0
68
0
1
1
42
42
2
2
1
1
2
2
10
10
4
3
1
1
7
7
92
92
10
10
2
2
45
45
6
6
47
47
2
2
4
4
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
... | ... |
@@ -246,96 +246,96 @@ |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief Auxiliary data structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains some data structures implemented in LEMON in |
250 | 250 |
order to make it easier to implement combinatorial algorithms. |
251 | 251 |
*/ |
252 | 252 |
|
253 | 253 |
/** |
254 | 254 |
@defgroup algs Algorithms |
255 | 255 |
\brief This group contains the several algorithms |
256 | 256 |
implemented in LEMON. |
257 | 257 |
|
258 | 258 |
This group contains the several algorithms |
259 | 259 |
implemented in LEMON. |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup search Graph Search |
264 | 264 |
@ingroup algs |
265 | 265 |
\brief Common graph search algorithms. |
266 | 266 |
|
267 | 267 |
This group contains the common graph search algorithms, namely |
268 | 268 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup shortest_path Shortest Path Algorithms |
273 | 273 |
@ingroup algs |
274 | 274 |
\brief Algorithms for finding shortest paths. |
275 | 275 |
|
276 | 276 |
This group contains the algorithms for finding shortest paths in digraphs. |
277 | 277 |
|
278 |
- \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a |
|
278 |
- \ref Dijkstra Dijkstra's algorithm for finding shortest paths from a |
|
279 | 279 |
source node when all arc lengths are non-negative. |
280 | 280 |
- \ref Suurballe A successive shortest path algorithm for finding |
281 | 281 |
arc-disjoint paths between two nodes having minimum total length. |
282 | 282 |
*/ |
283 | 283 |
|
284 | 284 |
/** |
285 | 285 |
@defgroup max_flow Maximum Flow Algorithms |
286 | 286 |
@ingroup algs |
287 | 287 |
\brief Algorithms for finding maximum flows. |
288 | 288 |
|
289 | 289 |
This group contains the algorithms for finding maximum flows and |
290 | 290 |
feasible circulations. |
291 | 291 |
|
292 | 292 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
293 | 293 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
294 | 294 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
295 | 295 |
\f$s, t \in V\f$ source and target nodes. |
296 | 296 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
297 | 297 |
following optimization problem. |
298 | 298 |
|
299 | 299 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
300 | 300 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
301 | 301 |
\quad \forall u\in V\setminus\{s,t\} \f] |
302 | 302 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
303 | 303 |
|
304 | 304 |
\ref Preflow implements the preflow push-relabel algorithm of Goldberg and |
305 | 305 |
Tarjan for solving this problem. It also provides functions to query the |
306 | 306 |
minimum cut, which is the dual problem of maximum flow. |
307 | 307 |
|
308 | 308 |
|
309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
309 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
310 | 310 |
for finding feasible circulations, which is a somewhat different problem, |
311 | 311 |
but it is strongly related to maximum flow. |
312 | 312 |
For more information, see \ref Circulation. |
313 | 313 |
*/ |
314 | 314 |
|
315 | 315 |
/** |
316 | 316 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
317 | 317 |
@ingroup algs |
318 | 318 |
|
319 | 319 |
\brief Algorithms for finding minimum cost flows and circulations. |
320 | 320 |
|
321 | 321 |
This group contains the algorithms for finding minimum cost flows and |
322 | 322 |
circulations. For more information about this problem and its dual |
323 | 323 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
324 | 324 |
|
325 | 325 |
\ref NetworkSimplex is an efficient implementation of the primal Network |
326 | 326 |
Simplex algorithm for finding minimum cost flows. It also provides dual |
327 | 327 |
solution (node potentials), if an optimal flow is found. |
328 | 328 |
*/ |
329 | 329 |
|
330 | 330 |
/** |
331 | 331 |
@defgroup min_cut Minimum Cut Algorithms |
332 | 332 |
@ingroup algs |
333 | 333 |
|
334 | 334 |
\brief Algorithms for finding minimum cut in graphs. |
335 | 335 |
|
336 | 336 |
This group contains the algorithms for finding minimum cut in graphs. |
337 | 337 |
|
338 | 338 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
339 | 339 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
340 | 340 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
341 | 341 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
|
24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
25 | 25 |
|
26 | 26 |
The \e LGF is a <em>column oriented</em> |
27 | 27 |
file format for storing graphs and associated data like |
28 | 28 |
node and edge maps. |
29 | 29 |
|
30 | 30 |
Each line with \c '#' first non-whitespace |
31 | 31 |
character is considered as a comment line. |
32 | 32 |
|
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
23 | 23 |
|
24 | 24 |
\section mcf_def Definition (GEQ form) |
25 | 25 |
|
26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
29 | 29 |
and arc costs. |
30 | 30 |
|
31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
33 | 33 |
upper bounds for the flow values on the arcs, for which |
34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
37 | 37 |
signed supply values of the nodes. |
... | ... |
@@ -52,102 +52,102 @@ |
52 | 52 |
It means that the total demand must be greater or equal to the total |
53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
54 | 54 |
but there could be demands that are not satisfied. |
55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
57 | 57 |
have to be satisfied and all supplies have to be used. |
58 | 58 |
|
59 | 59 |
|
60 | 60 |
\section mcf_algs Algorithms |
61 | 61 |
|
62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
64 | 64 |
|
65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
66 | 66 |
|
67 | 67 |
|
68 | 68 |
\section mcf_dual Dual Solution |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 | 81 |
- \f$\pi(u)<=0\f$; |
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 |
|
|
84 |
|
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
97 | 97 |
equalities are required in the supply/demand contraints. |
98 | 98 |
|
99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
101 | 101 |
sup(u) \quad \forall u\in V \f] |
102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
103 | 103 |
|
104 | 104 |
However if the sum of the supply values is zero, then these two problems |
105 | 105 |
are equivalent. |
106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
108 | 108 |
contraint manually. |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
112 | 112 |
|
113 | 113 |
Another possible definition of the minimum cost flow problem is |
114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
116 | 116 |
|
117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
119 | 119 |
sup(u) \quad \forall u\in V \f] |
120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
121 | 121 |
|
122 |
It means that the total demand must be less or equal to the |
|
122 |
It means that the total demand must be less or equal to the |
|
123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
135 | 135 |
|
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 | 148 |
- \f$\pi(u)>=0\f$; |
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/bits/map_extender.h> |
34 | 34 |
#include <lemon/tolerance.h> |
35 | 35 |
|
36 | 36 |
#include <algorithm> |
37 | 37 |
|
... | ... |
@@ -389,65 +389,65 @@ |
389 | 389 |
} |
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief Returns a read-only ReverseDigraph adaptor |
393 | 393 |
/// |
394 | 394 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
395 | 395 |
/// \ingroup graph_adaptors |
396 | 396 |
/// \relates ReverseDigraph |
397 | 397 |
template<typename DGR> |
398 | 398 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
399 | 399 |
return ReverseDigraph<const DGR>(digraph); |
400 | 400 |
} |
401 | 401 |
|
402 | 402 |
|
403 | 403 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
404 | 404 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
405 | 405 |
typedef DigraphAdaptorBase<DGR> Parent; |
406 | 406 |
public: |
407 | 407 |
typedef DGR Digraph; |
408 | 408 |
typedef NF NodeFilterMap; |
409 | 409 |
typedef AF ArcFilterMap; |
410 | 410 |
|
411 | 411 |
typedef SubDigraphBase Adaptor; |
412 | 412 |
protected: |
413 | 413 |
NF* _node_filter; |
414 | 414 |
AF* _arc_filter; |
415 | 415 |
SubDigraphBase() |
416 | 416 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
417 | 417 |
|
418 | 418 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
419 | 419 |
Parent::initialize(digraph); |
420 | 420 |
_node_filter = &node_filter; |
421 |
_arc_filter = &arc_filter; |
|
421 |
_arc_filter = &arc_filter; |
|
422 | 422 |
} |
423 | 423 |
|
424 | 424 |
public: |
425 | 425 |
|
426 | 426 |
typedef typename Parent::Node Node; |
427 | 427 |
typedef typename Parent::Arc Arc; |
428 | 428 |
|
429 | 429 |
void first(Node& i) const { |
430 | 430 |
Parent::first(i); |
431 | 431 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
void first(Arc& i) const { |
435 | 435 |
Parent::first(i); |
436 | 436 |
while (i != INVALID && (!(*_arc_filter)[i] |
437 | 437 |
|| !(*_node_filter)[Parent::source(i)] |
438 | 438 |
|| !(*_node_filter)[Parent::target(i)])) |
439 | 439 |
Parent::next(i); |
440 | 440 |
} |
441 | 441 |
|
442 | 442 |
void firstIn(Arc& i, const Node& n) const { |
443 | 443 |
Parent::firstIn(i, n); |
444 | 444 |
while (i != INVALID && (!(*_arc_filter)[i] |
445 | 445 |
|| !(*_node_filter)[Parent::source(i)])) |
446 | 446 |
Parent::nextIn(i); |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
void firstOut(Arc& i, const Node& n) const { |
450 | 450 |
Parent::firstOut(i, n); |
451 | 451 |
while (i != INVALID && (!(*_arc_filter)[i] |
452 | 452 |
|| !(*_node_filter)[Parent::target(i)])) |
453 | 453 |
Parent::nextOut(i); |
... | ... |
@@ -476,139 +476,139 @@ |
476 | 476 |
void nextOut(Arc& i) const { |
477 | 477 |
Parent::nextOut(i); |
478 | 478 |
while (i != INVALID && (!(*_arc_filter)[i] |
479 | 479 |
|| !(*_node_filter)[Parent::target(i)])) |
480 | 480 |
Parent::nextOut(i); |
481 | 481 |
} |
482 | 482 |
|
483 | 483 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
484 | 484 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
485 | 485 |
|
486 | 486 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
487 | 487 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
488 | 488 |
|
489 | 489 |
typedef False NodeNumTag; |
490 | 490 |
typedef False ArcNumTag; |
491 | 491 |
|
492 | 492 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
493 | 493 |
Arc findArc(const Node& source, const Node& target, |
494 | 494 |
const Arc& prev = INVALID) const { |
495 | 495 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
496 | 496 |
return INVALID; |
497 | 497 |
} |
498 | 498 |
Arc arc = Parent::findArc(source, target, prev); |
499 | 499 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
500 | 500 |
arc = Parent::findArc(source, target, arc); |
501 | 501 |
} |
502 | 502 |
return arc; |
503 | 503 |
} |
504 | 504 |
|
505 | 505 |
public: |
506 | 506 |
|
507 | 507 |
template <typename V> |
508 |
class NodeMap |
|
509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
510 |
|
|
508 |
class NodeMap |
|
509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
510 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
|
511 | 511 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
512 |
|
|
512 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
513 | 513 |
|
514 | 514 |
public: |
515 | 515 |
typedef V Value; |
516 | 516 |
|
517 | 517 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
518 | 518 |
: Parent(adaptor) {} |
519 | 519 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
520 | 520 |
: Parent(adaptor, value) {} |
521 | 521 |
|
522 | 522 |
private: |
523 | 523 |
NodeMap& operator=(const NodeMap& cmap) { |
524 | 524 |
return operator=<NodeMap>(cmap); |
525 | 525 |
} |
526 | 526 |
|
527 | 527 |
template <typename CMap> |
528 | 528 |
NodeMap& operator=(const CMap& cmap) { |
529 | 529 |
Parent::operator=(cmap); |
530 | 530 |
return *this; |
531 | 531 |
} |
532 | 532 |
}; |
533 | 533 |
|
534 | 534 |
template <typename V> |
535 |
class ArcMap |
|
535 |
class ArcMap |
|
536 | 536 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
537 |
|
|
537 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
|
538 | 538 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
539 | 539 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
540 | 540 |
|
541 | 541 |
public: |
542 | 542 |
typedef V Value; |
543 | 543 |
|
544 | 544 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
545 | 545 |
: Parent(adaptor) {} |
546 | 546 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
547 | 547 |
: Parent(adaptor, value) {} |
548 | 548 |
|
549 | 549 |
private: |
550 | 550 |
ArcMap& operator=(const ArcMap& cmap) { |
551 | 551 |
return operator=<ArcMap>(cmap); |
552 | 552 |
} |
553 | 553 |
|
554 | 554 |
template <typename CMap> |
555 | 555 |
ArcMap& operator=(const CMap& cmap) { |
556 | 556 |
Parent::operator=(cmap); |
557 | 557 |
return *this; |
558 | 558 |
} |
559 | 559 |
}; |
560 | 560 |
|
561 | 561 |
}; |
562 | 562 |
|
563 | 563 |
template <typename DGR, typename NF, typename AF> |
564 | 564 |
class SubDigraphBase<DGR, NF, AF, false> |
565 | 565 |
: public DigraphAdaptorBase<DGR> { |
566 | 566 |
typedef DigraphAdaptorBase<DGR> Parent; |
567 | 567 |
public: |
568 | 568 |
typedef DGR Digraph; |
569 | 569 |
typedef NF NodeFilterMap; |
570 | 570 |
typedef AF ArcFilterMap; |
571 | 571 |
|
572 | 572 |
typedef SubDigraphBase Adaptor; |
573 | 573 |
protected: |
574 | 574 |
NF* _node_filter; |
575 | 575 |
AF* _arc_filter; |
576 | 576 |
SubDigraphBase() |
577 | 577 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
578 | 578 |
|
579 | 579 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
580 | 580 |
Parent::initialize(digraph); |
581 | 581 |
_node_filter = &node_filter; |
582 |
_arc_filter = &arc_filter; |
|
582 |
_arc_filter = &arc_filter; |
|
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
public: |
586 | 586 |
|
587 | 587 |
typedef typename Parent::Node Node; |
588 | 588 |
typedef typename Parent::Arc Arc; |
589 | 589 |
|
590 | 590 |
void first(Node& i) const { |
591 | 591 |
Parent::first(i); |
592 | 592 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
void first(Arc& i) const { |
596 | 596 |
Parent::first(i); |
597 | 597 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
598 | 598 |
} |
599 | 599 |
|
600 | 600 |
void firstIn(Arc& i, const Node& n) const { |
601 | 601 |
Parent::firstIn(i, n); |
602 | 602 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
void firstOut(Arc& i, const Node& n) const { |
606 | 606 |
Parent::firstOut(i, n); |
607 | 607 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
void next(Node& i) const { |
611 | 611 |
Parent::next(i); |
612 | 612 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
613 | 613 |
} |
614 | 614 |
void next(Arc& i) const { |
... | ... |
@@ -619,92 +619,92 @@ |
619 | 619 |
Parent::nextIn(i); |
620 | 620 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
621 | 621 |
} |
622 | 622 |
|
623 | 623 |
void nextOut(Arc& i) const { |
624 | 624 |
Parent::nextOut(i); |
625 | 625 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
626 | 626 |
} |
627 | 627 |
|
628 | 628 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
629 | 629 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
630 | 630 |
|
631 | 631 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
632 | 632 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
633 | 633 |
|
634 | 634 |
typedef False NodeNumTag; |
635 | 635 |
typedef False ArcNumTag; |
636 | 636 |
|
637 | 637 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
638 | 638 |
Arc findArc(const Node& source, const Node& target, |
639 | 639 |
const Arc& prev = INVALID) const { |
640 | 640 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
641 | 641 |
return INVALID; |
642 | 642 |
} |
643 | 643 |
Arc arc = Parent::findArc(source, target, prev); |
644 | 644 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
645 | 645 |
arc = Parent::findArc(source, target, arc); |
646 | 646 |
} |
647 | 647 |
return arc; |
648 | 648 |
} |
649 | 649 |
|
650 | 650 |
template <typename V> |
651 |
class NodeMap |
|
651 |
class NodeMap |
|
652 | 652 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
653 | 653 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
655 | 655 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
656 | 656 |
|
657 | 657 |
public: |
658 | 658 |
typedef V Value; |
659 | 659 |
|
660 | 660 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
661 | 661 |
: Parent(adaptor) {} |
662 | 662 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
663 | 663 |
: Parent(adaptor, value) {} |
664 | 664 |
|
665 | 665 |
private: |
666 | 666 |
NodeMap& operator=(const NodeMap& cmap) { |
667 | 667 |
return operator=<NodeMap>(cmap); |
668 | 668 |
} |
669 | 669 |
|
670 | 670 |
template <typename CMap> |
671 | 671 |
NodeMap& operator=(const CMap& cmap) { |
672 | 672 |
Parent::operator=(cmap); |
673 | 673 |
return *this; |
674 | 674 |
} |
675 | 675 |
}; |
676 | 676 |
|
677 | 677 |
template <typename V> |
678 |
class ArcMap |
|
678 |
class ArcMap |
|
679 | 679 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
680 | 680 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
681 | 681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
682 | 682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
683 | 683 |
|
684 | 684 |
public: |
685 | 685 |
typedef V Value; |
686 | 686 |
|
687 | 687 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
688 | 688 |
: Parent(adaptor) {} |
689 | 689 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
690 | 690 |
: Parent(adaptor, value) {} |
691 | 691 |
|
692 | 692 |
private: |
693 | 693 |
ArcMap& operator=(const ArcMap& cmap) { |
694 | 694 |
return operator=<ArcMap>(cmap); |
695 | 695 |
} |
696 | 696 |
|
697 | 697 |
template <typename CMap> |
698 | 698 |
ArcMap& operator=(const CMap& cmap) { |
699 | 699 |
Parent::operator=(cmap); |
700 | 700 |
return *this; |
701 | 701 |
} |
702 | 702 |
}; |
703 | 703 |
|
704 | 704 |
}; |
705 | 705 |
|
706 | 706 |
/// \ingroup graph_adaptors |
707 | 707 |
/// |
708 | 708 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
709 | 709 |
/// |
710 | 710 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
... | ... |
@@ -987,162 +987,162 @@ |
987 | 987 |
|
988 | 988 |
typedef False NodeNumTag; |
989 | 989 |
typedef False ArcNumTag; |
990 | 990 |
typedef False EdgeNumTag; |
991 | 991 |
|
992 | 992 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
993 | 993 |
Arc findArc(const Node& u, const Node& v, |
994 | 994 |
const Arc& prev = INVALID) const { |
995 | 995 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
996 | 996 |
return INVALID; |
997 | 997 |
} |
998 | 998 |
Arc arc = Parent::findArc(u, v, prev); |
999 | 999 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1000 | 1000 |
arc = Parent::findArc(u, v, arc); |
1001 | 1001 |
} |
1002 | 1002 |
return arc; |
1003 | 1003 |
} |
1004 | 1004 |
|
1005 | 1005 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1006 | 1006 |
Edge findEdge(const Node& u, const Node& v, |
1007 | 1007 |
const Edge& prev = INVALID) const { |
1008 | 1008 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1009 | 1009 |
return INVALID; |
1010 | 1010 |
} |
1011 | 1011 |
Edge edge = Parent::findEdge(u, v, prev); |
1012 | 1012 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1013 | 1013 |
edge = Parent::findEdge(u, v, edge); |
1014 | 1014 |
} |
1015 | 1015 |
return edge; |
1016 | 1016 |
} |
1017 | 1017 |
|
1018 | 1018 |
template <typename V> |
1019 |
class NodeMap |
|
1019 |
class NodeMap |
|
1020 | 1020 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1021 | 1021 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1023 | 1023 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1024 | 1024 |
|
1025 | 1025 |
public: |
1026 | 1026 |
typedef V Value; |
1027 | 1027 |
|
1028 | 1028 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1029 | 1029 |
: Parent(adaptor) {} |
1030 | 1030 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1031 | 1031 |
: Parent(adaptor, value) {} |
1032 | 1032 |
|
1033 | 1033 |
private: |
1034 | 1034 |
NodeMap& operator=(const NodeMap& cmap) { |
1035 | 1035 |
return operator=<NodeMap>(cmap); |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
template <typename CMap> |
1039 | 1039 |
NodeMap& operator=(const CMap& cmap) { |
1040 | 1040 |
Parent::operator=(cmap); |
1041 | 1041 |
return *this; |
1042 | 1042 |
} |
1043 | 1043 |
}; |
1044 | 1044 |
|
1045 | 1045 |
template <typename V> |
1046 |
class ArcMap |
|
1046 |
class ArcMap |
|
1047 | 1047 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1048 | 1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1050 | 1050 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1051 | 1051 |
|
1052 | 1052 |
public: |
1053 | 1053 |
typedef V Value; |
1054 | 1054 |
|
1055 | 1055 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1056 | 1056 |
: Parent(adaptor) {} |
1057 | 1057 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1058 | 1058 |
: Parent(adaptor, value) {} |
1059 | 1059 |
|
1060 | 1060 |
private: |
1061 | 1061 |
ArcMap& operator=(const ArcMap& cmap) { |
1062 | 1062 |
return operator=<ArcMap>(cmap); |
1063 | 1063 |
} |
1064 | 1064 |
|
1065 | 1065 |
template <typename CMap> |
1066 | 1066 |
ArcMap& operator=(const CMap& cmap) { |
1067 | 1067 |
Parent::operator=(cmap); |
1068 | 1068 |
return *this; |
1069 | 1069 |
} |
1070 | 1070 |
}; |
1071 | 1071 |
|
1072 | 1072 |
template <typename V> |
1073 |
class EdgeMap |
|
1073 |
class EdgeMap |
|
1074 | 1074 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1075 | 1075 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1077 | 1077 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1078 | 1078 |
|
1079 | 1079 |
public: |
1080 | 1080 |
typedef V Value; |
1081 | 1081 |
|
1082 | 1082 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1083 | 1083 |
: Parent(adaptor) {} |
1084 | 1084 |
|
1085 | 1085 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1086 | 1086 |
: Parent(adaptor, value) {} |
1087 | 1087 |
|
1088 | 1088 |
private: |
1089 | 1089 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1090 | 1090 |
return operator=<EdgeMap>(cmap); |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
template <typename CMap> |
1094 | 1094 |
EdgeMap& operator=(const CMap& cmap) { |
1095 | 1095 |
Parent::operator=(cmap); |
1096 | 1096 |
return *this; |
1097 | 1097 |
} |
1098 | 1098 |
}; |
1099 | 1099 |
|
1100 | 1100 |
}; |
1101 | 1101 |
|
1102 | 1102 |
template <typename GR, typename NF, typename EF> |
1103 | 1103 |
class SubGraphBase<GR, NF, EF, false> |
1104 | 1104 |
: public GraphAdaptorBase<GR> { |
1105 | 1105 |
typedef GraphAdaptorBase<GR> Parent; |
1106 | 1106 |
public: |
1107 | 1107 |
typedef GR Graph; |
1108 | 1108 |
typedef NF NodeFilterMap; |
1109 | 1109 |
typedef EF EdgeFilterMap; |
1110 | 1110 |
|
1111 | 1111 |
typedef SubGraphBase Adaptor; |
1112 | 1112 |
protected: |
1113 | 1113 |
NF* _node_filter; |
1114 | 1114 |
EF* _edge_filter; |
1115 |
SubGraphBase() |
|
1116 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1115 |
SubGraphBase() |
|
1116 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1117 | 1117 |
|
1118 | 1118 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1119 | 1119 |
Parent::initialize(graph); |
1120 | 1120 |
_node_filter = &node_filter; |
1121 | 1121 |
_edge_filter = &edge_filter; |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
public: |
1125 | 1125 |
|
1126 | 1126 |
typedef typename Parent::Node Node; |
1127 | 1127 |
typedef typename Parent::Arc Arc; |
1128 | 1128 |
typedef typename Parent::Edge Edge; |
1129 | 1129 |
|
1130 | 1130 |
void first(Node& i) const { |
1131 | 1131 |
Parent::first(i); |
1132 | 1132 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1133 | 1133 |
} |
1134 | 1134 |
|
1135 | 1135 |
void first(Arc& i) const { |
1136 | 1136 |
Parent::first(i); |
1137 | 1137 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1138 | 1138 |
} |
1139 | 1139 |
|
1140 | 1140 |
void first(Edge& i) const { |
1141 | 1141 |
Parent::first(i); |
