1918 1918
      else {
1919 1919
        _digraph->nextOut(a._edge);
1920 1920
      }
1921 1921
    }
1922 1922

	
1923 1923
    void firstIn(Arc &a, const Node &n) const {
1924 1924
      _digraph->firstOut(a._edge, n);
1925 1925
      if (a._edge != INVALID ) {
1926 1926
        a._forward = false;
1927 1927
      } else {
1928 1928
        _digraph->firstIn(a._edge, n);
1929 1929
        a._forward = true;
1930 1930
      }
1931 1931
    }
1932 1932
    void nextIn(Arc &a) const {
1933 1933
      if (!a._forward) {
1934 1934
        Node n = _digraph->source(a._edge);
1935 1935
        _digraph->nextOut(a._edge);
1936 1936
        if (a._edge == INVALID ) {
1937 1937
          _digraph->firstIn(a._edge, n);
1938 1938
          a._forward = true;
1939 1939
        }
1940 1940
      }
1941 1941
      else {
1942 1942
        _digraph->nextIn(a._edge);
1943 1943
      }
1944 1944
    }
1945 1945

	
1946 1946
    void firstInc(Edge &e, bool &d, const Node &n) const {
1947 1947
      d = true;
1948 1948
      _digraph->firstOut(e, n);
1949 1949
      if (e != INVALID) return;
1950 1950
      d = false;
1951 1951
      _digraph->firstIn(e, n);
1952 1952
    }
1953 1953

	
1954 1954
    void nextInc(Edge &e, bool &d) const {
1955 1955
      if (d) {
1956 1956
        Node s = _digraph->source(e);
1957 1957
        _digraph->nextOut(e);
1958 1958
        if (e != INVALID) return;
1959 1959
        d = false;
1960 1960
        _digraph->firstIn(e, s);
1961 1961
      } else {
1962 1962
        _digraph->nextIn(e);
1963 1963
      }
1964 1964
    }
1965 1965

	
1966 1966
    Node u(const Edge& e) const {
1967 1967
      return _digraph->source(e);
1968 1968
    }
1969 1969

	
1970 1970
    Node v(const Edge& e) const {
1971 1971
      return _digraph->target(e);
1972 1972
    }
1973 1973

	
1974 1974
    Node source(const Arc &a) const {
1975 1975
      return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
1976 1976
    }
1977 1977

	
1978 1978
    Node target(const Arc &a) const {
1979 1979
      return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
1980 1980
    }
1981 1981

	
1982 1982
    static Arc direct(const Edge &e, bool d) {
1983 1983
      return Arc(e, d);
1984 1984
    }
1985 1985

	
1986 1986
    static bool direction(const Arc &a) { return a._forward; }
1987 1987

	
1988 1988
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
1989 1989
    Arc arcFromId(int ix) const {
1990 1990
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
1991 1991
    }
1992 1992
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
1993 1993

	
1994 1994
    int id(const Node &n) const { return _digraph->id(n); }
1995 1995
    int id(const Arc &a) const {
1996 1996
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
1997 1997
    }
1998 1998
    int id(const Edge &e) const { return _digraph->id(e); }
1999 1999

	
2000 2000
    int maxNodeId() const { return _digraph->maxNodeId(); }
2001 2001
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
2002 2002
    int maxEdgeId() const { return _digraph->maxArcId(); }
2003 2003

	
2004 2004
    Node addNode() { return _digraph->addNode(); }
2005 2005
    Edge addEdge(const Node& u, const Node& v) {
2006 2006
      return _digraph->addArc(u, v);
2007 2007
    }
2008 2008

	
2009 2009
    void erase(const Node& i) { _digraph->erase(i); }
2010 2010
    void erase(const Edge& i) { _digraph->erase(i); }
2011 2011

	
2012 2012
    void clear() { _digraph->clear(); }
2013 2013

	
2014 2014
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2015 2015
    int nodeNum() const { return _digraph->nodeNum(); }
2016 2016

	
2017 2017
    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2018 2018
    int arcNum() const { return 2 * _digraph->arcNum(); }
2019 2019

	
2020 2020
    typedef ArcNumTag EdgeNumTag;
2021 2021
    int edgeNum() const { return _digraph->arcNum(); }
2022 2022

	
2023 2023
    typedef FindArcTagIndicator<Digraph> FindArcTag;
2024 2024
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2025 2025
      if (p == INVALID) {
2026 2026
        Edge arc = _digraph->findArc(s, t);
2027 2027
        if (arc != INVALID) return direct(arc, true);
2028 2028
        arc = _digraph->findArc(t, s);
2029 2029
        if (arc != INVALID) return direct(arc, false);
2030 2030
      } else if (direction(p)) {
2031 2031
        Edge arc = _digraph->findArc(s, t, p);
2032 2032
        if (arc != INVALID) return direct(arc, true);
2033 2033
        arc = _digraph->findArc(t, s);
2034 2034
        if (arc != INVALID) return direct(arc, false);
2035 2035
      } else {
2036 2036
        Edge arc = _digraph->findArc(t, s, p);
2037 2037
        if (arc != INVALID) return direct(arc, false);
2038 2038
      }
2039 2039
      return INVALID;
2040 2040
    }
2041 2041

	
2042 2042
    typedef FindArcTag FindEdgeTag;
2043 2043
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2044 2044
      if (s != t) {
2045 2045
        if (p == INVALID) {
2046 2046
          Edge arc = _digraph->findArc(s, t);
2047 2047
          if (arc != INVALID) return arc;
2048 2048
          arc = _digraph->findArc(t, s);
2049 2049
          if (arc != INVALID) return arc;
2050 2050
        } else if (_digraph->source(p) == s) {
2051 2051
          Edge arc = _digraph->findArc(s, t, p);
2052 2052
          if (arc != INVALID) return arc;
2053 2053
          arc = _digraph->findArc(t, s);
2054 2054
          if (arc != INVALID) return arc;
2055 2055
        } else {
2056 2056
          Edge arc = _digraph->findArc(t, s, p);
2057 2057
          if (arc != INVALID) return arc;
2058 2058
        }
2059 2059
      } else {
2060 2060
        return _digraph->findArc(s, t, p);
2061 2061
      }
2062 2062
      return INVALID;
2063 2063
    }
2064 2064

	
2065 2065
  private:
2066 2066

	
2067 2067
    template <typename V>
2068 2068
    class ArcMapBase {
2069 2069
    private:
2070 2070

	
2071 2071
      typedef typename DGR::template ArcMap<V> MapImpl;
2072 2072

	
2073 2073
    public:
2074 2074

	
2075 2075
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2076 2076

	
2077 2077
      typedef V Value;
2078 2078
      typedef Arc Key;
2079 2079
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2080 2080
      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2081 2081
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2082 2082
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2083 2083

	
2084 2084
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2085 2085
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2086 2086

	
2087 2087
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2088
        : _forward(*adaptor._digraph, value), 
2088
        : _forward(*adaptor._digraph, value),
2089 2089
          _backward(*adaptor._digraph, value) {}
2090 2090

	
2091 2091
      void set(const Arc& a, const V& value) {
2092 2092
        if (direction(a)) {
2093 2093
          _forward.set(a, value);
2094 2094
        } else {
2095 2095
          _backward.set(a, value);
2096 2096
        }
2097 2097
      }
2098 2098

	
2099 2099
      ConstReturnValue operator[](const Arc& a) const {
2100 2100
        if (direction(a)) {
2101 2101
          return _forward[a];
2102 2102
        } else {
2103 2103
          return _backward[a];
2104 2104
        }
2105 2105
      }
2106 2106

	
2107 2107
      ReturnValue operator[](const Arc& a) {
2108 2108
        if (direction(a)) {
2109 2109
          return _forward[a];
2110 2110
        } else {
2111 2111
          return _backward[a];
2112 2112
        }
2113 2113
      }
2114 2114

	
2115 2115
    protected:
2116 2116

	
2117 2117
      MapImpl _forward, _backward;
2118 2118

	
2119 2119
    };
2120 2120

	
2121 2121
  public:
2122 2122

	
2123 2123
    template <typename V>
2124 2124
    class NodeMap : public DGR::template NodeMap<V> {
2125 2125
      typedef typename DGR::template NodeMap<V> Parent;
2126 2126

	
2127 2127
    public:
2128 2128
      typedef V Value;
2129 2129

	
2130 2130
      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2131 2131
        : Parent(*adaptor._digraph) {}
2132 2132

	
2133 2133
      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2134 2134
        : Parent(*adaptor._digraph, value) { }
2135 2135

	
2136 2136
    private:
2137 2137
      NodeMap& operator=(const NodeMap& cmap) {
2138 2138
        return operator=<NodeMap>(cmap);
2139 2139
      }
2140 2140

	
2141 2141
      template <typename CMap>
2142 2142
      NodeMap& operator=(const CMap& cmap) {
2143 2143
        Parent::operator=(cmap);
2144 2144
        return *this;
2145 2145
      }
2146 2146

	
2147 2147
    };
2148 2148

	
2149 2149
    template <typename V>
2150 2150
    class ArcMap
2151 2151
      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
2152 2152
      typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
2153 2153

	
2154 2154
    public:
2155 2155
      typedef V Value;
2156 2156

	
2157 2157
      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2158 2158
        : Parent(adaptor) {}
2159 2159

	
2160 2160
      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2161 2161
        : Parent(adaptor, value) {}
2162 2162

	
2163 2163
    private:
2164 2164
      ArcMap& operator=(const ArcMap& cmap) {
2165 2165
        return operator=<ArcMap>(cmap);
2166 2166
      }
2167 2167

	
2168 2168
      template <typename CMap>
2169 2169
      ArcMap& operator=(const CMap& cmap) {
2170 2170
        Parent::operator=(cmap);
2171 2171
        return *this;
2172 2172
      }
2173 2173
    };
2174 2174

	
2175 2175
    template <typename V>
2176 2176
    class EdgeMap : public Digraph::template ArcMap<V> {
2177 2177
      typedef typename Digraph::template ArcMap<V> Parent;
2178 2178

	
2179 2179
    public:
2180 2180
      typedef V Value;
2181 2181

	
2182 2182
      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2183 2183
        : Parent(*adaptor._digraph) {}
2184 2184

	
2185 2185
      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2186 2186
        : Parent(*adaptor._digraph, value) {}
2187 2187

	
2188 2188
    private:
2189 2189
      EdgeMap& operator=(const EdgeMap& cmap) {
2190 2190
        return operator=<EdgeMap>(cmap);
2191 2191
      }
2192 2192

	
2193 2193
      template <typename CMap>
2194 2194
      EdgeMap& operator=(const CMap& cmap) {
2195 2195
        Parent::operator=(cmap);
2196 2196
        return *this;
2197 2197
      }
2198 2198

	
2199 2199
    };
2200 2200

	
2201 2201
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2202 2202
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2203 2203

	
2204 2204
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2205 2205
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2206
    
2206

	
2207 2207
    typedef EdgeNotifier ArcNotifier;
2208 2208
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2209 2209

	
2210 2210
  protected:
2211 2211

	
2212 2212
    UndirectorBase() : _digraph(0) {}
2213 2213

	
2214 2214
    DGR* _digraph;
2215 2215

	
2216 2216
    void initialize(DGR& digraph) {
2217 2217
      _digraph = &digraph;
2218 2218
    }
2219 2219

	
2220 2220
  };
2221 2221

	
2222 2222
  /// \ingroup graph_adaptors
2223 2223
  ///
2224 2224
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2225 2225
  ///
2226 2226
  /// Undirector adaptor can be used for viewing a digraph as an undirected
2227 2227
  /// graph. All arcs of the underlying digraph are showed in the
2228 2228
  /// adaptor as an edge (and also as a pair of arcs, of course).
2229 2229
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2230 2230
  ///
2231 2231
  /// The adapted digraph can also be modified through this adaptor
2232 2232
  /// by adding or removing nodes or edges, unless the \c GR template
2233 2233
  /// parameter is set to be \c const.
2234 2234
  ///
2235 2235
  /// \tparam DGR The type of the adapted digraph.
2236 2236
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2237 2237
  /// It can also be specified to be \c const.
2238 2238
  ///
2239 2239
  /// \note The \c Node type of this adaptor and the adapted digraph are
2240 2240
  /// convertible to each other, moreover the \c Edge type of the adaptor
2241 2241
  /// and the \c Arc type of the adapted digraph are also convertible to
2242 2242
  /// each other.
2243 2243
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2244 2244
  /// of the adapted digraph.)
2245 2245
  template<typename DGR>
2246 2246
#ifdef DOXYGEN
2247 2247
  class Undirector {
2248 2248
#else
2249 2249
  class Undirector :
2250 2250
    public GraphAdaptorExtender<UndirectorBase<DGR> > {
2251 2251
#endif
2252 2252
    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2253 2253
  public:
2254 2254
    /// The type of the adapted digraph.
2255 2255
    typedef DGR Digraph;
2256 2256
  protected:
2257 2257
    Undirector() { }
2258 2258
  public:
2259 2259

	
2260 2260
    /// \brief Constructor
2261 2261
    ///
2262 2262
    /// Creates an undirected graph from the given digraph.
2263 2263
    Undirector(DGR& digraph) {
2264 2264
      initialize(digraph);
2265 2265
    }
2266 2266

	
2267 2267
    /// \brief Arc map combined from two original arc maps
2268 2268
    ///
2269 2269
    /// This map adaptor class adapts two arc maps of the underlying
2270 2270
    /// digraph to get an arc map of the undirected graph.
2271 2271
    /// Its value type is inherited from the first arc map type (\c FW).
2272 2272
    /// \tparam FW The type of the "foward" arc map.
2273 2273
    /// \tparam BK The type of the "backward" arc map.
2274 2274
    template <typename FW, typename BK>
2275 2275
    class CombinedArcMap {
2276 2276
    public:
2277 2277

	
2278 2278
      /// The key type of the map
2279 2279
      typedef typename Parent::Arc Key;
2280 2280
      /// The value type of the map
2281 2281
      typedef typename FW::Value Value;
2282 2282

	
2283 2283
      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2284 2284

	
2285 2285
      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2286 2286
      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2287 2287
      typedef typename MapTraits<FW>::ReturnValue Reference;
2288 2288
      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2289 2289

	
2290 2290
      /// Constructor
2291 2291
      CombinedArcMap(FW& forward, BK& backward)
2292 2292
        : _forward(&forward), _backward(&backward) {}
2293 2293

	
2294 2294
      /// Sets the value associated with the given key.
2295 2295
      void set(const Key& e, const Value& a) {
2296 2296
        if (Parent::direction(e)) {
2297 2297
          _forward->set(e, a);
2298 2298
        } else {
2299 2299
          _backward->set(e, a);
2300 2300
        }
2301 2301
      }
2302 2302

	
2303 2303
      /// Returns the value associated with the given key.
2304 2304
      ConstReturnValue operator[](const Key& e) const {
2305 2305
        if (Parent::direction(e)) {
2306 2306
          return (*_forward)[e];
2307 2307
        } else {
2308 2308
          return (*_backward)[e];
2309 2309
        }
2310 2310
      }
2311 2311

	
2312 2312
      /// Returns a reference to the value associated with the given key.
2313 2313
      ReturnValue operator[](const Key& e) {
2314 2314
        if (Parent::direction(e)) {
2315 2315
          return (*_forward)[e];
2316 2316
        } else {
2317 2317
          return (*_backward)[e];
2318 2318
        }
2319 2319
      }
2320 2320

	
2321 2321
    protected:
2322 2322

	
2323 2323
      FW* _forward;
2324 2324
      BK* _backward;
2325 2325

	
2326 2326
    };
2327 2327

	
2328 2328
    /// \brief Returns a combined arc map
2329 2329
    ///
2330 2330
    /// This function just returns a combined arc map.
2331 2331
    template <typename FW, typename BK>
2332 2332
    static CombinedArcMap<FW, BK>
2333 2333
    combinedArcMap(FW& forward, BK& backward) {
2334 2334
      return CombinedArcMap<FW, BK>(forward, backward);
2335 2335
    }
2336 2336

	
2337 2337
    template <typename FW, typename BK>
2338 2338
    static CombinedArcMap<const FW, BK>
2339 2339
    combinedArcMap(const FW& forward, BK& backward) {
2340 2340
      return CombinedArcMap<const FW, BK>(forward, backward);
2341 2341
    }
2342 2342

	
2343 2343
    template <typename FW, typename BK>
2344 2344
    static CombinedArcMap<FW, const BK>
2345 2345
    combinedArcMap(FW& forward, const BK& backward) {
2346 2346
      return CombinedArcMap<FW, const BK>(forward, backward);
2347 2347
    }
2348 2348

	
2349 2349
    template <typename FW, typename BK>
2350 2350
    static CombinedArcMap<const FW, const BK>
2351 2351
    combinedArcMap(const FW& forward, const BK& backward) {
2352 2352
      return CombinedArcMap<const FW, const BK>(forward, backward);
2353 2353
    }
2354 2354

	
2355 2355
  };
2356 2356

	
2357 2357
  /// \brief Returns a read-only Undirector adaptor
2358 2358
  ///
2359 2359
  /// This function just returns a read-only \ref Undirector adaptor.
2360 2360
  /// \ingroup graph_adaptors
2361 2361
  /// \relates Undirector
2362 2362
  template<typename DGR>
2363 2363
  Undirector<const DGR> undirector(const DGR& digraph) {
2364 2364
    return Undirector<const DGR>(digraph);
2365 2365
  }
2366 2366

	
2367 2367

	
2368 2368
  template <typename GR, typename DM>
2369 2369
  class OrienterBase {
2370 2370
  public:
2371 2371

	
2372 2372
    typedef GR Graph;
2373 2373
    typedef DM DirectionMap;
2374 2374

	
2375 2375
    typedef typename GR::Node Node;
2376 2376
    typedef typename GR::Edge Arc;
2377 2377

	
2378 2378
    void reverseArc(const Arc& arc) {
2379 2379
      _direction->set(arc, !(*_direction)[arc]);
2380 2380
    }
2381 2381

	
2382 2382
    void first(Node& i) const { _graph->first(i); }
2383 2383
    void first(Arc& i) const { _graph->first(i); }
2384 2384
    void firstIn(Arc& i, const Node& n) const {
2385 2385
      bool d = true;
2386 2386
      _graph->firstInc(i, d, n);
2387 2387
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2388 2388
    }
2389 2389
    void firstOut(Arc& i, const Node& n ) const {
2390 2390
      bool d = true;
2391 2391
      _graph->firstInc(i, d, n);
2392 2392
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2393 2393
    }
2394 2394

	
2395 2395
    void next(Node& i) const { _graph->next(i); }
2396 2396
    void next(Arc& i) const { _graph->next(i); }
2397 2397
    void nextIn(Arc& i) const {
2398 2398
      bool d = !(*_direction)[i];
2399 2399
      _graph->nextInc(i, d);
2400 2400
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2401 2401
    }
2402 2402
    void nextOut(Arc& i) const {
2403 2403
      bool d = (*_direction)[i];
2404 2404
      _graph->nextInc(i, d);
2405 2405
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2406 2406
    }
2407 2407

	
2408 2408
    Node source(const Arc& e) const {
2409 2409
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2410 2410
    }
2411 2411
    Node target(const Arc& e) const {
2412 2412
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2413 2413
    }
2414 2414

	
2415 2415
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2416 2416
    int nodeNum() const { return _graph->nodeNum(); }
2417 2417

	
2418 2418
    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2419 2419
    int arcNum() const { return _graph->edgeNum(); }
2420 2420

	
2421 2421
    typedef FindEdgeTagIndicator<Graph> FindArcTag;
2422 2422
    Arc findArc(const Node& u, const Node& v,
2423 2423
                const Arc& prev = INVALID) const {
2424 2424
      Arc arc = _graph->findEdge(u, v, prev);
2425 2425
      while (arc != INVALID && source(arc) != u) {
2426 2426
        arc = _graph->findEdge(u, v, arc);
2427 2427
      }
2428 2428
      return arc;
2429 2429
    }
2430 2430

	
2431 2431
    Node addNode() {
2432 2432
      return Node(_graph->addNode());
2433 2433
    }
2434 2434

	
2435 2435
    Arc addArc(const Node& u, const Node& v) {
2436 2436
      Arc arc = _graph->addEdge(u, v);
2437 2437
      _direction->set(arc, _graph->u(arc) == u);
2438 2438
      return arc;
2439 2439
    }
2440 2440

	
2441 2441
    void erase(const Node& i) { _graph->erase(i); }
2442 2442
    void erase(const Arc& i) { _graph->erase(i); }
2443 2443

	
2444 2444
    void clear() { _graph->clear(); }
2445 2445

	
2446 2446
    int id(const Node& v) const { return _graph->id(v); }
2447 2447
    int id(const Arc& e) const { return _graph->id(e); }
2448 2448

	
2449 2449
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2450 2450
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2451 2451

	
2452 2452
    int maxNodeId() const { return _graph->maxNodeId(); }
2453 2453
    int maxArcId() const { return _graph->maxEdgeId(); }
2454 2454

	
2455 2455
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2456 2456
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2457 2457

	
2458 2458
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2459 2459
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2460 2460

	
2461 2461
    template <typename V>
2462 2462
    class NodeMap : public GR::template NodeMap<V> {
2463 2463
      typedef typename GR::template NodeMap<V> Parent;
2464 2464

	
2465 2465
    public:
2466 2466

	
2467 2467
      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2468 2468
        : Parent(*adapter._graph) {}
2469 2469

	
2470 2470
      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2471 2471
        : Parent(*adapter._graph, value) {}
2472 2472

	
2473 2473
    private:
2474 2474
      NodeMap& operator=(const NodeMap& cmap) {
2475 2475
        return operator=<NodeMap>(cmap);
2476 2476
      }
2477 2477

	
2478 2478
      template <typename CMap>
2479 2479
      NodeMap& operator=(const CMap& cmap) {
2480 2480
        Parent::operator=(cmap);
2481 2481
        return *this;
2482 2482
      }
2483 2483

	
2484 2484
    };
2485 2485

	
2486 2486
    template <typename V>
2487 2487
    class ArcMap : public GR::template EdgeMap<V> {
2488 2488
      typedef typename Graph::template EdgeMap<V> Parent;
2489 2489

	
2490 2490
    public:
2491 2491

	
2492 2492
      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2493 2493
        : Parent(*adapter._graph) { }
2494 2494

	
2495 2495
      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2496 2496
        : Parent(*adapter._graph, value) { }
2497 2497

	
2498 2498
    private:
2499 2499
      ArcMap& operator=(const ArcMap& cmap) {
2500 2500
        return operator=<ArcMap>(cmap);
2501 2501
      }
2502 2502

	
2503 2503
      template <typename CMap>
2504 2504
      ArcMap& operator=(const CMap& cmap) {
2505 2505
        Parent::operator=(cmap);
2506 2506
        return *this;
2507 2507
      }
2508 2508
    };
2509 2509

	
2510 2510

	
2511 2511

	
2512 2512
  protected:
2513 2513
    Graph* _graph;
2514 2514
    DM* _direction;
2515 2515

	
2516 2516
    void initialize(GR& graph, DM& direction) {
2517 2517
      _graph = &graph;
2518 2518
      _direction = &direction;
2519 2519
    }
2520 2520

	
2521 2521
  };
2522 2522

	
2523 2523
  /// \ingroup graph_adaptors
2524 2524
  ///
2525 2525
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2526 2526
  ///
2527 2527
  /// Orienter adaptor can be used for orienting the edges of a graph to
2528 2528
  /// get a digraph. A \c bool edge map of the underlying graph must be
2529 2529
  /// specified, which define the direction of the arcs in the adaptor.
2530 2530
  /// The arcs can be easily reversed by the \c reverseArc() member function
2531 2531
  /// of the adaptor.
2532 2532
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2533 2533
  ///
2534 2534
  /// The adapted graph can also be modified through this adaptor
2535 2535
  /// by adding or removing nodes or arcs, unless the \c GR template
2536 2536
  /// parameter is set to be \c const.
2537 2537
  ///
2538 2538
  /// \tparam GR The type of the adapted graph.
2539 2539
  /// It must conform to the \ref concepts::Graph "Graph" concept.
2540 2540
  /// It can also be specified to be \c const.
2541 2541
  /// \tparam DM The type of the direction map.
2542 2542
  /// It must be a \c bool (or convertible) edge map of the
2543 2543
  /// adapted graph. The default type is
2544 2544
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2545 2545
  ///
2546 2546
  /// \note The \c Node type of this adaptor and the adapted graph are
2547 2547
  /// convertible to each other, moreover the \c Arc type of the adaptor
2548 2548
  /// and the \c Edge type of the adapted graph are also convertible to
2549 2549
  /// each other.
2550 2550
#ifdef DOXYGEN
2551 2551
  template<typename GR,
2552 2552
           typename DM>
2553 2553
  class Orienter {
2554 2554
#else
2555 2555
  template<typename GR,
2556 2556
           typename DM = typename GR::template EdgeMap<bool> >
2557 2557
  class Orienter :
2558 2558
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2559 2559
#endif
2560 2560
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2561 2561
  public:
2562 2562

	
2563 2563
    /// The type of the adapted graph.
2564 2564
    typedef GR Graph;
2565 2565
    /// The type of the direction edge map.
2566 2566
    typedef DM DirectionMap;
2567 2567

	
2568 2568
    typedef typename Parent::Arc Arc;
2569 2569

	
2570 2570
  protected:
2571 2571
    Orienter() { }
2572 2572

	
2573 2573
  public:
2574 2574

	
2575 2575
    /// \brief Constructor
2576 2576
    ///
2577 2577
    /// Constructor of the adaptor.
2578 2578
    Orienter(GR& graph, DM& direction) {
2579 2579
      Parent::initialize(graph, direction);
2580 2580
    }
2581 2581

	
2582 2582
    /// \brief Reverses the given arc
2583 2583
    ///
2584 2584
    /// This function reverses the given arc.
2585 2585
    /// It is done by simply negate the assigned value of \c a
2586 2586
    /// in the direction map.
2587 2587
    void reverseArc(const Arc& a) {
2588 2588
      Parent::reverseArc(a);
2589 2589
    }
2590 2590
  };
2591 2591

	
2592 2592
  /// \brief Returns a read-only Orienter adaptor
2593 2593
  ///
2594 2594
  /// This function just returns a read-only \ref Orienter adaptor.
2595 2595
  /// \ingroup graph_adaptors
2596 2596
  /// \relates Orienter
2597 2597
  template<typename GR, typename DM>
2598 2598
  Orienter<const GR, DM>
2599 2599
  orienter(const GR& graph, DM& direction) {
2600 2600
    return Orienter<const GR, DM>(graph, direction);
2601 2601
  }
2602 2602

	
2603 2603
  template<typename GR, typename DM>
2604 2604
  Orienter<const GR, const DM>
2605 2605
  orienter(const GR& graph, const DM& direction) {
2606 2606
    return Orienter<const GR, const DM>(graph, direction);
2607 2607
  }
2608 2608

	
2609 2609
  namespace _adaptor_bits {
2610 2610

	
2611 2611
    template <typename DGR, typename CM, typename FM, typename TL>
2612 2612
    class ResForwardFilter {
2613 2613
    public:
2614 2614

	
2615 2615
      typedef typename DGR::Arc Key;
2616 2616
      typedef bool Value;
2617 2617

	
2618 2618
    private:
2619 2619

	
2620 2620
      const CM* _capacity;
2621 2621
      const FM* _flow;
2622 2622
      TL _tolerance;
2623 2623

	
2624 2624
    public:
2625 2625

	
2626 2626
      ResForwardFilter(const CM& capacity, const FM& flow,
2627 2627
                       const TL& tolerance = TL())
2628 2628
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2629 2629

	
2630 2630
      bool operator[](const typename DGR::Arc& a) const {
2631 2631
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
2632 2632
      }
2633 2633
    };
2634 2634

	
2635 2635
    template<typename DGR,typename CM, typename FM, typename TL>
2636 2636
    class ResBackwardFilter {
2637 2637
    public:
2638 2638

	
2639 2639
      typedef typename DGR::Arc Key;
2640 2640
      typedef bool Value;
2641 2641

	
2642 2642
    private:
2643 2643

	
2644 2644
      const CM* _capacity;
2645 2645
      const FM* _flow;
2646 2646
      TL _tolerance;
2647 2647

	
2648 2648
    public:
2649 2649

	
2650 2650
      ResBackwardFilter(const CM& capacity, const FM& flow,
2651 2651
                        const TL& tolerance = TL())
2652 2652
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
2653 2653

	
2654 2654
      bool operator[](const typename DGR::Arc& a) const {
2655 2655
        return _tolerance.positive((*_flow)[a]);
2656 2656
      }
2657 2657
    };
2658 2658

	
2659 2659
  }
2660 2660

	
2661 2661
  /// \ingroup graph_adaptors
2662 2662
  ///
2663 2663
  /// \brief Adaptor class for composing the residual digraph for directed
2664 2664
  /// flow and circulation problems.
2665 2665
  ///
2666 2666
  /// ResidualDigraph can be used for composing the \e residual digraph
2667 2667
  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
2668 2668
  /// be a directed graph and let \f$ F \f$ be a number type.
2669 2669
  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
2670 2670
  /// This adaptor implements a digraph structure with node set \f$ V \f$
2671 2671
  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
2672 2672
  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
2673 2673
  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
2674 2674
  /// called residual digraph.
2675 2675
  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
2676 2676
  /// multiplicities are counted, i.e. the adaptor has exactly
2677 2677
  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
2678 2678
  /// arcs).
2679 2679
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2680 2680
  ///
2681 2681
  /// \tparam DGR The type of the adapted digraph.
2682 2682
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2683 2683
  /// It is implicitly \c const.
2684 2684
  /// \tparam CM The type of the capacity map.
2685 2685
  /// It must be an arc map of some numerical type, which defines
2686 2686
  /// the capacities in the flow problem. It is implicitly \c const.
2687 2687
  /// The default type is
2688 2688
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
2689 2689
  /// \tparam FM The type of the flow map.
2690 2690
  /// It must be an arc map of some numerical type, which defines
2691 2691
  /// the flow values in the flow problem. The default type is \c CM.
2692 2692
  /// \tparam TL The tolerance type for handling inexact computation.
2693 2693
  /// The default tolerance type depends on the value type of the
2694 2694
  /// capacity map.
2695 2695
  ///
2696 2696
  /// \note This adaptor is implemented using Undirector and FilterArcs
2697 2697
  /// adaptors.
2698 2698
  ///
2699 2699
  /// \note The \c Node type of this adaptor and the adapted digraph are
2700 2700
  /// convertible to each other, moreover the \c Arc type of the adaptor
2701 2701
  /// is convertible to the \c Arc type of the adapted digraph.
2702 2702
#ifdef DOXYGEN
2703 2703
  template<typename DGR, typename CM, typename FM, typename TL>
2704 2704
  class ResidualDigraph
2705 2705
#else
2706 2706
  template<typename DGR,
2707 2707
           typename CM = typename DGR::template ArcMap<int>,
2708 2708
           typename FM = CM,
2709 2709
           typename TL = Tolerance<typename CM::Value> >
2710
  class ResidualDigraph 
2710
  class ResidualDigraph
2711 2711
    : public SubDigraph<
2712 2712
        Undirector<const DGR>,
2713 2713
        ConstMap<typename DGR::Node, Const<bool, true> >,
2714 2714
        typename Undirector<const DGR>::template CombinedArcMap<
2715 2715
          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2716 2716
          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
2717 2717
#endif
2718 2718
  {
2719 2719
  public:
2720 2720

	
2721 2721
    /// The type of the underlying digraph.
2722 2722
    typedef DGR Digraph;
2723 2723
    /// The type of the capacity map.
2724 2724
    typedef CM CapacityMap;
2725 2725
    /// The type of the flow map.
2726 2726
    typedef FM FlowMap;
2727 2727
    /// The tolerance type.
2728 2728
    typedef TL Tolerance;
2729 2729

	
2730 2730
    typedef typename CapacityMap::Value Value;
2731 2731
    typedef ResidualDigraph Adaptor;
2732 2732

	
2733 2733
  protected:
2734 2734

	
2735 2735
    typedef Undirector<const Digraph> Undirected;
2736 2736

	
2737 2737
    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
2738 2738

	
2739 2739
    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
2740 2740
                                            FM, TL> ForwardFilter;
2741 2741

	
2742 2742
    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
2743 2743
                                             FM, TL> BackwardFilter;
2744 2744

	
2745 2745
    typedef typename Undirected::
2746 2746
      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
2747 2747

	
2748 2748
    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
2749 2749

	
2750 2750
    const CapacityMap* _capacity;
2751 2751
    FlowMap* _flow;
2752 2752

	
2753 2753
    Undirected _graph;
2754 2754
    NodeFilter _node_filter;
2755 2755
    ForwardFilter _forward_filter;
2756 2756
    BackwardFilter _backward_filter;
2757 2757
    ArcFilter _arc_filter;
2758 2758

	
2759 2759
  public:
2760 2760

	
2761 2761
    /// \brief Constructor
2762 2762
    ///
2763 2763
    /// Constructor of the residual digraph adaptor. The parameters are the
2764 2764
    /// digraph, the capacity map, the flow map, and a tolerance object.
2765 2765
    ResidualDigraph(const DGR& digraph, const CM& capacity,
2766 2766
                    FM& flow, const TL& tolerance = Tolerance())
2767
      : Parent(), _capacity(&capacity), _flow(&flow), 
2767
      : Parent(), _capacity(&capacity), _flow(&flow),
2768 2768
        _graph(digraph), _node_filter(),
2769 2769
        _forward_filter(capacity, flow, tolerance),
2770 2770
        _backward_filter(capacity, flow, tolerance),
2771 2771
        _arc_filter(_forward_filter, _backward_filter)
2772 2772
    {
2773 2773
      Parent::initialize(_graph, _node_filter, _arc_filter);
2774 2774
    }
2775 2775

	
2776 2776
    typedef typename Parent::Arc Arc;
2777 2777

	
2778 2778
    /// \brief Returns the residual capacity of the given arc.
2779 2779
    ///
2780 2780
    /// Returns the residual capacity of the given arc.
2781 2781
    Value residualCapacity(const Arc& a) const {
2782 2782
      if (Undirected::direction(a)) {
2783 2783
        return (*_capacity)[a] - (*_flow)[a];
2784 2784
      } else {
2785 2785
        return (*_flow)[a];
2786 2786
      }
2787 2787
    }
2788 2788

	
2789 2789
    /// \brief Augments on the given arc in the residual digraph.
2790 2790
    ///
2791 2791
    /// Augments on the given arc in the residual digraph. It increases
2792 2792
    /// or decreases the flow value on the original arc according to the
2793 2793
    /// direction of the residual arc.
2794 2794
    void augment(const Arc& a, const Value& v) const {
2795 2795
      if (Undirected::direction(a)) {
2796 2796
        _flow->set(a, (*_flow)[a] + v);
2797 2797
      } else {
2798 2798
        _flow->set(a, (*_flow)[a] - v);
2799 2799
      }
2800 2800
    }
2801 2801

	
2802 2802
    /// \brief Returns \c true if the given residual arc is a forward arc.
2803 2803
    ///
2804 2804
    /// Returns \c true if the given residual arc has the same orientation
2805 2805
    /// as the original arc, i.e. it is a so called forward arc.
2806 2806
    static bool forward(const Arc& a) {
2807 2807
      return Undirected::direction(a);
2808 2808
    }
2809 2809

	
2810 2810
    /// \brief Returns \c true if the given residual arc is a backward arc.
2811 2811
    ///
2812 2812
    /// Returns \c true if the given residual arc has the opposite orientation
2813 2813
    /// than the original arc, i.e. it is a so called backward arc.
2814 2814
    static bool backward(const Arc& a) {
2815 2815
      return !Undirected::direction(a);
2816 2816
    }
2817 2817

	
2818 2818
    /// \brief Returns the forward oriented residual arc.
2819 2819
    ///
2820 2820
    /// Returns the forward oriented residual arc related to the given
2821 2821
    /// arc of the underlying digraph.
2822 2822
    static Arc forward(const typename Digraph::Arc& a) {
2823 2823
      return Undirected::direct(a, true);
2824 2824
    }
2825 2825

	
2826 2826
    /// \brief Returns the backward oriented residual arc.
2827 2827
    ///
2828 2828
    /// Returns the backward oriented residual arc related to the given
2829 2829
    /// arc of the underlying digraph.
2830 2830
    static Arc backward(const typename Digraph::Arc& a) {
2831 2831
      return Undirected::direct(a, false);
2832 2832
    }
2833 2833

	
2834 2834
    /// \brief Residual capacity map.
2835 2835
    ///
2836 2836
    /// This map adaptor class can be used for obtaining the residual
2837 2837
    /// capacities as an arc map of the residual digraph.
2838 2838
    /// Its value type is inherited from the capacity map.
2839 2839
    class ResidualCapacity {
2840 2840
    protected:
2841 2841
      const Adaptor* _adaptor;
2842 2842
    public:
2843 2843
      /// The key type of the map
2844 2844
      typedef Arc Key;
2845 2845
      /// The value type of the map
2846 2846
      typedef typename CapacityMap::Value Value;
2847 2847

	
2848 2848
      /// Constructor
2849
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) 
2849
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2850 2850
        : _adaptor(&adaptor) {}
2851 2851

	
2852 2852
      /// Returns the value associated with the given residual arc
2853 2853
      Value operator[](const Arc& a) const {
2854 2854
        return _adaptor->residualCapacity(a);
2855 2855
      }
2856 2856

	
2857 2857
    };
2858 2858

	
2859 2859
    /// \brief Returns a residual capacity map
2860 2860
    ///
2861 2861
    /// This function just returns a residual capacity map.
2862 2862
    ResidualCapacity residualCapacity() const {
2863 2863
      return ResidualCapacity(*this);
2864 2864
    }
2865 2865

	
2866 2866
  };
2867 2867

	
2868 2868
  /// \brief Returns a (read-only) Residual adaptor
2869 2869
  ///
2870 2870
  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
2871 2871
  /// \ingroup graph_adaptors
2872 2872
  /// \relates ResidualDigraph
2873 2873
    template<typename DGR, typename CM, typename FM>
2874 2874
  ResidualDigraph<DGR, CM, FM>
2875 2875
  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
2876 2876
    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
2877 2877
  }
2878 2878

	
2879 2879

	
2880 2880
  template <typename DGR>
2881 2881
  class SplitNodesBase {
2882 2882
    typedef DigraphAdaptorBase<const DGR> Parent;
2883 2883

	
2884 2884
  public:
2885 2885

	
2886 2886
    typedef DGR Digraph;
2887 2887
    typedef SplitNodesBase Adaptor;
2888 2888

	
2889 2889
    typedef typename DGR::Node DigraphNode;
2890 2890
    typedef typename DGR::Arc DigraphArc;
2891 2891

	
2892 2892
    class Node;
2893 2893
    class Arc;
2894 2894

	
2895 2895
  private:
2896 2896

	
2897 2897
    template <typename T> class NodeMapBase;
2898 2898
    template <typename T> class ArcMapBase;
2899 2899

	
2900 2900
  public:
2901 2901

	
2902 2902
    class Node : public DigraphNode {
2903 2903
      friend class SplitNodesBase;
2904 2904
      template <typename T> friend class NodeMapBase;
2905 2905
    private:
2906 2906

	
2907 2907
      bool _in;
2908 2908
      Node(DigraphNode node, bool in)
2909 2909
        : DigraphNode(node), _in(in) {}
2910 2910

	
2911 2911
    public:
2912 2912

	
2913 2913
      Node() {}
2914 2914
      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
2915 2915

	
2916 2916
      bool operator==(const Node& node) const {
2917 2917
        return DigraphNode::operator==(node) && _in == node._in;
2918 2918
      }
2919 2919

	
2920 2920
      bool operator!=(const Node& node) const {
2921 2921
        return !(*this == node);
2922 2922
      }
2923 2923

	
2924 2924
      bool operator<(const Node& node) const {
2925 2925
        return DigraphNode::operator<(node) ||
2926 2926
          (DigraphNode::operator==(node) && _in < node._in);
2927 2927
      }
2928 2928
    };
2929 2929

	
2930 2930
    class Arc {
2931 2931
      friend class SplitNodesBase;
2932 2932
      template <typename T> friend class ArcMapBase;
2933 2933
    private:
2934 2934
      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
2935 2935

	
2936 2936
      explicit Arc(const DigraphArc& arc) : _item(arc) {}
2937 2937
      explicit Arc(const DigraphNode& node) : _item(node) {}
2938 2938

	
2939 2939
      ArcImpl _item;
2940 2940

	
2941 2941
    public:
2942 2942
      Arc() {}
2943 2943
      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
2944 2944

	
2945 2945
      bool operator==(const Arc& arc) const {
2946 2946
        if (_item.firstState()) {
2947 2947
          if (arc._item.firstState()) {
2948 2948
            return _item.first() == arc._item.first();
2949 2949
          }
2950 2950
        } else {
2951 2951
          if (arc._item.secondState()) {
2952 2952
            return _item.second() == arc._item.second();
2953 2953
          }
2954 2954
        }
2955 2955
        return false;
2956 2956
      }
2957 2957

	
2958 2958
      bool operator!=(const Arc& arc) const {
2959 2959
        return !(*this == arc);
2960 2960
      }
2961 2961

	
2962 2962
      bool operator<(const Arc& arc) const {
2963 2963
        if (_item.firstState()) {
2964 2964
          if (arc._item.firstState()) {
2965 2965
            return _item.first() < arc._item.first();
2966 2966
          }
2967 2967
          return false;
2968 2968
        } else {
2969 2969
          if (arc._item.secondState()) {
2970 2970
            return _item.second() < arc._item.second();
2971 2971
          }
2972 2972
          return true;
2973 2973
        }
2974 2974
      }
2975 2975

	
2976 2976
      operator DigraphArc() const { return _item.first(); }
2977 2977
      operator DigraphNode() const { return _item.second(); }
2978 2978

	
2979 2979
    };
2980 2980

	
2981 2981
    void first(Node& n) const {
2982 2982
      _digraph->first(n);
2983 2983
      n._in = true;
2984 2984
    }
2985 2985

	
2986 2986
    void next(Node& n) const {
2987 2987
      if (n._in) {
2988 2988
        n._in = false;
2989 2989
      } else {
2990 2990
        n._in = true;
2991 2991
        _digraph->next(n);
2992 2992
      }
2993 2993
    }
2994 2994

	
2995 2995
    void first(Arc& e) const {
2996 2996
      e._item.setSecond();
2997 2997
      _digraph->first(e._item.second());
2998 2998
      if (e._item.second() == INVALID) {
2999 2999
        e._item.setFirst();
3000 3000
        _digraph->first(e._item.first());
3001 3001
      }
3002 3002
    }
3003 3003

	
3004 3004
    void next(Arc& e) const {
3005 3005
      if (e._item.secondState()) {
3006 3006
        _digraph->next(e._item.second());
3007 3007
        if (e._item.second() == INVALID) {
3008 3008
          e._item.setFirst();
3009 3009
          _digraph->first(e._item.first());
3010 3010
        }
3011 3011
      } else {
3012 3012
        _digraph->next(e._item.first());
3013 3013
      }
3014 3014
    }
3015 3015

	
3016 3016
    void firstOut(Arc& e, const Node& n) const {
3017 3017
      if (n._in) {
3018 3018
        e._item.setSecond(n);
3019 3019
      } else {
3020 3020
        e._item.setFirst();
3021 3021
        _digraph->firstOut(e._item.first(), n);
3022 3022
      }
3023 3023
    }
3024 3024

	
3025 3025
    void nextOut(Arc& e) const {
3026 3026
      if (!e._item.firstState()) {
3027 3027
        e._item.setFirst(INVALID);
3028 3028
      } else {
3029 3029
        _digraph->nextOut(e._item.first());
3030 3030
      }
3031 3031
    }
3032 3032

	
3033 3033
    void firstIn(Arc& e, const Node& n) const {
3034 3034
      if (!n._in) {
3035 3035
        e._item.setSecond(n);
3036 3036
      } else {
3037 3037
        e._item.setFirst();
3038 3038
        _digraph->firstIn(e._item.first(), n);
3039 3039
      }
3040 3040
    }
3041 3041

	
3042 3042
    void nextIn(Arc& e) const {
3043 3043
      if (!e._item.firstState()) {
3044 3044
        e._item.setFirst(INVALID);
3045 3045
      } else {
3046 3046
        _digraph->nextIn(e._item.first());
3047 3047
      }
3048 3048
    }
3049 3049

	
3050 3050
    Node source(const Arc& e) const {
3051 3051
      if (e._item.firstState()) {
3052 3052
        return Node(_digraph->source(e._item.first()), false);
3053 3053
      } else {
3054 3054
        return Node(e._item.second(), true);
3055 3055
      }
3056 3056
    }
3057 3057

	
3058 3058
    Node target(const Arc& e) const {
3059 3059
      if (e._item.firstState()) {
3060 3060
        return Node(_digraph->target(e._item.first()), true);
3061 3061
      } else {
3062 3062
        return Node(e._item.second(), false);
3063 3063
      }
3064 3064
    }
3065 3065

	
3066 3066
    int id(const Node& n) const {
3067 3067
      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
3068 3068
    }
3069 3069
    Node nodeFromId(int ix) const {
3070 3070
      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
3071 3071
    }
3072 3072
    int maxNodeId() const {
3073 3073
      return 2 * _digraph->maxNodeId() + 1;
3074 3074
    }
3075 3075

	
3076 3076
    int id(const Arc& e) const {
3077 3077
      if (e._item.firstState()) {
3078 3078
        return _digraph->id(e._item.first()) << 1;
3079 3079
      } else {
3080 3080
        return (_digraph->id(e._item.second()) << 1) | 1;
3081 3081
      }
3082 3082
    }
3083 3083
    Arc arcFromId(int ix) const {
3084 3084
      if ((ix & 1) == 0) {
3085 3085
        return Arc(_digraph->arcFromId(ix >> 1));
3086 3086
      } else {
3087 3087
        return Arc(_digraph->nodeFromId(ix >> 1));
3088 3088
      }
3089 3089
    }
3090 3090
    int maxArcId() const {
3091 3091
      return std::max(_digraph->maxNodeId() << 1,
3092 3092
                      (_digraph->maxArcId() << 1) | 1);
3093 3093
    }
3094 3094

	
3095 3095
    static bool inNode(const Node& n) {
3096 3096
      return n._in;
3097 3097
    }
3098 3098

	
3099 3099
    static bool outNode(const Node& n) {
3100 3100
      return !n._in;
3101 3101
    }
3102 3102

	
3103 3103
    static bool origArc(const Arc& e) {
3104 3104
      return e._item.firstState();
3105 3105
    }
3106 3106

	
3107 3107
    static bool bindArc(const Arc& e) {
3108 3108
      return e._item.secondState();
3109 3109
    }
3110 3110

	
3111 3111
    static Node inNode(const DigraphNode& n) {
3112 3112
      return Node(n, true);
3113 3113
    }
3114 3114

	
3115 3115
    static Node outNode(const DigraphNode& n) {
3116 3116
      return Node(n, false);
3117 3117
    }
3118 3118

	
3119 3119
    static Arc arc(const DigraphNode& n) {
3120 3120
      return Arc(n);
3121 3121
    }
3122 3122