1142 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1143 | 1143 |
} |
1144 | 1144 |
|
1145 | 1145 |
void firstIn(Arc& i, const Node& n) const { |
1146 | 1146 |
Parent::firstIn(i, n); |
1147 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1148 | 1148 |
} |
... | ... |
@@ -1185,123 +1185,123 @@ |
1185 | 1185 |
|
1186 | 1186 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
1187 | 1187 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
1188 | 1188 |
|
1189 | 1189 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
1190 | 1190 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
1191 | 1191 |
|
1192 | 1192 |
typedef False NodeNumTag; |
1193 | 1193 |
typedef False ArcNumTag; |
1194 | 1194 |
typedef False EdgeNumTag; |
1195 | 1195 |
|
1196 | 1196 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
1197 | 1197 |
Arc findArc(const Node& u, const Node& v, |
1198 | 1198 |
const Arc& prev = INVALID) const { |
1199 | 1199 |
Arc arc = Parent::findArc(u, v, prev); |
1200 | 1200 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1201 | 1201 |
arc = Parent::findArc(u, v, arc); |
1202 | 1202 |
} |
1203 | 1203 |
return arc; |
1204 | 1204 |
} |
1205 | 1205 |
|
1206 | 1206 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1207 | 1207 |
Edge findEdge(const Node& u, const Node& v, |
1208 | 1208 |
const Edge& prev = INVALID) const { |
1209 | 1209 |
Edge edge = Parent::findEdge(u, v, prev); |
1210 | 1210 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1211 | 1211 |
edge = Parent::findEdge(u, v, edge); |
1212 | 1212 |
} |
1213 | 1213 |
return edge; |
1214 | 1214 |
} |
1215 | 1215 |
|
1216 | 1216 |
template <typename V> |
1217 |
class NodeMap |
|
1217 |
class NodeMap |
|
1218 | 1218 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1219 | 1219 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1221 | 1221 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1222 | 1222 |
|
1223 | 1223 |
public: |
1224 | 1224 |
typedef V Value; |
1225 | 1225 |
|
1226 | 1226 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1227 | 1227 |
: Parent(adaptor) {} |
1228 | 1228 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1229 | 1229 |
: Parent(adaptor, value) {} |
1230 | 1230 |
|
1231 | 1231 |
private: |
1232 | 1232 |
NodeMap& operator=(const NodeMap& cmap) { |
1233 | 1233 |
return operator=<NodeMap>(cmap); |
1234 | 1234 |
} |
1235 | 1235 |
|
1236 | 1236 |
template <typename CMap> |
1237 | 1237 |
NodeMap& operator=(const CMap& cmap) { |
1238 | 1238 |
Parent::operator=(cmap); |
1239 | 1239 |
return *this; |
1240 | 1240 |
} |
1241 | 1241 |
}; |
1242 | 1242 |
|
1243 | 1243 |
template <typename V> |
1244 |
class ArcMap |
|
1244 |
class ArcMap |
|
1245 | 1245 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1246 | 1246 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1248 | 1248 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1249 | 1249 |
|
1250 | 1250 |
public: |
1251 | 1251 |
typedef V Value; |
1252 | 1252 |
|
1253 | 1253 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1254 | 1254 |
: Parent(adaptor) {} |
1255 | 1255 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1256 | 1256 |
: Parent(adaptor, value) {} |
1257 | 1257 |
|
1258 | 1258 |
private: |
1259 | 1259 |
ArcMap& operator=(const ArcMap& cmap) { |
1260 | 1260 |
return operator=<ArcMap>(cmap); |
1261 | 1261 |
} |
1262 | 1262 |
|
1263 | 1263 |
template <typename CMap> |
1264 | 1264 |
ArcMap& operator=(const CMap& cmap) { |
1265 | 1265 |
Parent::operator=(cmap); |
1266 | 1266 |
return *this; |
1267 | 1267 |
} |
1268 | 1268 |
}; |
1269 | 1269 |
|
1270 | 1270 |
template <typename V> |
1271 |
class EdgeMap |
|
1271 |
class EdgeMap |
|
1272 | 1272 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1273 | 1273 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1276 | 1276 |
|
1277 | 1277 |
public: |
1278 | 1278 |
typedef V Value; |
1279 | 1279 |
|
1280 | 1280 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1281 | 1281 |
: Parent(adaptor) {} |
1282 | 1282 |
|
1283 | 1283 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1284 | 1284 |
: Parent(adaptor, value) {} |
1285 | 1285 |
|
1286 | 1286 |
private: |
1287 | 1287 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1288 | 1288 |
return operator=<EdgeMap>(cmap); |
1289 | 1289 |
} |
1290 | 1290 |
|
1291 | 1291 |
template <typename CMap> |
1292 | 1292 |
EdgeMap& operator=(const CMap& cmap) { |
1293 | 1293 |
Parent::operator=(cmap); |
1294 | 1294 |
return *this; |
1295 | 1295 |
} |
1296 | 1296 |
}; |
1297 | 1297 |
|
1298 | 1298 |
}; |
1299 | 1299 |
|
1300 | 1300 |
/// \ingroup graph_adaptors |
1301 | 1301 |
/// |
1302 | 1302 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
1303 | 1303 |
/// graph. |
1304 | 1304 |
/// |
1305 | 1305 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
1306 | 1306 |
/// A \c bool node map and a \c bool edge map must be specified, which |
1307 | 1307 |
/// define the filters for nodes and edges. |
... | ... |
@@ -1466,128 +1466,128 @@ |
1466 | 1466 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
1467 | 1467 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
1468 | 1468 |
/// depending on the \c GR template parameter. |
1469 | 1469 |
/// |
1470 | 1470 |
/// The adapted (di)graph can also be modified through this adaptor |
1471 | 1471 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1472 | 1472 |
/// parameter is set to be \c const. |
1473 | 1473 |
/// |
1474 | 1474 |
/// \tparam GR The type of the adapted digraph or graph. |
1475 | 1475 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1476 | 1476 |
/// or the \ref concepts::Graph "Graph" concept. |
1477 | 1477 |
/// It can also be specified to be \c const. |
1478 | 1478 |
/// \tparam NF The type of the node filter map. |
1479 | 1479 |
/// It must be a \c bool (or convertible) node map of the |
1480 | 1480 |
/// adapted (di)graph. The default type is |
1481 | 1481 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1482 | 1482 |
/// |
1483 | 1483 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
1484 | 1484 |
/// adapted (di)graph are convertible to each other. |
1485 | 1485 |
#ifdef DOXYGEN |
1486 | 1486 |
template<typename GR, typename NF> |
1487 | 1487 |
class FilterNodes { |
1488 | 1488 |
#else |
1489 | 1489 |
template<typename GR, |
1490 | 1490 |
typename NF = typename GR::template NodeMap<bool>, |
1491 | 1491 |
typename Enable = void> |
1492 | 1492 |
class FilterNodes : |
1493 | 1493 |
public DigraphAdaptorExtender< |
1494 | 1494 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1495 | 1495 |
true> > { |
1496 | 1496 |
#endif |
1497 | 1497 |
typedef DigraphAdaptorExtender< |
1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1499 | 1499 |
true> > Parent; |
1500 | 1500 |
|
1501 | 1501 |
public: |
1502 | 1502 |
|
1503 | 1503 |
typedef GR Digraph; |
1504 | 1504 |
typedef NF NodeFilterMap; |
1505 | 1505 |
|
1506 | 1506 |
typedef typename Parent::Node Node; |
1507 | 1507 |
|
1508 | 1508 |
protected: |
1509 | 1509 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1510 | 1510 |
|
1511 | 1511 |
FilterNodes() : const_true_map() {} |
1512 | 1512 |
|
1513 | 1513 |
public: |
1514 | 1514 |
|
1515 | 1515 |
/// \brief Constructor |
1516 | 1516 |
/// |
1517 | 1517 |
/// Creates a subgraph for the given digraph or graph with the |
1518 | 1518 |
/// given node filter map. |
1519 |
FilterNodes(GR& graph, NF& node_filter) |
|
1519 |
FilterNodes(GR& graph, NF& node_filter) |
|
1520 | 1520 |
: Parent(), const_true_map() |
1521 | 1521 |
{ |
1522 | 1522 |
Parent::initialize(graph, node_filter, const_true_map); |
1523 | 1523 |
} |
1524 | 1524 |
|
1525 | 1525 |
/// \brief Sets the status of the given node |
1526 | 1526 |
/// |
1527 | 1527 |
/// This function sets the status of the given node. |
1528 | 1528 |
/// It is done by simply setting the assigned value of \c n |
1529 | 1529 |
/// to \c v in the node filter map. |
1530 | 1530 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1531 | 1531 |
|
1532 | 1532 |
/// \brief Returns the status of the given node |
1533 | 1533 |
/// |
1534 | 1534 |
/// This function returns the status of the given node. |
1535 | 1535 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1536 | 1536 |
bool status(const Node& n) const { return Parent::status(n); } |
1537 | 1537 |
|
1538 | 1538 |
/// \brief Disables the given node |
1539 | 1539 |
/// |
1540 | 1540 |
/// This function disables the given node, so the iteration |
1541 | 1541 |
/// jumps over it. |
1542 | 1542 |
/// It is the same as \ref status() "status(n, false)". |
1543 | 1543 |
void disable(const Node& n) const { Parent::status(n, false); } |
1544 | 1544 |
|
1545 | 1545 |
/// \brief Enables the given node |
1546 | 1546 |
/// |
1547 | 1547 |
/// This function enables the given node. |
1548 | 1548 |
/// It is the same as \ref status() "status(n, true)". |
1549 | 1549 |
void enable(const Node& n) const { Parent::status(n, true); } |
1550 | 1550 |
|
1551 | 1551 |
}; |
1552 | 1552 |
|
1553 | 1553 |
template<typename GR, typename NF> |
1554 | 1554 |
class FilterNodes<GR, NF, |
1555 | 1555 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1556 | 1556 |
public GraphAdaptorExtender< |
1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1558 | 1558 |
true> > { |
1559 | 1559 |
|
1560 | 1560 |
typedef GraphAdaptorExtender< |
1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1562 | 1562 |
true> > Parent; |
1563 | 1563 |
|
1564 | 1564 |
public: |
1565 | 1565 |
|
1566 | 1566 |
typedef GR Graph; |
1567 | 1567 |
typedef NF NodeFilterMap; |
1568 | 1568 |
|
1569 | 1569 |
typedef typename Parent::Node Node; |
1570 | 1570 |
|
1571 | 1571 |
protected: |
1572 | 1572 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1573 | 1573 |
|
1574 | 1574 |
FilterNodes() : const_true_map() {} |
1575 | 1575 |
|
1576 | 1576 |
public: |
1577 | 1577 |
|
1578 | 1578 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
1579 | 1579 |
Parent(), const_true_map() { |
1580 | 1580 |
Parent::initialize(graph, node_filter, const_true_map); |
1581 | 1581 |
} |
1582 | 1582 |
|
1583 | 1583 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1584 | 1584 |
bool status(const Node& n) const { return Parent::status(n); } |
1585 | 1585 |
void disable(const Node& n) const { Parent::status(n, false); } |
1586 | 1586 |
void enable(const Node& n) const { Parent::status(n, true); } |
1587 | 1587 |
|
1588 | 1588 |
}; |
1589 | 1589 |
|
1590 | 1590 |
|
1591 | 1591 |
/// \brief Returns a read-only FilterNodes adaptor |
1592 | 1592 |
/// |
1593 | 1593 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
... | ... |
@@ -1613,65 +1613,65 @@ |
1613 | 1613 |
/// A \c bool arc map must be specified, which defines the filter for |
1614 | 1614 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
1615 | 1615 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
1616 | 1616 |
/// "Digraph" concept. |
1617 | 1617 |
/// |
1618 | 1618 |
/// The adapted digraph can also be modified through this adaptor |
1619 | 1619 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1620 | 1620 |
/// parameter is set to be \c const. |
1621 | 1621 |
/// |
1622 | 1622 |
/// \tparam DGR The type of the adapted digraph. |
1623 | 1623 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1624 | 1624 |
/// It can also be specified to be \c const. |
1625 | 1625 |
/// \tparam AF The type of the arc filter map. |
1626 | 1626 |
/// It must be a \c bool (or convertible) arc map of the |
1627 | 1627 |
/// adapted digraph. The default type is |
1628 | 1628 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
1629 | 1629 |
/// |
1630 | 1630 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
1631 | 1631 |
/// digraph are convertible to each other. |
1632 | 1632 |
#ifdef DOXYGEN |
1633 | 1633 |
template<typename DGR, |
1634 | 1634 |
typename AF> |
1635 | 1635 |
class FilterArcs { |
1636 | 1636 |
#else |
1637 | 1637 |
template<typename DGR, |
1638 | 1638 |
typename AF = typename DGR::template ArcMap<bool> > |
1639 | 1639 |
class FilterArcs : |
1640 | 1640 |
public DigraphAdaptorExtender< |
1641 | 1641 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1642 | 1642 |
AF, false> > { |
1643 | 1643 |
#endif |
1644 | 1644 |
typedef DigraphAdaptorExtender< |
1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1646 | 1646 |
AF, false> > Parent; |
1647 | 1647 |
|
1648 | 1648 |
public: |
1649 | 1649 |
|
1650 | 1650 |
/// The type of the adapted digraph. |
1651 | 1651 |
typedef DGR Digraph; |
1652 | 1652 |
/// The type of the arc filter map. |
1653 | 1653 |
typedef AF ArcFilterMap; |
1654 | 1654 |
|
1655 | 1655 |
typedef typename Parent::Arc Arc; |
1656 | 1656 |
|
1657 | 1657 |
protected: |
1658 | 1658 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
1659 | 1659 |
|
1660 | 1660 |
FilterArcs() : const_true_map() {} |
1661 | 1661 |
|
1662 | 1662 |
public: |
1663 | 1663 |
|
1664 | 1664 |
/// \brief Constructor |
1665 | 1665 |
/// |
1666 | 1666 |
/// Creates a subdigraph for the given digraph with the given arc |
1667 | 1667 |
/// filter map. |
1668 | 1668 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
1669 | 1669 |
: Parent(), const_true_map() { |
1670 | 1670 |
Parent::initialize(digraph, const_true_map, arc_filter); |
1671 | 1671 |
} |
1672 | 1672 |
|
1673 | 1673 |
/// \brief Sets the status of the given arc |
1674 | 1674 |
/// |
1675 | 1675 |
/// This function sets the status of the given arc. |
1676 | 1676 |
/// It is done by simply setting the assigned value of \c a |
1677 | 1677 |
/// to \c v in the arc filter map. |
... | ... |
@@ -1719,94 +1719,94 @@ |
1719 | 1719 |
/// |
1720 | 1720 |
/// \brief Adaptor class for hiding edges in a graph. |
1721 | 1721 |
/// |
1722 | 1722 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
1723 | 1723 |
/// A \c bool edge map must be specified, which defines the filter for |
1724 | 1724 |
/// the edges. Only the edges with \c true filter value are shown in the |
1725 | 1725 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
1726 | 1726 |
/// "Graph" concept. |
1727 | 1727 |
/// |
1728 | 1728 |
/// The adapted graph can also be modified through this adaptor |
1729 | 1729 |
/// by adding or removing nodes or edges, unless the \c GR template |
1730 | 1730 |
/// parameter is set to be \c const. |
1731 | 1731 |
/// |
1732 | 1732 |
/// \tparam GR The type of the adapted graph. |
1733 | 1733 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1734 | 1734 |
/// It can also be specified to be \c const. |
1735 | 1735 |
/// \tparam EF The type of the edge filter map. |
1736 | 1736 |
/// It must be a \c bool (or convertible) edge map of the |
1737 | 1737 |
/// adapted graph. The default type is |
1738 | 1738 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1739 | 1739 |
/// |
1740 | 1740 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1741 | 1741 |
/// adapted graph are convertible to each other. |
1742 | 1742 |
#ifdef DOXYGEN |
1743 | 1743 |
template<typename GR, |
1744 | 1744 |
typename EF> |
1745 | 1745 |
class FilterEdges { |
1746 | 1746 |
#else |
1747 | 1747 |
template<typename GR, |
1748 | 1748 |
typename EF = typename GR::template EdgeMap<bool> > |
1749 | 1749 |
class FilterEdges : |
1750 | 1750 |
public GraphAdaptorExtender< |
1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1752 | 1752 |
EF, false> > { |
1753 | 1753 |
#endif |
1754 | 1754 |
typedef GraphAdaptorExtender< |
1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1756 | 1756 |
EF, false> > Parent; |
1757 | 1757 |
|
1758 | 1758 |
public: |
1759 | 1759 |
|
1760 | 1760 |
/// The type of the adapted graph. |
1761 | 1761 |
typedef GR Graph; |
1762 | 1762 |
/// The type of the edge filter map. |
1763 | 1763 |
typedef EF EdgeFilterMap; |
1764 | 1764 |
|
1765 | 1765 |
typedef typename Parent::Edge Edge; |
1766 | 1766 |
|
1767 | 1767 |
protected: |
1768 | 1768 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1769 | 1769 |
|
1770 | 1770 |
FilterEdges() : const_true_map(true) { |
1771 | 1771 |
Parent::setNodeFilterMap(const_true_map); |
1772 | 1772 |
} |
1773 | 1773 |
|
1774 | 1774 |
public: |
1775 | 1775 |
|
1776 | 1776 |
/// \brief Constructor |
1777 | 1777 |
/// |
1778 | 1778 |
/// Creates a subgraph for the given graph with the given edge |
1779 | 1779 |
/// filter map. |
1780 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1780 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1781 | 1781 |
: Parent(), const_true_map() { |
1782 | 1782 |
Parent::initialize(graph, const_true_map, edge_filter); |
1783 | 1783 |
} |
1784 | 1784 |
|
1785 | 1785 |
/// \brief Sets the status of the given edge |
1786 | 1786 |
/// |
1787 | 1787 |
/// This function sets the status of the given edge. |
1788 | 1788 |
/// It is done by simply setting the assigned value of \c e |
1789 | 1789 |
/// to \c v in the edge filter map. |
1790 | 1790 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1791 | 1791 |
|
1792 | 1792 |
/// \brief Returns the status of the given edge |
1793 | 1793 |
/// |
1794 | 1794 |
/// This function returns the status of the given edge. |
1795 | 1795 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1796 | 1796 |
bool status(const Edge& e) const { return Parent::status(e); } |
1797 | 1797 |
|
1798 | 1798 |
/// \brief Disables the given edge |
1799 | 1799 |
/// |
1800 | 1800 |
/// This function disables the given edge in the subgraph, |
1801 | 1801 |
/// so the iteration jumps over it. |
1802 | 1802 |
/// It is the same as \ref status() "status(e, false)". |
1803 | 1803 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1804 | 1804 |
|
1805 | 1805 |
/// \brief Enables the given edge |
1806 | 1806 |
/// |
1807 | 1807 |
/// This function enables the given edge in the subgraph. |
1808 | 1808 |
/// It is the same as \ref status() "status(e, true)". |
1809 | 1809 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1810 | 1810 |
|
1811 | 1811 |
}; |
1812 | 1812 |
|
... | ... |
@@ -1816,65 +1816,65 @@ |
1816 | 1816 |
/// \ingroup graph_adaptors |
1817 | 1817 |
/// \relates FilterEdges |
1818 | 1818 |
template<typename GR, typename EF> |
1819 | 1819 |
FilterEdges<const GR, EF> |
1820 | 1820 |
filterEdges(const GR& graph, EF& edge_filter) { |
1821 | 1821 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1822 | 1822 |
} |
1823 | 1823 |
|
1824 | 1824 |
template<typename GR, typename EF> |
1825 | 1825 |
FilterEdges<const GR, const EF> |
1826 | 1826 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1827 | 1827 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1828 | 1828 |
} |
1829 | 1829 |
|
1830 | 1830 |
|
1831 | 1831 |
template <typename DGR> |
1832 | 1832 |
class UndirectorBase { |
1833 | 1833 |
public: |
1834 | 1834 |
typedef DGR Digraph; |
1835 | 1835 |
typedef UndirectorBase Adaptor; |
1836 | 1836 |
|
1837 | 1837 |
typedef True UndirectedTag; |
1838 | 1838 |
|
1839 | 1839 |
typedef typename Digraph::Arc Edge; |
1840 | 1840 |
typedef typename Digraph::Node Node; |
1841 | 1841 |
|
1842 | 1842 |
class Arc { |
1843 | 1843 |
friend class UndirectorBase; |
1844 | 1844 |
protected: |
1845 | 1845 |
Edge _edge; |
1846 | 1846 |
bool _forward; |
1847 | 1847 |
|
1848 |
Arc(const Edge& edge, bool forward) |
|
1848 |
Arc(const Edge& edge, bool forward) |
|
1849 | 1849 |
: _edge(edge), _forward(forward) {} |
1850 | 1850 |
|
1851 | 1851 |
public: |
1852 | 1852 |
Arc() {} |
1853 | 1853 |
|
1854 | 1854 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
1855 | 1855 |
|
1856 | 1856 |
operator const Edge&() const { return _edge; } |
1857 | 1857 |
|
1858 | 1858 |
bool operator==(const Arc &other) const { |
1859 | 1859 |
return _forward == other._forward && _edge == other._edge; |
1860 | 1860 |
} |
1861 | 1861 |
bool operator!=(const Arc &other) const { |
1862 | 1862 |
return _forward != other._forward || _edge != other._edge; |
1863 | 1863 |
} |
1864 | 1864 |
bool operator<(const Arc &other) const { |
1865 | 1865 |
return _forward < other._forward || |
1866 | 1866 |
(_forward == other._forward && _edge < other._edge); |
1867 | 1867 |
} |
1868 | 1868 |
}; |
1869 | 1869 |
|
1870 | 1870 |
void first(Node& n) const { |
1871 | 1871 |
_digraph->first(n); |
1872 | 1872 |
} |
1873 | 1873 |
|
1874 | 1874 |
void next(Node& n) const { |
1875 | 1875 |
_digraph->next(n); |
1876 | 1876 |
} |
1877 | 1877 |
|
1878 | 1878 |
void first(Arc& a) const { |
1879 | 1879 |
_digraph->first(a._edge); |
1880 | 1880 |
a._forward = true; |
... | ... |
@@ -2056,65 +2056,65 @@ |
2056 | 2056 |
Edge arc = _digraph->findArc(t, s, p); |
2057 | 2057 |
if (arc != INVALID) return arc; |
2058 | 2058 |
} |
2059 | 2059 |
} else { |
2060 | 2060 |
return _digraph->findArc(s, t, p); |
2061 | 2061 |
} |
2062 | 2062 |
return INVALID; |
2063 | 2063 |
} |
2064 | 2064 |
|
2065 | 2065 |
private: |
2066 | 2066 |
|
2067 | 2067 |
template <typename V> |
2068 | 2068 |
class ArcMapBase { |
2069 | 2069 |
private: |
2070 | 2070 |
|
2071 | 2071 |
typedef typename DGR::template ArcMap<V> MapImpl; |
2072 | 2072 |
|
2073 | 2073 |
public: |
2074 | 2074 |
|
2075 | 2075 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
2076 | 2076 |
|
2077 | 2077 |
typedef V Value; |
2078 | 2078 |
typedef Arc Key; |
2079 | 2079 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2080 | 2080 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2081 | 2081 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2082 | 2082 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2083 | 2083 |
|
2084 | 2084 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2085 | 2085 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2086 | 2086 |
|
2087 | 2087 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2088 |
: _forward(*adaptor._digraph, value), |
|
2088 |
: _forward(*adaptor._digraph, value), |
|
2089 | 2089 |
_backward(*adaptor._digraph, value) {} |
2090 | 2090 |
|
2091 | 2091 |
void set(const Arc& a, const V& value) { |
2092 | 2092 |
if (direction(a)) { |
2093 | 2093 |
_forward.set(a, value); |
2094 | 2094 |
} else { |
2095 | 2095 |
_backward.set(a, value); |
2096 | 2096 |
} |
2097 | 2097 |
} |
2098 | 2098 |
|
2099 | 2099 |
ConstReturnValue operator[](const Arc& a) const { |
2100 | 2100 |
if (direction(a)) { |
2101 | 2101 |
return _forward[a]; |
2102 | 2102 |
} else { |
2103 | 2103 |
return _backward[a]; |
2104 | 2104 |
} |
2105 | 2105 |
} |
2106 | 2106 |
|
2107 | 2107 |
ReturnValue operator[](const Arc& a) { |
2108 | 2108 |
if (direction(a)) { |
2109 | 2109 |
return _forward[a]; |
2110 | 2110 |
} else { |
2111 | 2111 |
return _backward[a]; |
2112 | 2112 |
} |
2113 | 2113 |
} |
2114 | 2114 |
|
2115 | 2115 |
protected: |
2116 | 2116 |
|
2117 | 2117 |
MapImpl _forward, _backward; |
2118 | 2118 |
|
2119 | 2119 |
}; |
2120 | 2120 |
|
... | ... |
@@ -2174,65 +2174,65 @@ |
2174 | 2174 |
|
2175 | 2175 |
template <typename V> |
2176 | 2176 |
class EdgeMap : public Digraph::template ArcMap<V> { |
2177 | 2177 |
typedef typename Digraph::template ArcMap<V> Parent; |
2178 | 2178 |
|
2179 | 2179 |
public: |
2180 | 2180 |
typedef V Value; |
2181 | 2181 |
|
2182 | 2182 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
2183 | 2183 |
: Parent(*adaptor._digraph) {} |
2184 | 2184 |
|
2185 | 2185 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2186 | 2186 |
: Parent(*adaptor._digraph, value) {} |
2187 | 2187 |
|
2188 | 2188 |
private: |
2189 | 2189 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2190 | 2190 |
return operator=<EdgeMap>(cmap); |
2191 | 2191 |
} |
2192 | 2192 |
|
2193 | 2193 |
template <typename CMap> |
2194 | 2194 |
EdgeMap& operator=(const CMap& cmap) { |
2195 | 2195 |
Parent::operator=(cmap); |
2196 | 2196 |
return *this; |
2197 | 2197 |
} |
2198 | 2198 |
|
2199 | 2199 |
}; |
2200 | 2200 |
|
2201 | 2201 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2202 | 2202 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2203 | 2203 |
|
2204 | 2204 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2205 | 2205 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2206 |
|
|
2206 |
|
|
2207 | 2207 |
typedef EdgeNotifier ArcNotifier; |
2208 | 2208 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); } |
2209 | 2209 |
|
2210 | 2210 |
protected: |
2211 | 2211 |
|
2212 | 2212 |
UndirectorBase() : _digraph(0) {} |
2213 | 2213 |
|
2214 | 2214 |
DGR* _digraph; |
2215 | 2215 |
|
2216 | 2216 |
void initialize(DGR& digraph) { |
2217 | 2217 |
_digraph = &digraph; |
2218 | 2218 |
} |
2219 | 2219 |
|
2220 | 2220 |
}; |
2221 | 2221 |
|
2222 | 2222 |
/// \ingroup graph_adaptors |
2223 | 2223 |
/// |