	
3123 3123
    static Arc arc(const DigraphArc& e) {
3124 3124
      return Arc(e);
3125 3125
    }
3126 3126

	
3127 3127
    typedef True NodeNumTag;
3128 3128
    int nodeNum() const {
3129 3129
      return  2 * countNodes(*_digraph);
3130 3130
    }
3131 3131

	
3132 3132
    typedef True ArcNumTag;
3133 3133
    int arcNum() const {
3134 3134
      return countArcs(*_digraph) + countNodes(*_digraph);
3135 3135
    }
3136 3136

	
3137 3137
    typedef True FindArcTag;
3138 3138
    Arc findArc(const Node& u, const Node& v,
3139 3139
                const Arc& prev = INVALID) const {
3140 3140
      if (inNode(u) && outNode(v)) {
3141 3141
        if (static_cast<const DigraphNode&>(u) ==
3142 3142
            static_cast<const DigraphNode&>(v) && prev == INVALID) {
3143 3143
          return Arc(u);
3144 3144
        }
3145 3145
      }
3146 3146
      else if (outNode(u) && inNode(v)) {
3147 3147
        return Arc(::lemon::findArc(*_digraph, u, v, prev));
3148 3148
      }
3149 3149
      return INVALID;
3150 3150
    }
3151 3151

	
3152 3152
  private:
3153 3153

	
3154 3154
    template <typename V>
3155 3155
    class NodeMapBase
3156 3156
      : public MapTraits<typename Parent::template NodeMap<V> > {
3157 3157
      typedef typename Parent::template NodeMap<V> NodeImpl;
3158 3158
    public:
3159 3159
      typedef Node Key;
3160 3160
      typedef V Value;
3161 3161
      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
3162 3162
      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
3163 3163
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
3164 3164
      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
3165 3165
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
3166 3166

	
3167 3167
      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
3168 3168
        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3169 3169
      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3170 3170
        : _in_map(*adaptor._digraph, value),
3171 3171
          _out_map(*adaptor._digraph, value) {}
3172 3172

	
3173 3173
      void set(const Node& key, const V& val) {
3174 3174
        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3175 3175
        else {_out_map.set(key, val); }
3176 3176
      }
3177 3177

	
3178 3178
      ReturnValue operator[](const Node& key) {
3179 3179
        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3180 3180
        else { return _out_map[key]; }
3181 3181
      }
3182 3182

	
3183 3183
      ConstReturnValue operator[](const Node& key) const {
3184 3184
        if (Adaptor::inNode(key)) { return _in_map[key]; }
3185 3185
        else { return _out_map[key]; }
3186 3186
      }
3187 3187

	
3188 3188
    private:
3189 3189
      NodeImpl _in_map, _out_map;
3190 3190
    };
3191 3191

	
3192 3192
    template <typename V>
3193 3193
    class ArcMapBase
3194 3194
      : public MapTraits<typename Parent::template ArcMap<V> > {
3195 3195
      typedef typename Parent::template ArcMap<V> ArcImpl;
3196 3196
      typedef typename Parent::template NodeMap<V> NodeImpl;
3197 3197
    public:
3198 3198
      typedef Arc Key;
3199 3199
      typedef V Value;
3200 3200
      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3201 3201
      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3202 3202
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3203 3203
      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3204 3204
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3205 3205

	
3206 3206
      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3207 3207
        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3208 3208
      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3209 3209
        : _arc_map(*adaptor._digraph, value),
3210 3210
          _node_map(*adaptor._digraph, value) {}
3211 3211

	
3212 3212
      void set(const Arc& key, const V& val) {
3213 3213
        if (SplitNodesBase<DGR>::origArc(key)) {
3214 3214
          _arc_map.set(static_cast<const DigraphArc&>(key), val);
3215 3215
        } else {
3216 3216
          _node_map.set(static_cast<const DigraphNode&>(key), val);
3217 3217
        }
3218 3218
      }
3219 3219

	
3220 3220
      ReturnValue operator[](const Arc& key) {
3221 3221
        if (SplitNodesBase<DGR>::origArc(key)) {
3222 3222
          return _arc_map[static_cast<const DigraphArc&>(key)];
3223 3223
        } else {
3224 3224
          return _node_map[static_cast<const DigraphNode&>(key)];
3225 3225
        }
3226 3226
      }
3227 3227

	
3228 3228
      ConstReturnValue operator[](const Arc& key) const {
3229 3229
        if (SplitNodesBase<DGR>::origArc(key)) {
3230 3230
          return _arc_map[static_cast<const DigraphArc&>(key)];
3231 3231
        } else {
3232 3232
          return _node_map[static_cast<const DigraphNode&>(key)];
3233 3233
        }
3234 3234
      }
3235 3235

	
3236 3236
    private:
3237 3237
      ArcImpl _arc_map;
3238 3238
      NodeImpl _node_map;
3239 3239
    };
3240 3240

	
3241 3241
  public:
3242 3242

	
3243 3243
    template <typename V>
3244 3244
    class NodeMap
3245 3245
      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
3246 3246
      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
3247 3247

	
3248 3248
    public:
3249 3249
      typedef V Value;
3250 3250

	
3251 3251
      NodeMap(const SplitNodesBase<DGR>& adaptor)
3252 3252
        : Parent(adaptor) {}
3253 3253

	
3254 3254
      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3255 3255
        : Parent(adaptor, value) {}
3256 3256

	
3257 3257
    private:
3258 3258
      NodeMap& operator=(const NodeMap& cmap) {
3259 3259
        return operator=<NodeMap>(cmap);
3260 3260
      }
3261 3261

	
3262 3262
      template <typename CMap>
3263 3263
      NodeMap& operator=(const CMap& cmap) {
3264 3264
        Parent::operator=(cmap);
3265 3265
        return *this;
3266 3266
      }
3267 3267
    };
3268 3268

	
3269 3269
    template <typename V>
3270 3270
    class ArcMap
3271 3271
      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
3272 3272
      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
3273 3273

	
3274 3274
    public:
3275 3275
      typedef V Value;
3276 3276

	
3277 3277
      ArcMap(const SplitNodesBase<DGR>& adaptor)
3278 3278
        : Parent(adaptor) {}
3279 3279

	
3280 3280
      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3281 3281
        : Parent(adaptor, value) {}
3282 3282

	
3283 3283
    private:
3284 3284
      ArcMap& operator=(const ArcMap& cmap) {
3285 3285
        return operator=<ArcMap>(cmap);
3286 3286
      }
3287 3287

	
3288 3288
      template <typename CMap>
3289 3289
      ArcMap& operator=(const CMap& cmap) {
3290 3290
        Parent::operator=(cmap);
3291 3291
        return *this;
3292 3292
      }
3293 3293
    };
3294 3294

	
3295 3295
  protected:
3296 3296

	
3297 3297
    SplitNodesBase() : _digraph(0) {}
3298 3298

	
3299 3299
    DGR* _digraph;
3300 3300

	
3301 3301
    void initialize(Digraph& digraph) {
3302 3302
      _digraph = &digraph;
3303 3303
    }
3304 3304

	
3305 3305
  };
3306 3306

	
3307 3307
  /// \ingroup graph_adaptors
3308 3308
  ///
3309 3309
  /// \brief Adaptor class for splitting the nodes of a digraph.
3310 3310
  ///
3311 3311
  /// SplitNodes adaptor can be used for splitting each node into an
3312 3312
  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3313 3313
  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3314 3314
  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3315 3315
  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3316 3316
  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3317 3317
  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3318 3318
  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3319 3319
  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3320 3320
  ///
3321 3321
  /// The aim of this class is running an algorithm with respect to node
3322 3322
  /// costs or capacities if the algorithm considers only arc costs or
3323 3323
  /// capacities directly.
3324 3324
  /// In this case you can use \c SplitNodes adaptor, and set the node
3325 3325
  /// costs/capacities of the original digraph to the \e bind \e arcs
3326 3326
  /// in the adaptor.
3327 3327
  ///
3328 3328
  /// \tparam DGR The type of the adapted digraph.
3329 3329
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3330 3330
  /// It is implicitly \c const.
3331 3331
  ///
3332 3332
  /// \note The \c Node type of this adaptor is converible to the \c Node
3333 3333
  /// type of the adapted digraph.
3334 3334
  template <typename DGR>
3335 3335
#ifdef DOXYGEN
3336 3336
  class SplitNodes {
3337 3337
#else
3338 3338
  class SplitNodes
3339 3339
    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3340 3340
#endif
3341 3341
    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3342 3342

	
3343 3343
  public:
3344 3344
    typedef DGR Digraph;
3345 3345

	
3346 3346
    typedef typename DGR::Node DigraphNode;
3347 3347
    typedef typename DGR::Arc DigraphArc;
3348 3348

	
3349 3349
    typedef typename Parent::Node Node;
3350 3350
    typedef typename Parent::Arc Arc;
3351 3351

	
3352 3352
    /// \brief Constructor
3353 3353
    ///
3354 3354
    /// Constructor of the adaptor.
3355 3355
    SplitNodes(const DGR& g) {
3356 3356
      Parent::initialize(g);
3357 3357
    }
3358 3358

	
3359 3359
    /// \brief Returns \c true if the given node is an in-node.
3360 3360
    ///
3361 3361
    /// Returns \c true if the given node is an in-node.
3362 3362
    static bool inNode(const Node& n) {
3363 3363
      return Parent::inNode(n);
3364 3364
    }
3365 3365

	
3366 3366
    /// \brief Returns \c true if the given node is an out-node.
3367 3367
    ///
3368 3368
    /// Returns \c true if the given node is an out-node.
3369 3369
    static bool outNode(const Node& n) {
3370 3370
      return Parent::outNode(n);
3371 3371
    }
3372 3372

	
3373 3373
    /// \brief Returns \c true if the given arc is an original arc.
3374 3374
    ///
3375 3375
    /// Returns \c true if the given arc is one of the arcs in the
3376 3376
    /// original digraph.
3377 3377
    static bool origArc(const Arc& a) {
3378 3378
      return Parent::origArc(a);
3379 3379
    }
3380 3380

	
3381 3381
    /// \brief Returns \c true if the given arc is a bind arc.
3382 3382
    ///
3383 3383
    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3384 3384
    /// an in-node and an out-node.
3385 3385
    static bool bindArc(const Arc& a) {
3386 3386
      return Parent::bindArc(a);
3387 3387
    }
3388 3388

	
3389 3389
    /// \brief Returns the in-node created from the given original node.
3390 3390
    ///
3391 3391
    /// Returns the in-node created from the given original node.
3392 3392
    static Node inNode(const DigraphNode& n) {
3393 3393
      return Parent::inNode(n);
3394 3394
    }
3395 3395

	
3396 3396
    /// \brief Returns the out-node created from the given original node.
3397 3397
    ///
3398 3398
    /// Returns the out-node created from the given original node.
3399 3399
    static Node outNode(const DigraphNode& n) {
3400 3400
      return Parent::outNode(n);
3401 3401
    }
3402 3402

	
3403 3403
    /// \brief Returns the bind arc that corresponds to the given
3404 3404
    /// original node.
3405 3405
    ///
3406 3406
    /// Returns the bind arc in the adaptor that corresponds to the given
3407 3407
    /// original node, i.e. the arc connecting the in-node and out-node
3408 3408
    /// of \c n.
3409 3409
    static Arc arc(const DigraphNode& n) {
3410 3410
      return Parent::arc(n);
3411 3411
    }
3412 3412

	
3413 3413
    /// \brief Returns the arc that corresponds to the given original arc.
3414 3414
    ///
3415 3415
    /// Returns the arc in the adaptor that corresponds to the given
3416 3416
    /// original arc.
3417 3417
    static Arc arc(const DigraphArc& a) {
3418 3418
      return Parent::arc(a);
3419 3419
    }
3420 3420

	
3421 3421
    /// \brief Node map combined from two original node maps
3422 3422
    ///
3423 3423
    /// This map adaptor class adapts two node maps of the original digraph
3424 3424
    /// to get a node map of the split digraph.
3425 3425
    /// Its value type is inherited from the first node map type (\c IN).
3426
    /// \tparam IN The type of the node map for the in-nodes. 
3426
    /// \tparam IN The type of the node map for the in-nodes.
3427 3427
    /// \tparam OUT The type of the node map for the out-nodes.
3428 3428
    template <typename IN, typename OUT>
3429 3429
    class CombinedNodeMap {
3430 3430
    public:
3431 3431

	
3432 3432
      /// The key type of the map
3433 3433
      typedef Node Key;
3434 3434
      /// The value type of the map
3435 3435
      typedef typename IN::Value Value;
3436 3436

	
3437 3437
      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3438 3438
      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3439 3439
      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3440 3440
      typedef typename MapTraits<IN>::ReturnValue Reference;
3441 3441
      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
3442 3442

	
3443 3443
      /// Constructor
3444 3444
      CombinedNodeMap(IN& in_map, OUT& out_map)
3445 3445
        : _in_map(in_map), _out_map(out_map) {}
3446 3446

	
3447 3447
      /// Returns the value associated with the given key.
3448 3448
      Value operator[](const Key& key) const {
3449 3449
        if (SplitNodesBase<const DGR>::inNode(key)) {
3450 3450
          return _in_map[key];
3451 3451
        } else {
3452 3452
          return _out_map[key];
3453 3453
        }
3454 3454
      }
3455 3455

	
3456 3456
      /// Returns a reference to the value associated with the given key.
3457 3457
      Value& operator[](const Key& key) {
3458 3458
        if (SplitNodesBase<const DGR>::inNode(key)) {
3459 3459
          return _in_map[key];
3460 3460
        } else {
3461 3461
          return _out_map[key];
3462 3462
        }
3463 3463
      }
3464 3464

	
3465 3465
      /// Sets the value associated with the given key.
3466 3466
      void set(const Key& key, const Value& value) {
3467 3467
        if (SplitNodesBase<const DGR>::inNode(key)) {
3468 3468
          _in_map.set(key, value);
3469 3469
        } else {
3470 3470
          _out_map.set(key, value);
3471 3471
        }
3472 3472
      }
3473 3473

	
3474 3474
    private:
3475 3475

	
3476 3476
      IN& _in_map;
3477 3477
      OUT& _out_map;
3478 3478

	
3479 3479
    };
3480 3480

	
3481 3481

	
3482 3482
    /// \brief Returns a combined node map
3483 3483
    ///
3484 3484
    /// This function just returns a combined node map.
3485 3485
    template <typename IN, typename OUT>
3486 3486
    static CombinedNodeMap<IN, OUT>
3487 3487
    combinedNodeMap(IN& in_map, OUT& out_map) {
3488 3488
      return CombinedNodeMap<IN, OUT>(in_map, out_map);
3489 3489
    }
3490 3490

	
3491 3491
    template <typename IN, typename OUT>
3492 3492
    static CombinedNodeMap<const IN, OUT>
3493 3493
    combinedNodeMap(const IN& in_map, OUT& out_map) {
3494 3494
      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
3495 3495
    }
3496 3496

	
3497 3497
    template <typename IN, typename OUT>
3498 3498
    static CombinedNodeMap<IN, const OUT>
3499 3499
    combinedNodeMap(IN& in_map, const OUT& out_map) {
3500 3500
      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
3501 3501
    }
3502 3502

	
3503 3503
    template <typename IN, typename OUT>
3504 3504
    static CombinedNodeMap<const IN, const OUT>
3505 3505
    combinedNodeMap(const IN& in_map, const OUT& out_map) {
3506 3506
      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
3507 3507
    }
3508 3508

	
3509 3509
    /// \brief Arc map combined from an arc map and a node map of the
3510 3510
    /// original digraph.
3511 3511
    ///
3512 3512
    /// This map adaptor class adapts an arc map and a node map of the
3513 3513
    /// original digraph to get an arc map of the split digraph.
3514 3514
    /// Its value type is inherited from the original arc map type (\c AM).
3515 3515
    /// \tparam AM The type of the arc map.
3516 3516
    /// \tparam NM the type of the node map.
3517 3517
    template <typename AM, typename NM>
3518 3518
    class CombinedArcMap {
3519 3519
    public:
3520 3520

	
3521 3521
      /// The key type of the map
3522 3522
      typedef Arc Key;
3523 3523
      /// The value type of the map
3524 3524
      typedef typename AM::Value Value;
3525 3525

	
3526 3526
      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3527 3527
      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3528 3528
      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3529 3529
      typedef typename MapTraits<AM>::ReturnValue Reference;
3530 3530
      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
3531 3531

	
3532 3532
      /// Constructor
3533 3533
      CombinedArcMap(AM& arc_map, NM& node_map)
3534 3534
        : _arc_map(arc_map), _node_map(node_map) {}
3535 3535

	
3536 3536
      /// Returns the value associated with the given key.
3537 3537
      Value operator[](const Key& arc) const {
3538 3538
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3539 3539
          return _arc_map[arc];
3540 3540
        } else {
3541 3541
          return _node_map[arc];
3542 3542
        }
3543 3543
      }
3544 3544

	
3545 3545
      /// Returns a reference to the value associated with the given key.
3546 3546
      Value& operator[](const Key& arc) {
3547 3547
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3548 3548
          return _arc_map[arc];
3549 3549
        } else {
3550 3550
          return _node_map[arc];
3551 3551
        }
3552 3552
      }
3553 3553

	
3554 3554
      /// Sets the value associated with the given key.
3555 3555
      void set(const Arc& arc, const Value& val) {
3556 3556
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3557 3557
          _arc_map.set(arc, val);
3558 3558
        } else {
3559 3559
          _node_map.set(arc, val);
3560 3560
        }
3561 3561
      }
3562 3562

	
3563 3563
    private:
3564 3564

	
3565 3565
      AM& _arc_map;
3566 3566
      NM& _node_map;
3567 3567

	
3568 3568
    };
3569 3569

	
3570 3570
    /// \brief Returns a combined arc map
3571 3571
    ///
3572 3572
    /// This function just returns a combined arc map.
3573 3573
    template <typename ArcMap, typename NodeMap>
3574 3574
    static CombinedArcMap<ArcMap, NodeMap>
3575 3575
    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3576 3576
      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3577 3577
    }
3578 3578

	
3579 3579
    template <typename ArcMap, typename NodeMap>
3580 3580
    static CombinedArcMap<const ArcMap, NodeMap>
3581 3581
    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3582 3582
      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3583 3583
    }
3584 3584

	
3585 3585
    template <typename ArcMap, typename NodeMap>
3586 3586
    static CombinedArcMap<ArcMap, const NodeMap>
3587 3587
    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3588 3588
      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3589 3589
    }
3590 3590

	
3591 3591
    template <typename ArcMap, typename NodeMap>
3592 3592
    static CombinedArcMap<const ArcMap, const NodeMap>
3593 3593
    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3594 3594
      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3595 3595
    }
3596 3596

	
3597 3597
  };
3598 3598

	
3599 3599
  /// \brief Returns a (read-only) SplitNodes adaptor
3600 3600
  ///
3601 3601
  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3602 3602
  /// \ingroup graph_adaptors
3603 3603
  /// \relates SplitNodes
3604 3604
  template<typename DGR>
3605 3605
  SplitNodes<DGR>
3606 3606
  splitNodes(const DGR& digraph) {
3607 3607
    return SplitNodes<DGR>(digraph);
3608 3608
  }
3609 3609

	
3610 3610
#undef LEMON_SCOPE_FIX
3611 3611

	
3612 3612
} //namespace lemon
3613 3613

	
3614 3614
#endif //LEMON_ADAPTORS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Binary Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  ///\ingroup auxdat
33 33
  ///
34 34
  ///\brief A Binary Heap implementation.
35 35
  ///
36 36
  ///This class implements the \e binary \e heap data structure.
37 37
  ///
38 38
  ///A \e heap is a data structure for storing items with specified values
39 39
  ///called \e priorities in such a way that finding the item with minimum
40 40
  ///priority is efficient. \c CMP specifies the ordering of the priorities.
41 41
  ///In a heap one can change the priority of an item, add or erase an
42 42
  ///item, etc.
43 43
  ///
44 44
  ///\tparam PR Type of the priority of the items.
45 45
  ///\tparam IM A read and writable item map with int values, used internally
46 46
  ///to handle the cross references.
47 47
  ///\tparam CMP A functor class for the ordering of the priorities.
48 48
  ///The default is \c std::less<PR>.
49 49
  ///
50 50
  ///\sa FibHeap
51 51
  ///\sa Dijkstra
52 52
  template <typename PR, typename IM, typename CMP = std::less<PR> >
53 53
  class BinHeap {
54 54

	
55 55
  public:
56 56
    ///\e
57 57
    typedef IM ItemIntMap;
58 58
    ///\e
59 59
    typedef PR Prio;
60 60
    ///\e
61 61
    typedef typename ItemIntMap::Key Item;
62 62
    ///\e
63 63
    typedef std::pair<Item,Prio> Pair;
64 64
    ///\e
65 65
    typedef CMP Compare;
66 66

	
67 67
    /// \brief Type to represent the items states.
68 68
    ///
69 69
    /// Each Item element have a state associated to it. It may be "in heap",
70 70
    /// "pre heap" or "post heap". The latter two are indifferent from the
71 71
    /// heap's point of view, but may be useful to the user.
72 72
    ///
73 73
    /// The item-int map must be initialized in such way that it assigns
74 74
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75 75
    enum State {
76 76
      IN_HEAP = 0,    ///< = 0.
77 77
      PRE_HEAP = -1,  ///< = -1.
78 78
      POST_HEAP = -2  ///< = -2.
79 79
    };
80 80

	
81 81
  private:
82 82
    std::vector<Pair> _data;
83 83
    Compare _comp;
84 84
    ItemIntMap &_iim;
85 85

	
86 86
  public:
87 87
    /// \brief The constructor.
88 88
    ///
89 89
    /// The constructor.
90 90
    /// \param map should be given to the constructor, since it is used
91 91
    /// internally to handle the cross references. The value of the map
92 92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
93 93
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
94 94

	
95 95
    /// \brief The constructor.
96 96
    ///
97 97
    /// The constructor.
98 98
    /// \param map should be given to the constructor, since it is used
99 99
    /// internally to handle the cross references. The value of the map
100 100
    /// should be PRE_HEAP (-1) for each element.
101 101
    ///
102 102
    /// \param comp The comparator function object.
103 103
    BinHeap(ItemIntMap &map, const Compare &comp)
104 104
      : _iim(map), _comp(comp) {}
105 105

	
106 106

	
107 107
    /// The number of items stored in the heap.
108 108
    ///
109 109
    /// \brief Returns the number of items stored in the heap.
110 110
    int size() const { return _data.size(); }
111 111

	
112 112
    /// \brief Checks if the heap stores no items.
113 113
    ///
114 114
    /// Returns \c true if and only if the heap stores no items.
115 115
    bool empty() const { return _data.empty(); }
116 116

	
117 117
    /// \brief Make empty this heap.
118 118
    ///
119 119
    /// Make empty this heap. It does not change the cross reference map.
120 120
    /// If you want to reuse what is not surely empty you should first clear
121 121
    /// the heap and after that you should set the cross reference map for
122 122
    /// each item to \c PRE_HEAP.
123 123
    void clear() {
124 124
      _data.clear();
125 125
    }
126 126

	
127 127
  private:
128 128
    static int parent(int i) { return (i-1)/2; }
129 129

	
130 130
    static int second_child(int i) { return 2*i+2; }
131 131
    bool less(const Pair &p1, const Pair &p2) const {
132 132
      return _comp(p1.second, p2.second);
133 133
    }
134 134

	
135 135
    int bubble_up(int hole, Pair p) {
136 136
      int par = parent(hole);
137 137
      while( hole>0 && less(p,_data[par]) ) {
138 138
        move(_data[par],hole);
139 139
        hole = par;
140 140
        par = parent(hole);
141 141
      }
142 142
      move(p, hole);
143 143
      return hole;
144 144
    }
145 145

	
146 146
    int bubble_down(int hole, Pair p, int length) {
147 147
      int child = second_child(hole);
148 148
      while(child < length) {
149 149
        if( less(_data[child-1], _data[child]) ) {
150 150
          --child;
151 151
        }
152 152
        if( !less(_data[child], p) )
153 153
          goto ok;
154 154
        move(_data[child], hole);
155 155
        hole = child;
156 156
        child = second_child(hole);
157 157
      }
158 158
      child--;
159 159
      if( child<length && less(_data[child], p) ) {
160 160
        move(_data[child], hole);
161 161
        hole=child;
162 162
      }
163 163
    ok:
164 164
      move(p, hole);
165 165
      return hole;
166 166
    }
167 167

	
168 168
    void move(const Pair &p, int i) {
169 169
      _data[i] = p;
170 170
      _iim.set(p.first, i);
171 171
    }
172 172

	
173 173
  public:
174 174
    /// \brief Insert a pair of item and priority into the heap.
175 175
    ///
176 176
    /// Adds \c p.first to the heap with priority \c p.second.
177 177
    /// \param p The pair to insert.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181 181
      bubble_up(n, p);
182 182
    }
183 183

	
184 184
    /// \brief Insert an item into the heap with the given heap.
185 185
    ///
186 186
    /// Adds \c i to the heap with priority \c p.
187 187
    /// \param i The item to insert.
188 188
    /// \param p The priority of the item.
189 189
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
190 190

	
191 191
    /// \brief Returns the item with minimum priority relative to \c Compare.
192 192
    ///
193 193
    /// This method returns the item with minimum priority relative to \c
194 194
    /// Compare.
195 195
    /// \pre The heap must be nonempty.
196 196
    Item top() const {
197 197
      return _data[0].first;
198 198
    }
199 199

	
200 200
    /// \brief Returns the minimum priority relative to \c Compare.
201 201
    ///
202 202
    /// It returns the minimum priority relative to \c Compare.
203 203
    /// \pre The heap must be nonempty.
204 204
    Prio prio() const {
205 205
      return _data[0].second;
206 206
    }
207 207

	
208 208
    /// \brief Deletes the item with minimum priority relative to \c Compare.
209 209
    ///
210 210
    /// This method deletes the item with minimum priority relative to \c
211 211
    /// Compare from the heap.
212 212
    /// \pre The heap must be non-empty.
213 213
    void pop() {
214 214
      int n = _data.size()-1;
215 215
      _iim.set(_data[0].first, POST_HEAP);
216 216
      if (n > 0) {
217 217
        bubble_down(0, _data[n], n);
218 218
      }
219 219
      _data.pop_back();
220 220
    }
221 221

	
222 222
    /// \brief Deletes \c i from the heap.
223 223
    ///
224 224
    /// This method deletes item \c i from the heap.
225 225
    /// \param i The item to erase.
226 226
    /// \pre The item should be in the heap.
227 227
    void erase(const Item &i) {
228 228
      int h = _iim[i];
229 229
      int n = _data.size()-1;
230 230
      _iim.set(_data[h].first, POST_HEAP);
231 231
      if( h < n ) {
232 232
        if ( bubble_up(h, _data[n]) == h) {
233 233
          bubble_down(h, _data[n], n);
234 234
        }
235 235
      }
236 236
      _data.pop_back();
237 237
    }
238 238

	
239 239

	
240 240
    /// \brief Returns the priority of \c i.
241 241
    ///
242 242
    /// This function returns the priority of item \c i.
243 243
    /// \param i The item.
244 244
    /// \pre \c i must be in the heap.
245 245
    Prio operator[](const Item &i) const {
246 246
      int idx = _iim[i];
247 247
      return _data[idx].second;
248 248
    }
249 249

	
250 250
    /// \brief \c i gets to the heap with priority \c p independently
251 251
    /// if \c i was already there.
252 252
    ///
253 253
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
254 254
    /// in the heap and sets the priority of \c i to \c p otherwise.
255 255
    /// \param i The item.
256 256
    /// \param p The priority.
257 257
    void set(const Item &i, const Prio &p) {
258 258
      int idx = _iim[i];
259 259
      if( idx < 0 ) {
260 260
        push(i,p);
261 261
      }
262 262
      else if( _comp(p, _data[idx].second) ) {
263 263
        bubble_up(idx, Pair(i,p));
264 264
      }
265 265
      else {
266 266
        bubble_down(idx, Pair(i,p), _data.size());
267 267
      }
268 268
    }
269 269

	
270 270
    /// \brief Decreases the priority of \c i to \c p.
271 271
    ///
272 272
    /// This method decreases the priority of item \c i to \c p.
273 273
    /// \param i The item.
274 274
    /// \param p The priority.
275 275
    /// \pre \c i must be stored in the heap with priority at least \c
276 276
    /// p relative to \c Compare.
277 277
    void decrease(const Item &i, const Prio &p) {
278 278
      int idx = _iim[i];
279 279
      bubble_up(idx, Pair(i,p));
280 280
    }
281 281

	
282 282
    /// \brief Increases the priority of \c i to \c p.
283 283
    ///
284 284
    /// This method sets the priority of item \c i to \c p.
285 285
    /// \param i The item.
286 286
    /// \param p The priority.
287 287
    /// \pre \c i must be stored in the heap with priority at most \c
288 288
    /// p relative to \c Compare.
289 289
    void increase(const Item &i, const Prio &p) {
290 290
      int idx = _iim[i];
291 291
      bubble_down(idx, Pair(i,p), _data.size());
292 292
    }
293 293

	
294 294
    /// \brief Returns if \c item is in, has already been in, or has
295 295
    /// never been in the heap.
296 296
    ///
297 297
    /// This method returns PRE_HEAP if \c item has never been in the
298 298
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
299 299
    /// otherwise. In the latter case it is possible that \c item will
300 300
    /// get back to the heap again.
301 301
    /// \param i The item.
302 302
    State state(const Item &i) const {
303 303
      int s = _iim[i];
304 304
      if( s>=0 )
305 305
        s=0;
306 306
      return State(s);
307 307
    }
308 308

	
309 309
    /// \brief Sets the state of the \c item in the heap.
310 310
    ///
311 311
    /// Sets the state of the \c item in the heap. It can be used to
312 312
    /// manually clear the heap when it is important to achive the
313 313
    /// better time complexity.
314 314
    /// \param i The item.
315 315
    /// \param st The state. It should not be \c IN_HEAP.
316 316
    void state(const Item& i, State st) {
317 317
      switch (st) {
318 318
      case POST_HEAP:
319 319
      case PRE_HEAP:
320 320
        if (state(i) == IN_HEAP) {
321 321
          erase(i);
322 322
        }
323 323
        _iim[i] = st;
324 324
        break;
325 325
      case IN_HEAP:
326 326
        break;
327 327
      }
328 328
    }
329 329

	
330 330
    /// \brief Replaces an item in the heap.
331 331
    ///
332 332
    /// The \c i item is replaced with \c j item. The \c i item should
333 333
    /// be in the heap, while the \c j should be out of the heap. The
334 334
    /// \c i item will out of the heap and \c j will be in the heap
335 335
    /// with the same prioriority as prevoiusly the \c i item.
336 336
    void replace(const Item& i, const Item& j) {
337 337
      int idx = _iim[i];
338 338
      _iim.set(i, _iim[j]);
339 339
      _iim.set(j, idx);
340 340
      _data[idx].first = j;
341 341
    }
342 342

	
343 343
  }; // class BinHeap
344 344

	
345 345
} // namespace lemon
346 346

	
347 347
#endif // LEMON_BIN_HEAP_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ARRAY_MAP_H
20 20
#define LEMON_BITS_ARRAY_MAP_H
21 21

	
22 22
#include <memory>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25
#include <lemon/bits/alteration_notifier.h>
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
// \ingroup graphbits
30 30
// \file
31 31
// \brief Graph map based on the array storage.
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  // \ingroup graphbits
36 36
  //
37 37
  // \brief Graph map based on the array storage.
38 38
  //
39 39
  // The ArrayMap template class is graph map structure that automatically
40 40
  // updates the map when a key is added to or erased from the graph.
41 41
  // This map uses the allocators to implement the container functionality.
42 42
  //
43 43
  // The template parameters are the Graph, the current Item type and
44 44
  // the Value type of the map.
45 45
  template <typename _Graph, typename _Item, typename _Value>
46 46
  class ArrayMap
47 47
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
48 48
  public:
49 49
    // The graph type.
50 50
    typedef _Graph GraphType;
51 51
    // The item type.
52 52
    typedef _Item Item;
53 53
    // The reference map tag.
54 54
    typedef True ReferenceMapTag;
55 55

	
56 56
    // The key type of the map.
57 57
    typedef _Item Key;
58 58
    // The value type of the map.
59 59
    typedef _Value Value;
60 60

	
61 61
    // The const reference type of the map.
62 62
    typedef const _Value& ConstReference;
63 63
    // The reference type of the map.
64 64
    typedef _Value& Reference;
65 65

	
66 66
    // The map type.
67 67
    typedef ArrayMap Map;
68 68

	
69 69
    // The notifier type.
70 70
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
71 71

	
72 72
  private:
73
  
73

	
74 74
    // The MapBase of the Map which imlements the core regisitry function.
75 75
    typedef typename Notifier::ObserverBase Parent;
76 76

	
77 77
    typedef std::allocator<Value> Allocator;
78 78

	
79 79
  public:
80 80

	
81 81
    // \brief Graph initialized map constructor.
82 82
    //
83 83
    // Graph initialized map constructor.
84 84
    explicit ArrayMap(const GraphType& graph) {
85 85
      Parent::attach(graph.notifier(Item()));
86 86
      allocate_memory();
87 87
      Notifier* nf = Parent::notifier();
88 88
      Item it;
89 89
      for (nf->first(it); it != INVALID; nf->next(it)) {
90 90
        int id = nf->id(it);;
91 91
        allocator.construct(&(values[id]), Value());
92 92
      }
93 93
    }
94 94

	
95 95
    // \brief Constructor to use default value to initialize the map.
96 96
    //
97 97
    // It constructs a map and initialize all of the the map.
98 98
    ArrayMap(const GraphType& graph, const Value& value) {
99 99
      Parent::attach(graph.notifier(Item()));
100 100
      allocate_memory();
101 101
      Notifier* nf = Parent::notifier();
102 102
      Item it;
103 103
      for (nf->first(it); it != INVALID; nf->next(it)) {
104 104
        int id = nf->id(it);;
105 105
        allocator.construct(&(values[id]), value);
106 106
      }
107 107
    }
108 108

	
109 109
  private:
110 110
    // \brief Constructor to copy a map of the same map type.
111 111
    //
112 112
    // Constructor to copy a map of the same map type.
113 113
    ArrayMap(const ArrayMap& copy) : Parent() {
114 114
      if (copy.attached()) {
115 115
        attach(*copy.notifier());
116 116
      }
117 117
      capacity = copy.capacity;
118 118
      if (capacity == 0) return;
119 119
      values = allocator.allocate(capacity);
120 120
      Notifier* nf = Parent::notifier();
121 121
      Item it;
122 122
      for (nf->first(it); it != INVALID; nf->next(it)) {
123 123
        int id = nf->id(it);;
124 124
        allocator.construct(&(values[id]), copy.values[id]);
125 125
      }
126 126
    }
127 127

	
128 128
    // \brief Assign operator.
129 129
    //
130 130
    // This operator assigns for each item in the map the
131 131
    // value mapped to the same item in the copied map.
132 132
    // The parameter map should be indiced with the same
133 133
    // itemset because this assign operator does not change
134 134
    // the container of the map.
135 135
    ArrayMap& operator=(const ArrayMap& cmap) {
136 136
      return operator=<ArrayMap>(cmap);
137 137
    }
138 138

	
139 139

	
140 140
    // \brief Template assign operator.
141 141
    //
142 142
    // The given parameter should conform to the ReadMap
143 143
    // concecpt and could be indiced by the current item set of
144 144
    // the NodeMap. In this case the value for each item
145 145
    // is assigned by the value of the given ReadMap.
146 146
    template <typename CMap>
147 147
    ArrayMap& operator=(const CMap& cmap) {
148 148
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
149 149
      const typename Parent::Notifier* nf = Parent::notifier();
150 150
      Item it;
151 151
      for (nf->first(it); it != INVALID; nf->next(it)) {
152 152
        set(it, cmap[it]);
153 153
      }
154 154
      return *this;
155 155
    }
156 156

	
157 157
  public:
158 158
    // \brief The destructor of the map.
159 159
    //
160 160
    // The destructor of the map.
161 161
    virtual ~ArrayMap() {
162 162
      if (attached()) {
163 163
        clear();
164 164
        detach();
165 165
      }
166 166
    }
167 167

	
168 168
  protected:
169 169

	
170 170
    using Parent::attach;
171 171
    using Parent::detach;
172 172
    using Parent::attached;
173 173

	
174 174
  public:
175 175

	
176 176
    // \brief The subscript operator.
177 177
    //
178 178
    // The subscript operator. The map can be subscripted by the
179 179
    // actual keys of the graph.
180 180
    Value& operator[](const Key& key) {
181 181
      int id = Parent::notifier()->id(key);
182 182
      return values[id];
183 183
    }
184 184

	
185 185
    // \brief The const subscript operator.
186 186
    //
187 187
    // The const subscript operator. The map can be subscripted by the
188 188
    // actual keys of the graph.
189 189
    const Value& operator[](const Key& key) const {
190 190
      int id = Parent::notifier()->id(key);
191 191
      return values[id];
192 192
    }
193 193

	
194 194
    // \brief Setter function of the map.
195 195
    //
196 196
    // Setter function of the map. Equivalent with map[key] = val.
197 197
    // This is a compatibility feature with the not dereferable maps.
198 198
    void set(const Key& key, const Value& val) {
199 199
      (*this)[key] = val;
200 200
    }
201 201

	
202 202
  protected:
203 203

	
204 204
    // \brief Adds a new key to the map.
205 205
    //
206 206
    // It adds a new key to the map. It is called by the observer notifier
207 207
    // and it overrides the add() member function of the observer base.
208 208
    virtual void add(const Key& key) {
209 209
      Notifier* nf = Parent::notifier();
210 210
      int id = nf->id(key);
211 211
      if (id >= capacity) {
212 212
        int new_capacity = (capacity == 0 ? 1 : capacity);
213 213
        while (new_capacity <= id) {
214 214
          new_capacity <<= 1;
215 215
        }
216 216
        Value* new_values = allocator.allocate(new_capacity);
217 217
        Item it;
218 218
        for (nf->first(it); it != INVALID; nf->next(it)) {
219 219
          int jd = nf->id(it);;
220 220
          if (id != jd) {
221 221
            allocator.construct(&(new_values[jd]), values[jd]);
222 222
            allocator.destroy(&(values[jd]));
223 223
          }
224 224
        }
225 225
        if (capacity != 0) allocator.deallocate(values, capacity);
226 226
        values = new_values;
227 227
        capacity = new_capacity;
228 228
      }
229 229
      allocator.construct(&(values[id]), Value());
230 230
    }
231 231

	
232 232
    // \brief Adds more new keys to the map.
233 233
    //
234 234
    // It adds more new keys to the map. It is called by the observer notifier
235 235
    // and it overrides the add() member function of the observer base.
236 236
    virtual void add(const std::vector<Key>& keys) {
237 237
      Notifier* nf = Parent::notifier();
238 238
      int max_id = -1;
239 239
      for (int i = 0; i < int(keys.size()); ++i) {
240 240
        int id = nf->id(keys[i]);
241 241
        if (id > max_id) {
242 242
          max_id = id;
243 243
        }
244 244
      }
245 245
      if (max_id >= capacity) {
246 246
        int new_capacity = (capacity == 0 ? 1 : capacity);
247 247
        while (new_capacity <= max_id) {
248 248
          new_capacity <<= 1;
249 249
        }
250 250
        Value* new_values = allocator.allocate(new_capacity);
251 251
        Item it;
252 252
        for (nf->first(it); it != INVALID; nf->next(it)) {
253 253
          int id = nf->id(it);
254 254
          bool found = false;
255 255
          for (int i = 0; i < int(keys.size()); ++i) {
256 256
            int jd = nf->id(keys[i]);
257 257
            if (id == jd) {
258 258
              found = true;
259 259
              break;
260 260
            }
261 261
          }
262 262
          if (found) continue;
263 263
          allocator.construct(&(new_values[id]), values[id]);
264 264
          allocator.destroy(&(values[id]));
265 265
        }
266 266
        if (capacity != 0) allocator.deallocate(values, capacity);
267 267
        values = new_values;
268 268
        capacity = new_capacity;
269 269
      }
270 270
      for (int i = 0; i < int(keys.size()); ++i) {
271 271
        int id = nf->id(keys[i]);
272 272
        allocator.construct(&(values[id]), Value());
273 273
      }
274 274
    }
275 275

	
276 276
    // \brief Erase a key from the map.
277 277
    //
278 278
    // Erase a key from the map. It is called by the observer notifier
279 279
    // and it overrides the erase() member function of the observer base.
280 280
    virtual void erase(const Key& key) {
281 281
      int id = Parent::notifier()->id(key);
282 282
      allocator.destroy(&(values[id]));
283 283
    }
284 284

	
285 285
    // \brief Erase more keys from the map.
286 286
    //
287 287
    // Erase more keys from the map. It is called by the observer notifier
288 288
    // and it overrides the erase() member function of the observer base.
289 289
    virtual void erase(const std::vector<Key>& keys) {
290 290
      for (int i = 0; i < int(keys.size()); ++i) {
291 291
        int id = Parent::notifier()->id(keys[i]);
292 292
        allocator.destroy(&(values[id]));
293 293
      }
294 294
    }
295 295

	
296 296
    // \brief Builds the map.
297 297
    //
298 298
    // It builds the map. It is called by the observer notifier
299 299
    // and it overrides the build() member function of the observer base.
300 300
    virtual void build() {
301 301
      Notifier* nf = Parent::notifier();
302 302
      allocate_memory();
303 303
      Item it;
304 304
      for (nf->first(it); it != INVALID; nf->next(it)) {
305 305
        int id = nf->id(it);;
306 306
        allocator.construct(&(values[id]), Value());
307 307
      }
308 308
    }
309 309

	
310 310
    // \brief Clear the map.
311 311
    //
312 312
    // It erase all items from the map. It is called by the observer notifier
313 313
    // and it overrides the clear() member function of the observer base.
314 314
    virtual void clear() {
315 315
      Notifier* nf = Parent::notifier();
316 316
      if (capacity != 0) {
317 317
        Item it;
318 318
        for (nf->first(it); it != INVALID; nf->next(it)) {
319 319
          int id = nf->id(it);
320 320
          allocator.destroy(&(values[id]));
321 321
        }
322 322
        allocator.deallocate(values, capacity);
323 323
        capacity = 0;
324 324
      }
325 325
    }
326 326

	
327 327
  private:
328 328

	
329 329
    void allocate_memory() {
330 330
      int max_id = Parent::notifier()->maxId();
331 331
      if (max_id == -1) {
332 332
        capacity = 0;
333 333
        values = 0;
334 334
        return;
335 335
      }
336 336
      capacity = 1;
337 337
      while (capacity <= max_id) {
338 338
        capacity <<= 1;
339 339
      }
340 340
      values = allocator.allocate(capacity);
341 341
    }
342 342

	
343 343
    int capacity;
344 344
    Value* values;
345 345
    Allocator allocator;
346 346

	
347 347
  };
348 348

	
349 349
}
350 350

	
351 351
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_DEFAULT_MAP_H
20 20
#define LEMON_BITS_DEFAULT_MAP_H
21 21

	
22 22
#include <lemon/config.h>
23 23
#include <lemon/bits/array_map.h>
24 24
#include <lemon/bits/vector_map.h>
25 25
//#include <lemon/bits/debug_map.h>
26 26

	
27 27
//\ingroup graphbits
28 28
//\file
29 29
//\brief Graph maps that construct and destruct their elements dynamically.
30 30

	
31 31
namespace lemon {
32 32

	
33 33

	
34 34
  //#ifndef LEMON_USE_DEBUG_MAP
35 35

	
36 36
  template <typename _Graph, typename _Item, typename _Value>
37 37
  struct DefaultMapSelector {
38 38
    typedef ArrayMap<_Graph, _Item, _Value> Map;
39 39
  };
40 40

	
41 41
  // bool
42 42
  template <typename _Graph, typename _Item>
43 43
  struct DefaultMapSelector<_Graph, _Item, bool> {
44 44
    typedef VectorMap<_Graph, _Item, bool> Map;
45 45
  };
46 46

	
47 47
  // char
48 48
  template <typename _Graph, typename _Item>
49 49
  struct DefaultMapSelector<_Graph, _Item, char> {
50 50
    typedef VectorMap<_Graph, _Item, char> Map;
51 51
  };
52 52

	
53 53
  template <typename _Graph, typename _Item>
54 54
  struct DefaultMapSelector<_Graph, _Item, signed char> {
55 55
    typedef VectorMap<_Graph, _Item, signed char> Map;
56 56
  };
57 57

	
58 58
  template <typename _Graph, typename _Item>
59 59
  struct DefaultMapSelector<_Graph, _Item, unsigned char> {
60 60
    typedef VectorMap<_Graph, _Item, unsigned char> Map;
61 61
  };
62 62

	
63 63

	
64 64
  // int
65 65
  template <typename _Graph, typename _Item>
66 66
  struct DefaultMapSelector<_Graph, _Item, signed int> {
67 67
    typedef VectorMap<_Graph, _Item, signed int> Map;
68 68
  };
69 69

	
70 70
  template <typename _Graph, typename _Item>
71 71
  struct DefaultMapSelector<_Graph, _Item, unsigned int> {
72 72
    typedef VectorMap<_Graph, _Item, unsigned int> Map;
73 73
  };
74 74

	
75 75

	
76 76
  // short
77 77
  template <typename _Graph, typename _Item>
78 78
  struct DefaultMapSelector<_Graph, _Item, signed short> {
79 79
    typedef VectorMap<_Graph, _Item, signed short> Map;
80 80
  };
81 81

	
82 82
  template <typename _Graph, typename _Item>
83 83
  struct DefaultMapSelector<_Graph, _Item, unsigned short> {
84 84
    typedef VectorMap<_Graph, _Item, unsigned short> Map;
85 85
  };
86 86

	
87 87

	
88 88
  // long
89 89
  template <typename _Graph, typename _Item>
90 90
  struct DefaultMapSelector<_Graph, _Item, signed long> {
91 91
    typedef VectorMap<_Graph, _Item, signed long> Map;
92 92
  };
93 93

	
94 94
  template <typename _Graph, typename _Item>
95 95
  struct DefaultMapSelector<_Graph, _Item, unsigned long> {
96 96
    typedef VectorMap<_Graph, _Item, unsigned long> Map;
97 97
  };
98 98

	
99 99

	
100 100
#if defined LEMON_HAVE_LONG_LONG
101 101

	
102 102
  // long long
103 103
  template <typename _Graph, typename _Item>
104 104
  struct DefaultMapSelector<_Graph, _Item, signed long long> {
105 105
    typedef VectorMap<_Graph, _Item, signed long long> Map;
106 106
  };
107 107

	
108 108
  template <typename _Graph, typename _Item>
109 109
  struct DefaultMapSelector<_Graph, _Item, unsigned long long> {
110 110
    typedef VectorMap<_Graph, _Item, unsigned long long> Map;
111 111
  };
112 112

	
113 113
#endif
114 114

	
115 115

	
116 116
  // float
117 117
  template <typename _Graph, typename _Item>
118 118
  struct DefaultMapSelector<_Graph, _Item, float> {
119 119
    typedef VectorMap<_Graph, _Item, float> Map;
120 120
  };
121 121