2224 | 2224 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
2225 | 2225 |
/// |
2226 | 2226 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
2227 | 2227 |
/// graph. All arcs of the underlying digraph are showed in the |
2228 | 2228 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
2229 | 2229 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2230 | 2230 |
/// |
2231 | 2231 |
/// The adapted digraph can also be modified through this adaptor |
2232 | 2232 |
/// by adding or removing nodes or edges, unless the \c GR template |
2233 | 2233 |
/// parameter is set to be \c const. |
2234 | 2234 |
/// |
2235 | 2235 |
/// \tparam DGR The type of the adapted digraph. |
2236 | 2236 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2237 | 2237 |
/// It can also be specified to be \c const. |
2238 | 2238 |
/// |
... | ... |
@@ -2678,122 +2678,122 @@ |
2678 | 2678 |
/// arcs). |
2679 | 2679 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2680 | 2680 |
/// |
2681 | 2681 |
/// \tparam DGR The type of the adapted digraph. |
2682 | 2682 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2683 | 2683 |
/// It is implicitly \c const. |
2684 | 2684 |
/// \tparam CM The type of the capacity map. |
2685 | 2685 |
/// It must be an arc map of some numerical type, which defines |
2686 | 2686 |
/// the capacities in the flow problem. It is implicitly \c const. |
2687 | 2687 |
/// The default type is |
2688 | 2688 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
2689 | 2689 |
/// \tparam FM The type of the flow map. |
2690 | 2690 |
/// It must be an arc map of some numerical type, which defines |
2691 | 2691 |
/// the flow values in the flow problem. The default type is \c CM. |
2692 | 2692 |
/// \tparam TL The tolerance type for handling inexact computation. |
2693 | 2693 |
/// The default tolerance type depends on the value type of the |
2694 | 2694 |
/// capacity map. |
2695 | 2695 |
/// |
2696 | 2696 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
2697 | 2697 |
/// adaptors. |
2698 | 2698 |
/// |
2699 | 2699 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2700 | 2700 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2701 | 2701 |
/// is convertible to the \c Arc type of the adapted digraph. |
2702 | 2702 |
#ifdef DOXYGEN |
2703 | 2703 |
template<typename DGR, typename CM, typename FM, typename TL> |
2704 | 2704 |
class ResidualDigraph |
2705 | 2705 |
#else |
2706 | 2706 |
template<typename DGR, |
2707 | 2707 |
typename CM = typename DGR::template ArcMap<int>, |
2708 | 2708 |
typename FM = CM, |
2709 | 2709 |
typename TL = Tolerance<typename CM::Value> > |
2710 |
class ResidualDigraph |
|
2710 |
class ResidualDigraph |
|
2711 | 2711 |
: public SubDigraph< |
2712 | 2712 |
Undirector<const DGR>, |
2713 | 2713 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2714 | 2714 |
typename Undirector<const DGR>::template CombinedArcMap< |
2715 | 2715 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2716 | 2716 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2717 | 2717 |
#endif |
2718 | 2718 |
{ |
2719 | 2719 |
public: |
2720 | 2720 |
|
2721 | 2721 |
/// The type of the underlying digraph. |
2722 | 2722 |
typedef DGR Digraph; |
2723 | 2723 |
/// The type of the capacity map. |
2724 | 2724 |
typedef CM CapacityMap; |
2725 | 2725 |
/// The type of the flow map. |
2726 | 2726 |
typedef FM FlowMap; |
2727 | 2727 |
/// The tolerance type. |
2728 | 2728 |
typedef TL Tolerance; |
2729 | 2729 |
|
2730 | 2730 |
typedef typename CapacityMap::Value Value; |
2731 | 2731 |
typedef ResidualDigraph Adaptor; |
2732 | 2732 |
|
2733 | 2733 |
protected: |
2734 | 2734 |
|
2735 | 2735 |
typedef Undirector<const Digraph> Undirected; |
2736 | 2736 |
|
2737 | 2737 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
2738 | 2738 |
|
2739 | 2739 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
2740 | 2740 |
FM, TL> ForwardFilter; |
2741 | 2741 |
|
2742 | 2742 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
2743 | 2743 |
FM, TL> BackwardFilter; |
2744 | 2744 |
|
2745 | 2745 |
typedef typename Undirected:: |
2746 | 2746 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
2747 | 2747 |
|
2748 | 2748 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
2749 | 2749 |
|
2750 | 2750 |
const CapacityMap* _capacity; |
2751 | 2751 |
FlowMap* _flow; |
2752 | 2752 |
|
2753 | 2753 |
Undirected _graph; |
2754 | 2754 |
NodeFilter _node_filter; |
2755 | 2755 |
ForwardFilter _forward_filter; |
2756 | 2756 |
BackwardFilter _backward_filter; |
2757 | 2757 |
ArcFilter _arc_filter; |
2758 | 2758 |
|
2759 | 2759 |
public: |
2760 | 2760 |
|
2761 | 2761 |
/// \brief Constructor |
2762 | 2762 |
/// |
2763 | 2763 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2764 | 2764 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2765 | 2765 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2766 | 2766 |
FM& flow, const TL& tolerance = Tolerance()) |
2767 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2767 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2768 | 2768 |
_graph(digraph), _node_filter(), |
2769 | 2769 |
_forward_filter(capacity, flow, tolerance), |
2770 | 2770 |
_backward_filter(capacity, flow, tolerance), |
2771 | 2771 |
_arc_filter(_forward_filter, _backward_filter) |
2772 | 2772 |
{ |
2773 | 2773 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2774 | 2774 |
} |
2775 | 2775 |
|
2776 | 2776 |
typedef typename Parent::Arc Arc; |
2777 | 2777 |
|
2778 | 2778 |
/// \brief Returns the residual capacity of the given arc. |
2779 | 2779 |
/// |
2780 | 2780 |
/// Returns the residual capacity of the given arc. |
2781 | 2781 |
Value residualCapacity(const Arc& a) const { |
2782 | 2782 |
if (Undirected::direction(a)) { |
2783 | 2783 |
return (*_capacity)[a] - (*_flow)[a]; |
2784 | 2784 |
} else { |
2785 | 2785 |
return (*_flow)[a]; |
2786 | 2786 |
} |
2787 | 2787 |
} |
2788 | 2788 |
|
2789 | 2789 |
/// \brief Augments on the given arc in the residual digraph. |
2790 | 2790 |
/// |
2791 | 2791 |
/// Augments on the given arc in the residual digraph. It increases |
2792 | 2792 |
/// or decreases the flow value on the original arc according to the |
2793 | 2793 |
/// direction of the residual arc. |
2794 | 2794 |
void augment(const Arc& a, const Value& v) const { |
2795 | 2795 |
if (Undirected::direction(a)) { |
2796 | 2796 |
_flow->set(a, (*_flow)[a] + v); |
2797 | 2797 |
} else { |
2798 | 2798 |
_flow->set(a, (*_flow)[a] - v); |
2799 | 2799 |
} |
... | ... |
@@ -2817,65 +2817,65 @@ |
2817 | 2817 |
|
2818 | 2818 |
/// \brief Returns the forward oriented residual arc. |
2819 | 2819 |
/// |
2820 | 2820 |
/// Returns the forward oriented residual arc related to the given |
2821 | 2821 |
/// arc of the underlying digraph. |
2822 | 2822 |
static Arc forward(const typename Digraph::Arc& a) { |
2823 | 2823 |
return Undirected::direct(a, true); |
2824 | 2824 |
} |
2825 | 2825 |
|
2826 | 2826 |
/// \brief Returns the backward oriented residual arc. |
2827 | 2827 |
/// |
2828 | 2828 |
/// Returns the backward oriented residual arc related to the given |
2829 | 2829 |
/// arc of the underlying digraph. |
2830 | 2830 |
static Arc backward(const typename Digraph::Arc& a) { |
2831 | 2831 |
return Undirected::direct(a, false); |
2832 | 2832 |
} |
2833 | 2833 |
|
2834 | 2834 |
/// \brief Residual capacity map. |
2835 | 2835 |
/// |
2836 | 2836 |
/// This map adaptor class can be used for obtaining the residual |
2837 | 2837 |
/// capacities as an arc map of the residual digraph. |
2838 | 2838 |
/// Its value type is inherited from the capacity map. |
2839 | 2839 |
class ResidualCapacity { |
2840 | 2840 |
protected: |
2841 | 2841 |
const Adaptor* _adaptor; |
2842 | 2842 |
public: |
2843 | 2843 |
/// The key type of the map |
2844 | 2844 |
typedef Arc Key; |
2845 | 2845 |
/// The value type of the map |
2846 | 2846 |
typedef typename CapacityMap::Value Value; |
2847 | 2847 |
|
2848 | 2848 |
/// Constructor |
2849 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2849 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2850 | 2850 |
: _adaptor(&adaptor) {} |
2851 | 2851 |
|
2852 | 2852 |
/// Returns the value associated with the given residual arc |
2853 | 2853 |
Value operator[](const Arc& a) const { |
2854 | 2854 |
return _adaptor->residualCapacity(a); |
2855 | 2855 |
} |
2856 | 2856 |
|
2857 | 2857 |
}; |
2858 | 2858 |
|
2859 | 2859 |
/// \brief Returns a residual capacity map |
2860 | 2860 |
/// |
2861 | 2861 |
/// This function just returns a residual capacity map. |
2862 | 2862 |
ResidualCapacity residualCapacity() const { |
2863 | 2863 |
return ResidualCapacity(*this); |
2864 | 2864 |
} |
2865 | 2865 |
|
2866 | 2866 |
}; |
2867 | 2867 |
|
2868 | 2868 |
/// \brief Returns a (read-only) Residual adaptor |
2869 | 2869 |
/// |
2870 | 2870 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
2871 | 2871 |
/// \ingroup graph_adaptors |
2872 | 2872 |
/// \relates ResidualDigraph |
2873 | 2873 |
template<typename DGR, typename CM, typename FM> |
2874 | 2874 |
ResidualDigraph<DGR, CM, FM> |
2875 | 2875 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { |
2876 | 2876 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
2877 | 2877 |
} |
2878 | 2878 |
|
2879 | 2879 |
|
2880 | 2880 |
template <typename DGR> |
2881 | 2881 |
class SplitNodesBase { |
... | ... |
@@ -3394,65 +3394,65 @@ |
3394 | 3394 |
} |
3395 | 3395 |
|
3396 | 3396 |
/// \brief Returns the out-node created from the given original node. |
3397 | 3397 |
/// |
3398 | 3398 |
/// Returns the out-node created from the given original node. |
3399 | 3399 |
static Node outNode(const DigraphNode& n) { |
3400 | 3400 |
return Parent::outNode(n); |
3401 | 3401 |
} |
3402 | 3402 |
|
3403 | 3403 |
/// \brief Returns the bind arc that corresponds to the given |
3404 | 3404 |
/// original node. |
3405 | 3405 |
/// |
3406 | 3406 |
/// Returns the bind arc in the adaptor that corresponds to the given |
3407 | 3407 |
/// original node, i.e. the arc connecting the in-node and out-node |
3408 | 3408 |
/// of \c n. |
3409 | 3409 |
static Arc arc(const DigraphNode& n) { |
3410 | 3410 |
return Parent::arc(n); |
3411 | 3411 |
} |
3412 | 3412 |
|
3413 | 3413 |
/// \brief Returns the arc that corresponds to the given original arc. |
3414 | 3414 |
/// |
3415 | 3415 |
/// Returns the arc in the adaptor that corresponds to the given |
3416 | 3416 |
/// original arc. |
3417 | 3417 |
static Arc arc(const DigraphArc& a) { |
3418 | 3418 |
return Parent::arc(a); |
3419 | 3419 |
} |
3420 | 3420 |
|
3421 | 3421 |
/// \brief Node map combined from two original node maps |
3422 | 3422 |
/// |
3423 | 3423 |
/// This map adaptor class adapts two node maps of the original digraph |
3424 | 3424 |
/// to get a node map of the split digraph. |
3425 | 3425 |
/// Its value type is inherited from the first node map type (\c IN). |
3426 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3426 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3427 | 3427 |
/// \tparam OUT The type of the node map for the out-nodes. |
3428 | 3428 |
template <typename IN, typename OUT> |
3429 | 3429 |
class CombinedNodeMap { |
3430 | 3430 |
public: |
3431 | 3431 |
|
3432 | 3432 |
/// The key type of the map |
3433 | 3433 |
typedef Node Key; |
3434 | 3434 |
/// The value type of the map |
3435 | 3435 |
typedef typename IN::Value Value; |
3436 | 3436 |
|
3437 | 3437 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
3438 | 3438 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
3439 | 3439 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
3440 | 3440 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
3441 | 3441 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
3442 | 3442 |
|
3443 | 3443 |
/// Constructor |
3444 | 3444 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
3445 | 3445 |
: _in_map(in_map), _out_map(out_map) {} |
3446 | 3446 |
|
3447 | 3447 |
/// Returns the value associated with the given key. |
3448 | 3448 |
Value operator[](const Key& key) const { |
3449 | 3449 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3450 | 3450 |
return _in_map[key]; |
3451 | 3451 |
} else { |
3452 | 3452 |
return _out_map[key]; |
3453 | 3453 |
} |
3454 | 3454 |
} |
3455 | 3455 |
|
3456 | 3456 |
/// Returns a reference to the value associated with the given key. |
3457 | 3457 |
Value& operator[](const Key& key) { |
3458 | 3458 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. |
37 | 37 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
21 | 21 |
|
22 | 22 |
#include <memory> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
// \ingroup graphbits |
30 | 30 |
// \file |
31 | 31 |
// \brief Graph map based on the array storage. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
// \ingroup graphbits |
36 | 36 |
// |
37 | 37 |
// \brief Graph map based on the array storage. |
... | ... |
@@ -41,65 +41,65 @@ |
41 | 41 |
// This map uses the allocators to implement the container functionality. |
42 | 42 |
// |
43 | 43 |
// The template parameters are the Graph, the current Item type and |
44 | 44 |
// the Value type of the map. |
45 | 45 |
template <typename _Graph, typename _Item, typename _Value> |
46 | 46 |
class ArrayMap |
47 | 47 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
48 | 48 |
public: |
49 | 49 |
// The graph type. |
50 | 50 |
typedef _Graph GraphType; |
51 | 51 |
// The item type. |
52 | 52 |
typedef _Item Item; |
53 | 53 |
// The reference map tag. |
54 | 54 |
typedef True ReferenceMapTag; |
55 | 55 |
|
56 | 56 |
// The key type of the map. |
57 | 57 |
typedef _Item Key; |
58 | 58 |
// The value type of the map. |
59 | 59 |
typedef _Value Value; |
60 | 60 |
|
61 | 61 |
// The const reference type of the map. |
62 | 62 |
typedef const _Value& ConstReference; |
63 | 63 |
// The reference type of the map. |
64 | 64 |
typedef _Value& Reference; |
65 | 65 |
|
66 | 66 |
// The map type. |
67 | 67 |
typedef ArrayMap Map; |
68 | 68 |
|
69 | 69 |
// The notifier type. |
70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
71 | 71 |
|
72 | 72 |
private: |
73 |
|
|
73 |
|
|
74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
76 | 76 |
|
77 | 77 |
typedef std::allocator<Value> Allocator; |
78 | 78 |
|
79 | 79 |
public: |
80 | 80 |
|
81 | 81 |
// \brief Graph initialized map constructor. |
82 | 82 |
// |
83 | 83 |
// Graph initialized map constructor. |
84 | 84 |
explicit ArrayMap(const GraphType& graph) { |
85 | 85 |
Parent::attach(graph.notifier(Item())); |
86 | 86 |
allocate_memory(); |
87 | 87 |
Notifier* nf = Parent::notifier(); |
88 | 88 |
Item it; |
89 | 89 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
90 | 90 |
int id = nf->id(it);; |
91 | 91 |
allocator.construct(&(values[id]), Value()); |
92 | 92 |
} |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
// \brief Constructor to use default value to initialize the map. |
96 | 96 |
// |
97 | 97 |
// It constructs a map and initialize all of the the map. |
98 | 98 |
ArrayMap(const GraphType& graph, const Value& value) { |
99 | 99 |
Parent::attach(graph.notifier(Item())); |
100 | 100 |
allocate_memory(); |
101 | 101 |
Notifier* nf = Parent::notifier(); |
102 | 102 |
Item it; |
103 | 103 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
104 | 104 |
int id = nf->id(it);; |
105 | 105 |
allocator.construct(&(values[id]), value); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/config.h> |
23 | 23 |
#include <lemon/bits/array_map.h> |
24 | 24 |
#include <lemon/bits/vector_map.h> |
25 | 25 |
//#include <lemon/bits/debug_map.h> |
26 | 26 |
|
27 | 27 |
//\ingroup graphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 35 |
|
36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 37 |
struct DefaultMapSelector { |
... | ... |
@@ -128,55 +128,55 @@ |
128 | 128 |
|
129 | 129 |
|
130 | 130 |
// long double |
131 | 131 |
template <typename _Graph, typename _Item> |
132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
|
137 | 137 |
// pointer |
138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
// #else |
144 | 144 |
|
145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 146 |
// struct DefaultMapSelector { |
147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 | 152 |
// DefaultMap class |
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
157 | 157 |
|
158 | 158 |
public: |
159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
160 |
|
|
160 |
|
|
161 | 161 |
typedef typename Parent::GraphType GraphType; |
162 | 162 |
typedef typename Parent::Value Value; |
163 | 163 |
|
164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {} |
165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
166 | 166 |
: Parent(graph, value) {} |
167 | 167 |
|
168 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) { |
169 | 169 |
return operator=<DefaultMap>(cmap); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
template <typename CMap> |
173 | 173 |
DefaultMap& operator=(const CMap& cmap) { |
174 | 174 |
Parent::operator=(cmap); |
175 | 175 |
return *this; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
}; |
179 | 179 |
|
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
#endif |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
#include <lemon/bits/default_map.h> |
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
|
27 | 27 |
//\ingroup digraphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Extenders for the arc set types |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
// \ingroup digraphbits |
33 | 33 |
// |
34 | 34 |
// \brief Extender for the ArcSets |
35 | 35 |
template <typename Base> |
36 | 36 |
class ArcSetExtender : public Base { |
37 | 37 |
typedef Base Parent; |
38 | 38 |
|
39 | 39 |
public: |
40 | 40 |
|
41 | 41 |
typedef ArcSetExtender Digraph; |
42 | 42 |
|
43 | 43 |
// Base extensions |
44 | 44 |
|
45 | 45 |
typedef typename Parent::Node Node; |
46 | 46 |
typedef typename Parent::Arc Arc; |
47 | 47 |
|
48 | 48 |
int maxId(Node) const { |
49 | 49 |
return Parent::maxNodeId(); |
50 | 50 |
} |
51 | 51 |
|
52 | 52 |
int maxId(Arc) const { |
53 | 53 |
return Parent::maxArcId(); |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
Node fromId(int id, Node) const { |
57 | 57 |
return Parent::nodeFromId(id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
Arc fromId(int id, Arc) const { |
61 | 61 |
return Parent::arcFromId(id); |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const { |
65 | 65 |
if (n == Parent::source(e)) |
66 |
|
|
66 |
return Parent::target(e); |
|
67 | 67 |
else if(n==Parent::target(e)) |
68 |
|
|
68 |
return Parent::source(e); |
|
69 | 69 |
else |
70 |
|
|
70 |
return INVALID; |
|
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
|
74 | 74 |
// Alteration notifier extensions |
75 | 75 |
|
76 | 76 |
// The arc observer registry. |
77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
78 | 78 |
|
79 | 79 |
protected: |
80 | 80 |
|
81 | 81 |
mutable ArcNotifier arc_notifier; |
82 | 82 |
|
83 | 83 |
public: |
84 | 84 |
|
85 | 85 |
using Parent::notifier; |
86 | 86 |
|
87 | 87 |
// Gives back the arc alteration notifier. |
88 | 88 |
ArcNotifier& notifier(Arc) const { |
89 | 89 |
return arc_notifier; |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
// Iterable extensions |
93 | 93 |
|
94 |
class NodeIt : public Node { |
|
94 |
class NodeIt : public Node { |
|
95 | 95 |
const Digraph* digraph; |
96 | 96 |
public: |
97 | 97 |
|
98 | 98 |
NodeIt() {} |
99 | 99 |
|
100 | 100 |
NodeIt(Invalid i) : Node(i) { } |
101 | 101 |
|
102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
103 |
|
|
103 |
_graph.first(static_cast<Node&>(*this)); |
|
104 | 104 |
} |
105 | 105 |
|
106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
107 |
: Node(node), digraph(&_graph) {} |
|
106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
107 |
: Node(node), digraph(&_graph) {} |
|
108 | 108 |
|
109 |
NodeIt& operator++() { |
|
110 |
digraph->next(*this); |
|
111 |
|
|
109 |
NodeIt& operator++() { |
|
110 |
digraph->next(*this); |
|
111 |
return *this; |
|
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
|
117 |
class ArcIt : public Arc { |
|
117 |
class ArcIt : public Arc { |
|
118 | 118 |
const Digraph* digraph; |
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
ArcIt() { } |
122 | 122 |
|
123 | 123 |
ArcIt(Invalid i) : Arc(i) { } |
124 | 124 |
|
125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
126 |
|
|
126 |
_graph.first(static_cast<Arc&>(*this)); |
|
127 | 127 |
} |
128 | 128 |
|
129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
130 |
Arc(e), digraph(&_graph) { } |
|
129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
130 |
Arc(e), digraph(&_graph) { } |
|
131 | 131 |
|
132 |
ArcIt& operator++() { |
|
133 |
digraph->next(*this); |
|
134 |
|
|
132 |
ArcIt& operator++() { |
|
133 |
digraph->next(*this); |
|
134 |
return *this; |
|
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
}; |
138 | 138 |
|
139 | 139 |
|
140 |
class OutArcIt : public Arc { |
|
140 |
class OutArcIt : public Arc { |
|
141 | 141 |
const Digraph* digraph; |
142 | 142 |
public: |
143 | 143 |
|
144 | 144 |
OutArcIt() { } |
145 | 145 |
|
146 | 146 |
OutArcIt(Invalid i) : Arc(i) { } |
147 | 147 |
|
148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
149 |
: digraph(&_graph) { |
|
150 |
|
|
148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
149 |
: digraph(&_graph) { |
|
150 |
_graph.firstOut(*this, node); |
|
151 | 151 |
} |
152 | 152 |
|
153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
154 |
: Arc(arc), digraph(&_graph) {} |
|
153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
154 |
: Arc(arc), digraph(&_graph) {} |
|
155 | 155 |
|
156 |
OutArcIt& operator++() { |
|
157 |
digraph->nextOut(*this); |
|
158 |
|
|
156 |
OutArcIt& operator++() { |
|
157 |
digraph->nextOut(*this); |
|
158 |
return *this; |
|
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
|
164 |
class InArcIt : public Arc { |
|
164 |
class InArcIt : public Arc { |
|
165 | 165 |
const Digraph* digraph; |
166 | 166 |
public: |
167 | 167 |
|
168 | 168 |
InArcIt() { } |
169 | 169 |
|
170 | 170 |
InArcIt(Invalid i) : Arc(i) { } |
171 | 171 |
|
172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
173 |
: digraph(&_graph) { |
|
174 |
|
|
172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
173 |
: digraph(&_graph) { |
|
174 |
_graph.firstIn(*this, node); |
|
175 | 175 |
} |
176 | 176 |
|
177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
178 |
Arc(arc), digraph(&_graph) {} |
|
177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
178 |
Arc(arc), digraph(&_graph) {} |
|
179 | 179 |
|
180 |
InArcIt& operator++() { |
|
181 |
digraph->nextIn(*this); |
|
182 |
|
|
180 |
InArcIt& operator++() { |
|
181 |
digraph->nextIn(*this); |
|
182 |
return *this; |
|
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
// \brief Base node of the iterator |
188 | 188 |
// |
189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
190 | 190 |
Node baseNode(const OutArcIt &e) const { |
191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
192 | 192 |
} |
193 | 193 |
// \brief Running node of the iterator |
194 | 194 |
// |
195 | 195 |
// Returns the running node (ie. the target in this case) of the |
196 | 196 |
// iterator |
197 | 197 |
Node runningNode(const OutArcIt &e) const { |
198 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
// \brief Base node of the iterator |
202 | 202 |
// |
203 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
204 | 204 |
Node baseNode(const InArcIt &e) const { |
205 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
206 | 206 |
} |
207 | 207 |
// \brief Running node of the iterator |
208 | 208 |
// |
209 | 209 |
// Returns the running node (ie. the source in this case) of the |
210 | 210 |
// iterator |
211 | 211 |
Node runningNode(const InArcIt &e) const { |
212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
213 | 213 |
} |
214 | 214 |
|
215 | 215 |
using Parent::first; |
216 | 216 |
|
217 | 217 |
// Mappable extension |
218 |
|
|
218 |
|
|
219 | 219 |
template <typename _Value> |
220 |
class ArcMap |
|
220 |
class ArcMap |
|
221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
223 | 223 |
|
224 | 224 |
public: |
225 |
explicit ArcMap(const Digraph& _g) |
|
226 |
: Parent(_g) {} |
|
227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
228 |
: Parent(_g, _v) {} |
|
225 |
explicit ArcMap(const Digraph& _g) |
|
226 |
: Parent(_g) {} |
|