	
122 122

	
123 123
  // double
124 124
  template <typename _Graph, typename _Item>
125 125
  struct DefaultMapSelector<_Graph, _Item, double> {
126 126
    typedef VectorMap<_Graph, _Item,  double> Map;
127 127
  };
128 128

	
129 129

	
130 130
  // long double
131 131
  template <typename _Graph, typename _Item>
132 132
  struct DefaultMapSelector<_Graph, _Item, long double> {
133 133
    typedef VectorMap<_Graph, _Item, long double> Map;
134 134
  };
135 135

	
136 136

	
137 137
  // pointer
138 138
  template <typename _Graph, typename _Item, typename _Ptr>
139 139
  struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
140 140
    typedef VectorMap<_Graph, _Item, _Ptr*> Map;
141 141
  };
142 142

	
143 143
// #else
144 144

	
145 145
//   template <typename _Graph, typename _Item, typename _Value>
146 146
//   struct DefaultMapSelector {
147 147
//     typedef DebugMap<_Graph, _Item, _Value> Map;
148 148
//   };
149 149

	
150 150
// #endif
151 151

	
152 152
  // DefaultMap class
153 153
  template <typename _Graph, typename _Item, typename _Value>
154 154
  class DefaultMap
155 155
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 156
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
157 157

	
158 158
  public:
159 159
    typedef DefaultMap<_Graph, _Item, _Value> Map;
160
    
160

	
161 161
    typedef typename Parent::GraphType GraphType;
162 162
    typedef typename Parent::Value Value;
163 163

	
164 164
    explicit DefaultMap(const GraphType& graph) : Parent(graph) {}
165 165
    DefaultMap(const GraphType& graph, const Value& value)
166 166
      : Parent(graph, value) {}
167 167

	
168 168
    DefaultMap& operator=(const DefaultMap& cmap) {
169 169
      return operator=<DefaultMap>(cmap);
170 170
    }
171 171

	
172 172
    template <typename CMap>
173 173
    DefaultMap& operator=(const CMap& cmap) {
174 174
      Parent::operator=(cmap);
175 175
      return *this;
176 176
    }
177 177

	
178 178
  };
179 179

	
180 180
}
181 181

	
182 182
#endif
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H
20 20
#define LEMON_BITS_EDGE_SET_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24
#include <lemon/bits/default_map.h>
25 25
#include <lemon/bits/map_extender.h>
26 26

	
27 27
//\ingroup digraphbits
28 28
//\file
29 29
//\brief Extenders for the arc set types
30 30
namespace lemon {
31 31

	
32 32
  // \ingroup digraphbits
33 33
  //
34 34
  // \brief Extender for the ArcSets
35 35
  template <typename Base>
36 36
  class ArcSetExtender : public Base {
37 37
    typedef Base Parent;
38 38

	
39 39
  public:
40 40

	
41 41
    typedef ArcSetExtender Digraph;
42 42

	
43 43
    // Base extensions
44 44

	
45 45
    typedef typename Parent::Node Node;
46 46
    typedef typename Parent::Arc Arc;
47 47

	
48 48
    int maxId(Node) const {
49 49
      return Parent::maxNodeId();
50 50
    }
51 51

	
52 52
    int maxId(Arc) const {
53 53
      return Parent::maxArcId();
54 54
    }
55 55

	
56 56
    Node fromId(int id, Node) const {
57 57
      return Parent::nodeFromId(id);
58 58
    }
59 59

	
60 60
    Arc fromId(int id, Arc) const {
61 61
      return Parent::arcFromId(id);
62 62
    }
63 63

	
64 64
    Node oppositeNode(const Node &n, const Arc &e) const {
65 65
      if (n == Parent::source(e))
66
	return Parent::target(e);
66
        return Parent::target(e);
67 67
      else if(n==Parent::target(e))
68
	return Parent::source(e);
68
        return Parent::source(e);
69 69
      else
70
	return INVALID;
70
        return INVALID;
71 71
    }
72 72

	
73 73

	
74 74
    // Alteration notifier extensions
75 75

	
76 76
    // The arc observer registry.
77 77
    typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier;
78 78

	
79 79
  protected:
80 80

	
81 81
    mutable ArcNotifier arc_notifier;
82 82

	
83 83
  public:
84 84

	
85 85
    using Parent::notifier;
86 86

	
87 87
    // Gives back the arc alteration notifier.
88 88
    ArcNotifier& notifier(Arc) const {
89 89
      return arc_notifier;
90 90
    }
91 91

	
92 92
    // Iterable extensions
93 93

	
94
    class NodeIt : public Node { 
94
    class NodeIt : public Node {
95 95
      const Digraph* digraph;
96 96
    public:
97 97

	
98 98
      NodeIt() {}
99 99

	
100 100
      NodeIt(Invalid i) : Node(i) { }
101 101

	
102 102
      explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
103
	_graph.first(static_cast<Node&>(*this));
103
        _graph.first(static_cast<Node&>(*this));
104 104
      }
105 105

	
106
      NodeIt(const Digraph& _graph, const Node& node) 
107
	: Node(node), digraph(&_graph) {}
106
      NodeIt(const Digraph& _graph, const Node& node)
107
        : Node(node), digraph(&_graph) {}
108 108

	
109
      NodeIt& operator++() { 
110
	digraph->next(*this);
111
	return *this; 
109
      NodeIt& operator++() {
110
        digraph->next(*this);
111
        return *this;
112 112
      }
113 113

	
114 114
    };
115 115

	
116 116

	
117
    class ArcIt : public Arc { 
117
    class ArcIt : public Arc {
118 118
      const Digraph* digraph;
119 119
    public:
120 120

	
121 121
      ArcIt() { }
122 122

	
123 123
      ArcIt(Invalid i) : Arc(i) { }
124 124

	
125 125
      explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
126
	_graph.first(static_cast<Arc&>(*this));
126
        _graph.first(static_cast<Arc&>(*this));
127 127
      }
128 128

	
129
      ArcIt(const Digraph& _graph, const Arc& e) : 
130
	Arc(e), digraph(&_graph) { }
129
      ArcIt(const Digraph& _graph, const Arc& e) :
130
        Arc(e), digraph(&_graph) { }
131 131

	
132
      ArcIt& operator++() { 
133
	digraph->next(*this);
134
	return *this; 
132
      ArcIt& operator++() {
133
        digraph->next(*this);
134
        return *this;
135 135
      }
136 136

	
137 137
    };
138 138

	
139 139

	
140
    class OutArcIt : public Arc { 
140
    class OutArcIt : public Arc {
141 141
      const Digraph* digraph;
142 142
    public:
143 143

	
144 144
      OutArcIt() { }
145 145

	
146 146
      OutArcIt(Invalid i) : Arc(i) { }
147 147

	
148
      OutArcIt(const Digraph& _graph, const Node& node) 
149
	: digraph(&_graph) {
150
	_graph.firstOut(*this, node);
148
      OutArcIt(const Digraph& _graph, const Node& node)
149
        : digraph(&_graph) {
150
        _graph.firstOut(*this, node);
151 151
      }
152 152

	
153
      OutArcIt(const Digraph& _graph, const Arc& arc) 
154
	: Arc(arc), digraph(&_graph) {}
153
      OutArcIt(const Digraph& _graph, const Arc& arc)
154
        : Arc(arc), digraph(&_graph) {}
155 155

	
156
      OutArcIt& operator++() { 
157
	digraph->nextOut(*this);
158
	return *this; 
156
      OutArcIt& operator++() {
157
        digraph->nextOut(*this);
158
        return *this;
159 159
      }
160 160

	
161 161
    };
162 162

	
163 163

	
164
    class InArcIt : public Arc { 
164
    class InArcIt : public Arc {
165 165
      const Digraph* digraph;
166 166
    public:
167 167

	
168 168
      InArcIt() { }
169 169

	
170 170
      InArcIt(Invalid i) : Arc(i) { }
171 171

	
172
      InArcIt(const Digraph& _graph, const Node& node) 
173
	: digraph(&_graph) {
174
	_graph.firstIn(*this, node);
172
      InArcIt(const Digraph& _graph, const Node& node)
173
        : digraph(&_graph) {
174
        _graph.firstIn(*this, node);
175 175
      }
176 176

	
177
      InArcIt(const Digraph& _graph, const Arc& arc) : 
178
	Arc(arc), digraph(&_graph) {}
177
      InArcIt(const Digraph& _graph, const Arc& arc) :
178
        Arc(arc), digraph(&_graph) {}
179 179

	
180
      InArcIt& operator++() { 
181
	digraph->nextIn(*this);
182
	return *this; 
180
      InArcIt& operator++() {
181
        digraph->nextIn(*this);
182
        return *this;
183 183
      }
184 184

	
185 185
    };
186 186

	
187 187
    // \brief Base node of the iterator
188 188
    //
189 189
    // Returns the base node (ie. the source in this case) of the iterator
190 190
    Node baseNode(const OutArcIt &e) const {
191 191
      return Parent::source(static_cast<const Arc&>(e));
192 192
    }
193 193
    // \brief Running node of the iterator
194 194
    //
195 195
    // Returns the running node (ie. the target in this case) of the
196 196
    // iterator
197 197
    Node runningNode(const OutArcIt &e) const {
198 198
      return Parent::target(static_cast<const Arc&>(e));
199 199
    }
200 200

	
201 201
    // \brief Base node of the iterator
202 202
    //
203 203
    // Returns the base node (ie. the target in this case) of the iterator
204 204
    Node baseNode(const InArcIt &e) const {
205 205
      return Parent::target(static_cast<const Arc&>(e));
206 206
    }
207 207
    // \brief Running node of the iterator
208 208
    //
209 209
    // Returns the running node (ie. the source in this case) of the
210 210
    // iterator
211 211
    Node runningNode(const InArcIt &e) const {
212 212
      return Parent::source(static_cast<const Arc&>(e));
213 213
    }
214 214

	
215 215
    using Parent::first;
216 216

	
217 217
    // Mappable extension
218
    
218

	
219 219
    template <typename _Value>
220
    class ArcMap 
220
    class ArcMap
221 221
      : public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
222 222
      typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent;
223 223

	
224 224
    public:
225
      explicit ArcMap(const Digraph& _g) 
226
	: Parent(_g) {}
227
      ArcMap(const Digraph& _g, const _Value& _v) 
228
	: Parent(_g, _v) {}
225
      explicit ArcMap(const Digraph& _g)
226
        : Parent(_g) {}
227
      ArcMap(const Digraph& _g, const _Value& _v)
228
        : Parent(_g, _v) {}
229 229

	
230 230
      ArcMap& operator=(const ArcMap& cmap) {
231
	return operator=<ArcMap>(cmap);
231
        return operator=<ArcMap>(cmap);
232 232
      }
233 233

	
234 234
      template <typename CMap>
235 235
      ArcMap& operator=(const CMap& cmap) {
236 236
        Parent::operator=(cmap);
237
	return *this;
237
        return *this;
238 238
      }
239 239

	
240 240
    };
241 241

	
242 242

	
243 243
    // Alteration extension
244 244

	
245 245
    Arc addArc(const Node& from, const Node& to) {
246 246
      Arc arc = Parent::addArc(from, to);
247 247
      notifier(Arc()).add(arc);
248 248
      return arc;
249 249
    }
250
    
250

	
251 251
    void clear() {
252 252
      notifier(Arc()).clear();
253 253
      Parent::clear();
254 254
    }
255 255

	
256 256
    void erase(const Arc& arc) {
257 257
      notifier(Arc()).erase(arc);
258 258
      Parent::erase(arc);
259 259
    }
260 260

	
261 261
    ArcSetExtender() {
262 262
      arc_notifier.setContainer(*this);
263 263
    }
264 264

	
265 265
    ~ArcSetExtender() {
266 266
      arc_notifier.clear();
267 267
    }
268 268

	
269 269
  };
270 270

	
271 271

	
272 272
  // \ingroup digraphbits
273 273
  //
274 274
  // \brief Extender for the EdgeSets
275 275
  template <typename Base>
276 276
  class EdgeSetExtender : public Base {
277 277
    typedef Base Parent;
278 278

	
279 279
  public:
280 280

	
281 281
    typedef EdgeSetExtender Graph;
282 282

	
283 283
    typedef True UndirectedTag;
284 284

	
285 285
    typedef typename Parent::Node Node;
286 286
    typedef typename Parent::Arc Arc;
287 287
    typedef typename Parent::Edge Edge;
288 288

	
289 289
    int maxId(Node) const {
290 290
      return Parent::maxNodeId();
291 291
    }
292 292

	
293 293
    int maxId(Arc) const {
294 294
      return Parent::maxArcId();
295 295
    }
296 296

	
297 297
    int maxId(Edge) const {
298 298
      return Parent::maxEdgeId();
299 299
    }
300 300

	
301 301
    Node fromId(int id, Node) const {
302 302
      return Parent::nodeFromId(id);
303 303
    }
304 304

	
305 305
    Arc fromId(int id, Arc) const {
306 306
      return Parent::arcFromId(id);
307 307
    }
308 308

	
309 309
    Edge fromId(int id, Edge) const {
310 310
      return Parent::edgeFromId(id);
311 311
    }
312 312

	
313 313
    Node oppositeNode(const Node &n, const Edge &e) const {
314 314
      if( n == Parent::u(e))
315
	return Parent::v(e);
315
        return Parent::v(e);
316 316
      else if( n == Parent::v(e))
317
	return Parent::u(e);
317
        return Parent::u(e);
318 318
      else
319
	return INVALID;
319
        return INVALID;
320 320
    }
321 321

	
322 322
    Arc oppositeArc(const Arc &e) const {
323 323
      return Parent::direct(e, !Parent::direction(e));
324 324
    }
325 325

	
326 326
    using Parent::direct;
327 327
    Arc direct(const Edge &e, const Node &s) const {
328 328
      return Parent::direct(e, Parent::u(e) == s);
329 329
    }
330 330

	
331 331
    typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier;
332 332
    typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier;
333 333

	
334 334

	
335 335
  protected:
336 336

	
337 337
    mutable ArcNotifier arc_notifier;
338 338
    mutable EdgeNotifier edge_notifier;
339 339

	
340 340
  public:
341 341

	
342 342
    using Parent::notifier;
343
    
343

	
344 344
    ArcNotifier& notifier(Arc) const {
345 345
      return arc_notifier;
346 346
    }
347 347

	
348 348
    EdgeNotifier& notifier(Edge) const {
349 349
      return edge_notifier;
350 350
    }
351 351

	
352 352

	
353
    class NodeIt : public Node { 
353
    class NodeIt : public Node {
354 354
      const Graph* graph;
355 355
    public:
356 356

	
357 357
      NodeIt() {}
358 358

	
359 359
      NodeIt(Invalid i) : Node(i) { }
360 360

	
361 361
      explicit NodeIt(const Graph& _graph) : graph(&_graph) {
362
	_graph.first(static_cast<Node&>(*this));
362
        _graph.first(static_cast<Node&>(*this));
363 363
      }
364 364

	
365
      NodeIt(const Graph& _graph, const Node& node) 
366
	: Node(node), graph(&_graph) {}
365
      NodeIt(const Graph& _graph, const Node& node)
366
        : Node(node), graph(&_graph) {}
367 367

	
368
      NodeIt& operator++() { 
369
	graph->next(*this);
370
	return *this; 
368
      NodeIt& operator++() {
369
        graph->next(*this);
370
        return *this;
371 371
      }
372 372

	
373 373
    };
374 374

	
375 375

	
376
    class ArcIt : public Arc { 
376
    class ArcIt : public Arc {
377 377
      const Graph* graph;
378 378
    public:
379 379

	
380 380
      ArcIt() { }
381 381

	
382 382
      ArcIt(Invalid i) : Arc(i) { }
383 383

	
384 384
      explicit ArcIt(const Graph& _graph) : graph(&_graph) {
385
	_graph.first(static_cast<Arc&>(*this));
385
        _graph.first(static_cast<Arc&>(*this));
386 386
      }
387 387

	
388
      ArcIt(const Graph& _graph, const Arc& e) : 
389
	Arc(e), graph(&_graph) { }
388
      ArcIt(const Graph& _graph, const Arc& e) :
389
        Arc(e), graph(&_graph) { }
390 390

	
391
      ArcIt& operator++() { 
392
	graph->next(*this);
393
	return *this; 
391
      ArcIt& operator++() {
392
        graph->next(*this);
393
        return *this;
394 394
      }
395 395

	
396 396
    };
397 397

	
398 398

	
399
    class OutArcIt : public Arc { 
399
    class OutArcIt : public Arc {
400 400
      const Graph* graph;
401 401
    public:
402 402

	
403 403
      OutArcIt() { }
404 404

	
405 405
      OutArcIt(Invalid i) : Arc(i) { }
406 406

	
407
      OutArcIt(const Graph& _graph, const Node& node) 
408
	: graph(&_graph) {
409
	_graph.firstOut(*this, node);
407
      OutArcIt(const Graph& _graph, const Node& node)
408
        : graph(&_graph) {
409
        _graph.firstOut(*this, node);
410 410
      }
411 411

	
412
      OutArcIt(const Graph& _graph, const Arc& arc) 
413
	: Arc(arc), graph(&_graph) {}
412
      OutArcIt(const Graph& _graph, const Arc& arc)
413
        : Arc(arc), graph(&_graph) {}
414 414

	
415
      OutArcIt& operator++() { 
416
	graph->nextOut(*this);
417
	return *this; 
415
      OutArcIt& operator++() {
416
        graph->nextOut(*this);
417
        return *this;
418 418
      }
419 419

	
420 420
    };
421 421

	
422 422

	
423
    class InArcIt : public Arc { 
423
    class InArcIt : public Arc {
424 424
      const Graph* graph;
425 425
    public:
426 426

	
427 427
      InArcIt() { }
428 428

	
429 429
      InArcIt(Invalid i) : Arc(i) { }
430 430

	
431
      InArcIt(const Graph& _graph, const Node& node) 
432
	: graph(&_graph) {
433
	_graph.firstIn(*this, node);
431
      InArcIt(const Graph& _graph, const Node& node)
432
        : graph(&_graph) {
433
        _graph.firstIn(*this, node);
434 434
      }
435 435

	
436
      InArcIt(const Graph& _graph, const Arc& arc) : 
437
	Arc(arc), graph(&_graph) {}
436
      InArcIt(const Graph& _graph, const Arc& arc) :
437
        Arc(arc), graph(&_graph) {}
438 438

	
439
      InArcIt& operator++() { 
440
	graph->nextIn(*this);
441
	return *this; 
439
      InArcIt& operator++() {
440
        graph->nextIn(*this);
441
        return *this;
442 442
      }
443 443

	
444 444
    };
445 445

	
446 446

	
447
    class EdgeIt : public Parent::Edge { 
447
    class EdgeIt : public Parent::Edge {
448 448
      const Graph* graph;
449 449
    public:
450 450

	
451 451
      EdgeIt() { }
452 452

	
453 453
      EdgeIt(Invalid i) : Edge(i) { }
454 454

	
455 455
      explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
456
	_graph.first(static_cast<Edge&>(*this));
456
        _graph.first(static_cast<Edge&>(*this));
457 457
      }
458 458

	
459
      EdgeIt(const Graph& _graph, const Edge& e) : 
460
	Edge(e), graph(&_graph) { }
459
      EdgeIt(const Graph& _graph, const Edge& e) :
460
        Edge(e), graph(&_graph) { }
461 461

	
462
      EdgeIt& operator++() { 
463
	graph->next(*this);
464
	return *this; 
462
      EdgeIt& operator++() {
463
        graph->next(*this);
464
        return *this;
465 465
      }
466 466

	
467 467
    };
468 468

	
469 469
    class IncEdgeIt : public Parent::Edge {
470 470
      friend class EdgeSetExtender;
471 471
      const Graph* graph;
472 472
      bool direction;
473 473
    public:
474 474

	
475 475
      IncEdgeIt() { }
476 476

	
477 477
      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
478 478

	
479 479
      IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
480
	_graph.firstInc(*this, direction, n);
480
        _graph.firstInc(*this, direction, n);
481 481
      }
482 482

	
483 483
      IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n)
484
	: graph(&_graph), Edge(ue) {
485
	direction = (_graph.source(ue) == n);
484
        : graph(&_graph), Edge(ue) {
485
        direction = (_graph.source(ue) == n);
486 486
      }
487 487

	
488 488
      IncEdgeIt& operator++() {
489
	graph->nextInc(*this, direction);
490
	return *this; 
489
        graph->nextInc(*this, direction);
490
        return *this;
491 491
      }
492 492
    };
493 493

	
494 494
    // \brief Base node of the iterator
495 495
    //
496 496
    // Returns the base node (ie. the source in this case) of the iterator
497 497
    Node baseNode(const OutArcIt &e) const {
498 498
      return Parent::source(static_cast<const Arc&>(e));
499 499
    }
500 500
    // \brief Running node of the iterator
501 501
    //
502 502
    // Returns the running node (ie. the target in this case) of the
503 503
    // iterator
504 504
    Node runningNode(const OutArcIt &e) const {
505 505
      return Parent::target(static_cast<const Arc&>(e));
506 506
    }
507 507

	
508 508
    // \brief Base node of the iterator
509 509
    //
510 510
    // Returns the base node (ie. the target in this case) of the iterator
511 511
    Node baseNode(const InArcIt &e) const {
512 512
      return Parent::target(static_cast<const Arc&>(e));
513 513
    }
514 514
    // \brief Running node of the iterator
515 515
    //
516 516
    // Returns the running node (ie. the source in this case) of the
517 517
    // iterator
518 518
    Node runningNode(const InArcIt &e) const {
519 519
      return Parent::source(static_cast<const Arc&>(e));
520 520
    }
521 521

	
522 522
    // Base node of the iterator
523 523
    //
524 524
    // Returns the base node of the iterator
525 525
    Node baseNode(const IncEdgeIt &e) const {
526 526
      return e.direction ? u(e) : v(e);
527 527
    }
528 528
    // Running node of the iterator
529 529
    //
530 530
    // Returns the running node of the iterator
531 531
    Node runningNode(const IncEdgeIt &e) const {
532 532
      return e.direction ? v(e) : u(e);
533 533
    }
534 534

	
535 535

	
536 536
    template <typename _Value>
537
    class ArcMap 
537
    class ArcMap
538 538
      : public MapExtender<DefaultMap<Graph, Arc, _Value> > {
539 539
      typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
540 540

	
541 541
    public:
542
      explicit ArcMap(const Graph& _g) 
543
	: Parent(_g) {}
544
      ArcMap(const Graph& _g, const _Value& _v) 
545
	: Parent(_g, _v) {}
542
      explicit ArcMap(const Graph& _g)
543
        : Parent(_g) {}
544
      ArcMap(const Graph& _g, const _Value& _v)
545
        : Parent(_g, _v) {}
546 546

	
547 547
      ArcMap& operator=(const ArcMap& cmap) {
548
	return operator=<ArcMap>(cmap);
548
        return operator=<ArcMap>(cmap);
549 549
      }
550 550

	
551 551
      template <typename CMap>
552 552
      ArcMap& operator=(const CMap& cmap) {
553 553
        Parent::operator=(cmap);
554
	return *this;
554
        return *this;
555 555
      }
556 556

	
557 557
    };
558 558

	
559 559

	
560 560
    template <typename _Value>
561
    class EdgeMap 
561
    class EdgeMap
562 562
      : public MapExtender<DefaultMap<Graph, Edge, _Value> > {
563 563
      typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
564 564

	
565 565
    public:
566
      explicit EdgeMap(const Graph& _g) 
567
	: Parent(_g) {}
566
      explicit EdgeMap(const Graph& _g)
567
        : Parent(_g) {}
568 568