227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
228 |
: Parent(_g, _v) {} |
|
229 | 229 |
|
230 | 230 |
ArcMap& operator=(const ArcMap& cmap) { |
231 |
|
|
231 |
return operator=<ArcMap>(cmap); |
|
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
template <typename CMap> |
235 | 235 |
ArcMap& operator=(const CMap& cmap) { |
236 | 236 |
Parent::operator=(cmap); |
237 |
|
|
237 |
return *this; |
|
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
|
243 | 243 |
// Alteration extension |
244 | 244 |
|
245 | 245 |
Arc addArc(const Node& from, const Node& to) { |
246 | 246 |
Arc arc = Parent::addArc(from, to); |
247 | 247 |
notifier(Arc()).add(arc); |
248 | 248 |
return arc; |
249 | 249 |
} |
250 |
|
|
250 |
|
|
251 | 251 |
void clear() { |
252 | 252 |
notifier(Arc()).clear(); |
253 | 253 |
Parent::clear(); |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
void erase(const Arc& arc) { |
257 | 257 |
notifier(Arc()).erase(arc); |
258 | 258 |
Parent::erase(arc); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
ArcSetExtender() { |
262 | 262 |
arc_notifier.setContainer(*this); |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
~ArcSetExtender() { |
266 | 266 |
arc_notifier.clear(); |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
}; |
270 | 270 |
|
271 | 271 |
|
272 | 272 |
// \ingroup digraphbits |
273 | 273 |
// |
274 | 274 |
// \brief Extender for the EdgeSets |
275 | 275 |
template <typename Base> |
276 | 276 |
class EdgeSetExtender : public Base { |
277 | 277 |
typedef Base Parent; |
278 | 278 |
|
279 | 279 |
public: |
280 | 280 |
|
281 | 281 |
typedef EdgeSetExtender Graph; |
282 | 282 |
|
283 | 283 |
typedef True UndirectedTag; |
284 | 284 |
|
285 | 285 |
typedef typename Parent::Node Node; |
286 | 286 |
typedef typename Parent::Arc Arc; |
287 | 287 |
typedef typename Parent::Edge Edge; |
288 | 288 |
|
289 | 289 |
int maxId(Node) const { |
290 | 290 |
return Parent::maxNodeId(); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
int maxId(Arc) const { |
294 | 294 |
return Parent::maxArcId(); |
295 | 295 |
} |
296 | 296 |
|
297 | 297 |
int maxId(Edge) const { |
298 | 298 |
return Parent::maxEdgeId(); |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
Node fromId(int id, Node) const { |
302 | 302 |
return Parent::nodeFromId(id); |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
Arc fromId(int id, Arc) const { |
306 | 306 |
return Parent::arcFromId(id); |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
Edge fromId(int id, Edge) const { |
310 | 310 |
return Parent::edgeFromId(id); |
311 | 311 |
} |
312 | 312 |
|
313 | 313 |
Node oppositeNode(const Node &n, const Edge &e) const { |
314 | 314 |
if( n == Parent::u(e)) |
315 |
|
|
315 |
return Parent::v(e); |
|
316 | 316 |
else if( n == Parent::v(e)) |
317 |
|
|
317 |
return Parent::u(e); |
|
318 | 318 |
else |
319 |
|
|
319 |
return INVALID; |
|
320 | 320 |
} |
321 | 321 |
|
322 | 322 |
Arc oppositeArc(const Arc &e) const { |
323 | 323 |
return Parent::direct(e, !Parent::direction(e)); |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
using Parent::direct; |
327 | 327 |
Arc direct(const Edge &e, const Node &s) const { |
328 | 328 |
return Parent::direct(e, Parent::u(e) == s); |
329 | 329 |
} |
330 | 330 |
|
331 | 331 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
332 | 332 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
333 | 333 |
|
334 | 334 |
|
335 | 335 |
protected: |
336 | 336 |
|
337 | 337 |
mutable ArcNotifier arc_notifier; |
338 | 338 |
mutable EdgeNotifier edge_notifier; |
339 | 339 |
|
340 | 340 |
public: |
341 | 341 |
|
342 | 342 |
using Parent::notifier; |
343 |
|
|
343 |
|
|
344 | 344 |
ArcNotifier& notifier(Arc) const { |
345 | 345 |
return arc_notifier; |
346 | 346 |
} |
347 | 347 |
|
348 | 348 |
EdgeNotifier& notifier(Edge) const { |
349 | 349 |
return edge_notifier; |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
|
353 |
class NodeIt : public Node { |
|
353 |
class NodeIt : public Node { |
|
354 | 354 |
const Graph* graph; |
355 | 355 |
public: |
356 | 356 |
|
357 | 357 |
NodeIt() {} |
358 | 358 |
|
359 | 359 |
NodeIt(Invalid i) : Node(i) { } |
360 | 360 |
|
361 | 361 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) { |
362 |
|
|
362 |
_graph.first(static_cast<Node&>(*this)); |
|
363 | 363 |
} |
364 | 364 |
|
365 |
NodeIt(const Graph& _graph, const Node& node) |
|
366 |
: Node(node), graph(&_graph) {} |
|
365 |
NodeIt(const Graph& _graph, const Node& node) |
|
366 |
: Node(node), graph(&_graph) {} |
|
367 | 367 |
|
368 |
NodeIt& operator++() { |
|
369 |
graph->next(*this); |
|
370 |
|
|
368 |
NodeIt& operator++() { |
|
369 |
graph->next(*this); |
|
370 |
return *this; |
|
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
}; |
374 | 374 |
|
375 | 375 |
|
376 |
class ArcIt : public Arc { |
|
376 |
class ArcIt : public Arc { |
|
377 | 377 |
const Graph* graph; |
378 | 378 |
public: |
379 | 379 |
|
380 | 380 |
ArcIt() { } |
381 | 381 |
|
382 | 382 |
ArcIt(Invalid i) : Arc(i) { } |
383 | 383 |
|
384 | 384 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) { |
385 |
|
|
385 |
_graph.first(static_cast<Arc&>(*this)); |
|
386 | 386 |
} |
387 | 387 |
|
388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
389 |
Arc(e), graph(&_graph) { } |
|
388 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
389 |
Arc(e), graph(&_graph) { } |
|
390 | 390 |
|
391 |
ArcIt& operator++() { |
|
392 |
graph->next(*this); |
|
393 |
|
|
391 |
ArcIt& operator++() { |
|
392 |
graph->next(*this); |
|
393 |
return *this; |
|
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
}; |
397 | 397 |
|
398 | 398 |
|
399 |
class OutArcIt : public Arc { |
|
399 |
class OutArcIt : public Arc { |
|
400 | 400 |
const Graph* graph; |
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
OutArcIt() { } |
404 | 404 |
|
405 | 405 |
OutArcIt(Invalid i) : Arc(i) { } |
406 | 406 |
|
407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
408 |
: graph(&_graph) { |
|
409 |
|
|
407 |
OutArcIt(const Graph& _graph, const Node& node) |
|
408 |
: graph(&_graph) { |
|
409 |
_graph.firstOut(*this, node); |
|
410 | 410 |
} |
411 | 411 |
|
412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
413 |
: Arc(arc), graph(&_graph) {} |
|
412 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
413 |
: Arc(arc), graph(&_graph) {} |
|
414 | 414 |
|
415 |
OutArcIt& operator++() { |
|
416 |
graph->nextOut(*this); |
|
417 |
|
|
415 |
OutArcIt& operator++() { |
|
416 |
graph->nextOut(*this); |
|
417 |
return *this; |
|
418 | 418 |
} |
419 | 419 |
|
420 | 420 |
}; |
421 | 421 |
|
422 | 422 |
|
423 |
class InArcIt : public Arc { |
|
423 |
class InArcIt : public Arc { |
|
424 | 424 |
const Graph* graph; |
425 | 425 |
public: |
426 | 426 |
|
427 | 427 |
InArcIt() { } |
428 | 428 |
|
429 | 429 |
InArcIt(Invalid i) : Arc(i) { } |
430 | 430 |
|
431 |
InArcIt(const Graph& _graph, const Node& node) |
|
432 |
: graph(&_graph) { |
|
433 |
|
|
431 |
InArcIt(const Graph& _graph, const Node& node) |
|
432 |
: graph(&_graph) { |
|
433 |
_graph.firstIn(*this, node); |
|
434 | 434 |
} |
435 | 435 |
|
436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
437 |
Arc(arc), graph(&_graph) {} |
|
436 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
437 |
Arc(arc), graph(&_graph) {} |
|
438 | 438 |
|
439 |
InArcIt& operator++() { |
|
440 |
graph->nextIn(*this); |
|
441 |
|
|
439 |
InArcIt& operator++() { |
|
440 |
graph->nextIn(*this); |
|
441 |
return *this; |
|
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
}; |
445 | 445 |
|
446 | 446 |
|
447 |
class EdgeIt : public Parent::Edge { |
|
447 |
class EdgeIt : public Parent::Edge { |
|
448 | 448 |
const Graph* graph; |
449 | 449 |
public: |
450 | 450 |
|
451 | 451 |
EdgeIt() { } |
452 | 452 |
|
453 | 453 |
EdgeIt(Invalid i) : Edge(i) { } |
454 | 454 |
|
455 | 455 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) { |
456 |
|
|
456 |
_graph.first(static_cast<Edge&>(*this)); |
|
457 | 457 |
} |
458 | 458 |
|
459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
460 |
Edge(e), graph(&_graph) { } |
|
459 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
460 |
Edge(e), graph(&_graph) { } |
|
461 | 461 |
|
462 |
EdgeIt& operator++() { |
|
463 |
graph->next(*this); |
|
464 |
|
|
462 |
EdgeIt& operator++() { |
|
463 |
graph->next(*this); |
|
464 |
return *this; |
|
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
}; |
468 | 468 |
|
469 | 469 |
class IncEdgeIt : public Parent::Edge { |
470 | 470 |
friend class EdgeSetExtender; |
471 | 471 |
const Graph* graph; |
472 | 472 |
bool direction; |
473 | 473 |
public: |
474 | 474 |
|
475 | 475 |
IncEdgeIt() { } |
476 | 476 |
|
477 | 477 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
478 | 478 |
|
479 | 479 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) { |
480 |
|
|
480 |
_graph.firstInc(*this, direction, n); |
|
481 | 481 |
} |
482 | 482 |
|
483 | 483 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
484 |
: graph(&_graph), Edge(ue) { |
|
485 |
direction = (_graph.source(ue) == n); |
|
484 |
: graph(&_graph), Edge(ue) { |
|
485 |
direction = (_graph.source(ue) == n); |
|
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
IncEdgeIt& operator++() { |
489 |
graph->nextInc(*this, direction); |
|
490 |
return *this; |
|
489 |
graph->nextInc(*this, direction); |
|
490 |
return *this; |
|
491 | 491 |
} |
492 | 492 |
}; |
493 | 493 |
|
494 | 494 |
// \brief Base node of the iterator |
495 | 495 |
// |
496 | 496 |
// Returns the base node (ie. the source in this case) of the iterator |
497 | 497 |
Node baseNode(const OutArcIt &e) const { |
498 | 498 |
return Parent::source(static_cast<const Arc&>(e)); |
499 | 499 |
} |
500 | 500 |
// \brief Running node of the iterator |
501 | 501 |
// |
502 | 502 |
// Returns the running node (ie. the target in this case) of the |
503 | 503 |
// iterator |
504 | 504 |
Node runningNode(const OutArcIt &e) const { |
505 | 505 |
return Parent::target(static_cast<const Arc&>(e)); |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
// \brief Base node of the iterator |
509 | 509 |
// |
510 | 510 |
// Returns the base node (ie. the target in this case) of the iterator |
511 | 511 |
Node baseNode(const InArcIt &e) const { |
512 | 512 |
return Parent::target(static_cast<const Arc&>(e)); |
513 | 513 |
} |
514 | 514 |
// \brief Running node of the iterator |
515 | 515 |
// |
516 | 516 |
// Returns the running node (ie. the source in this case) of the |
517 | 517 |
// iterator |
518 | 518 |
Node runningNode(const InArcIt &e) const { |
519 | 519 |
return Parent::source(static_cast<const Arc&>(e)); |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
// Base node of the iterator |
523 | 523 |
// |
524 | 524 |
// Returns the base node of the iterator |
525 | 525 |
Node baseNode(const IncEdgeIt &e) const { |
526 | 526 |
return e.direction ? u(e) : v(e); |
527 | 527 |
} |
528 | 528 |
// Running node of the iterator |
529 | 529 |
// |
530 | 530 |
// Returns the running node of the iterator |
531 | 531 |
Node runningNode(const IncEdgeIt &e) const { |
532 | 532 |
return e.direction ? v(e) : u(e); |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
|
536 | 536 |
template <typename _Value> |
537 |
class ArcMap |
|
537 |
class ArcMap |
|
538 | 538 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
539 | 539 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
540 | 540 |
|
541 | 541 |
public: |
542 |
explicit ArcMap(const Graph& _g) |
|
543 |
: Parent(_g) {} |
|
544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
545 |
: Parent(_g, _v) {} |
|
542 |
explicit ArcMap(const Graph& _g) |
|
543 |
: Parent(_g) {} |
|
544 |
ArcMap(const Graph& _g, const _Value& _v) |
|
545 |
: Parent(_g, _v) {} |
|
546 | 546 |
|
547 | 547 |
ArcMap& operator=(const ArcMap& cmap) { |
548 |
|
|
548 |
return operator=<ArcMap>(cmap); |
|
549 | 549 |
} |
550 | 550 |
|
551 | 551 |
template <typename CMap> |
552 | 552 |
ArcMap& operator=(const CMap& cmap) { |
553 | 553 |
Parent::operator=(cmap); |
554 |
|
|
554 |
return *this; |
|
555 | 555 |
} |
556 | 556 |
|
557 | 557 |
}; |
558 | 558 |
|
559 | 559 |
|
560 | 560 |
template <typename _Value> |
561 |
class EdgeMap |
|
561 |
class EdgeMap |
|
562 | 562 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
563 | 563 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
564 | 564 |
|
565 | 565 |
public: |
566 |
explicit EdgeMap(const Graph& _g) |
|
567 |
: Parent(_g) {} |
|
566 |
explicit EdgeMap(const Graph& _g) |
|
567 |
: Parent(_g) {} |
|
568 | 568 |
|
569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
570 |
: Parent(_g, _v) {} |
|
569 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
570 |
: Parent(_g, _v) {} |
|
571 | 571 |
|
572 | 572 |
EdgeMap& operator=(const EdgeMap& cmap) { |
573 |
|
|
573 |
return operator=<EdgeMap>(cmap); |
|
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
template <typename CMap> |
577 | 577 |
EdgeMap& operator=(const CMap& cmap) { |
578 | 578 |
Parent::operator=(cmap); |
579 |
|
|
579 |
return *this; |
|
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
}; |
583 | 583 |
|
584 | 584 |
|
585 | 585 |
// Alteration extension |
586 | 586 |
|
587 | 587 |
Edge addEdge(const Node& from, const Node& to) { |
588 | 588 |
Edge edge = Parent::addEdge(from, to); |
589 | 589 |
notifier(Edge()).add(edge); |
590 | 590 |
std::vector<Arc> arcs; |
591 | 591 |
arcs.push_back(Parent::direct(edge, true)); |
592 | 592 |
arcs.push_back(Parent::direct(edge, false)); |
593 | 593 |
notifier(Arc()).add(arcs); |
594 | 594 |
return edge; |
595 | 595 |
} |
596 |
|
|
596 |
|
|
597 | 597 |
void clear() { |
598 | 598 |
notifier(Arc()).clear(); |
599 | 599 |
notifier(Edge()).clear(); |
600 | 600 |
Parent::clear(); |
601 | 601 |
} |
602 | 602 |
|
603 | 603 |
void erase(const Edge& edge) { |
604 | 604 |
std::vector<Arc> arcs; |
605 | 605 |
arcs.push_back(Parent::direct(edge, true)); |
606 | 606 |
arcs.push_back(Parent::direct(edge, false)); |
607 | 607 |
notifier(Arc()).erase(arcs); |
608 | 608 |
notifier(Edge()).erase(edge); |
609 | 609 |
Parent::erase(edge); |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
|
613 | 613 |
EdgeSetExtender() { |
614 | 614 |
arc_notifier.setContainer(*this); |
615 | 615 |
edge_notifier.setContainer(*this); |
616 | 616 |
} |
617 | 617 |
|
618 | 618 |
~EdgeSetExtender() { |
619 | 619 |
edge_notifier.clear(); |
620 | 620 |
arc_notifier.clear(); |
621 | 621 |
} |
622 |
|
|
622 |
|
|
623 | 623 |
}; |
624 | 624 |
|
625 | 625 |
} |
626 | 626 |
|
627 | 627 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph> |
28 | 28 |
class DigraphAdaptorExtender : public _Digraph { |
29 | 29 |
typedef _Digraph Parent; |
30 | 30 |
|
31 | 31 |
public: |
32 | 32 |
|
33 | 33 |
typedef _Digraph Digraph; |
34 | 34 |
typedef DigraphAdaptorExtender Adaptor; |
35 | 35 |
|
36 | 36 |
// Base extensions |
37 | 37 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_PATH_DUMP_H |
20 | 20 |
#define LEMON_BITS_PATH_DUMP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph, typename _PredMap> |
28 | 28 |
class PredMapPath { |
29 | 29 |
public: |
30 | 30 |
typedef True RevPathTag; |
31 | 31 |
|
32 | 32 |
typedef _Digraph Digraph; |
33 | 33 |
typedef typename Digraph::Arc Arc; |
34 | 34 |
typedef _PredMap PredMap; |
35 | 35 |
|
36 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
37 | 37 |
typename Digraph::Node _target) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
namespace lemon { |
25 | 25 |
|
26 | 26 |
namespace _solver_bits { |
27 | 27 |
|
28 | 28 |
class VarIndex { |
29 | 29 |
private: |
30 | 30 |
struct ItemT { |
31 | 31 |
int prev, next; |
32 | 32 |
int index; |
33 | 33 |
}; |
34 | 34 |
std::vector<ItemT> items; |
35 | 35 |
int first_item, last_item, first_free_item; |
36 | 36 |
|
37 | 37 |
std::vector<int> cross; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/bits/windows.h> |
23 | 23 |
|
24 | 24 |
#ifdef WIN32 |
25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
26 | 26 |
#define WIN32_LEAN_AND_MEAN |
27 | 27 |
#endif |
28 | 28 |
#ifndef NOMINMAX |
29 | 29 |
#define NOMINMAX |
30 | 30 |
#endif |
31 | 31 |
#ifdef UNICODE |
32 | 32 |
#undef UNICODE |
33 | 33 |
#endif |
34 | 34 |
#include <windows.h> |
35 | 35 |
#ifdef LOCALE_INVARIANT |
36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
37 | 37 |
#else |
... | ... |
@@ -69,65 +69,65 @@ |
69 | 69 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
70 | 70 |
cutime = 0; |
71 | 71 |
cstime = 0; |
72 | 72 |
} else { |
73 | 73 |
rtime = 0; |
74 | 74 |
utime = 0; |
75 | 75 |
stime = 0; |
76 | 76 |
cutime = 0; |
77 | 77 |
cstime = 0; |
78 | 78 |
} |
79 | 79 |
#else |
80 | 80 |
timeval tv; |
81 | 81 |
gettimeofday(&tv, 0); |
82 | 82 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
83 | 83 |
|
84 | 84 |
tms ts; |
85 | 85 |
double tck=sysconf(_SC_CLK_TCK); |
86 | 86 |
times(&ts); |
87 | 87 |
utime=ts.tms_utime/tck; |
88 | 88 |
stime=ts.tms_stime/tck; |
89 | 89 |
cutime=ts.tms_cutime/tck; |
90 | 90 |
cstime=ts.tms_cstime/tck; |
91 | 91 |
#endif |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
std::string getWinFormattedDate() |
95 | 95 |
{ |
96 | 96 |
std::ostringstream os; |
97 | 97 |
#ifdef WIN32 |
98 | 98 |
SYSTEMTIME time; |
99 | 99 |
GetSystemTime(&time); |
100 | 100 |
char buf1[11], buf2[9], buf3[5]; |
101 |
|
|
101 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
|
102 | 102 |
("ddd MMM dd"), buf1, 11) && |
103 | 103 |
GetTimeFormat(MY_LOCALE, 0, &time, |
104 | 104 |
("HH':'mm':'ss"), buf2, 9) && |
105 | 105 |
GetDateFormat(MY_LOCALE, 0, &time, |
106 | 106 |
("yyyy"), buf3, 5)) { |
107 | 107 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
108 | 108 |
} |
109 | 109 |
else os << "unknown"; |
110 | 110 |
#else |
111 | 111 |
timeval tv; |
112 | 112 |
gettimeofday(&tv, 0); |
113 | 113 |
|
114 | 114 |
char cbuf[26]; |
115 | 115 |
ctime_r(&tv.tv_sec,cbuf); |
116 | 116 |
os << cbuf; |
117 | 117 |
#endif |
118 | 118 |
return os.str(); |
119 | 119 |
} |
120 | 120 |
|
121 | 121 |
int getWinRndSeed() |
122 | 122 |
{ |
123 | 123 |
#ifdef WIN32 |
124 | 124 |
FILETIME time; |
125 | 125 |
GetSystemTimeAsFileTime(&time); |
126 | 126 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
127 | 127 |
#else |
128 | 128 |
timeval tv; |
129 | 129 |
gettimeofday(&tv, 0); |
130 | 130 |
return getpid() + tv.tv_sec + tv.tv_usec; |
131 | 131 |
#endif |
132 | 132 |
} |
133 | 133 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
// -*- C++ -*- |
20 | 20 |
#ifndef LEMON_CBC_H |
21 | 21 |
#define LEMON_CBC_H |
22 | 22 |
|
23 | 23 |
///\file |
24 | 24 |
///\brief Header of the LEMON-CBC mip solver interface. |
25 | 25 |
///\ingroup lp_group |
26 | 26 |
|
27 | 27 |
#include <lemon/lp_base.h> |
28 | 28 |
|
29 | 29 |
class CoinModel; |
30 | 30 |
class OsiSolverInterface; |
31 | 31 |
class CbcModel; |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \brief Interface for the CBC MIP solver |
36 | 36 |
/// |
37 | 37 |
/// This class implements an interface for the CBC MIP solver. |
... | ... |
@@ -91,39 +91,39 @@ |
91 | 91 |
virtual void _setColUpperBound(int i, Value value); |
92 | 92 |
virtual Value _getColUpperBound(int i) const; |
93 | 93 |
|
94 | 94 |
virtual void _setRowLowerBound(int i, Value value); |
95 | 95 |
virtual Value _getRowLowerBound(int i) const; |
96 | 96 |
virtual void _setRowUpperBound(int i, Value value); |
97 | 97 |
virtual Value _getRowUpperBound(int i) const; |
98 | 98 |
|
99 | 99 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
100 | 100 |
virtual void _getObjCoeffs(InsertIterator b) const; |
101 | 101 |
|
102 | 102 |
virtual void _setObjCoeff(int i, Value obj_coef); |
103 | 103 |
virtual Value _getObjCoeff(int i) const; |
104 | 104 |
|
105 | 105 |
virtual void _setSense(Sense sense); |
106 | 106 |
virtual Sense _getSense() const; |
107 | 107 |
|
108 | 108 |
virtual ColTypes _getColType(int col) const; |
109 | 109 |
virtual void _setColType(int col, ColTypes col_type); |
110 | 110 |
|
111 | 111 |
virtual SolveExitStatus _solve(); |
112 | 112 |
virtual ProblemType _getType() const; |
113 | 113 |
virtual Value _getSol(int i) const; |
114 | 114 |
virtual Value _getSolValue() const; |
115 | 115 |
|
116 | 116 |
virtual void _clear(); |
117 | 117 |
|
118 | 118 |
virtual void _messageLevel(MessageLevel level); |
119 | 119 |
void _applyMessageLevel(); |
120 | 120 |
|
121 | 121 |
int _message_level; |
122 | 122 |
|
123 |
|
|
123 |
|
|
124 | 124 |
|
125 | 125 |
}; |
126 | 126 |
|
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 |
/// The type of the map that stores the signed supply values of the |
|
63 |
/// nodes. |
|
62 |
/// The type of the map that stores the signed supply values of the |
|
63 |
/// nodes. |
|
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 | 75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
76 | 76 |
|
77 | 77 |
/// \brief Instantiates a FlowMap. |
78 | 78 |
/// |
79 | 79 |
/// This function instantiates a \ref FlowMap. |
80 | 80 |
/// \param digraph The digraph for which we would like to define |
81 | 81 |
/// the flow map. |
82 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 83 |
return new FlowMap(digraph); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
/// \brief The elevator type used by the algorithm. |
87 | 87 |
/// |
88 | 88 |
/// The elevator type used by the algorithm. |
89 | 89 |
/// |
90 | 90 |
/// \sa Elevator |
91 | 91 |
/// \sa LinkedElevator |
92 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
93 | 93 |
|
94 | 94 |
/// \brief Instantiates an Elevator. |
95 | 95 |
/// |
... | ... |
@@ -105,75 +105,75 @@ |
105 | 105 |
/// |
106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 107 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 108 |
|
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
/** |
112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 113 |
|
114 | 114 |
\ingroup max_flow |
115 | 115 |
This class implements a push-relabel algorithm for the \e network |
116 | 116 |
\e circulation problem. |
117 | 117 |
It is to find a feasible circulation when lower and upper bounds |
118 | 118 |
are given for the flow values on the arcs and lower bounds are |
119 | 119 |
given for the difference between the outgoing and incoming flow |
120 | 120 |
at the nodes. |
121 | 121 |
|
122 | 122 |
The exact formulation of this problem is the following. |
123 | 123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 127 |
denotes the signed supply values of the nodes. |
128 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 130 |
\f$-sup(u)\f$ demand. |
131 | 131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 132 |
solution of the following problem. |
133 | 133 |
|
134 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 |
|
|
137 |
|
|
138 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 139 |
zero or negative in order to have a feasible solution (since the sum |
140 | 140 |
of the expressions on the left-hand side of the inequalities is zero). |
141 | 141 |
It means that the total demand must be greater or equal to the total |
142 | 142 |
supply and all the supplies have to be carried out from the supply nodes, |
143 | 143 |
but there could be demands that are not satisfied. |
144 | 144 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
145 | 145 |
constraints have to be satisfied with equality, i.e. all demands |
146 | 146 |
have to be satisfied and all supplies have to be used. |
147 |
|
|
147 |
|
|
148 | 148 |
If you need the opposite inequalities in the supply/demand constraints |
149 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
150 | 150 |
have to be satisfied while there could be supplies that are not used), |
151 | 151 |
then you could easily transform the problem to the above form by reversing |
152 | 152 |
the direction of the arcs and taking the negative of the supply values |
153 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
154 | 154 |
|
155 | 155 |
This algorithm either calculates a feasible circulation, or provides |
156 | 156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
157 | 157 |
cannot exist. |
158 | 158 |
|
159 | 159 |
Note that this algorithm also provides a feasible solution for the |
160 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
161 | 161 |
|
162 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
163 | 163 |
\tparam LM The type of the lower bound map. The default |
164 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
165 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
166 | 166 |
The default map type is \c LM. |
167 | 167 |
\tparam SM The type of the supply map. The default map type is |
168 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
169 | 169 |
*/ |
170 | 170 |
#ifdef DOXYGEN |
171 | 171 |
template< typename GR, |
172 | 172 |
typename LM, |
173 | 173 |
typename UM, |
174 | 174 |
typename SM, |
175 | 175 |
typename TR > |
176 | 176 |
#else |
177 | 177 |
template< typename GR, |
178 | 178 |
typename LM = typename GR::template ArcMap<int>, |
179 | 179 |
typename UM = LM, |
... | ... |
@@ -296,65 +296,65 @@ |
296 | 296 |
/// |
297 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
298 | 298 |
/// type with automatic allocation. |
299 | 299 |
/// The Elevator should have standard constructor interface to be |
300 | 300 |
/// able to automatically created by the algorithm (i.e. the |
301 | 301 |
/// digraph and the maximum level should be passed to it). |
302 | 302 |
/// However an external elevator object could also be passed to the |
303 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
304 | 304 |
/// before calling \ref run() or \ref init(). |
305 | 305 |
/// \sa SetElevator |
306 | 306 |
template <typename T> |
307 | 307 |
struct SetStandardElevator |
308 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
309 | 309 |
SetStandardElevatorTraits<T> > { |
310 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
311 | 311 |
SetStandardElevatorTraits<T> > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
/// @} |
315 | 315 |
|
316 | 316 |
protected: |
317 | 317 |
|
318 | 318 |
Circulation() {} |
319 | 319 |
|
320 | 320 |
public: |
321 | 321 |
|
322 | 322 |
/// Constructor. |
323 | 323 |
|
324 | 324 |
/// The constructor of the class. |
325 | 325 |
/// |
326 | 326 |
/// \param graph The digraph the algorithm runs on. |
327 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
328 |
/// \param upper The upper bounds (capacities) for the flow values |
|
328 |
/// \param upper The upper bounds (capacities) for the flow values |
|
329 | 329 |
/// on the arcs. |
330 | 330 |
/// \param supply The signed supply values of the nodes. |
331 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
332 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
333 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
334 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
335 | 335 |
_excess(NULL) {} |
336 | 336 |
|
337 | 337 |
/// Destructor. |
338 | 338 |
~Circulation() { |
339 | 339 |
destroyStructures(); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
|
343 | 343 |
private: |
344 | 344 |
|
345 | 345 |
bool checkBoundMaps() { |
346 | 346 |
for (ArcIt e(_g);e!=INVALID;++e) { |
347 | 347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
348 | 348 |
} |
349 | 349 |
return true; |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
void createStructures() { |
353 | 353 |
_node_num = _el = countNodes(_g); |
354 | 354 |
|
355 | 355 |
if (!_flow) { |
356 | 356 |
_flow = Traits::createFlowMap(_g); |
357 | 357 |
_local_flow = true; |
358 | 358 |
} |
359 | 359 |
if (!_level) { |
360 | 360 |
_level = Traits::createElevator(_g, _node_num); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/clp.h> |
20 | 20 |
#include <coin/ClpSimplex.hpp> |
21 | 21 |
|
22 | 22 |
namespace lemon { |
23 | 23 |
|
24 | 24 |
ClpLp::ClpLp() { |
25 | 25 |
_prob = new ClpSimplex(); |
26 | 26 |
_init_temporals(); |
27 | 27 |
messageLevel(MESSAGE_NOTHING); |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
ClpLp::ClpLp(const ClpLp& other) { |
31 | 31 |
_prob = new ClpSimplex(*other._prob); |
32 | 32 |
rows = other.rows; |
33 | 33 |
cols = other.cols; |
34 | 34 |
_init_temporals(); |
35 | 35 |
messageLevel(MESSAGE_NOTHING); |
36 | 36 |
} |
37 | 37 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CLP_H |
20 | 20 |
#define LEMON_CLP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <vector> |
26 | 26 |
#include <string> |
27 | 27 |
|
28 | 28 |
#include <lemon/lp_base.h> |
29 | 29 |
|
30 | 30 |
class ClpSimplex; |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup lp_group |
35 | 35 |
/// |
36 | 36 |
/// \brief Interface for the CLP solver |
37 | 37 |
/// |
... | ... |
@@ -108,56 +108,56 @@ |
108 | 108 |
virtual Value _getRowLowerBound(int i) const; |
109 | 109 |
virtual void _setRowUpperBound(int i, Value value); |
110 | 110 |
virtual Value _getRowUpperBound(int i) const; |
111 | 111 |
|
112 | 112 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
113 | 113 |
virtual void _getObjCoeffs(InsertIterator) const; |
114 | 114 |
|
115 | 115 |
virtual void _setObjCoeff(int i, Value obj_coef); |
116 | 116 |
virtual Value _getObjCoeff(int i) const; |
117 | 117 |
|
118 | 118 |
virtual void _setSense(Sense sense); |
119 | 119 |
virtual Sense _getSense() const; |
120 | 120 |
|
121 | 121 |
virtual SolveExitStatus _solve(); |
122 | 122 |
|
123 | 123 |
virtual Value _getPrimal(int i) const; |
124 | 124 |
virtual Value _getDual(int i) const; |
125 | 125 |
|
126 | 126 |
virtual Value _getPrimalValue() const; |
127 | 127 |
|
128 | 128 |
virtual Value _getPrimalRay(int i) const; |
129 | 129 |
virtual Value _getDualRay(int i) const; |
130 | 130 |
|
131 | 131 |
virtual VarStatus _getColStatus(int i) const; |
132 | 132 |
virtual VarStatus _getRowStatus(int i) const; |
133 | 133 |
|
134 | 134 |
virtual ProblemType _getPrimalType() const; |
135 | 135 |
virtual ProblemType _getDualType() const; |
136 | 136 |
|
137 | 137 |
virtual void _clear(); |
138 | 138 |
|
139 | 139 |
virtual void _messageLevel(MessageLevel); |
140 |
|
|
140 |
|
|
141 | 141 |
public: |
142 | 142 |
|
143 | 143 |
///Solves LP with primal simplex method. |
144 | 144 |
SolveExitStatus solvePrimal(); |
145 | 145 |
|
146 | 146 |
///Solves LP with dual simplex method. |
147 | 147 |
SolveExitStatus solveDual(); |
148 | 148 |
|
149 | 149 |
///Solves LP with barrier method. |
150 | 150 |
SolveExitStatus solveBarrier(); |
151 | 151 |
|
152 | 152 |
///Returns the constraint identifier understood by CLP. |
153 | 153 |
int clpRow(Row r) const { return rows(id(r)); } |
154 | 154 |
|
155 | 155 |
///Returns the variable identifier understood by CLP. |
156 | 156 |
int clpCol(Col c) const { return cols(id(c)); } |
157 | 157 |
|
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
} //END OF NAMESPACE LEMON |
161 | 161 |
|
162 | 162 |
#endif //LEMON_CLP_H |
163 | 163 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graph_concepts |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of directed graphs. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/graph_components.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of directed graphs. |
37 | 37 |
/// |
... | ... |
@@ -406,65 +406,65 @@ |
406 | 406 |
|
407 | 407 |
/// \brief The base node of the iterator. |
408 | 408 |
/// |
409 | 409 |
/// Gives back the base node of the iterator. |
410 | 410 |
/// It is always the source of the pointed arc. |
411 | 411 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
412 | 412 |
|
413 | 413 |
/// \brief The running node of the iterator. |
414 | 414 |
/// |
415 | 415 |
/// Gives back the running node of the iterator. |
416 | 416 |
/// It is always the target of the pointed arc. |
417 | 417 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
418 | 418 |
|
419 | 419 |
/// \brief The opposite node on the given arc. |
420 | 420 |
/// |
421 | 421 |
/// Gives back the opposite node on the given arc. |
422 | 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; } |
423 | 423 |
|
424 | 424 |
/// \brief Reference map of the nodes to type \c T. |
425 | 425 |
/// |
426 | 426 |
/// Reference map of the nodes to type \c T. |
427 | 427 |
template<class T> |
428 | 428 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> { |
429 | 429 |
public: |
430 | 430 |
|
431 | 431 |
///\e |
432 | 432 |
NodeMap(const Digraph&) { } |
433 | 433 |
///\e |
434 | 434 |
NodeMap(const Digraph&, T) { } |
435 | 435 |
|
436 | 436 |
private: |
437 | 437 |
///Copy constructor |
438 |
NodeMap(const NodeMap& nm) : |
|
438 |
NodeMap(const NodeMap& nm) : |
|
439 | 439 |
ReferenceMap<Node, T, T&, const T&>(nm) { } |
440 | 440 |
///Assignment operator |
441 | 441 |
template <typename CMap> |
442 | 442 |
NodeMap& operator=(const CMap&) { |
443 | 443 |
checkConcept<ReadMap<Node, T>, CMap>(); |
444 | 444 |
return *this; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
/// \brief Reference map of the arcs to type \c T. |
449 | 449 |
/// |
450 | 450 |
/// Reference map of the arcs to type \c T. |
451 | 451 |
template<class T> |
452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> { |
453 | 453 |
public: |
454 | 454 |
|
455 | 455 |
///\e |
456 | 456 |
ArcMap(const Digraph&) { } |
457 | 457 |
///\e |
458 | 458 |
ArcMap(const Digraph&, T) { } |
459 | 459 |
private: |
460 | 460 |
///Copy constructor |
461 | 461 |
ArcMap(const ArcMap& em) : |
462 | 462 |
ReferenceMap<Arc, T, T&, const T&>(em) { } |
463 | 463 |
///Assignment operator |
464 | 464 |
template <typename CMap> |
465 | 465 |
ArcMap& operator=(const CMap&) { |
466 | 466 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
467 | 467 |
return *this; |
468 | 468 |
} |
469 | 469 |
}; |
470 | 470 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of graph components. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
54 | 54 |
/// as uninitialized. |
55 | 55 |
GraphItem() {} |
56 | 56 |
|
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
GraphItem(const GraphItem &) {} |
61 | 61 |
|
62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
63 | 63 |
/// |
64 | 64 |
/// Constructor for conversion from \c INVALID. |
65 | 65 |
/// It initializes the item to be invalid. |
66 | 66 |
/// \sa Invalid for more details. |
67 | 67 |
GraphItem(Invalid) {} |
68 | 68 |
|
69 | 69 |
/// \brief Assignment operator. |
70 | 70 |
/// |
71 | 71 |
/// Assignment operator for the item. |
72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; } |
73 | 73 |
|
74 | 74 |
/// \brief Assignment operator for INVALID. |
75 | 75 |
/// |
76 | 76 |
/// This operator makes the item invalid. |
77 | 77 |
GraphItem& operator=(Invalid) { return *this; } |
78 | 78 |
|
79 | 79 |
/// \brief Equality operator. |
80 | 80 |
/// |
81 | 81 |
/// Equality operator. |
82 | 82 |
bool operator==(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Inequality operator. |
85 | 85 |
/// |
86 | 86 |
/// Inequality operator. |
87 | 87 |
bool operator!=(const GraphItem&) const { return false; } |
88 | 88 |
|
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 |
/// It makes possible to use graph item types as key types in |
|
92 |
/// It makes possible to use graph item types as key types in |
|
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 | 95 |
/// \note This operator only have to define some strict ordering of |
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
102 | 102 |
void constraints() { |
103 | 103 |
_GraphItem i1; |
104 | 104 |
i1=INVALID; |
105 | 105 |
_GraphItem i2 = i1; |
106 | 106 |
_GraphItem i3 = INVALID; |
107 | 107 |
|
108 | 108 |
i1 = i2 = i3; |
109 | 109 |
|
110 | 110 |
bool b; |
111 | 111 |
b = (ia == ib) && (ia != ib); |
112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
113 | 113 |
b = (ia < ib); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
const _GraphItem &ia; |
117 | 117 |
const _GraphItem &ib; |
118 | 118 |
}; |
119 | 119 |
}; |
120 | 120 |
|
121 | 121 |
/// \brief Base skeleton class for directed graphs. |
122 | 122 |
/// |
123 | 123 |
/// This class describes the base interface of directed graph types. |
124 | 124 |
/// All digraph %concepts have to conform to this class. |
125 |
/// It just provides types for nodes and arcs and functions |
|
125 |
/// It just provides types for nodes and arcs and functions |
|
126 | 126 |
/// to get the source and the target nodes of arcs. |
127 | 127 |
class BaseDigraphComponent { |
128 | 128 |
public: |
129 | 129 |
|
130 | 130 |
typedef BaseDigraphComponent Digraph; |
131 | 131 |
|
132 | 132 |
/// \brief Node class of the digraph. |
133 | 133 |
/// |
134 | 134 |
/// This class represents the nodes of the digraph. |
135 | 135 |
typedef GraphItem<'n'> Node; |
136 | 136 |
|
137 | 137 |
/// \brief Arc class of the digraph. |
138 | 138 |
/// |
139 | 139 |
/// This class represents the arcs of the digraph. |
140 | 140 |
typedef GraphItem<'a'> Arc; |
141 | 141 |
|
142 | 142 |
/// \brief Return the source node of an arc. |
143 | 143 |
/// |
144 | 144 |
/// This function returns the source node of an arc. |
145 | 145 |
Node source(const Arc&) const { return INVALID; } |
146 | 146 |
|
147 | 147 |
/// \brief Return the target node of an arc. |
148 | 148 |
/// |
149 | 149 |
/// This function returns the target node of an arc. |
150 | 150 |
Node target(const Arc&) const { return INVALID; } |
151 | 151 |
|
152 | 152 |
/// \brief Return the opposite node on the given arc. |
153 | 153 |
/// |
154 | 154 |
/// This function returns the opposite node on the given arc. |
155 | 155 |
Node oppositeNode(const Node&, const Arc&) const { |
156 | 156 |
return INVALID; |
157 | 157 |
} |
... | ... |
@@ -397,172 +397,172 @@ |
397 | 397 |
/// |
398 | 398 |
/// This function returns the edge by its unique id. |
399 | 399 |
/// If the graph does not contain an edge with the given id, |
400 | 400 |
/// then the result of the function is undefined. |
401 | 401 |
Edge edgeFromId(int) const { return INVALID; } |
402 | 402 |
|
403 | 403 |
/// \brief Return an integer greater or equal to the maximum |
404 | 404 |
/// edge id. |
405 | 405 |
/// |
406 | 406 |
/// This function returns an integer greater or equal to the |
407 | 407 |
/// maximum edge id. |
408 | 408 |
int maxEdgeId() const { return -1; } |
409 | 409 |
|
410 | 410 |
template <typename _Graph> |
411 | 411 |
struct Constraints { |
412 | 412 |
|
413 | 413 |
void constraints() { |
414 | 414 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
415 | 415 |
typename _Graph::Edge edge; |
416 | 416 |
int ueid = graph.id(edge); |
417 | 417 |
ueid = graph.id(edge); |
418 | 418 |
edge = graph.edgeFromId(ueid); |
419 | 419 |
ueid = graph.maxEdgeId(); |
420 | 420 |
ignore_unused_variable_warning(ueid); |
421 | 421 |
} |
422 | 422 |
|
423 | 423 |
const _Graph& graph; |
424 | 424 |
}; |
425 | 425 |
}; |
426 | 426 |
|
427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
428 | 428 |
/// |
429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
431 | 431 |
template <typename GR, typename Item> |
432 | 432 |
class GraphItemIt : public Item { |
433 | 433 |
public: |
434 | 434 |
/// \brief Default constructor. |
435 | 435 |
/// |
436 | 436 |
/// Default constructor. |
437 | 437 |
/// \warning The default constructor is not required to set |
438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
439 | 439 |
/// as uninitialized. |
440 | 440 |
GraphItemIt() {} |
441 | 441 |
|
442 | 442 |
/// \brief Copy constructor. |
443 | 443 |
/// |
444 | 444 |
/// Copy constructor. |
445 | 445 |
GraphItemIt(const GraphItemIt& it) : Item(it) {} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor that sets the iterator to the first item. |
448 | 448 |
/// |
449 | 449 |
/// Constructor that sets the iterator to the first item. |
450 | 450 |
explicit GraphItemIt(const GR&) {} |
451 | 451 |
|
452 | 452 |
/// \brief Constructor for conversion from \c INVALID. |
453 | 453 |
/// |
454 | 454 |
/// Constructor for conversion from \c INVALID. |
455 | 455 |
/// It initializes the iterator to be invalid. |
456 | 456 |
/// \sa Invalid for more details. |
457 | 457 |
GraphItemIt(Invalid) {} |
458 | 458 |
|
459 | 459 |
/// \brief Assignment operator. |
460 | 460 |
/// |
461 | 461 |
/// Assignment operator for the iterator. |
462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
463 | 463 |
|
464 | 464 |
/// \brief Increment the iterator. |
465 | 465 |
/// |
466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
467 | 467 |
/// next item. |
468 | 468 |
GraphItemIt& operator++() { return *this; } |
469 |
|
|
469 |
|
|
470 | 470 |
/// \brief Equality operator |
471 | 471 |
/// |
472 | 472 |
/// Equality operator. |
473 | 473 |
/// Two iterators are equal if and only if they point to the |
474 | 474 |
/// same object or both are invalid. |
475 | 475 |
bool operator==(const GraphItemIt&) const { return true;} |
476 | 476 |
|
477 | 477 |
/// \brief Inequality operator |
478 | 478 |
/// |
479 | 479 |
/// Inequality operator. |
480 | 480 |
/// Two iterators are equal if and only if they point to the |
481 | 481 |
/// same object or both are invalid. |
482 | 482 |
bool operator!=(const GraphItemIt&) const { return true;} |
483 | 483 |
|
484 | 484 |
template<typename _GraphItemIt> |
485 | 485 |
struct Constraints { |
486 | 486 |
void constraints() { |
487 | 487 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
488 | 488 |
_GraphItemIt it1(g); |
489 | 489 |
_GraphItemIt it2; |
490 | 490 |
_GraphItemIt it3 = it1; |
491 | 491 |
_GraphItemIt it4 = INVALID; |
492 | 492 |
|
493 | 493 |
it2 = ++it1; |
494 | 494 |
++it2 = it1; |
495 | 495 |
++(++it1); |
496 | 496 |
|
497 | 497 |
Item bi = it1; |
498 | 498 |
bi = it2; |
499 | 499 |
} |
500 | 500 |
const GR& g; |
501 | 501 |
}; |
502 | 502 |
}; |
503 | 503 |
|
504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
505 | 505 |
/// \c IncEdgeIt types. |
506 | 506 |
/// |
507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
509 | 509 |
/// |
510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
511 | 511 |
/// base class, there is an additional template parameter (selector) |
512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
514 | 514 |
template <typename GR, |
515 | 515 |
typename Item = typename GR::Arc, |
516 | 516 |
typename Base = typename GR::Node, |
517 | 517 |
char sel = '0'> |
518 | 518 |
class GraphIncIt : public Item { |
519 | 519 |
public: |
520 | 520 |
/// \brief Default constructor. |
521 | 521 |
/// |
522 | 522 |
/// Default constructor. |
523 | 523 |
/// \warning The default constructor is not required to set |
524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
525 | 525 |
/// as uninitialized. |
526 | 526 |
GraphIncIt() {} |
527 | 527 |
|
528 | 528 |
/// \brief Copy constructor. |
529 | 529 |
/// |
530 | 530 |
/// Copy constructor. |
531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {} |
532 | 532 |
|
533 |
/// \brief Constructor that sets the iterator to the first |
|
533 |
/// \brief Constructor that sets the iterator to the first |
|
534 | 534 |
/// incoming or outgoing arc. |
535 | 535 |
/// |
536 |
/// Constructor that sets the iterator to the first arc |
|
536 |
/// Constructor that sets the iterator to the first arc |
|
537 | 537 |
/// incoming to or outgoing from the given node. |
538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {} |
539 | 539 |
|
540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
541 | 541 |
/// |
542 | 542 |
/// Constructor for conversion from \c INVALID. |
543 | 543 |
/// It initializes the iterator to be invalid. |
544 | 544 |
/// \sa Invalid for more details. |
545 | 545 |
GraphIncIt(Invalid) {} |
546 | 546 |
|
547 | 547 |
/// \brief Assignment operator. |
548 | 548 |
/// |
549 | 549 |
/// Assignment operator for the iterator. |
550 | 550 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; } |
551 | 551 |
|
552 | 552 |
/// \brief Increment the iterator. |
553 | 553 |
/// |
554 | 554 |
/// This operator increments the iterator, i.e. assigns it to the |
555 | 555 |
/// next arc incoming to or outgoing from the given node. |
556 | 556 |
GraphIncIt& operator++() { return *this; } |
557 | 557 |
|
558 | 558 |
/// \brief Equality operator |
559 | 559 |
/// |
560 | 560 |
/// Equality operator. |
561 | 561 |
/// Two iterators are equal if and only if they point to the |
562 | 562 |
/// same object or both are invalid. |
563 | 563 |
bool operator==(const GraphIncIt&) const { return true;} |
564 | 564 |
|
565 | 565 |
/// \brief Inequality operator |
566 | 566 |
/// |
567 | 567 |
/// Inequality operator. |
568 | 568 |
/// Two iterators are equal if and only if they point to the |
... | ... |
@@ -775,74 +775,74 @@ |
775 | 775 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> { |
776 | 776 |
public: |
777 | 777 |
|
778 | 778 |
typedef BAS Base; |
779 | 779 |
typedef typename Base::Node Node; |
780 | 780 |
typedef typename Base::Arc Arc; |
781 | 781 |
typedef typename Base::Edge Edge; |
782 | 782 |
|
783 | 783 |
|
784 | 784 |
typedef IterableGraphComponent Graph; |
785 | 785 |
|
786 | 786 |
/// \name Base Iteration |
787 | 787 |
/// |
788 | 788 |
/// This interface provides functions for iteration on edges. |
789 | 789 |
/// |
790 | 790 |
/// @{ |
791 | 791 |
|
792 | 792 |
using IterableDigraphComponent<Base>::first; |
793 | 793 |
using IterableDigraphComponent<Base>::next; |
794 | 794 |
|
795 | 795 |
/// \brief Return the first edge. |
796 | 796 |
/// |
797 | 797 |
/// This function gives back the first edge in the iteration order. |
798 | 798 |
void first(Edge&) const {} |
799 | 799 |
|
800 | 800 |
/// \brief Return the next edge. |
801 | 801 |
/// |
802 | 802 |
/// This function gives back the next edge in the iteration order. |
803 | 803 |
void next(Edge&) const {} |
804 | 804 |
|
805 | 805 |
/// \brief Return the first edge incident to the given node. |
806 | 806 |
/// |
807 |
/// This function gives back the first edge incident to the given |
|
807 |
/// This function gives back the first edge incident to the given |
|
808 | 808 |
/// node. The bool parameter gives back the direction for which the |
809 |
/// source node of the directed arc representing the edge is the |
|
809 |
/// source node of the directed arc representing the edge is the |
|
810 | 810 |
/// given node. |
811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {} |
812 | 812 |
|
813 | 813 |
/// \brief Gives back the next of the edges from the |
814 | 814 |
/// given node. |
815 | 815 |
/// |
816 |
/// This function gives back the next edge incident to the given |
|
816 |
/// This function gives back the next edge incident to the given |
|
817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
818 | 818 |
void nextInc(Edge&, bool&) const {} |
819 | 819 |
|
820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
822 | 822 |
|
823 | 823 |
/// @} |
824 | 824 |
|
825 | 825 |
/// \name Class Based Iteration |
826 | 826 |
/// |
827 | 827 |
/// This interface provides iterator classes for edges. |
828 | 828 |
/// |
829 | 829 |
/// @{ |
830 | 830 |
|
831 | 831 |
/// \brief This iterator goes through each edge. |
832 | 832 |
/// |
833 | 833 |
/// This iterator goes through each edge. |
834 | 834 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
835 | 835 |
|
836 | 836 |
/// \brief This iterator goes trough the incident edges of a |
837 | 837 |
/// node. |
838 | 838 |
/// |
839 | 839 |
/// This iterator goes trough the incident edges of a certain |
840 | 840 |
/// node of a graph. |
841 | 841 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
842 | 842 |
|
843 | 843 |
/// \brief The base node of the iterator. |
844 | 844 |
/// |
845 | 845 |
/// This function gives back the base node of the iterator. |
846 | 846 |
Node baseNode(const IncEdgeIt&) const { return INVALID; } |
847 | 847 |
|
848 | 848 |
/// \brief The running node of the iterator. |
... | ... |
@@ -961,143 +961,143 @@ |
961 | 961 |
|
962 | 962 |
typedef BAS Base; |
963 | 963 |
typedef typename Base::Edge Edge; |
964 | 964 |
|
965 | 965 |
|
966 | 966 |
/// Edge alteration notifier class. |
967 | 967 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
968 | 968 |
EdgeNotifier; |
969 | 969 |
|
970 | 970 |
/// \brief Return the edge alteration notifier. |
971 | 971 |
/// |
972 | 972 |
/// This function gives back the edge alteration notifier. |
973 | 973 |
EdgeNotifier& notifier(Edge) const { |
974 | 974 |
return EdgeNotifier(); |
975 | 975 |
} |
976 | 976 |
|
977 | 977 |
template <typename _Graph> |
978 | 978 |
struct Constraints { |
979 | 979 |
void constraints() { |
980 | 980 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
981 | 981 |
typename _Graph::EdgeNotifier& uen |
982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
983 | 983 |
ignore_unused_variable_warning(uen); |
984 | 984 |
} |
985 | 985 |
|
986 | 986 |
const _Graph& graph; |
987 | 987 |
}; |
988 | 988 |
}; |
989 | 989 |
|
990 | 990 |
/// \brief Concept class for standard graph maps. |
991 | 991 |
/// |
992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
994 | 994 |