	
569
      EdgeMap(const Graph& _g, const _Value& _v) 
570
	: Parent(_g, _v) {}
569
      EdgeMap(const Graph& _g, const _Value& _v)
570
        : Parent(_g, _v) {}
571 571

	
572 572
      EdgeMap& operator=(const EdgeMap& cmap) {
573
	return operator=<EdgeMap>(cmap);
573
        return operator=<EdgeMap>(cmap);
574 574
      }
575 575

	
576 576
      template <typename CMap>
577 577
      EdgeMap& operator=(const CMap& cmap) {
578 578
        Parent::operator=(cmap);
579
	return *this;
579
        return *this;
580 580
      }
581 581

	
582 582
    };
583 583

	
584 584

	
585 585
    // Alteration extension
586 586

	
587 587
    Edge addEdge(const Node& from, const Node& to) {
588 588
      Edge edge = Parent::addEdge(from, to);
589 589
      notifier(Edge()).add(edge);
590 590
      std::vector<Arc> arcs;
591 591
      arcs.push_back(Parent::direct(edge, true));
592 592
      arcs.push_back(Parent::direct(edge, false));
593 593
      notifier(Arc()).add(arcs);
594 594
      return edge;
595 595
    }
596
    
596

	
597 597
    void clear() {
598 598
      notifier(Arc()).clear();
599 599
      notifier(Edge()).clear();
600 600
      Parent::clear();
601 601
    }
602 602

	
603 603
    void erase(const Edge& edge) {
604 604
      std::vector<Arc> arcs;
605 605
      arcs.push_back(Parent::direct(edge, true));
606 606
      arcs.push_back(Parent::direct(edge, false));
607 607
      notifier(Arc()).erase(arcs);
608 608
      notifier(Edge()).erase(edge);
609 609
      Parent::erase(edge);
610 610
    }
611 611

	
612 612

	
613 613
    EdgeSetExtender() {
614 614
      arc_notifier.setContainer(*this);
615 615
      edge_notifier.setContainer(*this);
616 616
    }
617 617

	
618 618
    ~EdgeSetExtender() {
619 619
      edge_notifier.clear();
620 620
      arc_notifier.clear();
621 621
    }
622
    
622

	
623 623
  };
624 624

	
625 625
}
626 626

	
627 627
#endif
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
20 20
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24

	
25 25
namespace lemon {
26 26

	
27 27
  template <typename _Digraph>
28 28
  class DigraphAdaptorExtender : public _Digraph {
29 29
    typedef _Digraph Parent;
30 30

	
31 31
  public:
32 32

	
33 33
    typedef _Digraph Digraph;
34 34
    typedef DigraphAdaptorExtender Adaptor;
35 35

	
36 36
    // Base extensions
37 37

	
38 38
    typedef typename Parent::Node Node;
39 39
    typedef typename Parent::Arc Arc;
40 40

	
41 41
    int maxId(Node) const {
42 42
      return Parent::maxNodeId();
43 43
    }
44 44

	
45 45
    int maxId(Arc) const {
46 46
      return Parent::maxArcId();
47 47
    }
48 48

	
49 49
    Node fromId(int id, Node) const {
50 50
      return Parent::nodeFromId(id);
51 51
    }
52 52

	
53 53
    Arc fromId(int id, Arc) const {
54 54
      return Parent::arcFromId(id);
55 55
    }
56 56

	
57 57
    Node oppositeNode(const Node &n, const Arc &e) const {
58 58
      if (n == Parent::source(e))
59 59
        return Parent::target(e);
60 60
      else if(n==Parent::target(e))
61 61
        return Parent::source(e);
62 62
      else
63 63
        return INVALID;
64 64
    }
65 65

	
66 66
    class NodeIt : public Node {
67 67
      const Adaptor* _adaptor;
68 68
    public:
69 69

	
70 70
      NodeIt() {}
71 71

	
72 72
      NodeIt(Invalid i) : Node(i) { }
73 73

	
74 74
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
75 75
        _adaptor->first(static_cast<Node&>(*this));
76 76
      }
77 77

	
78 78
      NodeIt(const Adaptor& adaptor, const Node& node)
79 79
        : Node(node), _adaptor(&adaptor) {}
80 80

	
81 81
      NodeIt& operator++() {
82 82
        _adaptor->next(*this);
83 83
        return *this;
84 84
      }
85 85

	
86 86
    };
87 87

	
88 88

	
89 89
    class ArcIt : public Arc {
90 90
      const Adaptor* _adaptor;
91 91
    public:
92 92

	
93 93
      ArcIt() { }
94 94

	
95 95
      ArcIt(Invalid i) : Arc(i) { }
96 96

	
97 97
      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
98 98
        _adaptor->first(static_cast<Arc&>(*this));
99 99
      }
100 100

	
101 101
      ArcIt(const Adaptor& adaptor, const Arc& e) :
102 102
        Arc(e), _adaptor(&adaptor) { }
103 103

	
104 104
      ArcIt& operator++() {
105 105
        _adaptor->next(*this);
106 106
        return *this;
107 107
      }
108 108

	
109 109
    };
110 110

	
111 111

	
112 112
    class OutArcIt : public Arc {
113 113
      const Adaptor* _adaptor;
114 114
    public:
115 115

	
116 116
      OutArcIt() { }
117 117

	
118 118
      OutArcIt(Invalid i) : Arc(i) { }
119 119

	
120 120
      OutArcIt(const Adaptor& adaptor, const Node& node)
121 121
        : _adaptor(&adaptor) {
122 122
        _adaptor->firstOut(*this, node);
123 123
      }
124 124

	
125 125
      OutArcIt(const Adaptor& adaptor, const Arc& arc)
126 126
        : Arc(arc), _adaptor(&adaptor) {}
127 127

	
128 128
      OutArcIt& operator++() {
129 129
        _adaptor->nextOut(*this);
130 130
        return *this;
131 131
      }
132 132

	
133 133
    };
134 134

	
135 135

	
136 136
    class InArcIt : public Arc {
137 137
      const Adaptor* _adaptor;
138 138
    public:
139 139

	
140 140
      InArcIt() { }
141 141

	
142 142
      InArcIt(Invalid i) : Arc(i) { }
143 143

	
144 144
      InArcIt(const Adaptor& adaptor, const Node& node)
145 145
        : _adaptor(&adaptor) {
146 146
        _adaptor->firstIn(*this, node);
147 147
      }
148 148

	
149 149
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
150 150
        Arc(arc), _adaptor(&adaptor) {}
151 151

	
152 152
      InArcIt& operator++() {
153 153
        _adaptor->nextIn(*this);
154 154
        return *this;
155 155
      }
156 156

	
157 157
    };
158 158

	
159 159
    Node baseNode(const OutArcIt &e) const {
160 160
      return Parent::source(e);
161 161
    }
162 162
    Node runningNode(const OutArcIt &e) const {
163 163
      return Parent::target(e);
164 164
    }
165 165

	
166 166
    Node baseNode(const InArcIt &e) const {
167 167
      return Parent::target(e);
168 168
    }
169 169
    Node runningNode(const InArcIt &e) const {
170 170
      return Parent::source(e);
171 171
    }
172 172

	
173 173
  };
174 174

	
175 175
  template <typename _Graph>
176 176
  class GraphAdaptorExtender : public _Graph {
177 177
    typedef _Graph Parent;
178 178

	
179 179
  public:
180 180

	
181 181
    typedef _Graph Graph;
182 182
    typedef GraphAdaptorExtender Adaptor;
183 183

	
184 184
    typedef True UndirectedTag;
185 185

	
186 186
    typedef typename Parent::Node Node;
187 187
    typedef typename Parent::Arc Arc;
188 188
    typedef typename Parent::Edge Edge;
189 189

	
190 190
    // Graph extension
191 191

	
192 192
    int maxId(Node) const {
193 193
      return Parent::maxNodeId();
194 194
    }
195 195

	
196 196
    int maxId(Arc) const {
197 197
      return Parent::maxArcId();
198 198
    }
199 199

	
200 200
    int maxId(Edge) const {
201 201
      return Parent::maxEdgeId();
202 202
    }
203 203

	
204 204
    Node fromId(int id, Node) const {
205 205
      return Parent::nodeFromId(id);
206 206
    }
207 207

	
208 208
    Arc fromId(int id, Arc) const {
209 209
      return Parent::arcFromId(id);
210 210
    }
211 211

	
212 212
    Edge fromId(int id, Edge) const {
213 213
      return Parent::edgeFromId(id);
214 214
    }
215 215

	
216 216
    Node oppositeNode(const Node &n, const Edge &e) const {
217 217
      if( n == Parent::u(e))
218 218
        return Parent::v(e);
219 219
      else if( n == Parent::v(e))
220 220
        return Parent::u(e);
221 221
      else
222 222
        return INVALID;
223 223
    }
224 224

	
225 225
    Arc oppositeArc(const Arc &a) const {
226 226
      return Parent::direct(a, !Parent::direction(a));
227 227
    }
228 228

	
229 229
    using Parent::direct;
230 230
    Arc direct(const Edge &e, const Node &s) const {
231 231
      return Parent::direct(e, Parent::u(e) == s);
232 232
    }
233 233

	
234 234

	
235 235
    class NodeIt : public Node {
236 236
      const Adaptor* _adaptor;
237 237
    public:
238 238

	
239 239
      NodeIt() {}
240 240

	
241 241
      NodeIt(Invalid i) : Node(i) { }
242 242

	
243 243
      explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
244 244
        _adaptor->first(static_cast<Node&>(*this));
245 245
      }
246 246

	
247 247
      NodeIt(const Adaptor& adaptor, const Node& node)
248 248
        : Node(node), _adaptor(&adaptor) {}
249 249

	
250 250
      NodeIt& operator++() {
251 251
        _adaptor->next(*this);
252 252
        return *this;
253 253
      }
254 254

	
255 255
    };
256 256

	
257 257

	
258 258
    class ArcIt : public Arc {
259 259
      const Adaptor* _adaptor;
260 260
    public:
261 261

	
262 262
      ArcIt() { }
263 263

	
264 264
      ArcIt(Invalid i) : Arc(i) { }
265 265

	
266 266
      explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
267 267
        _adaptor->first(static_cast<Arc&>(*this));
268 268
      }
269 269

	
270 270
      ArcIt(const Adaptor& adaptor, const Arc& e) :
271 271
        Arc(e), _adaptor(&adaptor) { }
272 272

	
273 273
      ArcIt& operator++() {
274 274
        _adaptor->next(*this);
275 275
        return *this;
276 276
      }
277 277

	
278 278
    };
279 279

	
280 280

	
281 281
    class OutArcIt : public Arc {
282 282
      const Adaptor* _adaptor;
283 283
    public:
284 284

	
285 285
      OutArcIt() { }
286 286

	
287 287
      OutArcIt(Invalid i) : Arc(i) { }
288 288

	
289 289
      OutArcIt(const Adaptor& adaptor, const Node& node)
290 290
        : _adaptor(&adaptor) {
291 291
        _adaptor->firstOut(*this, node);
292 292
      }
293 293

	
294 294
      OutArcIt(const Adaptor& adaptor, const Arc& arc)
295 295
        : Arc(arc), _adaptor(&adaptor) {}
296 296

	
297 297
      OutArcIt& operator++() {
298 298
        _adaptor->nextOut(*this);
299 299
        return *this;
300 300
      }
301 301

	
302 302
    };
303 303

	
304 304

	
305 305
    class InArcIt : public Arc {
306 306
      const Adaptor* _adaptor;
307 307
    public:
308 308

	
309 309
      InArcIt() { }
310 310

	
311 311
      InArcIt(Invalid i) : Arc(i) { }
312 312

	
313 313
      InArcIt(const Adaptor& adaptor, const Node& node)
314 314
        : _adaptor(&adaptor) {
315 315
        _adaptor->firstIn(*this, node);
316 316
      }
317 317

	
318 318
      InArcIt(const Adaptor& adaptor, const Arc& arc) :
319 319
        Arc(arc), _adaptor(&adaptor) {}
320 320

	
321 321
      InArcIt& operator++() {
322 322
        _adaptor->nextIn(*this);
323 323
        return *this;
324 324
      }
325 325

	
326 326
    };
327 327

	
328 328
    class EdgeIt : public Parent::Edge {
329 329
      const Adaptor* _adaptor;
330 330
    public:
331 331

	
332 332
      EdgeIt() { }
333 333

	
334 334
      EdgeIt(Invalid i) : Edge(i) { }
335 335

	
336 336
      explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) {
337 337
        _adaptor->first(static_cast<Edge&>(*this));
338 338
      }
339 339

	
340 340
      EdgeIt(const Adaptor& adaptor, const Edge& e) :
341 341
        Edge(e), _adaptor(&adaptor) { }
342 342

	
343 343
      EdgeIt& operator++() {
344 344
        _adaptor->next(*this);
345 345
        return *this;
346 346
      }
347 347

	
348 348
    };
349 349

	
350 350
    class IncEdgeIt : public Edge {
351 351
      friend class GraphAdaptorExtender;
352 352
      const Adaptor* _adaptor;
353 353
      bool direction;
354 354
    public:
355 355

	
356 356
      IncEdgeIt() { }
357 357

	
358 358
      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
359 359

	
360 360
      IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) {
361 361
        _adaptor->firstInc(static_cast<Edge&>(*this), direction, n);
362 362
      }
363 363

	
364 364
      IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n)
365 365
        : _adaptor(&adaptor), Edge(e) {
366 366
        direction = (_adaptor->u(e) == n);
367 367
      }
368 368

	
369 369
      IncEdgeIt& operator++() {
370 370
        _adaptor->nextInc(*this, direction);
371 371
        return *this;
372 372
      }
373 373
    };
374 374

	
375 375
    Node baseNode(const OutArcIt &a) const {
376 376
      return Parent::source(a);
377 377
    }
378 378
    Node runningNode(const OutArcIt &a) const {
379 379
      return Parent::target(a);
380 380
    }
381 381

	
382 382
    Node baseNode(const InArcIt &a) const {
383 383
      return Parent::target(a);
384 384
    }
385 385
    Node runningNode(const InArcIt &a) const {
386 386
      return Parent::source(a);
387 387
    }
388 388

	
389 389
    Node baseNode(const IncEdgeIt &e) const {
390 390
      return e.direction ? Parent::u(e) : Parent::v(e);
391 391
    }
392 392
    Node runningNode(const IncEdgeIt &e) const {
393 393
      return e.direction ? Parent::v(e) : Parent::u(e);
394 394
    }
395 395

	
396 396
  };
397 397

	
398 398
}
399 399

	
400 400

	
401 401
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_MAP_EXTENDER_H
20 20
#define LEMON_BITS_MAP_EXTENDER_H
21 21

	
22 22
#include <iterator>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25

	
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
//\file
30 30
//\brief Extenders for iterable maps.
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  // \ingroup graphbits
35 35
  //
36 36
  // \brief Extender for maps
37 37
  template <typename _Map>
38 38
  class MapExtender : public _Map {
39 39
    typedef _Map Parent;
40 40
    typedef typename Parent::GraphType GraphType;
41 41

	
42 42
  public:
43 43

	
44 44
    typedef MapExtender Map;
45 45
    typedef typename Parent::Key Item;
46 46

	
47 47
    typedef typename Parent::Key Key;
48 48
    typedef typename Parent::Value Value;
49 49
    typedef typename Parent::Reference Reference;
50 50
    typedef typename Parent::ConstReference ConstReference;
51 51

	
52 52
    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
53 53

	
54 54
    class MapIt;
55 55
    class ConstMapIt;
56 56

	
57 57
    friend class MapIt;
58 58
    friend class ConstMapIt;
59 59

	
60 60
  public:
61 61

	
62 62
    MapExtender(const GraphType& graph)
63 63
      : Parent(graph) {}
64 64

	
65 65
    MapExtender(const GraphType& graph, const Value& value)
66 66
      : Parent(graph, value) {}
67 67

	
68 68
  private:
69 69
    MapExtender& operator=(const MapExtender& cmap) {
70 70
      return operator=<MapExtender>(cmap);
71 71
    }
72 72

	
73 73
    template <typename CMap>
74 74
    MapExtender& operator=(const CMap& cmap) {
75 75
      Parent::operator=(cmap);
76 76
      return *this;
77 77
    }
78 78

	
79 79
  public:
80 80
    class MapIt : public Item {
81 81
      typedef Item Parent;
82 82

	
83 83
    public:
84 84

	
85 85
      typedef typename Map::Value Value;
86 86

	
87 87
      MapIt() : map(NULL) {}
88 88

	
89 89
      MapIt(Invalid i) : Parent(i), map(NULL) {}
90 90

	
91 91
      explicit MapIt(Map& _map) : map(&_map) {
92 92
        map->notifier()->first(*this);
93 93
      }
94 94

	
95 95
      MapIt(const Map& _map, const Item& item)
96 96
        : Parent(item), map(&_map) {}
97 97

	
98 98
      MapIt& operator++() {
99 99
        map->notifier()->next(*this);
100 100
        return *this;
101 101
      }
102 102

	
103 103
      typename MapTraits<Map>::ConstReturnValue operator*() const {
104 104
        return (*map)[*this];
105 105
      }
106 106

	
107 107
      typename MapTraits<Map>::ReturnValue operator*() {
108 108
        return (*map)[*this];
109 109
      }
110 110

	
111 111
      void set(const Value& value) {
112 112
        map->set(*this, value);
113 113
      }
114 114

	
115 115
    protected:
116 116
      Map* map;
117 117

	
118 118
    };
119 119

	
120 120
    class ConstMapIt : public Item {
121 121
      typedef Item Parent;
122 122

	
123 123
    public:
124 124

	
125 125
      typedef typename Map::Value Value;
126 126

	
127 127
      ConstMapIt() : map(NULL) {}
128 128

	
129 129
      ConstMapIt(Invalid i) : Parent(i), map(NULL) {}
130 130

	
131 131
      explicit ConstMapIt(Map& _map) : map(&_map) {
132 132
        map->notifier()->first(*this);
133 133
      }
134 134

	
135 135
      ConstMapIt(const Map& _map, const Item& item)
136 136
        : Parent(item), map(_map) {}
137 137

	
138 138
      ConstMapIt& operator++() {
139 139
        map->notifier()->next(*this);
140 140
        return *this;
141 141
      }
142 142

	
143 143
      typename MapTraits<Map>::ConstReturnValue operator*() const {
144 144
        return map[*this];
145 145
      }
146 146

	
147 147
    protected:
148 148
      const Map* map;
149 149
    };
150 150

	
151 151
    class ItemIt : public Item {
152 152
      typedef Item Parent;
153 153

	
154 154
    public:
155 155
      ItemIt() : map(NULL) {}
156 156

	
157 157

	
158 158
      ItemIt(Invalid i) : Parent(i), map(NULL) {}
159 159

	
160 160
      explicit ItemIt(Map& _map) : map(&_map) {
161 161
        map->notifier()->first(*this);
162 162
      }
163 163

	
164 164
      ItemIt(const Map& _map, const Item& item)
165 165
        : Parent(item), map(&_map) {}
166 166

	
167 167
      ItemIt& operator++() {
168 168
        map->notifier()->next(*this);
169 169
        return *this;
170 170
      }
171 171

	
172 172
    protected:
173 173
      const Map* map;
174 174

	
175 175
    };
176 176
  };
177 177

	
178 178
  // \ingroup graphbits
179 179
  //
180 180
  // \brief Extender for maps which use a subset of the items.
181 181
  template <typename _Graph, typename _Map>
182 182
  class SubMapExtender : public _Map {
183 183
    typedef _Map Parent;
184 184
    typedef _Graph GraphType;
185 185

	
186 186
  public:
187 187

	
188 188
    typedef SubMapExtender Map;
189 189
    typedef typename Parent::Key Item;
190 190

	
191 191
    typedef typename Parent::Key Key;
192 192
    typedef typename Parent::Value Value;
193 193
    typedef typename Parent::Reference Reference;
194 194
    typedef typename Parent::ConstReference ConstReference;
195 195

	
196 196
    typedef typename Parent::ReferenceMapTag ReferenceMapTag;
197 197

	
198 198
    class MapIt;
199 199
    class ConstMapIt;
200 200

	
201 201
    friend class MapIt;
202 202
    friend class ConstMapIt;
203 203

	
204 204
  public:
205 205

	
206 206
    SubMapExtender(const GraphType& _graph)
207 207
      : Parent(_graph), graph(_graph) {}
208 208

	
209 209
    SubMapExtender(const GraphType& _graph, const Value& _value)
210 210
      : Parent(_graph, _value), graph(_graph) {}
211 211

	
212 212
  private:
213 213
    SubMapExtender& operator=(const SubMapExtender& cmap) {
214 214
      return operator=<MapExtender>(cmap);
215 215
    }
216 216

	
217 217
    template <typename CMap>
218 218
    SubMapExtender& operator=(const CMap& cmap) {
219 219
      checkConcept<concepts::ReadMap<Key, Value>, CMap>();
220 220
      Item it;
221 221
      for (graph.first(it); it != INVALID; graph.next(it)) {
222 222
        Parent::set(it, cmap[it]);
223 223
      }
224 224
      return *this;
225 225
    }
226 226

	
227 227
  public:
228 228
    class MapIt : public Item {
229 229
      typedef Item Parent;
230 230

	
231 231
    public:
232 232
      typedef typename Map::Value Value;
233 233

	
234 234
      MapIt() : map(NULL) {}
235 235

	
236 236
      MapIt(Invalid i) : Parent(i), map(NULL) { }
237 237

	
238 238
      explicit MapIt(Map& _map) : map(&_map) {
239 239
        map->graph.first(*this);
240 240
      }
241 241

	
242 242
      MapIt(const Map& _map, const Item& item)
243 243
        : Parent(item), map(&_map) {}
244 244

	
245 245
      MapIt& operator++() {
246 246
        map->graph.next(*this);
247 247
        return *this;
248 248
      }
249 249

	
250 250
      typename MapTraits<Map>::ConstReturnValue operator*() const {
251 251
        return (*map)[*this];
252 252
      }
253 253

	
254 254
      typename MapTraits<Map>::ReturnValue operator*() {
255 255
        return (*map)[*this];
256 256
      }
257 257

	
258 258
      void set(const Value& value) {
259 259
        map->set(*this, value);
260 260
      }
261 261

	
262 262
    protected:
263 263
      Map* map;
264 264

	
265 265
    };
266 266

	
267 267
    class ConstMapIt : public Item {
268 268
      typedef Item Parent;
269 269

	
270 270
    public:
271 271

	
272 272
      typedef typename Map::Value Value;
273 273

	
274 274
      ConstMapIt() : map(NULL) {}
275 275

	
276 276
      ConstMapIt(Invalid i) : Parent(i), map(NULL) { }
277 277

	
278 278
      explicit ConstMapIt(Map& _map) : map(&_map) {
279 279
        map->graph.first(*this);
280 280
      }
281 281

	
282 282
      ConstMapIt(const Map& _map, const Item& item)
283 283
        : Parent(item), map(&_map) {}
284 284

	
285 285
      ConstMapIt& operator++() {
286 286
        map->graph.next(*this);
287 287
        return *this;
288 288
      }
289 289

	
290 290
      typename MapTraits<Map>::ConstReturnValue operator*() const {
291 291
        return (*map)[*this];
292 292
      }
293 293

	
294 294
    protected:
295 295
      const Map* map;
296 296
    };
297 297

	
298 298
    class ItemIt : public Item {
299 299
      typedef Item Parent;
300 300

	
301 301
    public:
302 302
      ItemIt() : map(NULL) {}
303 303

	
304 304

	
305 305
      ItemIt(Invalid i) : Parent(i), map(NULL) { }
306 306

	
307 307
      explicit ItemIt(Map& _map) : map(&_map) {
308 308
        map->graph.first(*this);
309 309
      }
310 310

	
311 311
      ItemIt(const Map& _map, const Item& item)
312 312
        : Parent(item), map(&_map) {}
313 313