/// graph types, which can be used for associating data to graph items. |
995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
996 | 996 |
template <typename GR, typename K, typename V> |
997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> { |
998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
999 | 999 |
|
1000 | 1000 |
public: |
1001 | 1001 |
|
1002 | 1002 |
/// The key type of the map. |
1003 | 1003 |
typedef K Key; |
1004 | 1004 |
/// The value type of the map. |
1005 | 1005 |
typedef V Value; |
1006 | 1006 |
/// The reference type of the map. |
1007 | 1007 |
typedef Value& Reference; |
1008 | 1008 |
/// The const reference type of the map. |
1009 | 1009 |
typedef const Value& ConstReference; |
1010 | 1010 |
|
1011 | 1011 |
// The reference map tag. |
1012 | 1012 |
typedef True ReferenceMapTag; |
1013 | 1013 |
|
1014 | 1014 |
/// \brief Construct a new map. |
1015 | 1015 |
/// |
1016 | 1016 |
/// Construct a new map for the graph. |
1017 | 1017 |
explicit GraphMap(const GR&) {} |
1018 | 1018 |
/// \brief Construct a new map with default value. |
1019 | 1019 |
/// |
1020 | 1020 |
/// Construct a new map for the graph and initalize the values. |
1021 | 1021 |
GraphMap(const GR&, const Value&) {} |
1022 | 1022 |
|
1023 | 1023 |
private: |
1024 | 1024 |
/// \brief Copy constructor. |
1025 | 1025 |
/// |
1026 | 1026 |
/// Copy Constructor. |
1027 | 1027 |
GraphMap(const GraphMap&) : Parent() {} |
1028 | 1028 |
|
1029 | 1029 |
/// \brief Assignment operator. |
1030 | 1030 |
/// |
1031 | 1031 |
/// Assignment operator. It does not mofify the underlying graph, |
1032 | 1032 |
/// it just iterates on the current item set and set the map |
1033 | 1033 |
/// with the value returned by the assigned map. |
1034 | 1034 |
template <typename CMap> |
1035 | 1035 |
GraphMap& operator=(const CMap&) { |
1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1037 | 1037 |
return *this; |
1038 | 1038 |
} |
1039 | 1039 |
|
1040 | 1040 |
public: |
1041 | 1041 |
template<typename _Map> |
1042 | 1042 |
struct Constraints { |
1043 | 1043 |
void constraints() { |
1044 | 1044 |
checkConcept |
1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
1046 | 1046 |
_Map m1(g); |
1047 | 1047 |
_Map m2(g,t); |
1048 |
|
|
1048 |
|
|
1049 | 1049 |
// Copy constructor |
1050 | 1050 |
// _Map m3(m); |
1051 | 1051 |
|
1052 | 1052 |
// Assignment operator |
1053 | 1053 |
// ReadMap<Key, Value> cmap; |
1054 | 1054 |
// m3 = cmap; |
1055 | 1055 |
|
1056 | 1056 |
ignore_unused_variable_warning(m1); |
1057 | 1057 |
ignore_unused_variable_warning(m2); |
1058 | 1058 |
// ignore_unused_variable_warning(m3); |
1059 | 1059 |
} |
1060 | 1060 |
|
1061 | 1061 |
const _Map &m; |
1062 | 1062 |
const GR &g; |
1063 | 1063 |
const typename GraphMap::Value &t; |
1064 | 1064 |
}; |
1065 | 1065 |
|
1066 | 1066 |
}; |
1067 | 1067 |
|
1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
1069 | 1069 |
/// |
1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
1073 | 1073 |
/// This concept is part of the Digraph concept. |
1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
1075 | 1075 |
class MappableDigraphComponent : public BAS { |
1076 | 1076 |
public: |
1077 | 1077 |
|
1078 | 1078 |
typedef BAS Base; |
1079 | 1079 |
typedef typename Base::Node Node; |
1080 | 1080 |
typedef typename Base::Arc Arc; |
1081 | 1081 |
|
1082 | 1082 |
typedef MappableDigraphComponent Digraph; |
1083 | 1083 |
|
1084 | 1084 |
/// \brief Standard graph map for the nodes. |
1085 | 1085 |
/// |
1086 | 1086 |
/// Standard graph map for the nodes. |
1087 | 1087 |
/// It conforms to the ReferenceMap concept. |
1088 | 1088 |
template <typename V> |
1089 | 1089 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> { |
1090 | 1090 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
1091 | 1091 |
|
1092 | 1092 |
public: |
1093 | 1093 |
/// \brief Construct a new map. |
1094 | 1094 |
/// |
1095 | 1095 |
/// Construct a new map for the digraph. |
1096 | 1096 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
1097 | 1097 |
: Parent(digraph) {} |
1098 | 1098 |
|
1099 | 1099 |
/// \brief Construct a new map with default value. |
1100 | 1100 |
/// |
1101 | 1101 |
/// Construct a new map for the digraph and initalize the values. |
1102 | 1102 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
1103 | 1103 |
: Parent(digraph, value) {} |
... | ... |
@@ -1176,65 +1176,65 @@ |
1176 | 1176 |
} { // bool map test |
1177 | 1177 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
1178 | 1178 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
1179 | 1179 |
BoolNodeMap >(); |
1180 | 1180 |
} { // Dummy map test |
1181 | 1181 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
1182 | 1182 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
1183 | 1183 |
DummyNodeMap >(); |
1184 | 1184 |
} |
1185 | 1185 |
|
1186 | 1186 |
{ // int map test |
1187 | 1187 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
1188 | 1188 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
1189 | 1189 |
IntArcMap >(); |
1190 | 1190 |
} { // bool map test |
1191 | 1191 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
1192 | 1192 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
1193 | 1193 |
BoolArcMap >(); |
1194 | 1194 |
} { // Dummy map test |
1195 | 1195 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
1196 | 1196 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1197 | 1197 |
DummyArcMap >(); |
1198 | 1198 |
} |
1199 | 1199 |
} |
1200 | 1200 |
|
1201 | 1201 |
const _Digraph& digraph; |
1202 | 1202 |
}; |
1203 | 1203 |
}; |
1204 | 1204 |
|
1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
1206 | 1206 |
/// |
1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
1209 | 1209 |
/// map class for edges (\c EdgeMap). |
1210 | 1210 |
/// This concept is part of the Graph concept. |
1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> { |
1213 | 1213 |
public: |
1214 | 1214 |
|
1215 | 1215 |
typedef BAS Base; |
1216 | 1216 |
typedef typename Base::Edge Edge; |
1217 | 1217 |
|
1218 | 1218 |
typedef MappableGraphComponent Graph; |
1219 | 1219 |
|
1220 | 1220 |
/// \brief Standard graph map for the edges. |
1221 | 1221 |
/// |
1222 | 1222 |
/// Standard graph map for the edges. |
1223 | 1223 |
/// It conforms to the ReferenceMap concept. |
1224 | 1224 |
template <typename V> |
1225 | 1225 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> { |
1226 | 1226 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
1227 | 1227 |
|
1228 | 1228 |
public: |
1229 | 1229 |
/// \brief Construct a new map. |
1230 | 1230 |
/// |
1231 | 1231 |
/// Construct a new map for the graph. |
1232 | 1232 |
explicit EdgeMap(const MappableGraphComponent& graph) |
1233 | 1233 |
: Parent(graph) {} |
1234 | 1234 |
|
1235 | 1235 |
/// \brief Construct a new map with default value. |
1236 | 1236 |
/// |
1237 | 1237 |
/// Construct a new map for the graph and initalize the values. |
1238 | 1238 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
1239 | 1239 |
: Parent(graph, value) {} |
1240 | 1240 |
|
... | ... |
@@ -1261,192 +1261,192 @@ |
1261 | 1261 |
|
1262 | 1262 |
struct Dummy { |
1263 | 1263 |
int value; |
1264 | 1264 |
Dummy() : value(0) {} |
1265 | 1265 |
Dummy(int _v) : value(_v) {} |
1266 | 1266 |
}; |
1267 | 1267 |
|
1268 | 1268 |
void constraints() { |
1269 | 1269 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
1270 | 1270 |
|
1271 | 1271 |
{ // int map test |
1272 | 1272 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
1273 | 1273 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
1274 | 1274 |
IntEdgeMap >(); |
1275 | 1275 |
} { // bool map test |
1276 | 1276 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
1277 | 1277 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
1278 | 1278 |
BoolEdgeMap >(); |
1279 | 1279 |
} { // Dummy map test |
1280 | 1280 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
1281 | 1281 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1282 | 1282 |
DummyEdgeMap >(); |
1283 | 1283 |
} |
1284 | 1284 |
} |
1285 | 1285 |
|
1286 | 1286 |
const _Graph& graph; |
1287 | 1287 |
}; |
1288 | 1288 |
}; |
1289 | 1289 |
|
1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
1291 | 1291 |
/// |
1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
1294 | 1294 |
/// nodes and arcs to the digraph. |
1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
1297 | 1297 |
class ExtendableDigraphComponent : public BAS { |
1298 | 1298 |
public: |
1299 | 1299 |
typedef BAS Base; |
1300 | 1300 |
|
1301 | 1301 |
typedef typename Base::Node Node; |
1302 | 1302 |
typedef typename Base::Arc Arc; |
1303 | 1303 |
|
1304 | 1304 |
/// \brief Add a new node to the digraph. |
1305 | 1305 |
/// |
1306 | 1306 |
/// This function adds a new node to the digraph. |
1307 | 1307 |
Node addNode() { |
1308 | 1308 |
return INVALID; |
1309 | 1309 |
} |
1310 | 1310 |
|
1311 | 1311 |
/// \brief Add a new arc connecting the given two nodes. |
1312 | 1312 |
/// |
1313 | 1313 |
/// This function adds a new arc connecting the given two nodes |
1314 | 1314 |
/// of the digraph. |
1315 | 1315 |
Arc addArc(const Node&, const Node&) { |
1316 | 1316 |
return INVALID; |
1317 | 1317 |
} |
1318 | 1318 |
|
1319 | 1319 |
template <typename _Digraph> |
1320 | 1320 |
struct Constraints { |
1321 | 1321 |
void constraints() { |
1322 | 1322 |
checkConcept<Base, _Digraph>(); |
1323 | 1323 |
typename _Digraph::Node node_a, node_b; |
1324 | 1324 |
node_a = digraph.addNode(); |
1325 | 1325 |
node_b = digraph.addNode(); |
1326 | 1326 |
typename _Digraph::Arc arc; |
1327 | 1327 |
arc = digraph.addArc(node_a, node_b); |
1328 | 1328 |
} |
1329 | 1329 |
|
1330 | 1330 |
_Digraph& digraph; |
1331 | 1331 |
}; |
1332 | 1332 |
}; |
1333 | 1333 |
|
1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
1335 | 1335 |
/// |
1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
1338 | 1338 |
/// nodes and edges to the graph. |
1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
1341 | 1341 |
class ExtendableGraphComponent : public BAS { |
1342 | 1342 |
public: |
1343 | 1343 |
|
1344 | 1344 |
typedef BAS Base; |
1345 | 1345 |
typedef typename Base::Node Node; |
1346 | 1346 |
typedef typename Base::Edge Edge; |
1347 | 1347 |
|
1348 | 1348 |
/// \brief Add a new node to the digraph. |
1349 | 1349 |
/// |
1350 | 1350 |
/// This function adds a new node to the digraph. |
1351 | 1351 |
Node addNode() { |
1352 | 1352 |
return INVALID; |
1353 | 1353 |
} |
1354 | 1354 |
|
1355 | 1355 |
/// \brief Add a new edge connecting the given two nodes. |
1356 | 1356 |
/// |
1357 | 1357 |
/// This function adds a new edge connecting the given two nodes |
1358 | 1358 |
/// of the graph. |
1359 | 1359 |
Edge addEdge(const Node&, const Node&) { |
1360 | 1360 |
return INVALID; |
1361 | 1361 |
} |
1362 | 1362 |
|
1363 | 1363 |
template <typename _Graph> |
1364 | 1364 |
struct Constraints { |
1365 | 1365 |
void constraints() { |
1366 | 1366 |
checkConcept<Base, _Graph>(); |
1367 | 1367 |
typename _Graph::Node node_a, node_b; |
1368 | 1368 |
node_a = graph.addNode(); |
1369 | 1369 |
node_b = graph.addNode(); |
1370 | 1370 |
typename _Graph::Edge edge; |
1371 | 1371 |
edge = graph.addEdge(node_a, node_b); |
1372 | 1372 |
} |
1373 | 1373 |
|
1374 | 1374 |
_Graph& graph; |
1375 | 1375 |
}; |
1376 | 1376 |
}; |
1377 | 1377 |
|
1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
1379 | 1379 |
/// |
1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
1382 | 1382 |
/// nodes and arcs from the digraph. |
1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
1385 | 1385 |
class ErasableDigraphComponent : public BAS { |
1386 | 1386 |
public: |
1387 | 1387 |
|
1388 | 1388 |
typedef BAS Base; |
1389 | 1389 |
typedef typename Base::Node Node; |
1390 | 1390 |
typedef typename Base::Arc Arc; |
1391 | 1391 |
|
1392 | 1392 |
/// \brief Erase a node from the digraph. |
1393 | 1393 |
/// |
1394 |
/// This function erases the given node from the digraph and all arcs |
|
1394 |
/// This function erases the given node from the digraph and all arcs |
|
1395 | 1395 |
/// connected to the node. |
1396 | 1396 |
void erase(const Node&) {} |
1397 | 1397 |
|
1398 | 1398 |
/// \brief Erase an arc from the digraph. |
1399 | 1399 |
/// |
1400 | 1400 |
/// This function erases the given arc from the digraph. |
1401 | 1401 |
void erase(const Arc&) {} |
1402 | 1402 |
|
1403 | 1403 |
template <typename _Digraph> |
1404 | 1404 |
struct Constraints { |
1405 | 1405 |
void constraints() { |
1406 | 1406 |
checkConcept<Base, _Digraph>(); |
1407 | 1407 |
const typename _Digraph::Node node(INVALID); |
1408 | 1408 |
digraph.erase(node); |
1409 | 1409 |
const typename _Digraph::Arc arc(INVALID); |
1410 | 1410 |
digraph.erase(arc); |
1411 | 1411 |
} |
1412 | 1412 |
|
1413 | 1413 |
_Digraph& digraph; |
1414 | 1414 |
}; |
1415 | 1415 |
}; |
1416 | 1416 |
|
1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
1418 | 1418 |
/// |
1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
1421 | 1421 |
/// nodes and edges from the graph. |
1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
1424 | 1424 |
class ErasableGraphComponent : public BAS { |
1425 | 1425 |
public: |
1426 | 1426 |
|
1427 | 1427 |
typedef BAS Base; |
1428 | 1428 |
typedef typename Base::Node Node; |
1429 | 1429 |
typedef typename Base::Edge Edge; |
1430 | 1430 |
|
1431 | 1431 |
/// \brief Erase a node from the graph. |
1432 | 1432 |
/// |
1433 | 1433 |
/// This function erases the given node from the graph and all edges |
1434 | 1434 |
/// connected to the node. |
1435 | 1435 |
void erase(const Node&) {} |
1436 | 1436 |
|
1437 | 1437 |
/// \brief Erase an edge from the digraph. |
1438 | 1438 |
/// |
1439 | 1439 |
/// This function erases the given edge from the digraph. |
1440 | 1440 |
void erase(const Edge&) {} |
1441 | 1441 |
|
1442 | 1442 |
template <typename _Graph> |
1443 | 1443 |
struct Constraints { |
1444 | 1444 |
void constraints() { |
1445 | 1445 |
checkConcept<Base, _Graph>(); |
1446 | 1446 |
const typename _Graph::Node node(INVALID); |
1447 | 1447 |
graph.erase(node); |
1448 | 1448 |
const typename _Graph::Edge edge(INVALID); |
1449 | 1449 |
graph.erase(edge); |
1450 | 1450 |
} |
1451 | 1451 |
|
1452 | 1452 |
_Graph& graph; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
20 | 20 |
#define LEMON_CONCEPTS_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup map_concepts |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup map_concepts |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
20 | 20 |
#define LEMON_CONNECTIVITY_H |
21 | 21 |
|
22 | 22 |
#include <lemon/dfs.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
#include <lemon/adaptors.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concepts/graph.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
#include <stack> |
33 | 33 |
#include <functional> |
34 | 34 |
|
35 | 35 |
/// \ingroup graph_properties |
36 | 36 |
/// \file |
37 | 37 |
/// \brief Connectivity algorithms |
... | ... |
@@ -229,117 +229,117 @@ |
229 | 229 |
_compMap.set(node, _num); |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
void examine(const Arc& arc) { |
233 | 233 |
if (_compMap[_digraph.source(arc)] != |
234 | 234 |
_compMap[_digraph.target(arc)]) { |
235 | 235 |
_cutMap.set(arc, true); |
236 | 236 |
++_cutNum; |
237 | 237 |
} |
238 | 238 |
} |
239 | 239 |
private: |
240 | 240 |
const Digraph& _digraph; |
241 | 241 |
ArcMap& _cutMap; |
242 | 242 |
int& _cutNum; |
243 | 243 |
|
244 | 244 |
typename Digraph::template NodeMap<int> _compMap; |
245 | 245 |
int _num; |
246 | 246 |
}; |
247 | 247 |
|
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
|
251 | 251 |
/// \ingroup graph_properties |
252 | 252 |
/// |
253 | 253 |
/// \brief Check whether a directed graph is strongly connected. |
254 | 254 |
/// |
255 | 255 |
/// This function checks whether the given directed graph is strongly |
256 | 256 |
/// connected, i.e. any two nodes of the digraph are |
257 | 257 |
/// connected with directed paths in both direction. |
258 | 258 |
/// |
259 | 259 |
/// \return \c true if the digraph is strongly connected. |
260 | 260 |
/// \note By definition, the empty digraph is strongly connected. |
261 |
/// |
|
261 |
/// |
|
262 | 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
263 | 263 |
/// \see connected() |
264 | 264 |
template <typename Digraph> |
265 | 265 |
bool stronglyConnected(const Digraph& digraph) { |
266 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
267 | 267 |
|
268 | 268 |
typedef typename Digraph::Node Node; |
269 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
270 | 270 |
|
271 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
272 | 272 |
if (source == INVALID) return true; |
273 | 273 |
|
274 | 274 |
using namespace _connectivity_bits; |
275 | 275 |
|
276 | 276 |
typedef DfsVisitor<Digraph> Visitor; |
277 | 277 |
Visitor visitor; |
278 | 278 |
|
279 | 279 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
280 | 280 |
dfs.init(); |
281 | 281 |
dfs.addSource(source); |
282 | 282 |
dfs.start(); |
283 | 283 |
|
284 | 284 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
285 | 285 |
if (!dfs.reached(it)) { |
286 | 286 |
return false; |
287 | 287 |
} |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
typedef ReverseDigraph<const Digraph> RDigraph; |
291 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
292 | 292 |
RDigraph rdigraph(digraph); |
293 | 293 |
|
294 | 294 |
typedef DfsVisitor<RDigraph> RVisitor; |
295 | 295 |
RVisitor rvisitor; |
296 | 296 |
|
297 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
298 | 298 |
rdfs.init(); |
299 | 299 |
rdfs.addSource(source); |
300 | 300 |
rdfs.start(); |
301 | 301 |
|
302 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
303 | 303 |
if (!rdfs.reached(it)) { |
304 | 304 |
return false; |
305 | 305 |
} |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
return true; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
/// \ingroup graph_properties |
312 | 312 |
/// |
313 |
/// \brief Count the number of strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 | 314 |
/// directed graph |
315 | 315 |
/// |
316 | 316 |
/// This function counts the number of strongly connected components of |
317 | 317 |
/// the given directed graph. |
318 | 318 |
/// |
319 | 319 |
/// The strongly connected components are the classes of an |
320 | 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
321 | 321 |
/// the same class if they are connected with directed paths in both |
322 | 322 |
/// direction. |
323 | 323 |
/// |
324 | 324 |
/// \return The number of strongly connected components. |
325 | 325 |
/// \note By definition, the empty digraph has zero |
326 | 326 |
/// strongly connected components. |
327 | 327 |
/// |
328 | 328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
329 | 329 |
template <typename Digraph> |
330 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
331 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
332 | 332 |
|
333 | 333 |
using namespace _connectivity_bits; |
334 | 334 |
|
335 | 335 |
typedef typename Digraph::Node Node; |
336 | 336 |
typedef typename Digraph::Arc Arc; |
337 | 337 |
typedef typename Digraph::NodeIt NodeIt; |
338 | 338 |
typedef typename Digraph::ArcIt ArcIt; |
339 | 339 |
|
340 | 340 |
typedef std::vector<Node> Container; |
341 | 341 |
typedef typename Container::iterator Iterator; |
342 | 342 |
|
343 | 343 |
Container nodes(countNodes(digraph)); |
344 | 344 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
345 | 345 |
Visitor visitor(nodes.begin()); |
... | ... |
@@ -715,179 +715,179 @@ |
715 | 715 |
if (!_cutMap[_graph.source(edge)]) { |
716 | 716 |
_cutMap.set(_graph.source(edge), true); |
717 | 717 |
++_cutNum; |
718 | 718 |
} |
719 | 719 |
} else { |
720 | 720 |
rootCut = true; |
721 | 721 |
} |
722 | 722 |
} |
723 | 723 |
} |
724 | 724 |
|
725 | 725 |
private: |
726 | 726 |
const Digraph& _graph; |
727 | 727 |
NodeMap& _cutMap; |
728 | 728 |
int& _cutNum; |
729 | 729 |
|
730 | 730 |
typename Digraph::template NodeMap<int> _numMap; |
731 | 731 |
typename Digraph::template NodeMap<int> _retMap; |
732 | 732 |
typename Digraph::template NodeMap<Node> _predMap; |
733 | 733 |
std::stack<Edge> _edgeStack; |
734 | 734 |
int _num; |
735 | 735 |
bool rootCut; |
736 | 736 |
}; |
737 | 737 |
|
738 | 738 |
} |
739 | 739 |
|
740 | 740 |
template <typename Graph> |
741 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
742 | 742 |
|
743 | 743 |
/// \ingroup graph_properties |
744 | 744 |
/// |
745 | 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
746 | 746 |
/// |
747 |
/// This function checks whether the given undirected graph is |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 | 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
749 | 749 |
/// |
750 | 750 |
/// \return \c true if the graph bi-node-connected. |
751 | 751 |
/// \note By definition, the empty graph is bi-node-connected. |
752 | 752 |
/// |
753 | 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
754 | 754 |
template <typename Graph> |
755 | 755 |
bool biNodeConnected(const Graph& graph) { |
756 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
/// \ingroup graph_properties |
760 | 760 |
/// |
761 |
/// \brief Count the number of bi-node-connected components of an |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 | 762 |
/// undirected graph. |
763 | 763 |
/// |
764 | 764 |
/// This function counts the number of bi-node-connected components of |
765 | 765 |
/// the given undirected graph. |
766 | 766 |
/// |
767 | 767 |
/// The bi-node-connected components are the classes of an equivalence |
768 | 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
769 | 769 |
/// same class if they are on same circle. |
770 | 770 |
/// |
771 | 771 |
/// \return The number of bi-node-connected components. |
772 | 772 |
/// |
773 | 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
774 | 774 |
template <typename Graph> |
775 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) { |
776 | 776 |
checkConcept<concepts::Graph, Graph>(); |
777 | 777 |
typedef typename Graph::NodeIt NodeIt; |
778 | 778 |
|
779 | 779 |
using namespace _connectivity_bits; |
780 | 780 |
|
781 | 781 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
782 | 782 |
|
783 | 783 |
int compNum = 0; |
784 | 784 |
Visitor visitor(graph, compNum); |
785 | 785 |
|
786 | 786 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
787 | 787 |
dfs.init(); |
788 | 788 |
|
789 | 789 |
for (NodeIt it(graph); it != INVALID; ++it) { |
790 | 790 |
if (!dfs.reached(it)) { |
791 | 791 |
dfs.addSource(it); |
792 | 792 |
dfs.start(); |
793 | 793 |
} |
794 | 794 |
} |
795 | 795 |
return compNum; |
796 | 796 |
} |
797 | 797 |
|
798 | 798 |
/// \ingroup graph_properties |
799 | 799 |
/// |
800 | 800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
801 | 801 |
/// |
802 | 802 |
/// This function finds the bi-node-connected components of the given |
803 | 803 |
/// undirected graph. |
804 | 804 |
/// |
805 | 805 |
/// The bi-node-connected components are the classes of an equivalence |
806 | 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
807 | 807 |
/// same class if they are on same circle. |
808 | 808 |
/// |
809 | 809 |
/// \image html node_biconnected_components.png |
810 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
811 | 811 |
/// |
812 | 812 |
/// \param graph The undirected graph. |
813 | 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
814 | 814 |
/// to the number of the bi-node-connected components minus one. Each |
815 |
/// value of the map will be set exactly once, and the values of a |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 | 816 |
/// certain component will be set continuously. |
817 | 817 |
/// \return The number of bi-node-connected components. |
818 | 818 |
/// |
819 | 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
820 | 820 |
template <typename Graph, typename EdgeMap> |
821 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
822 | 822 |
EdgeMap& compMap) { |
823 | 823 |
checkConcept<concepts::Graph, Graph>(); |
824 | 824 |
typedef typename Graph::NodeIt NodeIt; |
825 | 825 |
typedef typename Graph::Edge Edge; |
826 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
827 | 827 |
|
828 | 828 |
using namespace _connectivity_bits; |
829 | 829 |
|
830 | 830 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
831 | 831 |
|
832 | 832 |
int compNum = 0; |
833 | 833 |
Visitor visitor(graph, compMap, compNum); |
834 | 834 |
|
835 | 835 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
836 | 836 |
dfs.init(); |
837 | 837 |
|
838 | 838 |
for (NodeIt it(graph); it != INVALID; ++it) { |
839 | 839 |
if (!dfs.reached(it)) { |
840 | 840 |
dfs.addSource(it); |
841 | 841 |
dfs.start(); |
842 | 842 |
} |
843 | 843 |
} |
844 | 844 |
return compNum; |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
/// \ingroup graph_properties |
848 | 848 |
/// |
849 | 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
850 | 850 |
/// |
851 | 851 |
/// This function finds the bi-node-connected cut nodes in the given |
852 | 852 |
/// undirected graph. |
853 | 853 |
/// |
854 | 854 |
/// The bi-node-connected components are the classes of an equivalence |
855 | 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
856 | 856 |
/// same class if they are on same circle. |
857 | 857 |
/// The bi-node-connected components are separted by the cut nodes of |
858 | 858 |
/// the components. |
859 | 859 |
/// |
860 | 860 |
/// \param graph The undirected graph. |
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 | 862 |
/// \c true for the nodes that separate two or more components |
863 | 863 |
/// (exactly once for each cut node), and will not be changed for |
864 | 864 |
/// other nodes. |
865 | 865 |
/// \return The number of the cut nodes. |
866 | 866 |
/// |
867 | 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
868 | 868 |
template <typename Graph, typename NodeMap> |
869 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
870 | 870 |
checkConcept<concepts::Graph, Graph>(); |
871 | 871 |
typedef typename Graph::Node Node; |
872 | 872 |
typedef typename Graph::NodeIt NodeIt; |
873 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
874 | 874 |
|
875 | 875 |
using namespace _connectivity_bits; |
876 | 876 |
|
877 | 877 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
878 | 878 |
|
879 | 879 |
int cutNum = 0; |
880 | 880 |
Visitor visitor(graph, cutMap, cutNum); |
881 | 881 |
|
882 | 882 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
883 | 883 |
dfs.init(); |
884 | 884 |
|
885 | 885 |
for (NodeIt it(graph); it != INVALID; ++it) { |
886 | 886 |
if (!dfs.reached(it)) { |
887 | 887 |
dfs.addSource(it); |
888 | 888 |
dfs.start(); |
889 | 889 |
} |
890 | 890 |
} |
891 | 891 |
return cutNum; |
892 | 892 |
} |
893 | 893 |
|
... | ... |
@@ -1056,65 +1056,65 @@ |
1056 | 1056 |
return; |
1057 | 1057 |
} |
1058 | 1058 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1059 | 1059 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1060 | 1060 |
} |
1061 | 1061 |
} |
1062 | 1062 |
|
1063 | 1063 |
void backtrack(const Arc& edge) { |
1064 | 1064 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
1065 | 1065 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
1066 | 1066 |
} |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
private: |
1070 | 1070 |
const Digraph& _graph; |
1071 | 1071 |
ArcMap& _cutMap; |
1072 | 1072 |
int& _cutNum; |
1073 | 1073 |
|
1074 | 1074 |
typename Digraph::template NodeMap<int> _numMap; |
1075 | 1075 |
typename Digraph::template NodeMap<int> _retMap; |
1076 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
1077 | 1077 |
int _num; |
1078 | 1078 |
}; |
1079 | 1079 |
} |
1080 | 1080 |
|
1081 | 1081 |
template <typename Graph> |
1082 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
1083 | 1083 |
|
1084 | 1084 |
/// \ingroup graph_properties |
1085 | 1085 |
/// |
1086 | 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
1087 | 1087 |
/// |
1088 |
/// This function checks whether the given undirected graph is |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 | 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
1090 | 1090 |
/// two edge-disjoint paths. |
1091 | 1091 |
/// |
1092 | 1092 |
/// \return \c true if the graph is bi-edge-connected. |
1093 | 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
1094 | 1094 |
/// |
1095 | 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
1096 | 1096 |
template <typename Graph> |
1097 | 1097 |
bool biEdgeConnected(const Graph& graph) { |
1098 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
1099 | 1099 |
} |
1100 | 1100 |
|
1101 | 1101 |
/// \ingroup graph_properties |
1102 | 1102 |
/// |
1103 | 1103 |
/// \brief Count the number of bi-edge-connected components of an |
1104 | 1104 |
/// undirected graph. |
1105 | 1105 |
/// |
1106 | 1106 |
/// This function counts the number of bi-edge-connected components of |
1107 | 1107 |
/// the given undirected graph. |
1108 | 1108 |
/// |
1109 | 1109 |
/// The bi-edge-connected components are the classes of an equivalence |
1110 | 1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
1111 | 1111 |
/// same class if they are connected with at least two edge-disjoint |
1112 | 1112 |
/// paths. |
1113 | 1113 |
/// |
1114 | 1114 |
/// \return The number of bi-edge-connected components. |
1115 | 1115 |
/// |
1116 | 1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
1117 | 1117 |
template <typename Graph> |
1118 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) { |
1119 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
1120 | 1120 |
typedef typename Graph::NodeIt NodeIt; |
... | ... |
@@ -1163,65 +1163,65 @@ |
1163 | 1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
1164 | 1164 |
template <typename Graph, typename NodeMap> |
1165 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { |
1166 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
1167 | 1167 |
typedef typename Graph::NodeIt NodeIt; |
1168 | 1168 |
typedef typename Graph::Node Node; |
1169 | 1169 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
1170 | 1170 |
|
1171 | 1171 |
using namespace _connectivity_bits; |
1172 | 1172 |
|
1173 | 1173 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
1174 | 1174 |
|
1175 | 1175 |
int compNum = 0; |
1176 | 1176 |
Visitor visitor(graph, compMap, compNum); |
1177 | 1177 |
|
1178 | 1178 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1179 | 1179 |
dfs.init(); |
1180 | 1180 |
|
1181 | 1181 |
for (NodeIt it(graph); it != INVALID; ++it) { |
1182 | 1182 |
if (!dfs.reached(it)) { |
1183 | 1183 |
dfs.addSource(it); |
1184 | 1184 |
dfs.start(); |
1185 | 1185 |
} |
1186 | 1186 |
} |
1187 | 1187 |
return compNum; |
1188 | 1188 |
} |
1189 | 1189 |
|
1190 | 1190 |
/// \ingroup graph_properties |
1191 | 1191 |
/// |
1192 | 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
1193 | 1193 |
/// |
1194 | 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
1195 |
/// undirected graph. |
|
1195 |
/// undirected graph. |
|
1196 | 1196 |
/// |
1197 | 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
1198 | 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
1199 | 1199 |
/// same class if they are connected with at least two edge-disjoint |
1200 | 1200 |
/// paths. |
1201 | 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
1202 | 1202 |
/// the components. |
1203 | 1203 |
/// |
1204 | 1204 |
/// \param graph The undirected graph. |
1205 | 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
1206 | 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
1207 | 1207 |
/// changed for other edges. |
1208 | 1208 |
/// \return The number of cut edges. |
1209 | 1209 |
/// |
1210 | 1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
1211 | 1211 |
template <typename Graph, typename EdgeMap> |
1212 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
1213 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
1214 | 1214 |
typedef typename Graph::NodeIt NodeIt; |
1215 | 1215 |
typedef typename Graph::Edge Edge; |
1216 | 1216 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
1217 | 1217 |
|
1218 | 1218 |
using namespace _connectivity_bits; |
1219 | 1219 |
|
1220 | 1220 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
1221 | 1221 |
|
1222 | 1222 |
int cutNum = 0; |
1223 | 1223 |
Visitor visitor(graph, cutMap, cutNum); |
1224 | 1224 |
|
1225 | 1225 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
1226 | 1226 |
dfs.init(); |
1227 | 1227 |
|
... | ... |
@@ -1320,65 +1320,65 @@ |
1320 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
1321 | 1321 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
1322 | 1322 |
|
1323 | 1323 |
typedef typename Digraph::Node Node; |
1324 | 1324 |
typedef typename Digraph::NodeIt NodeIt; |
1325 | 1325 |
typedef typename Digraph::Arc Arc; |
1326 | 1326 |
|
1327 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
1328 | 1328 |
visitor(order, countNodes(digraph)); |
1329 | 1329 |
|
1330 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1331 | 1331 |
dfs(digraph, visitor); |
1332 | 1332 |
|
1333 | 1333 |
dfs.init(); |
1334 | 1334 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1335 | 1335 |
if (!dfs.reached(it)) { |
1336 | 1336 |
dfs.addSource(it); |
1337 | 1337 |
dfs.start(); |
1338 | 1338 |
} |
1339 | 1339 |
} |
1340 | 1340 |
} |
1341 | 1341 |
|
1342 | 1342 |
/// \ingroup graph_properties |
1343 | 1343 |
/// |
1344 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1345 | 1345 |
/// |
1346 | 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
1347 | 1347 |
/// into topolgical order and also checks whether the given digraph |
1348 | 1348 |
/// is DAG. |
1349 | 1349 |
/// |
1350 | 1350 |
/// \param digraph The digraph. |
1351 | 1351 |
/// \retval order A readable and writable node map. The values will be |
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 | 1353 |
/// Each value of the map will be set exactly once, and the values will |
1354 | 1354 |
/// be set descending order. |
1355 | 1355 |
/// \return \c false if the digraph is not DAG. |
1356 | 1356 |
/// |
1357 | 1357 |
/// \see dag(), topologicalSort() |
1358 | 1358 |
template <typename Digraph, typename NodeMap> |
1359 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1360 | 1360 |
using namespace _connectivity_bits; |
1361 | 1361 |
|
1362 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
1363 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
1364 | 1364 |
NodeMap>(); |
1365 | 1365 |
|
1366 | 1366 |
typedef typename Digraph::Node Node; |
1367 | 1367 |
typedef typename Digraph::NodeIt NodeIt; |
1368 | 1368 |
typedef typename Digraph::Arc Arc; |
1369 | 1369 |
|
1370 | 1370 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1371 | 1371 |
order.set(it, -1); |
1372 | 1372 |
} |
1373 | 1373 |
|
1374 | 1374 |
TopologicalSortVisitor<Digraph, NodeMap> |
1375 | 1375 |
visitor(order, countNodes(digraph)); |
1376 | 1376 |
|
1377 | 1377 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
1378 | 1378 |
dfs(digraph, visitor); |
1379 | 1379 |
|
1380 | 1380 |
dfs.init(); |
1381 | 1381 |
for (NodeIt it(digraph); it != INVALID; ++it) { |
1382 | 1382 |
if (!dfs.reached(it)) { |
1383 | 1383 |
dfs.addSource(it); |
1384 | 1384 |
while (!dfs.emptyQueue()) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CORE_H |
20 | 20 |
#define LEMON_CORE_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/config.h> |
26 | 26 |
#include <lemon/bits/enable_if.h> |
27 | 27 |
#include <lemon/bits/traits.h> |
28 | 28 |
#include <lemon/assert.h> |
29 | 29 |
|
30 | 30 |
// Disable the following warnings when compiling with MSVC: |
31 | 31 |
// C4250: 'class1' : inherits 'class2::member' via dominance |
32 | 32 |
// C4355: 'this' : used in base member initializer list |
33 | 33 |
// C4503: 'function' : decorated name length exceeded, name was truncated |
34 | 34 |
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
35 | 35 |
// C4996: 'function': was declared deprecated |
36 | 36 |
#ifdef _MSC_VER |
37 | 37 |
#pragma warning( disable : 4250 4355 4503 4800 4996 ) |
... | ... |
@@ -1212,104 +1212,105 @@ |
1212 | 1212 |
///It is possible to find \e all parallel arcs between two nodes with |
1213 | 1213 |
///the \c operator() member. |
1214 | 1214 |
/// |
1215 | 1215 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1216 | 1216 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1217 | 1217 |
/// |
1218 | 1218 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1219 | 1219 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1220 | 1220 |
///time bound for arc look-ups. This class also guarantees the |
1221 | 1221 |
///optimal time bound in a constant factor for any distribution of |
1222 | 1222 |
///queries. |
1223 | 1223 |
/// |
1224 | 1224 |
///\tparam GR The type of the underlying digraph. |
1225 | 1225 |
/// |
1226 | 1226 |
///\sa ArcLookUp |
1227 | 1227 |
///\sa AllArcLookUp |
1228 | 1228 |
template <typename GR> |
1229 | 1229 |
class DynArcLookUp |
1230 | 1230 |
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
1231 | 1231 |
{ |
1232 | 1232 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
1233 | 1233 |
::ItemNotifier::ObserverBase Parent; |
1234 | 1234 |
|
1235 | 1235 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1236 | 1236 |
|
1237 | 1237 |
public: |
1238 | 1238 |
|
1239 | 1239 |
/// The Digraph type |
1240 | 1240 |
typedef GR Digraph; |
1241 | 1241 |
|
1242 | 1242 |
protected: |
1243 | 1243 |
|
1244 |
class AutoNodeMap : |
|
1244 |
class AutoNodeMap : |
|
1245 |
public ItemSetTraits<GR, Node>::template Map<Arc>::Type { |
|
1245 | 1246 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
1246 | 1247 |
|
1247 | 1248 |
public: |
1248 | 1249 |
|
1249 | 1250 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
1250 | 1251 |
|
1251 | 1252 |
virtual void add(const Node& node) { |
1252 | 1253 |
Parent::add(node); |
1253 | 1254 |
Parent::set(node, INVALID); |
1254 | 1255 |
} |
1255 | 1256 |
|
1256 | 1257 |
virtual void add(const std::vector<Node>& nodes) { |
1257 | 1258 |
Parent::add(nodes); |
1258 | 1259 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1259 | 1260 |
Parent::set(nodes[i], INVALID); |
1260 | 1261 |
} |
1261 | 1262 |
} |
1262 | 1263 |
|
1263 | 1264 |
virtual void build() { |
1264 | 1265 |
Parent::build(); |
1265 | 1266 |
Node it; |
1266 | 1267 |
typename Parent::Notifier* nf = Parent::notifier(); |
1267 | 1268 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1268 | 1269 |
Parent::set(it, INVALID); |
1269 | 1270 |
} |
1270 | 1271 |
} |
1271 | 1272 |
}; |
1272 | 1273 |
|
1273 | 1274 |
class ArcLess { |
1274 | 1275 |
const Digraph &g; |
1275 | 1276 |
public: |
1276 | 1277 |
ArcLess(const Digraph &_g) : g(_g) {} |
1277 | 1278 |
bool operator()(Arc a,Arc b) const |
1278 | 1279 |
{ |
1279 | 1280 |
return g.target(a)<g.target(b); |
1280 | 1281 |
} |
1281 | 1282 |
}; |
1282 | 1283 |
|
1283 |
protected: |
|
1284 |
protected: |
|
1284 | 1285 |
|
1285 | 1286 |
const Digraph &_g; |
1286 | 1287 |
AutoNodeMap _head; |
1287 | 1288 |
typename Digraph::template ArcMap<Arc> _parent; |
1288 | 1289 |
typename Digraph::template ArcMap<Arc> _left; |
1289 | 1290 |
typename Digraph::template ArcMap<Arc> _right; |
1290 | 1291 |
|
1291 | 1292 |
public: |
1292 | 1293 |
|
1293 | 1294 |
///Constructor |
1294 | 1295 |
|
1295 | 1296 |
///Constructor. |
1296 | 1297 |
/// |
1297 | 1298 |
///It builds up the search database. |
1298 | 1299 |
DynArcLookUp(const Digraph &g) |
1299 | 1300 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1300 | 1301 |
{ |
1301 | 1302 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1302 | 1303 |
refresh(); |
1303 | 1304 |
} |
1304 | 1305 |
|
1305 | 1306 |
protected: |
1306 | 1307 |
|
1307 | 1308 |
virtual void add(const Arc& arc) { |
1308 | 1309 |
insert(arc); |
1309 | 1310 |
} |
1310 | 1311 |
|
1311 | 1312 |
virtual void add(const std::vector<Arc>& arcs) { |
1312 | 1313 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1313 | 1314 |
insert(arcs[i]); |
1314 | 1315 |
} |
1315 | 1316 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <vector> |
21 | 21 |
#include <cstring> |
22 | 22 |
|
23 | 23 |
#include <lemon/cplex.h> |
24 | 24 |
|
25 | 25 |
extern "C" { |
26 | 26 |
#include <ilcplex/cplex.h> |
27 | 27 |
} |
28 | 28 |
|
29 | 29 |
|
30 | 30 |
///\file |
31 | 31 |
///\brief Implementation of the LEMON-CPLEX lp solver interface. |
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
CplexEnv::LicenseError::LicenseError(int status) { |
35 | 35 |
if (!CPXgeterrorstring(0, status, _message)) { |
36 | 36 |
std::strcpy(_message, "Cplex unknown error"); |
37 | 37 |
} |
... | ... |
@@ -427,65 +427,65 @@ |
427 | 427 |
return MIN; |
428 | 428 |
case CPX_MAX: |
429 | 429 |
return MAX; |
430 | 430 |
default: |
431 | 431 |
LEMON_ASSERT(false, "Invalid sense"); |
432 | 432 |
return CplexBase::Sense(); |
433 | 433 |
} |
434 | 434 |
} |
435 | 435 |
|
436 | 436 |
void CplexBase::_clear() { |
437 | 437 |
CPXfreeprob(cplexEnv(),&_prob); |
438 | 438 |
int status; |
439 | 439 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
440 | 440 |
rows.clear(); |
441 | 441 |
cols.clear(); |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
void CplexBase::_messageLevel(MessageLevel level) { |
445 | 445 |
switch (level) { |
446 | 446 |
case MESSAGE_NOTHING: |
447 | 447 |
_message_enabled = false; |
448 | 448 |
break; |
449 | 449 |
case MESSAGE_ERROR: |
450 | 450 |
case MESSAGE_WARNING: |
451 | 451 |
case MESSAGE_NORMAL: |
452 | 452 |
case MESSAGE_VERBOSE: |
453 | 453 |
_message_enabled = true; |
454 | 454 |
break; |
455 | 455 |
} |
456 | 456 |
} |
457 | 457 |
|
458 | 458 |
void CplexBase::_applyMessageLevel() { |
459 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
459 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
460 | 460 |
_message_enabled ? CPX_ON : CPX_OFF); |
461 | 461 |
} |
462 | 462 |
|
463 | 463 |
// CplexLp members |
464 | 464 |
|
465 | 465 |
CplexLp::CplexLp() |
466 | 466 |
: LpBase(), LpSolver(), CplexBase() {} |
467 | 467 |
|
468 | 468 |
CplexLp::CplexLp(const CplexEnv& env) |
469 | 469 |
: LpBase(), LpSolver(), CplexBase(env) {} |
470 | 470 |
|
471 | 471 |
CplexLp::CplexLp(const CplexLp& other) |
472 | 472 |
: LpBase(), LpSolver(), CplexBase(other) {} |
473 | 473 |
|
474 | 474 |
CplexLp::~CplexLp() {} |
475 | 475 |
|
476 | 476 |
CplexLp* CplexLp::newSolver() const { return new CplexLp; } |
477 | 477 |
CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); } |
478 | 478 |
|
479 | 479 |
const char* CplexLp::_solverName() const { return "CplexLp"; } |
480 | 480 |
|
481 | 481 |
void CplexLp::_clear_temporals() { |
482 | 482 |
_col_status.clear(); |
483 | 483 |
_row_status.clear(); |
484 | 484 |
_primal_ray.clear(); |
485 | 485 |
_dual_ray.clear(); |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
// The routine returns zero unless an error occurred during the |
489 | 489 |
// optimization. Examples of errors include exhausting available |
490 | 490 |
// memory (CPXERR_NO_MEMORY) or encountering invalid data in the |
491 | 491 |
// CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIMACS_H |
20 | 20 |
#define LEMON_DIMACS_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
#include <string> |
24 | 24 |
#include <vector> |
25 | 25 |
#include <limits> |
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
/// \ingroup dimacs_group |
29 | 29 |
/// \file |
30 | 30 |
/// \brief DIMACS file format reader. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \addtogroup dimacs_group |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
/// DIMACS file type descriptor. |
38 | 38 |
struct DimacsDescriptor |
39 | 39 |
{ |
40 | 40 |
///\brief DIMACS file type enum |
41 | 41 |
/// |
42 | 42 |
///DIMACS file type enum. |
43 | 43 |
enum Type { |
44 | 44 |
NONE, ///< Undefined type. |
45 | 45 |
MIN, ///< DIMACS file type for minimum cost flow problems. |
46 | 46 |
MAX, ///< DIMACS file type for maximum flow problems. |
47 | 47 |
SP, ///< DIMACS file type for shostest path problems. |
48 | 48 |
MAT ///< DIMACS file type for plain graphs and matching problems. |
49 | 49 |
}; |
50 | 50 |
///The file type |
51 | 51 |
Type type; |
52 | 52 |
///The number of nodes in the graph |
53 | 53 |
int nodeNum; |
54 | 54 |
///The number of edges in the graph |
55 | 55 |
int edgeNum; |
56 | 56 |
int lineShift; |
57 | 57 |
///Constructor. It sets the type to \c NONE. |
58 | 58 |
DimacsDescriptor() : type(NONE) {} |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
///Discover the type of a DIMACS file |
62 | 62 |
|
63 | 63 |
///This function starts seeking the beginning of the given file for the |
64 |
///problem type and size info. |
|
64 |
///problem type and size info. |
|
65 | 65 |
///The found data is returned in a special struct that can be evaluated |
66 | 66 |
///and passed to the appropriate reader function. |
67 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
68 | 68 |
{ |
69 | 69 |
DimacsDescriptor r; |
70 | 70 |
std::string problem,str; |
71 | 71 |
char c; |
72 | 72 |
r.lineShift=0; |
73 | 73 |
while (is >> c) |
74 | 74 |
switch(c) |
75 | 75 |
{ |
76 | 76 |
case 'p': |
77 | 77 |
if(is >> problem >> r.nodeNum >> r.edgeNum) |
78 | 78 |
{ |
79 | 79 |
getline(is, str); |
80 | 80 |
r.lineShift++; |
81 | 81 |
if(problem=="min") r.type=DimacsDescriptor::MIN; |
82 | 82 |
else if(problem=="max") r.type=DimacsDescriptor::MAX; |
83 | 83 |
else if(problem=="sp") r.type=DimacsDescriptor::SP; |
84 | 84 |
else if(problem=="mat") r.type=DimacsDescriptor::MAT; |
85 | 85 |
else throw FormatError("Unknown problem type"); |
86 | 86 |
return r; |
87 | 87 |
} |
88 | 88 |
else |
89 | 89 |
{ |
90 | 90 |
throw FormatError("Missing or wrong problem type declaration."); |
91 | 91 |
} |
92 | 92 |
break; |
93 | 93 |
case 'c': |
94 | 94 |
getline(is, str); |
95 | 95 |
r.lineShift++; |
96 | 96 |
break; |
... | ... |
@@ -183,90 +183,90 @@ |
183 | 183 |
cost.set(e, co); |
184 | 184 |
break; |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
} |
188 | 188 |
|
189 | 189 |
template<typename Digraph, typename CapacityMap> |
190 | 190 |
void _readDimacs(std::istream& is, |
191 | 191 |
Digraph &g, |
192 | 192 |
CapacityMap& capacity, |
193 | 193 |
typename Digraph::Node &s, |
194 | 194 |
typename Digraph::Node &t, |
195 | 195 |
typename CapacityMap::Value infty = 0, |
196 | 196 |
DimacsDescriptor desc=DimacsDescriptor()) { |
197 | 197 |
g.clear(); |
198 | 198 |
s=t=INVALID; |
199 | 199 |
std::vector<typename Digraph::Node> nodes; |
200 | 200 |
typename Digraph::Arc e; |
201 | 201 |
char c, d; |
202 | 202 |
int i, j; |
203 | 203 |
typename CapacityMap::Value _cap; |
204 | 204 |
std::string str; |
205 | 205 |
nodes.resize(desc.nodeNum + 1); |
206 | 206 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
207 | 207 |
nodes[k] = g.addNode(); |
208 | 208 |
} |
209 | 209 |
typedef typename CapacityMap::Value Capacity; |
210 | 210 |
|
211 | 211 |
if(infty==0) |
212 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
213 | 213 |
std::numeric_limits<Capacity>::infinity() : |
214 | 214 |
std::numeric_limits<Capacity>::max(); |
215 |
|
|
215 |
|
|
216 | 216 |
while (is >> c) { |
217 | 217 |
switch (c) { |
218 | 218 |
case 'c': // comment line |
219 | 219 |
getline(is, str); |
220 | 220 |
break; |
221 | 221 |
case 'n': // node definition line |
222 | 222 |
if (desc.type==DimacsDescriptor::SP) { // shortest path problem |
223 | 223 |
is >> i; |
224 | 224 |
getline(is, str); |
225 | 225 |
s = nodes[i]; |
226 | 226 |
} |
227 | 227 |
if (desc.type==DimacsDescriptor::MAX) { // max flow problem |
228 | 228 |
is >> i >> d; |
229 | 229 |
getline(is, str); |
230 | 230 |
if (d == 's') s = nodes[i]; |
231 | 231 |
if (d == 't') t = nodes[i]; |
232 | 232 |
} |
233 | 233 |
break; |
234 | 234 |
case 'a': // arc definition line |
235 | 235 |
if (desc.type==DimacsDescriptor::SP) { |
236 | 236 |
is >> i >> j >> _cap; |
237 | 237 |
getline(is, str); |
238 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
239 | 239 |
capacity.set(e, _cap); |
240 |
} |
|
240 |
} |
|
241 | 241 |
else if (desc.type==DimacsDescriptor::MAX) { |
242 | 242 |
is >> i >> j >> _cap; |
243 | 243 |
getline(is, str); |
244 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
245 | 245 |
if (_cap >= 0) |
246 | 246 |
capacity.set(e, _cap); |
247 | 247 |
else |
248 | 248 |
capacity.set(e, infty); |
249 | 249 |
} |
250 | 250 |
else { |
251 | 251 |
is >> i >> j; |
252 | 252 |
getline(is, str); |
253 | 253 |
g.addArc(nodes[i], nodes[j]); |
254 | 254 |
} |
255 | 255 |
break; |
256 | 256 |
} |
257 | 257 |
} |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
/// \brief DIMACS maximum flow reader function. |
261 | 261 |
/// |
262 | 262 |
/// This function reads a maximum flow instance from DIMACS format, |
263 | 263 |
/// i.e. from a DIMACS file having a line starting with |
264 | 264 |
/// \code |