	
314 314
      ItemIt& operator++() {
315 315
        map->graph.next(*this);
316 316
        return *this;
317 317
      }
318 318

	
319 319
    protected:
320 320
      const Map* map;
321 321

	
322 322
    };
323 323

	
324 324
  private:
325 325

	
326 326
    const GraphType& graph;
327 327

	
328 328
  };
329 329

	
330 330
}
331 331

	
332 332
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_PATH_DUMP_H
20 20
#define LEMON_BITS_PATH_DUMP_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/concept_check.h>
24 24

	
25 25
namespace lemon {
26 26

	
27 27
  template <typename _Digraph, typename _PredMap>
28 28
  class PredMapPath {
29 29
  public:
30 30
    typedef True RevPathTag;
31 31

	
32 32
    typedef _Digraph Digraph;
33 33
    typedef typename Digraph::Arc Arc;
34 34
    typedef _PredMap PredMap;
35 35

	
36 36
    PredMapPath(const Digraph& _digraph, const PredMap& _predMap,
37 37
                typename Digraph::Node _target)
38 38
      : digraph(_digraph), predMap(_predMap), target(_target) {}
39 39

	
40 40
    int length() const {
41 41
      int len = 0;
42 42
      typename Digraph::Node node = target;
43 43
      typename Digraph::Arc arc;
44 44
      while ((arc = predMap[node]) != INVALID) {
45 45
        node = digraph.source(arc);
46 46
        ++len;
47 47
      }
48 48
      return len;
49 49
    }
50 50

	
51 51
    bool empty() const {
52 52
      return predMap[target] == INVALID;
53 53
    }
54 54

	
55 55
    class RevArcIt {
56 56
    public:
57 57
      RevArcIt() {}
58 58
      RevArcIt(Invalid) : path(0), current(INVALID) {}
59 59
      RevArcIt(const PredMapPath& _path)
60 60
        : path(&_path), current(_path.target) {
61 61
        if (path->predMap[current] == INVALID) current = INVALID;
62 62
      }
63 63

	
64 64
      operator const typename Digraph::Arc() const {
65 65
        return path->predMap[current];
66 66
      }
67 67

	
68 68
      RevArcIt& operator++() {
69 69
        current = path->digraph.source(path->predMap[current]);
70 70
        if (path->predMap[current] == INVALID) current = INVALID;
71 71
        return *this;
72 72
      }
73 73

	
74 74
      bool operator==(const RevArcIt& e) const {
75 75
        return current == e.current;
76 76
      }
77 77

	
78 78
      bool operator!=(const RevArcIt& e) const {
79 79
        return current != e.current;
80 80
      }
81 81

	
82 82
      bool operator<(const RevArcIt& e) const {
83 83
        return current < e.current;
84 84
      }
85 85

	
86 86
    private:
87 87
      const PredMapPath* path;
88 88
      typename Digraph::Node current;
89 89
    };
90 90

	
91 91
  private:
92 92
    const Digraph& digraph;
93 93
    const PredMap& predMap;
94 94
    typename Digraph::Node target;
95 95
  };
96 96

	
97 97

	
98 98
  template <typename _Digraph, typename _PredMatrixMap>
99 99
  class PredMatrixMapPath {
100 100
  public:
101 101
    typedef True RevPathTag;
102 102

	
103 103
    typedef _Digraph Digraph;
104 104
    typedef typename Digraph::Arc Arc;
105 105
    typedef _PredMatrixMap PredMatrixMap;
106 106

	
107 107
    PredMatrixMapPath(const Digraph& _digraph,
108 108
                      const PredMatrixMap& _predMatrixMap,
109 109
                      typename Digraph::Node _source,
110 110
                      typename Digraph::Node _target)
111 111
      : digraph(_digraph), predMatrixMap(_predMatrixMap),
112 112
        source(_source), target(_target) {}
113 113

	
114 114
    int length() const {
115 115
      int len = 0;
116 116
      typename Digraph::Node node = target;
117 117
      typename Digraph::Arc arc;
118 118
      while ((arc = predMatrixMap(source, node)) != INVALID) {
119 119
        node = digraph.source(arc);
120 120
        ++len;
121 121
      }
122 122
      return len;
123 123
    }
124 124

	
125 125
    bool empty() const {
126 126
      return predMatrixMap(source, target) == INVALID;
127 127
    }
128 128

	
129 129
    class RevArcIt {
130 130
    public:
131 131
      RevArcIt() {}
132 132
      RevArcIt(Invalid) : path(0), current(INVALID) {}
133 133
      RevArcIt(const PredMatrixMapPath& _path)
134 134
        : path(&_path), current(_path.target) {
135 135
        if (path->predMatrixMap(path->source, current) == INVALID)
136 136
          current = INVALID;
137 137
      }
138 138

	
139 139
      operator const typename Digraph::Arc() const {
140 140
        return path->predMatrixMap(path->source, current);
141 141
      }
142 142

	
143 143
      RevArcIt& operator++() {
144 144
        current =
145 145
          path->digraph.source(path->predMatrixMap(path->source, current));
146 146
        if (path->predMatrixMap(path->source, current) == INVALID)
147 147
          current = INVALID;
148 148
        return *this;
149 149
      }
150 150

	
151 151
      bool operator==(const RevArcIt& e) const {
152 152
        return current == e.current;
153 153
      }
154 154

	
155 155
      bool operator!=(const RevArcIt& e) const {
156 156
        return current != e.current;
157 157
      }
158 158

	
159 159
      bool operator<(const RevArcIt& e) const {
160 160
        return current < e.current;
161 161
      }
162 162

	
163 163
    private:
164 164
      const PredMatrixMapPath* path;
165 165
      typename Digraph::Node current;
166 166
    };
167 167

	
168 168
  private:
169 169
    const Digraph& digraph;
170 170
    const PredMatrixMap& predMatrixMap;
171 171
    typename Digraph::Node source;
172 172
    typename Digraph::Node target;
173 173
  };
174 174

	
175 175
}
176 176

	
177 177
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_SOLVER_BITS_H
20 20
#define LEMON_BITS_SOLVER_BITS_H
21 21

	
22 22
#include <vector>
23 23

	
24 24
namespace lemon {
25 25

	
26 26
  namespace _solver_bits {
27 27

	
28 28
    class VarIndex {
29 29
    private:
30 30
      struct ItemT {
31 31
        int prev, next;
32 32
        int index;
33 33
      };
34 34
      std::vector<ItemT> items;
35 35
      int first_item, last_item, first_free_item;
36 36

	
37 37
      std::vector<int> cross;
38 38

	
39 39
    public:
40 40

	
41 41
      VarIndex()
42 42
        : first_item(-1), last_item(-1), first_free_item(-1) {
43 43
      }
44 44

	
45 45
      void clear() {
46 46
        first_item = -1;
47 47
        first_free_item = -1;
48 48
        items.clear();
49 49
        cross.clear();
50 50
      }
51 51

	
52 52
      int addIndex(int idx) {
53 53
        int n;
54 54
        if (first_free_item == -1) {
55 55
          n = items.size();
56 56
          items.push_back(ItemT());
57 57
        } else {
58 58
          n = first_free_item;
59 59
          first_free_item = items[n].next;
60 60
          if (first_free_item != -1) {
61 61
            items[first_free_item].prev = -1;
62 62
          }
63 63
        }
64 64
        items[n].index = idx;
65 65
        if (static_cast<int>(cross.size()) <= idx) {
66 66
          cross.resize(idx + 1, -1);
67 67
        }
68 68
        cross[idx] = n;
69 69

	
70 70
        items[n].prev = last_item;
71 71
        items[n].next = -1;
72 72
        if (last_item != -1) {
73 73
          items[last_item].next = n;
74 74
        } else {
75 75
          first_item = n;
76 76
        }
77 77
        last_item = n;
78 78

	
79 79
        return n;
80 80
      }
81 81

	
82 82
      int addIndex(int idx, int n) {
83 83
        while (n >= static_cast<int>(items.size())) {
84 84
          items.push_back(ItemT());
85 85
          items.back().prev = -1;
86 86
          items.back().next = first_free_item;
87 87
          if (first_free_item != -1) {
88 88
            items[first_free_item].prev = items.size() - 1;
89 89
          }
90 90
          first_free_item = items.size() - 1;
91 91
        }
92 92
        if (items[n].next != -1) {
93 93
          items[items[n].next].prev = items[n].prev;
94 94
        }
95 95
        if (items[n].prev != -1) {
96 96
          items[items[n].prev].next = items[n].next;
97 97
        } else {
98 98
          first_free_item = items[n].next;
99 99
        }
100 100

	
101 101
        items[n].index = idx;
102 102
        if (static_cast<int>(cross.size()) <= idx) {
103 103
          cross.resize(idx + 1, -1);
104 104
        }
105 105
        cross[idx] = n;
106 106

	
107 107
        items[n].prev = last_item;
108 108
        items[n].next = -1;
109 109
        if (last_item != -1) {
110 110
          items[last_item].next = n;
111 111
        } else {
112 112
          first_item = n;
113 113
        }
114 114
        last_item = n;
115 115

	
116 116
        return n;
117 117
      }
118 118

	
119 119
      void eraseIndex(int idx) {
120 120
        int n = cross[idx];
121 121

	
122 122
        if (items[n].prev != -1) {
123 123
          items[items[n].prev].next = items[n].next;
124 124
        } else {
125 125
          first_item = items[n].next;
126 126
        }
127 127
        if (items[n].next != -1) {
128 128
          items[items[n].next].prev = items[n].prev;
129 129
        } else {
130 130
          last_item = items[n].prev;
131 131
        }
132 132

	
133 133
        if (first_free_item != -1) {
134 134
          items[first_free_item].prev = n;
135 135
        }
136 136
        items[n].next = first_free_item;
137 137
        items[n].prev = -1;
138 138
        first_free_item = n;
139 139

	
140 140
        while (!cross.empty() && cross.back() == -1) {
141 141
          cross.pop_back();
142 142
        }
143 143
      }
144 144

	
145 145
      int maxIndex() const {
146 146
        return cross.size() - 1;
147 147
      }
148 148

	
149 149
      void shiftIndices(int idx) {
150 150
        for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) {
151 151
          cross[i - 1] = cross[i];
152 152
          if (cross[i] != -1) {
153 153
            --items[cross[i]].index;
154 154
          }
155 155
        }
156 156
        cross.back() = -1;
157 157
        cross.pop_back();
158 158
        while (!cross.empty() && cross.back() == -1) {
159 159
          cross.pop_back();
160 160
        }
161 161
      }
162 162

	
163 163
      void relocateIndex(int idx, int jdx) {
164 164
        cross[idx] = cross[jdx];
165 165
        items[cross[jdx]].index = idx;
166 166
        cross[jdx] = -1;
167 167

	
168 168
        while (!cross.empty() && cross.back() == -1) {
169 169
          cross.pop_back();
170 170
        }
171 171
      }
172 172

	
173 173
      int operator[](int idx) const {
174 174
        return cross[idx];
175 175
      }
176 176

	
177 177
      int operator()(int fdx) const {
178 178
        return items[fdx].index;
179 179
      }
180 180

	
181 181
      void firstItem(int& fdx) const {
182 182
        fdx = first_item;
183 183
      }
184 184

	
185 185
      void nextItem(int& fdx) const {
186 186
        fdx = items[fdx].next;
187 187
      }
188 188

	
189 189
    };
190 190
  }
191 191
}
192 192

	
193 193
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief Some basic non-inline functions and static global data.
21 21

	
22 22
#include<lemon/bits/windows.h>
23 23

	
24 24
#ifdef WIN32
25 25
#ifndef WIN32_LEAN_AND_MEAN
26 26
#define WIN32_LEAN_AND_MEAN
27 27
#endif
28 28
#ifndef NOMINMAX
29 29
#define NOMINMAX
30 30
#endif
31 31
#ifdef UNICODE
32 32
#undef UNICODE
33 33
#endif
34 34
#include <windows.h>
35 35
#ifdef LOCALE_INVARIANT
36 36
#define MY_LOCALE LOCALE_INVARIANT
37 37
#else
38 38
#define MY_LOCALE LOCALE_NEUTRAL
39 39
#endif
40 40
#else
41 41
#include <unistd.h>
42 42
#include <ctime>
43 43
#ifndef WIN32
44 44
#include <sys/times.h>
45 45
#endif
46 46
#include <sys/time.h>
47 47
#endif
48 48

	
49 49
#include <cmath>
50 50
#include <sstream>
51 51

	
52 52
namespace lemon {
53 53
  namespace bits {
54 54
    void getWinProcTimes(double &rtime,
55 55
                         double &utime, double &stime,
56 56
                         double &cutime, double &cstime)
57 57
    {
58 58
#ifdef WIN32
59 59
      static const double ch = 4294967296.0e-7;
60 60
      static const double cl = 1.0e-7;
61 61

	
62 62
      FILETIME system;
63 63
      GetSystemTimeAsFileTime(&system);
64 64
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
65 65

	
66 66
      FILETIME create, exit, kernel, user;
67 67
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
68 68
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
69 69
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
70 70
        cutime = 0;
71 71
        cstime = 0;
72 72
      } else {
73 73
        rtime = 0;
74 74
        utime = 0;
75 75
        stime = 0;
76 76
        cutime = 0;
77 77
        cstime = 0;
78 78
      }
79 79
#else
80 80
      timeval tv;
81 81
      gettimeofday(&tv, 0);
82 82
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
83 83

	
84 84
      tms ts;
85 85
      double tck=sysconf(_SC_CLK_TCK);
86 86
      times(&ts);
87 87
      utime=ts.tms_utime/tck;
88 88
      stime=ts.tms_stime/tck;
89 89
      cutime=ts.tms_cutime/tck;
90 90
      cstime=ts.tms_cstime/tck;
91 91
#endif
92 92
    }
93 93

	
94 94
    std::string getWinFormattedDate()
95 95
    {
96 96
      std::ostringstream os;
97 97
#ifdef WIN32
98 98
      SYSTEMTIME time;
99 99
      GetSystemTime(&time);
100 100
      char buf1[11], buf2[9], buf3[5];
101
	  if (GetDateFormat(MY_LOCALE, 0, &time,
101
          if (GetDateFormat(MY_LOCALE, 0, &time,
102 102
                        ("ddd MMM dd"), buf1, 11) &&
103 103
          GetTimeFormat(MY_LOCALE, 0, &time,
104 104
                        ("HH':'mm':'ss"), buf2, 9) &&
105 105
          GetDateFormat(MY_LOCALE, 0, &time,
106 106
                        ("yyyy"), buf3, 5)) {
107 107
        os << buf1 << ' ' << buf2 << ' ' << buf3;
108 108
      }
109 109
      else os << "unknown";
110 110
#else
111 111
      timeval tv;
112 112
      gettimeofday(&tv, 0);
113 113

	
114 114
      char cbuf[26];
115 115
      ctime_r(&tv.tv_sec,cbuf);
116 116
      os << cbuf;
117 117
#endif
118 118
      return os.str();
119 119
    }
120 120

	
121 121
    int getWinRndSeed()
122 122
    {
123 123
#ifdef WIN32
124 124
      FILETIME time;
125 125
      GetSystemTimeAsFileTime(&time);
126 126
      return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime;
127 127
#else
128 128
      timeval tv;
129 129
      gettimeofday(&tv, 0);
130 130
      return getpid() + tv.tv_sec + tv.tv_usec;
131 131
#endif
132 132
    }
133 133
  }
134 134
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
// -*- C++ -*-
20 20
#ifndef LEMON_CBC_H
21 21
#define LEMON_CBC_H
22 22

	
23 23
///\file
24 24
///\brief Header of the LEMON-CBC mip solver interface.
25 25
///\ingroup lp_group
26 26

	
27 27
#include <lemon/lp_base.h>
28 28

	
29 29
class CoinModel;
30 30
class OsiSolverInterface;
31 31
class CbcModel;
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \brief Interface for the CBC MIP solver
36 36
  ///
37 37
  /// This class implements an interface for the CBC MIP solver.
38 38
  ///\ingroup lp_group
39 39
  class CbcMip : public MipSolver {
40 40
  protected:
41 41

	
42 42
    CoinModel *_prob;
43 43
    OsiSolverInterface *_osi_solver;
44 44
    CbcModel *_cbc_model;
45 45

	
46 46
  public:
47 47

	
48 48
    /// \e
49 49
    CbcMip();
50 50
    /// \e
51 51
    CbcMip(const CbcMip&);
52 52
    /// \e
53 53
    ~CbcMip();
54 54
    /// \e
55 55
    virtual CbcMip* newSolver() const;
56 56
    /// \e
57 57
    virtual CbcMip* cloneSolver() const;
58 58

	
59 59
  protected:
60 60

	
61 61
    virtual const char* _solverName() const;
62 62

	
63 63
    virtual int _addCol();
64 64
    virtual int _addRow();
65 65

	
66 66
    virtual void _eraseCol(int i);
67 67
    virtual void _eraseRow(int i);
68 68

	
69 69
    virtual void _eraseColId(int i);
70 70
    virtual void _eraseRowId(int i);
71 71

	
72 72
    virtual void _getColName(int col, std::string& name) const;
73 73
    virtual void _setColName(int col, const std::string& name);
74 74
    virtual int _colByName(const std::string& name) const;
75 75

	
76 76
    virtual void _getRowName(int row, std::string& name) const;
77 77
    virtual void _setRowName(int row, const std::string& name);
78 78
    virtual int _rowByName(const std::string& name) const;
79 79

	
80 80
    virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e);
81 81
    virtual void _getRowCoeffs(int i, InsertIterator b) const;
82 82

	
83 83
    virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e);
84 84
    virtual void _getColCoeffs(int i, InsertIterator b) const;
85 85

	
86 86
    virtual void _setCoeff(int row, int col, Value value);
87 87
    virtual Value _getCoeff(int row, int col) const;
88 88

	
89 89
    virtual void _setColLowerBound(int i, Value value);
90 90
    virtual Value _getColLowerBound(int i) const;
91 91
    virtual void _setColUpperBound(int i, Value value);
92 92
    virtual Value _getColUpperBound(int i) const;
93 93

	
94 94
    virtual void _setRowLowerBound(int i, Value value);
95 95
    virtual Value _getRowLowerBound(int i) const;
96 96
    virtual void _setRowUpperBound(int i, Value value);
97 97
    virtual Value _getRowUpperBound(int i) const;
98 98

	
99 99
    virtual void _setObjCoeffs(ExprIterator b, ExprIterator e);
100 100
    virtual void _getObjCoeffs(InsertIterator b) const;
101 101

	
102 102
    virtual void _setObjCoeff(int i, Value obj_coef);
103 103
    virtual Value _getObjCoeff(int i) const;
104 104

	
105 105
    virtual void _setSense(Sense sense);
106 106
    virtual Sense _getSense() const;
107 107

	
108 108
    virtual ColTypes _getColType(int col) const;
109 109
    virtual void _setColType(int col, ColTypes col_type);
110 110

	
111 111
    virtual SolveExitStatus _solve();
112 112
    virtual ProblemType _getType() const;
113 113
    virtual Value _getSol(int i) const;
114 114
    virtual Value _getSolValue() const;
115 115

	
116 116
    virtual void _clear();
117 117

	
118 118
    virtual void _messageLevel(MessageLevel level);
119 119
    void _applyMessageLevel();
120 120

	
121 121
    int _message_level;
122 122

	
123
    
123

	
124 124

	
125 125
  };
126 126

	
127 127
}
128 128

	
129 129
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2011
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CIRCULATION_H
20 20
#define LEMON_CIRCULATION_H
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24 24
#include <limits>
25 25

	
26 26
///\ingroup max_flow
27 27
///\file
28 28
///\brief Push-relabel algorithm for finding a feasible circulation.
29 29
///
30 30
namespace lemon {
31 31

	
32 32
  /// \brief Default traits class of Circulation class.
33 33
  ///
34 34
  /// Default traits class of Circulation class.
35 35
  ///
36 36
  /// \tparam GR Type of the digraph the algorithm runs on.
37 37
  /// \tparam LM The type of the lower bound map.
38 38
  /// \tparam UM The type of the upper bound (capacity) map.
39 39
  /// \tparam SM The type of the supply map.
40 40
  template <typename GR, typename LM,
41 41
            typename UM, typename SM>
42 42
  struct CirculationDefaultTraits {
43 43

	
44 44
    /// \brief The type of the digraph the algorithm runs on.
45 45
    typedef GR Digraph;
46 46

	
47 47
    /// \brief The type of the lower bound map.
48 48
    ///
49 49
    /// The type of the map that stores the lower bounds on the arcs.
50 50
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
51 51
    typedef LM LowerMap;
52 52

	
53 53
    /// \brief The type of the upper bound (capacity) map.
54 54
    ///
55 55
    /// The type of the map that stores the upper bounds (capacities)
56 56
    /// on the arcs.
57 57
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
58 58
    typedef UM UpperMap;
59 59

	
60 60
    /// \brief The type of supply map.
61 61
    ///
62
    /// The type of the map that stores the signed supply values of the 
63
    /// nodes. 
62
    /// The type of the map that stores the signed supply values of the
63
    /// nodes.
64 64
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
65 65
    typedef SM SupplyMap;
66 66

	
67 67
    /// \brief The type of the flow and supply values.
68 68
    typedef typename SupplyMap::Value Value;
69 69

	
70 70
    /// \brief The type of the map that stores the flow values.
71 71
    ///
72 72
    /// The type of the map that stores the flow values.
73 73
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
74 74
    /// concept.
75 75
    typedef typename Digraph::template ArcMap<Value> FlowMap;
76 76

	
77 77
    /// \brief Instantiates a FlowMap.
78 78
    ///
79 79
    /// This function instantiates a \ref FlowMap.
80 80
    /// \param digraph The digraph for which we would like to define
81 81
    /// the flow map.
82 82
    static FlowMap* createFlowMap(const Digraph& digraph) {
83 83
      return new FlowMap(digraph);
84 84
    }
85 85

	
86 86
    /// \brief The elevator type used by the algorithm.
87 87
    ///
88 88
    /// The elevator type used by the algorithm.
89 89
    ///
90 90
    /// \sa Elevator
91 91
    /// \sa LinkedElevator
92 92
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
93 93

	
94 94
    /// \brief Instantiates an Elevator.
95 95
    ///
96 96
    /// This function instantiates an \ref Elevator.
97 97
    /// \param digraph The digraph for which we would like to define
98 98
    /// the elevator.
99 99
    /// \param max_level The maximum level of the elevator.
100 100
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
101 101
      return new Elevator(digraph, max_level);
102 102
    }
103 103

	
104 104
    /// \brief The tolerance used by the algorithm
105 105
    ///
106 106
    /// The tolerance used by the algorithm to handle inexact computation.
107 107
    typedef lemon::Tolerance<Value> Tolerance;
108 108

	
109 109
  };
110 110

	
111 111
  /**
112 112
     \brief Push-relabel algorithm for the network circulation problem.
113 113

	
114 114
     \ingroup max_flow
115 115
     This class implements a push-relabel algorithm for the \e network
116 116
     \e circulation problem.
117 117
     It is to find a feasible circulation when lower and upper bounds
118 118
     are given for the flow values on the arcs and lower bounds are
119 119
     given for the difference between the outgoing and incoming flow
120 120
     at the nodes.
121 121

	
122 122
     The exact formulation of this problem is the following.
123 123
     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
124 124
     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
125 125
     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
126 126
     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
127 127
     denotes the signed supply values of the nodes.
128 128
     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
129 129
     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
130 130
     \f$-sup(u)\f$ demand.
131 131
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
132 132
     solution of the following problem.
133 133

	
134 134
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
135 135
     \geq sup(u) \quad \forall u\in V, \f]
136 136
     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
137
     
137

	
138 138
     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
139 139
     zero or negative in order to have a feasible solution (since the sum
140 140
     of the expressions on the left-hand side of the inequalities is zero).
141 141
     It means that the total demand must be greater or equal to the total
142 142
     supply and all the supplies have to be carried out from the supply nodes,
143 143
     but there could be demands that are not satisfied.
144 144
     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
145 145
     constraints have to be satisfied with equality, i.e. all demands
146 146
     have to be satisfied and all supplies have to be used.
147
     
147

	
148 148
     If you need the opposite inequalities in the supply/demand constraints
149 149
     (i.e. the total demand is less than the total supply and all the demands
150 150
     have to be satisfied while there could be supplies that are not used),
151 151
     then you could easily transform the problem to the above form by reversing
152 152
     the direction of the arcs and taking the negative of the supply values
153 153
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
154 154

	
155 155
     This algorithm either calculates a feasible circulation, or provides
156 156
     a \ref barrier() "barrier", which prooves that a feasible soultion
157 157
     cannot exist.
158 158

	
159 159
     Note that this algorithm also provides a feasible solution for the
160 160
     \ref min_cost_flow "minimum cost flow problem".
161 161

	
162 162
     \tparam GR The type of the digraph the algorithm runs on.
163 163
     \tparam LM The type of the lower bound map. The default
164 164
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
165 165
     \tparam UM The type of the upper bound (capacity) map.
166 166
     The default map type is \c LM.
167 167
     \tparam SM The type of the supply map. The default map type is
168 168
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
169 169
  */
170 170
#ifdef DOXYGEN
171 171
template< typename GR,
172 172
          typename LM,
173 173
          typename UM,
174 174
          typename SM,
175 175
          typename TR >
176 176
#else
177 177
template< typename GR,
178 178
          typename LM = typename GR::template ArcMap<int>,
179 179
          typename UM = LM,
180 180
          typename SM = typename GR::template NodeMap<typename UM::Value>,
181 181
          typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
182 182
#endif
183 183
  class Circulation {
184 184
  public:
185 185

	
186 186
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
187 187
    typedef TR Traits;
188 188
    ///The type of the digraph the algorithm runs on.
189 189
    typedef typename Traits::Digraph Digraph;
190 190
    ///The type of the flow and supply values.
191 191
    typedef typename Traits::Value Value;
192 192

	
193 193
    ///The type of the lower bound map.
194 194
    typedef typename Traits::LowerMap LowerMap;
195 195
    ///The type of the upper bound (capacity) map.
196 196
    typedef typename Traits::UpperMap UpperMap;
197 197
    ///The type of the supply map.
198 198
    typedef typename Traits::SupplyMap SupplyMap;
199 199
    ///The type of the flow map.
200 200
    typedef typename Traits::FlowMap FlowMap;
201 201

	
202 202
    ///The type of the elevator.
203 203
    typedef typename Traits::Elevator Elevator;
204 204
    ///The type of the tolerance.
205 205
    typedef typename Traits::Tolerance Tolerance;
206 206

	
207 207
  private:
208 208

	
209 209
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
210 210

	
211 211
    const Digraph &_g;
212 212
    int _node_num;
213 213

	
214 214
    const LowerMap *_lo;
215 215
    const UpperMap *_up;
216 216
    const SupplyMap *_supply;
217 217

	
218 218
    FlowMap *_flow;
219 219
    bool _local_flow;
220 220

	
221 221
    Elevator* _level;
222 222
    bool _local_level;
223 223

	
224 224
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
225 225
    ExcessMap* _excess;
226 226

	
227 227
    Tolerance _tol;
228 228
    int _el;
229 229

	
230 230
  public:
231 231

	
232 232
    typedef Circulation Create;
233 233

	
234 234
    ///\name Named Template Parameters
235 235

	
236 236
    ///@{
237 237

	
238 238
    template <typename T>
239 239
    struct SetFlowMapTraits : public Traits {
240 240
      typedef T FlowMap;
241 241
      static FlowMap *createFlowMap(const Digraph&) {
242 242
        LEMON_ASSERT(false, "FlowMap is not initialized");
243 243
        return 0; // ignore warnings
244 244
      }
245 245
    };
246 246

	
247 247
    /// \brief \ref named-templ-param "Named parameter" for setting
248 248
    /// FlowMap type
249 249
    ///
250 250
    /// \ref named-templ-param "Named parameter" for setting FlowMap
251 251
    /// type.
252 252
    template <typename T>
253 253
    struct SetFlowMap
254 254
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
255 255
                           SetFlowMapTraits<T> > {
256 256
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
257 257
                          SetFlowMapTraits<T> > Create;
258 258
    };
259 259

	
260 260
    template <typename T>
261 261
    struct SetElevatorTraits : public Traits {
262 262
      typedef T Elevator;
263 263
      static Elevator *createElevator(const Digraph&, int) {
264 264
        LEMON_ASSERT(false, "Elevator is not initialized");
265 265
        return 0; // ignore warnings
266 266
      }
267 267
    };
268 268

	
269 269
    /// \brief \ref named-templ-param "Named parameter" for setting
270 270
    /// Elevator type
271 271
    ///
272 272
    /// \ref named-templ-param "Named parameter" for setting Elevator
273 273
    /// type. If this named parameter is used, then an external
274 274
    /// elevator object must be passed to the algorithm using the
275 275
    /// \ref elevator(Elevator&) "elevator()" function before calling
276 276
    /// \ref run() or \ref init().
277 277
    /// \sa SetStandardElevator
278 278
    template <typename T>
279 279
    struct SetElevator
280 280
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
281 281
                           SetElevatorTraits<T> > {
282 282
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
283 283
                          SetElevatorTraits<T> > Create;
284 284
    };
285 285

	
286 286
    template <typename T>
287 287
    struct SetStandardElevatorTraits : public Traits {
288 288
      typedef T Elevator;
289 289
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
290 290
        return new Elevator(digraph, max_level);
291 291
      }
292 292
    };
293 293

	
294 294
    /// \brief \ref named-templ-param "Named parameter" for setting
295 295
    /// Elevator type with automatic allocation
296 296
    ///
297 297
    /// \ref named-templ-param "Named parameter" for setting Elevator
298 298
    /// type with automatic allocation.
299 299
    /// The Elevator should have standard constructor interface to be
300 300
    /// able to automatically created by the algorithm (i.e. the
301 301
    /// digraph and the maximum level should be passed to it).
302 302
    /// However an external elevator object could also be passed to the
303 303
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
304 304
    /// before calling \ref run() or \ref init().
305 305
    /// \sa SetElevator
306 306
    template <typename T>
307 307
    struct SetStandardElevator
308 308
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
309 309
                       SetStandardElevatorTraits<T> > {
310 310
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
311 311
                      SetStandardElevatorTraits<T> > Create;
312 312
    };
313 313

	
314 314
    /// @}
315 315

	
316 316
  protected:
317 317

	
318 318
    Circulation() {}
319 319

	
320 320
  public:
321 321

	
322 322
    /// Constructor.
323 323

	
324 324
    /// The constructor of the class.
325 325
    ///
326 326
    /// \param graph The digraph the algorithm runs on.
327 327
    /// \param lower The lower bounds for the flow values on the arcs.
328
    /// \param upper The upper bounds (capacities) for the flow values 
328
    /// \param upper The upper bounds (capacities) for the flow values
329 329
    /// on the arcs.
330 330
    /// \param supply The signed supply values of the nodes.
331 331
    Circulation(const Digraph &graph, const LowerMap &lower,
332 332
                const UpperMap &upper, const SupplyMap &supply)
333 333
      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
334 334
        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
335 335
        _excess(NULL) {}
336 336

	
337 337
    /// Destructor.
338 338
    ~Circulation() {
339 339
      destroyStructures();
340 340
    }
341 341

	
342 342

	
343 343
  private:
344 344

	
345 345
    bool checkBoundMaps() {
346 346
      for (ArcIt e(_g);e!=INVALID;++e) {
347 347
        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
348 348
      }
349 349
      return true;
350 350
    }
351 351

	
352 352
    void createStructures() {
353 353
      _node_num = _el = countNodes(_g);
354 354

	
355 355
      if (!_flow) {
356 356
        _flow = Traits::createFlowMap(_g);
357 357
        _local_flow = true;
358 358
      }
359 359
      if (!_level) {
360 360
        _level = Traits::createElevator(_g, _node_num);
361 361
        _local_level = true;
362 362
      }
363 363
      if (!_excess) {
364 364
        _excess = new ExcessMap(_g);
365 365
      }
366 366
    }
367 367

	
368 368
    void destroyStructures() {
369 369
      if (_local_flow) {
370 370
        delete _flow;
371 371
      }
372 372
      if (_local_level) {
373 373
        delete _level;
374 374
      }
375 375
      if (_excess) {
376 376
        delete _excess;
377 377
      }
378 378
    }
379 379

	
380 380
  public:
381 381

	
382 382
    /// Sets the lower bound map.
383 383

	
384 384
    /// Sets the lower bound map.
385 385
    /// \return <tt>(*this)</tt>
386 386
    Circulation& lowerMap(const LowerMap& map) {
387 387
      _lo = &map;
388 388
      return *this;
389 389
    }
390 390

	
391 391
    /// Sets the upper bound (capacity) map.
392 392

	
393 393
    /// Sets the upper bound (capacity) map.
394 394
    /// \return <tt>(*this)</tt>
395 395
    Circulation& upperMap(const UpperMap& map) {
396 396
      _up = &map;
397 397
      return *this;
398 398
    }
399 399

	
400 400
    /// Sets the supply map.
401 401

	
402 402
    /// Sets the supply map.
403 403
    /// \return <tt>(*this)</tt>
404 404
    Circulation& supplyMap(const SupplyMap& map) {
405 405
      _supply = &map;
406 406
      return *this;
407 407
    }
408 408

	
409 409
    /// \brief Sets the flow map.
410 410
    ///
411 411
    /// Sets the flow map.
412 412
    /// If you don't use this function before calling \ref run() or
413 413
    /// \ref init(), an instance will be allocated automatically.
414 414
    /// The destructor deallocates this automatically allocated map,
415 415
    /// of course.
416 416
    /// \return <tt>(*this)</tt>
417 417
    Circulation& flowMap(FlowMap& map) {
418 418
      if (_local_flow) {
419 419
        delete _flow;
420 420
        _local_flow = false;
421 421
      }
422 422
      _flow = &map;
423 423
      return *this;
424 424
    }
425 425

	
426 426
    /// \brief Sets the elevator used by algorithm.
427 427
    ///
428 428
    /// Sets the elevator used by algorithm.
429 429
    /// If you don't use this function before calling \ref run() or
430 430
    /// \ref init(), an instance will be allocated automatically.
431 431
    /// The destructor deallocates this automatically allocated elevator,
432 432
    /// of course.
433 433
    /// \return <tt>(*this)</tt>
434 434
    Circulation& elevator(Elevator& elevator) {
435 435
      if (_local_level) {
436 436
        delete _level;
437 437
        _local_level = false;
438 438
      }
439 439
      _level = &elevator;
440 440
      return *this;
441 441
    }
442 442

	
443 443
    /// \brief Returns a const reference to the elevator.
444 444
    ///
445 445
    /// Returns a const reference to the elevator.
446 446
    ///
447 447
    /// \pre Either \ref run() or \ref init() must be called before
448 448
    /// using this function.
449 449
    const Elevator& elevator() const {
450 450
      return *_level;
451 451
    }
452 452

	
453 453
    /// \brief Sets the tolerance used by algorithm.
454 454
    ///
455 455
    /// Sets the tolerance used by algorithm.
456 456
    Circulation& tolerance(const Tolerance& tolerance) {
457 457
      _tol = tolerance;
458 458
      return *this;
459 459
    }
460 460

	
461 461
    /// \brief Returns a const reference to the tolerance.
462 462
    ///
463 463
    /// Returns a const reference to the tolerance.
464 464
    const Tolerance& tolerance() const {
465 465
      return _tol;
466 466
    }
467 467

	
468 468
    /// \name Execution Control
469 469
    /// The simplest way to execute the algorithm is to call \ref run().\n
470 470
    /// If you need more control on the initial solution or the execution,
471 471
    /// first you have to call one of the \ref init() functions, then
472 472
    /// the \ref start() function.
473 473

	
474 474
    ///@{
475 475

	
476 476
    /// Initializes the internal data structures.
477 477

	
478 478
    /// Initializes the internal data structures and sets all flow values
479 479
    /// to the lower bound.
480 480
    void init()
481 481
    {
482 482
      LEMON_DEBUG(checkBoundMaps(),
483 483
        "Upper bounds must be greater or equal to the lower bounds");
484 484

	
485 485
      createStructures();
486 486

	
487 487
      for(NodeIt n(_g);n!=INVALID;++n) {
488 488
        (*_excess)[n] = (*_supply)[n];
489 489
      }
490 490

	
491 491
      for (ArcIt e(_g);e!=INVALID;++e) {
492 492
        _flow->set(e, (*_lo)[e]);
493 493
        (*_excess)[_g.target(e)] += (*_flow)[e];
494 494
        (*_excess)[_g.source(e)] -= (*_flow)[e];
495 495
      }
496 496

	
497 497
      // global relabeling tested, but in general case it provides
498 498
      // worse performance for random digraphs
499 499
      _level->initStart();
500 500
      for(NodeIt n(_g);n!=INVALID;++n)
501 501
        _level->initAddItem(n);
502 502
      _level->initFinish();
503 503
      for(NodeIt n(_g);n!=INVALID;++n)
504 504
        if(_tol.positive((*_excess)[n]))
505 505
          _level->activate(n);
506 506
    }
507 507

	
508 508
    /// Initializes the internal data structures using a greedy approach.
509 509

	
510 510
    /// Initializes the internal data structures using a greedy approach
511 511
    /// to construct the initial solution.
512 512
    void greedyInit()
513 513
    {
514 514
      LEMON_DEBUG(checkBoundMaps(),
515 515
        "Upper bounds must be greater or equal to the lower bounds");
516 516

	
517 517
      createStructures();
518 518

	
519 519
      for(NodeIt n(_g);n!=INVALID;++n) {
520 520
        (*_excess)[n] = (*_supply)[n];
521 521
      }
522 522

	
523 523
      for (ArcIt e(_g);e!=INVALID;++e) {
524 524
        if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
525 525
          _flow->set(e, (*_up)[e]);
526 526
          (*_excess)[_g.target(e)] += (*_up)[e];
527 527
          (*_excess)[_g.source(e)] -= (*_up)[e];
528 528
        } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
529 529
          _flow->set(e, (*_lo)[e]);
530 530
          (*_excess)[_g.target(e)] += (*_lo)[e];
531 531
          (*_excess)[_g.source(e)] -= (*_lo)[e];
532 532
        } else {
533 533
          Value fc = -(*_excess)[_g.target(e)];
534 534
          _flow->set(e, fc);
535 535
          (*_excess)[_g.target(e)] = 0;
536 536
          (*_excess)[_g.source(e)] -= fc;
537 537
        }
538 538
      }
539 539

	
540 540
      _level->initStart();
541 541
      for(NodeIt n(_g);n!=INVALID;++n)
542 542
        _level->initAddItem(n);
543 543
      _level->initFinish();
544 544
      for(NodeIt n(_g);n!=INVALID;++n)
545 545
        if(_tol.positive((*_excess)[n]))
546 546
          _level->activate(n);
547 547
    }
548 548

	
549 549
    ///Executes the algorithm
550 550

	
551 551
    ///This function executes the algorithm.
552 552
    ///
553 553
    ///\return \c true if a feasible circulation is found.
554 554
    ///
555 555
    ///\sa barrier()
556 556
    ///\sa barrierMap()
557 557
    bool start()
558 558
    {
559 559

	
560 560
      Node act;
561 561
      Node bact=INVALID;
562 562
      Node last_activated=INVALID;
563 563
      while((act=_level->highestActive())!=INVALID) {
564 564
        int actlevel=(*_level)[act];
565 565
        int mlevel=_node_num;
566 566
        Value exc=(*_excess)[act];
567 567

	
568 568
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
569 569
          Node v = _g.target(e);
570 570
          Value fc=(*_up)[e]-(*_flow)[e];
571 571
          if(!_tol.positive(fc)) continue;
572 572
          if((*_level)[v]<actlevel) {
573 573
            if(!_tol.less(fc, exc)) {
574 574
              _flow->set(e, (*_flow)[e] + exc);
575 575
              (*_excess)[v] += exc;
576 576
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
577 577
                _level->activate(v);
578 578
              (*_excess)[act] = 0;
579 579
              _level->deactivate(act);
580 580
              goto next_l;
581 581
            }
582 582
            else {
583 583
              _flow->set(e, (*_up)[e]);
584 584
              (*_excess)[v] += fc;
585 585
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
586 586
                _level->activate(v);
587 587
              exc-=fc;
588 588
            }
589 589
          }
590 590
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
591 591
        }
592 592
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
593 593
          Node v = _g.source(e);
594 594
          Value fc=(*_flow)[e]-(*_lo)[e];
595 595
          if(!_tol.positive(fc)) continue;
596 596
          if((*_level)[v]<actlevel) {
597 597
            if(!_tol.less(fc, exc)) {
598 598
              _flow->set(e, (*_flow)[e] - exc);
599 599
              (*_excess)[v] += exc;
600 600
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
601 601
                _level->activate(v);
602 602
              (*_excess)[act] = 0;
603 603
              _level->deactivate(act);
604 604
              goto next_l;
605 605
            }
606 606
            else {
607 607
              _flow->set(e, (*_lo)[e]);
608 608
              (*_excess)[v] += fc;
609 609
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
610 610
                _level->activate(v);
611 611
              exc-=fc;
612 612
            }
613 613
          }
614 614
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
615 615
        }
616 616

	
617 617
        (*_excess)[act] = exc;
618 618
        if(!_tol.positive(exc)) _level->deactivate(act);
619 619
        else if(mlevel==_node_num) {
620 620
          _level->liftHighestActiveToTop();
621 621
          _el = _node_num;
622 622
          return false;
623 623
        }
624 624
        else {
625 625
          _level->liftHighestActive(mlevel+1);
626 626
          if(_level->onLevel(actlevel)==0) {
627 627
            _el = actlevel;
628 628
            return false;
629 629
          }
630 630
        }
631 631
      next_l:
632 632
        ;
633 633
      }
634 634
      return true;
635 635
    }
636 636

	
637 637
    /// Runs the algorithm.
638 638

	
639 639
    /// This function runs the algorithm.
640 640
    ///
641 641
    /// \return \c true if a feasible circulation is found.
642 642
    ///
643 643
    /// \note Apart from the return value, c.run() is just a shortcut of
644 644
    /// the following code.
645 645
    /// \code
646 646
    ///   c.greedyInit();
647 647
    ///   c.start();
648 648
    /// \endcode
649 649
    bool run() {
650 650
      greedyInit();
651 651
      return start();
652 652
    }
653 653

	
654 654
    /// @}
655 655

	
656 656
    /// \name Query Functions
657 657
    /// The results of the circulation algorithm can be obtained using
658 658
    /// these functions.\n
659 659
    /// Either \ref run() or \ref start() should be called before
660 660
    /// using them.
661 661

	
662 662
    ///@{
663 663

	
664 664
    /// \brief Returns the flow value on the given arc.
665 665
    ///
666 666
    /// Returns the flow value on the given arc.
667 667
    ///
668 668
    /// \pre Either \ref run() or \ref init() must be called before
669 669
    /// using this function.
670 670
    Value flow(const Arc& arc) const {
671 671
      return (*_flow)[arc];
672 672
    }
673 673

	
674 674
    /// \brief Returns a const reference to the flow map.
675 675
    ///
676 676
    /// Returns a const reference to the arc map storing the found flow.
677 677
    ///
678 678
    /// \pre Either \ref run() or \ref init() must be called before
679 679
    /// using this function.
680 680
    const FlowMap& flowMap() const {
681 681
      return *_flow;
682 682
    }
683 683

	
684 684
    /**
685 685
       \brief Returns \c true if the given node is in a barrier.
686 686

	
687 687
       Barrier is a set \e B of nodes for which
688 688

	
689 689
       \f[ \sum_{uv\in A: u\in B} upper(uv) -
690 690
           \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
691 691

	
692 692
       holds. The existence of a set with this property prooves that a
693 693
       feasible circualtion cannot exist.
694 694

	
695 695
       This function returns \c true if the given node is in the found
696 696
       barrier. If a feasible circulation is found, the function
697 697
       gives back \c false for every node.
698 698

	
699 699
       \pre Either \ref run() or \ref init() must be called before
700 700
       using this function.
701 701

	
702 702
       \sa barrierMap()
703 703
       \sa checkBarrier()
704 704
    */
705 705
    bool barrier(const Node& node) const
706 706
    {
707 707
      return (*_level)[node] >= _el;
708 708
    }
709 709

	
710 710
    /// \brief Gives back a barrier.
711 711
    ///
712 712
    /// This function sets \c bar to the characteristic vector of the
713 713
    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
714 714
    /// node map with \c bool (or convertible) value type.
715 715
    ///
716 716
    /// If a feasible circulation is found, the function gives back an
717 717
    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
718 718
    ///
719 719
    /// \note This function calls \ref barrier() for each node,
720 720
    /// so it runs in O(n) time.
721 721
    ///
722 722
    /// \pre Either \ref run() or \ref init() must be called before
723 723
    /// using this function.
724 724
    ///
725 725
    /// \sa barrier()
726 726
    /// \sa checkBarrier()
727 727
    template<class BarrierMap>
728 728
    void barrierMap(BarrierMap &bar) const
729 729
    {
730 730
      for(NodeIt n(_g);n!=INVALID;++n)
731 731
        bar.set(n, (*_level)[n] >= _el);
732 732
    }
733 733

	
734 734
    /// @}
735 735

	
736 736
    /// \name Checker Functions
737 737
    /// The feasibility of the results can be checked using
738 738
    /// these functions.\n
739 739
    /// Either \ref run() or \ref start() should be called before
740 740
    /// using them.
741 741

	
742 742
    ///@{
743 743

	
744 744
    ///Check if the found flow is a feasible circulation
745 745

	
746 746
    ///Check if the found flow is a feasible circulation,
747 747
    ///
748 748
    bool checkFlow() const {
749 749
      for(ArcIt e(_g);e!=INVALID;++e)
750 750
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
751 751
      for(NodeIt n(_g);n!=INVALID;++n)
752 752
        {
753 753
          Value dif=-(*_supply)[n];
754 754
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
755 755
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
756 756
          if(_tol.negative(dif)) return false;
757 757
        }
758 758
      return true;
759 759
    }
760 760

	
761 761
    ///Check whether or not the last execution provides a barrier
762 762

	
763 763
    ///Check whether or not the last execution provides a barrier.
764 764
    ///\sa barrier()
765 765
    ///\sa barrierMap()
766 766
    bool checkBarrier() const
767 767
    {
768 768
      Value delta=0;
769 769
      Value inf_cap = std::numeric_limits<Value>::has_infinity ?
770 770
        std::numeric_limits<Value>::infinity() :
771 771
        std::numeric_limits<Value>::max();
772 772
      for(NodeIt n(_g);n!=INVALID;++n)
773 773
        if(barrier(n))
774 774
          delta-=(*_supply)[n];
775 775
      for(ArcIt e(_g);e!=INVALID;++e)
776 776
        {
777 777
          Node s=_g.source(e);
778 778
          Node t=_g.target(e);
779 779
          if(barrier(s)&&!barrier(t)) {
780 780
            if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
781 781
            delta+=(*_up)[e];
782 782
          }
783 783
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
784 784
        }
785 785
      return _tol.negative(delta);
786 786
    }
787 787

	
788 788
    /// @}
789 789

	
790 790
  };
791 791

	
792 792
}
793 793

	
794 794
#endif

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)