265 | 265 |
/// p max |
266 | 266 |
/// \endcode |
267 | 267 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
268 | 268 |
/// capacities are written to the \c capacity arc map and \c s and |
269 | 269 |
/// \c t are set to the source and the target nodes. |
270 | 270 |
/// |
271 | 271 |
/// If the capacity of an arc is negative, it will |
272 | 272 |
/// be set to "infinite" instead. The actual value of "infinite" is |
... | ... |
@@ -333,95 +333,95 @@ |
333 | 333 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
334 | 334 |
/// a non-zero value, that value will be used as "infinite". |
335 | 335 |
/// |
336 | 336 |
/// If the file type was previously evaluated by dimacsType(), then |
337 | 337 |
/// the descriptor struct should be given by the \c dest parameter. |
338 | 338 |
template<typename Digraph, typename CapacityMap> |
339 | 339 |
void readDimacsCap(std::istream& is, |
340 | 340 |
Digraph &g, |
341 | 341 |
CapacityMap& capacity, |
342 | 342 |
typename CapacityMap::Value infty = 0, |
343 | 343 |
DimacsDescriptor desc=DimacsDescriptor()) { |
344 | 344 |
typename Digraph::Node u,v; |
345 | 345 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
346 | 346 |
if(desc.type!=DimacsDescriptor::MAX || desc.type!=DimacsDescriptor::SP) |
347 | 347 |
throw FormatError("Problem type mismatch"); |
348 | 348 |
_readDimacs(is, g, capacity, u, v, infty, desc); |
349 | 349 |
} |
350 | 350 |
|
351 | 351 |
template<typename Graph> |
352 | 352 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
353 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
354 | 354 |
dummy<0> = 0) |
355 | 355 |
{ |
356 | 356 |
g.addEdge(s,t); |
357 | 357 |
} |
358 | 358 |
template<typename Graph> |
359 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
360 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
361 | 361 |
dummy<1> = 1) |
362 | 362 |
{ |
363 | 363 |
g.addArc(s,t); |
364 | 364 |
} |
365 |
|
|
365 |
|
|
366 | 366 |
/// \brief DIMACS plain (di)graph reader function. |
367 | 367 |
/// |
368 | 368 |
/// This function reads a plain (di)graph without any designated nodes |
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
370 | 370 |
/// DIMACS files having a line starting with |
371 | 371 |
/// \code |
372 | 372 |
/// p mat |
373 | 373 |
/// \endcode |
374 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
375 | 375 |
/// |
376 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
377 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
378 | 378 |
template<typename Graph> |
379 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
380 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
381 | 381 |
{ |
382 | 382 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
383 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
384 | 384 |
throw FormatError("Problem type mismatch"); |
385 | 385 |
|
386 | 386 |
g.clear(); |
387 | 387 |
std::vector<typename Graph::Node> nodes; |
388 | 388 |
char c; |
389 | 389 |
int i, j; |
390 | 390 |
std::string str; |
391 | 391 |
nodes.resize(desc.nodeNum + 1); |
392 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
393 | 393 |
nodes[k] = g.addNode(); |
394 | 394 |
} |
395 |
|
|
395 |
|
|
396 | 396 |
while (is >> c) { |
397 | 397 |
switch (c) { |
398 | 398 |
case 'c': // comment line |
399 | 399 |
getline(is, str); |
400 | 400 |
break; |
401 | 401 |
case 'n': // node definition line |
402 | 402 |
break; |
403 | 403 |
case 'a': // arc definition line |
404 | 404 |
is >> i >> j; |
405 | 405 |
getline(is, str); |
406 | 406 |
_addArcEdge(g,nodes[i], nodes[j]); |
407 | 407 |
break; |
408 | 408 |
} |
409 | 409 |
} |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
/// DIMACS plain digraph writer function. |
413 | 413 |
/// |
414 | 414 |
/// This function writes a digraph without any designated nodes and |
415 | 415 |
/// maps into DIMACS format, i.e. into DIMACS file having a line |
416 | 416 |
/// starting with |
417 | 417 |
/// \code |
418 | 418 |
/// p mat |
419 | 419 |
/// \endcode |
420 | 420 |
/// If \c comment is not empty, then it will be printed in the first line |
421 | 421 |
/// prefixed by 'c'. |
422 | 422 |
template<typename Digraph> |
423 | 423 |
void writeDimacsMat(std::ostream& os, const Digraph &g, |
424 | 424 |
std::string comment="") { |
425 | 425 |
typedef typename Digraph::NodeIt NodeIt; |
426 | 426 |
typedef typename Digraph::ArcIt ArcIt; |
427 | 427 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EDGE_SET_H |
20 | 20 |
#define LEMON_EDGE_SET_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
24 | 24 |
|
25 | 25 |
/// \ingroup graphs |
26 | 26 |
/// \file |
27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
28 | 28 |
/// |
29 | 29 |
/// Graphs which use another graph's node-set as own. |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
template <typename GR> |
33 | 33 |
class ListArcSetBase { |
34 | 34 |
public: |
35 | 35 |
|
36 | 36 |
typedef typename GR::Node Node; |
37 | 37 |
typedef typename GR::NodeIt NodeIt; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EULER_H |
20 | 20 |
#define LEMON_EULER_H |
21 | 21 |
|
22 | 22 |
#include<lemon/core.h> |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 | 27 |
/// \ingroup graph_properties |
28 | 28 |
/// \file |
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
30 | 30 |
/// property. |
31 | 31 |
/// |
32 | 32 |
///This file provides Euler tour iterators and a function to check |
33 | 33 |
///if a (di)graph is \e Eulerian. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Euler tour iterator for digraphs. |
38 | 38 |
|
39 | 39 |
/// \ingroup graph_prop |
40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
42 | 42 |
/// |
43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
47 | 47 |
///\code |
48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
50 | 50 |
/// et.push_back(e); |
51 | 51 |
///\endcode |
52 | 52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
53 | 53 |
///or not contain all arcs. |
54 | 54 |
///\sa EulerIt |
55 | 55 |
template<typename GR> |
56 | 56 |
class DiEulerIt |
57 | 57 |
{ |
58 | 58 |
typedef typename GR::Node Node; |
59 | 59 |
typedef typename GR::NodeIt NodeIt; |
60 | 60 |
typedef typename GR::Arc Arc; |
61 | 61 |
typedef typename GR::ArcIt ArcIt; |
62 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
63 | 63 |
typedef typename GR::InArcIt InArcIt; |
64 | 64 |
|
65 | 65 |
const GR &g; |
66 | 66 |
typename GR::template NodeMap<OutArcIt> narc; |
67 | 67 |
std::list<Arc> euler; |
68 | 68 |
|
69 | 69 |
public: |
70 | 70 |
|
71 | 71 |
///Constructor |
72 | 72 |
|
73 | 73 |
///Constructor. |
74 | 74 |
///\param gr A digraph. |
75 | 75 |
///\param start The starting point of the tour. If it is not given, |
76 | 76 |
///the tour will start from the first node that has an outgoing arc. |
... | ... |
@@ -109,74 +109,74 @@ |
109 | 109 |
euler.pop_front(); |
110 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
111 | 111 |
while(narc[s]!=INVALID) { |
112 | 112 |
euler.insert(next,narc[s]); |
113 | 113 |
Node n=g.target(narc[s]); |
114 | 114 |
++narc[s]; |
115 | 115 |
s=n; |
116 | 116 |
} |
117 | 117 |
return *this; |
118 | 118 |
} |
119 | 119 |
///Postfix incrementation |
120 | 120 |
|
121 | 121 |
/// Postfix incrementation. |
122 | 122 |
/// |
123 | 123 |
///\warning This incrementation |
124 | 124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
125 | 125 |
///expect. |
126 | 126 |
Arc operator++(int) |
127 | 127 |
{ |
128 | 128 |
Arc e=*this; |
129 | 129 |
++(*this); |
130 | 130 |
return e; |
131 | 131 |
} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
///Euler tour iterator for graphs. |
135 | 135 |
|
136 | 136 |
/// \ingroup graph_properties |
137 | 137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
138 | 138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
139 | 139 |
///and \c Edge types of the graph. |
140 | 140 |
/// |
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
142 | 142 |
///non-trivial component and the degree of each node is even), |
143 | 143 |
///the following code will print the arc IDs according to an |
144 | 144 |
///Euler tour of \c g. |
145 | 145 |
///\code |
146 | 146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) { |
147 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
148 | 148 |
/// } |
149 | 149 |
///\endcode |
150 |
///Although this iterator is for undirected graphs, it still returns |
|
150 |
///Although this iterator is for undirected graphs, it still returns |
|
151 | 151 |
///arcs in order to indicate the direction of the tour. |
152 | 152 |
///(But arcs convert to edges, of course.) |
153 | 153 |
/// |
154 | 154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
155 | 155 |
///or not contain all edges. |
156 | 156 |
template<typename GR> |
157 | 157 |
class EulerIt |
158 | 158 |
{ |
159 | 159 |
typedef typename GR::Node Node; |
160 | 160 |
typedef typename GR::NodeIt NodeIt; |
161 | 161 |
typedef typename GR::Arc Arc; |
162 | 162 |
typedef typename GR::Edge Edge; |
163 | 163 |
typedef typename GR::ArcIt ArcIt; |
164 | 164 |
typedef typename GR::OutArcIt OutArcIt; |
165 | 165 |
typedef typename GR::InArcIt InArcIt; |
166 | 166 |
|
167 | 167 |
const GR &g; |
168 | 168 |
typename GR::template NodeMap<OutArcIt> narc; |
169 | 169 |
typename GR::template EdgeMap<bool> visited; |
170 | 170 |
std::list<Arc> euler; |
171 | 171 |
|
172 | 172 |
public: |
173 | 173 |
|
174 | 174 |
///Constructor |
175 | 175 |
|
176 | 176 |
///Constructor. |
177 | 177 |
///\param gr A graph. |
178 | 178 |
///\param start The starting point of the tour. If it is not given, |
179 | 179 |
///the tour will start from the first node that has an incident edge. |
180 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
181 | 181 |
: g(gr), narc(g), visited(g, false) |
182 | 182 |
{ |
... | ... |
@@ -204,65 +204,65 @@ |
204 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
205 | 205 |
///Compare with \c INVALID |
206 | 206 |
bool operator==(Invalid) const { return euler.empty(); } |
207 | 207 |
///Compare with \c INVALID |
208 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); } |
209 | 209 |
|
210 | 210 |
///Next arc of the tour |
211 | 211 |
|
212 | 212 |
///Next arc of the tour |
213 | 213 |
/// |
214 | 214 |
EulerIt &operator++() { |
215 | 215 |
Node s=g.target(euler.front()); |
216 | 216 |
euler.pop_front(); |
217 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
218 | 218 |
while(narc[s]!=INVALID) { |
219 | 219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
220 | 220 |
if(narc[s]==INVALID) break; |
221 | 221 |
else { |
222 | 222 |
euler.insert(next,narc[s]); |
223 | 223 |
visited[narc[s]]=true; |
224 | 224 |
Node n=g.target(narc[s]); |
225 | 225 |
++narc[s]; |
226 | 226 |
s=n; |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
return *this; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
///Postfix incrementation |
233 | 233 |
|
234 | 234 |
/// Postfix incrementation. |
235 | 235 |
/// |
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
238 | 238 |
Arc operator++(int) |
239 | 239 |
{ |
240 | 240 |
Arc e=*this; |
241 | 241 |
++(*this); |
242 | 242 |
return e; |
243 | 243 |
} |
244 | 244 |
}; |
245 | 245 |
|
246 | 246 |
|
247 | 247 |
///Check if the given graph is Eulerian |
248 | 248 |
|
249 | 249 |
/// \ingroup graph_properties |
250 | 250 |
///This function checks if the given graph is Eulerian. |
251 | 251 |
///It works for both directed and undirected graphs. |
252 | 252 |
/// |
253 | 253 |
///By definition, a digraph is called \e Eulerian if |
254 | 254 |
///and only if it is connected and the number of incoming and outgoing |
255 | 255 |
///arcs are the same for each node. |
256 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
257 | 257 |
///and only if it is connected and the number of incident edges is even |
258 | 258 |
///for each node. |
259 | 259 |
/// |
260 | 260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
261 | 261 |
/// Euler tour, since they may contain isolated nodes. |
262 | 262 |
/// |
263 | 263 |
///\sa DiEulerIt, EulerIt |
264 | 264 |
template<typename GR> |
265 | 265 |
#ifdef DOXYGEN |
266 | 266 |
bool |
267 | 267 |
#else |
268 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GLPK_H |
20 | 20 |
#define LEMON_GLPK_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
24 | 24 |
///\ingroup lp_group |
25 | 25 |
|
26 | 26 |
#include <lemon/lp_base.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
namespace _solver_bits { |
31 | 31 |
class VoidPtr { |
32 | 32 |
private: |
33 |
void *_ptr; |
|
33 |
void *_ptr; |
|
34 | 34 |
public: |
35 | 35 |
VoidPtr() : _ptr(0) {} |
36 | 36 |
|
37 | 37 |
template <typename T> |
38 | 38 |
VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {} |
39 | 39 |
|
40 | 40 |
template <typename T> |
41 |
VoidPtr& operator=(T* ptr) { |
|
42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
41 |
VoidPtr& operator=(T* ptr) { |
|
42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
43 | 43 |
return *this; |
44 | 44 |
} |
45 | 45 |
|
46 | 46 |
template <typename T> |
47 | 47 |
operator T*() const { return reinterpret_cast<T*>(_ptr); } |
48 | 48 |
}; |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
/// \brief Base interface for the GLPK LP and MIP solver |
52 | 52 |
/// |
53 | 53 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
54 | 54 |
/// \ingroup lp_group |
55 | 55 |
class GlpkBase : virtual public LpBase { |
56 | 56 |
protected: |
57 | 57 |
|
58 | 58 |
_solver_bits::VoidPtr lp; |
59 | 59 |
|
60 | 60 |
GlpkBase(); |
61 | 61 |
GlpkBase(const GlpkBase&); |
62 | 62 |
virtual ~GlpkBase(); |
63 | 63 |
|
64 | 64 |
protected: |
65 | 65 |
|
66 | 66 |
virtual int _addCol(); |
67 | 67 |
virtual int _addRow(); |
68 | 68 |
|
69 | 69 |
virtual void _eraseCol(int i); |
70 | 70 |
virtual void _eraseRow(int i); |
71 | 71 |
|
72 | 72 |
virtual void _eraseColId(int i); |
73 | 73 |
virtual void _eraseRowId(int i); |
74 | 74 |
|
... | ... |
@@ -94,71 +94,71 @@ |
94 | 94 |
|
95 | 95 |
virtual void _setColUpperBound(int i, Value value); |
96 | 96 |
virtual Value _getColUpperBound(int i) const; |
97 | 97 |
|
98 | 98 |
virtual void _setRowLowerBound(int i, Value value); |
99 | 99 |
virtual Value _getRowLowerBound(int i) const; |
100 | 100 |
|
101 | 101 |
virtual void _setRowUpperBound(int i, Value value); |
102 | 102 |
virtual Value _getRowUpperBound(int i) const; |
103 | 103 |
|
104 | 104 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
105 | 105 |
virtual void _getObjCoeffs(InsertIterator b) const; |
106 | 106 |
|
107 | 107 |
virtual void _setObjCoeff(int i, Value obj_coef); |
108 | 108 |
virtual Value _getObjCoeff(int i) const; |
109 | 109 |
|
110 | 110 |
virtual void _setSense(Sense); |
111 | 111 |
virtual Sense _getSense() const; |
112 | 112 |
|
113 | 113 |
virtual void _clear(); |
114 | 114 |
|
115 | 115 |
virtual void _messageLevel(MessageLevel level); |
116 | 116 |
|
117 | 117 |
private: |
118 | 118 |
|
119 | 119 |
static void freeEnv(); |
120 | 120 |
|
121 | 121 |
struct FreeEnvHelper { |
122 | 122 |
~FreeEnvHelper() { |
123 | 123 |
freeEnv(); |
124 | 124 |
} |
125 | 125 |
}; |
126 |
|
|
126 |
|
|
127 | 127 |
static FreeEnvHelper freeEnvHelper; |
128 | 128 |
|
129 | 129 |
protected: |
130 |
|
|
130 |
|
|
131 | 131 |
int _message_level; |
132 |
|
|
132 |
|
|
133 | 133 |
public: |
134 | 134 |
|
135 | 135 |
///Pointer to the underlying GLPK data structure. |
136 | 136 |
_solver_bits::VoidPtr lpx() {return lp;} |
137 | 137 |
///Const pointer to the underlying GLPK data structure. |
138 | 138 |
_solver_bits::VoidPtr lpx() const {return lp;} |
139 | 139 |
|
140 | 140 |
///Returns the constraint identifier understood by GLPK. |
141 | 141 |
int lpxRow(Row r) const { return rows(id(r)); } |
142 | 142 |
|
143 | 143 |
///Returns the variable identifier understood by GLPK. |
144 | 144 |
int lpxCol(Col c) const { return cols(id(c)); } |
145 | 145 |
|
146 | 146 |
}; |
147 | 147 |
|
148 | 148 |
/// \brief Interface for the GLPK LP solver |
149 | 149 |
/// |
150 | 150 |
/// This class implements an interface for the GLPK LP solver. |
151 | 151 |
///\ingroup lp_group |
152 | 152 |
class GlpkLp : public LpSolver, public GlpkBase { |
153 | 153 |
public: |
154 | 154 |
|
155 | 155 |
///\e |
156 | 156 |
GlpkLp(); |
157 | 157 |
///\e |
158 | 158 |
GlpkLp(const GlpkLp&); |
159 | 159 |
|
160 | 160 |
///\e |
161 | 161 |
virtual GlpkLp* cloneSolver() const; |
162 | 162 |
///\e |
163 | 163 |
virtual GlpkLp* newSolver() const; |
164 | 164 |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
21 | 21 |
|
22 | 22 |
#include <limits> |
23 | 23 |
|
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/preflow.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
/// \ingroup min_cut |
30 |
/// \file |
|
30 |
/// \file |
|
31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \ingroup min_cut |
36 | 36 |
/// |
37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
38 | 38 |
/// |
39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
40 | 40 |
/// may contain edges which are not in the original graph. It has the |
41 |
/// property that the minimum capacity edge of the path between two nodes |
|
41 |
/// property that the minimum capacity edge of the path between two nodes |
|
42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
46 | 46 |
/// of nodes can easily be obtained. |
47 |
/// |
|
47 |
/// |
|
48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall |
50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
51 | 51 |
/// The structure of the tree and the edge weights can be |
52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
54 | 54 |
/// the minimum cut and the minimum cut value between any two nodes |
55 | 55 |
/// in the graph. You can also list (iterate on) the nodes and the |
56 | 56 |
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
61 | 61 |
#ifdef DOXYGEN |
62 | 62 |
template <typename GR, |
63 |
|
|
63 |
typename CAP> |
|
64 | 64 |
#else |
65 | 65 |
template <typename GR, |
66 |
|
|
66 |
typename CAP = typename GR::template EdgeMap<int> > |
|
67 | 67 |
#endif |
68 | 68 |
class GomoryHu { |
69 | 69 |
public: |
70 | 70 |
|
71 | 71 |
/// The graph type of the algorithm |
72 | 72 |
typedef GR Graph; |
73 | 73 |
/// The capacity map type of the algorithm |
74 | 74 |
typedef CAP Capacity; |
75 | 75 |
/// The value type of capacities |
76 | 76 |
typedef typename Capacity::Value Value; |
77 |
|
|
77 |
|
|
78 | 78 |
private: |
79 | 79 |
|
80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
81 | 81 |
|
82 | 82 |
const Graph& _graph; |
83 | 83 |
const Capacity& _capacity; |
84 | 84 |
|
85 | 85 |
Node _root; |
86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
88 | 88 |
typename Graph::template NodeMap<int>* _order; |
89 | 89 |
|
90 | 90 |
void createStructures() { |
91 | 91 |
if (!_pred) { |
92 |
|
|
92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
|
93 | 93 |
} |
94 | 94 |
if (!_weight) { |
95 |
|
|
95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
|
96 | 96 |
} |
97 | 97 |
if (!_order) { |
98 |
|
|
98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
|
99 | 99 |
} |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
void destroyStructures() { |
103 | 103 |
if (_pred) { |
104 |
|
|
104 |
delete _pred; |
|
105 | 105 |
} |
106 | 106 |
if (_weight) { |
107 |
|
|
107 |
delete _weight; |
|
108 | 108 |
} |
109 | 109 |
if (_order) { |
110 |
|
|
110 |
delete _order; |
|
111 | 111 |
} |
112 | 112 |
} |
113 |
|
|
113 |
|
|
114 | 114 |
public: |
115 | 115 |
|
116 | 116 |
/// \brief Constructor |
117 | 117 |
/// |
118 | 118 |
/// Constructor. |
119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
120 | 120 |
/// \param capacity The edge capacity map. |
121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
122 | 122 |
: _graph(graph), _capacity(capacity), |
123 |
|
|
123 |
_pred(0), _weight(0), _order(0) |
|
124 | 124 |
{ |
125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
|
129 | 129 |
/// \brief Destructor |
130 | 130 |
/// |
131 | 131 |
/// Destructor. |
132 | 132 |
~GomoryHu() { |
133 | 133 |
destroyStructures(); |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
private: |
137 |
|
|
137 |
|
|
138 | 138 |
// Initialize the internal data structures |
139 | 139 |
void init() { |
140 | 140 |
createStructures(); |
141 | 141 |
|
142 | 142 |
_root = NodeIt(_graph); |
143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
144 | 144 |
(*_pred)[n] = _root; |
145 | 145 |
(*_order)[n] = -1; |
146 | 146 |
} |
147 | 147 |
(*_pred)[_root] = INVALID; |
148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
// Start the algorithm |
153 | 153 |
void start() { |
154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
155 | 155 |
|
156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
157 |
|
|
157 |
if (n == _root) continue; |
|
158 | 158 |
|
159 |
Node pn = (*_pred)[n]; |
|
160 |
fa.source(n); |
|
161 |
|
|
159 |
Node pn = (*_pred)[n]; |
|
160 |
fa.source(n); |
|
161 |
fa.target(pn); |
|
162 | 162 |
|
163 |
|
|
163 |
fa.runMinCut(); |
|
164 | 164 |
|
165 |
|
|
165 |
(*_weight)[n] = fa.flowValue(); |
|
166 | 166 |
|
167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
|
168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
|
169 |
(*_pred)[nn] = n; |
|
170 |
} |
|
171 |
} |
|
172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
|
173 |
(*_pred)[n] = (*_pred)[pn]; |
|
174 |
(*_pred)[pn] = n; |
|
175 |
(*_weight)[n] = (*_weight)[pn]; |
|
176 |
(*_weight)[pn] = fa.flowValue(); |
|
177 |
|
|
167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
|
168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
|
169 |
(*_pred)[nn] = n; |
|
170 |
} |
|
171 |
} |
|
172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
|
173 |
(*_pred)[n] = (*_pred)[pn]; |
|
174 |
(*_pred)[pn] = n; |
|
175 |
(*_weight)[n] = (*_weight)[pn]; |
|
176 |
(*_weight)[pn] = fa.flowValue(); |
|
177 |
} |
|
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
(*_order)[_root] = 0; |
181 | 181 |
int index = 1; |
182 | 182 |
|
183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
184 |
std::vector<Node> st; |
|
185 |
Node nn = n; |
|
186 |
while ((*_order)[nn] == -1) { |
|
187 |
st.push_back(nn); |
|
188 |
nn = (*_pred)[nn]; |
|
189 |
} |
|
190 |
while (!st.empty()) { |
|
191 |
(*_order)[st.back()] = index++; |
|
192 |
st.pop_back(); |
|
193 |
} |
|
184 |
std::vector<Node> st; |
|
185 |
Node nn = n; |
|
186 |
while ((*_order)[nn] == -1) { |
|
187 |
st.push_back(nn); |
|
188 |
nn = (*_pred)[nn]; |
|
189 |
} |
|
190 |
while (!st.empty()) { |
|
191 |
(*_order)[st.back()] = index++; |
|
192 |
st.pop_back(); |
|
193 |
} |
|
194 | 194 |
} |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
///\name Execution Control |
200 |
|
|
200 |
|
|
201 | 201 |
///@{ |
202 | 202 |
|
203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
204 | 204 |
/// |
205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
206 | 206 |
void run() { |
207 | 207 |
init(); |
208 | 208 |
start(); |
209 | 209 |
} |
210 |
|
|
210 |
|
|
211 | 211 |
/// @} |
212 | 212 |
|
213 | 213 |
///\name Query Functions |
214 | 214 |
///The results of the algorithm can be obtained using these |
215 | 215 |
///functions.\n |
216 | 216 |
///\ref run() should be called before using them.\n |
217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
222 | 222 |
/// |
223 | 223 |
/// This function returns the predecessor node of the given node |
224 | 224 |
/// in the Gomory-Hu tree. |
225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
226 | 226 |
/// |
227 | 227 |
/// \pre \ref run() must be called before using this function. |
228 | 228 |
Node predNode(const Node& node) const { |
229 | 229 |
return (*_pred)[node]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
233 | 233 |
/// Gomory-Hu tree. |
234 | 234 |
/// |
235 |
/// This function returns the weight of the predecessor edge of the |
|
235 |
/// This function returns the weight of the predecessor edge of the |
|
236 | 236 |
/// given node in the Gomory-Hu tree. |
237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
238 | 238 |
/// |
239 | 239 |
/// \pre \ref run() must be called before using this function. |
240 | 240 |
Value predValue(const Node& node) const { |
241 | 241 |
return (*_weight)[node]; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
245 | 245 |
/// |
246 | 246 |
/// This function returns the distance of the given node from the root |
247 | 247 |
/// node in the Gomory-Hu tree. |
248 | 248 |
/// |
249 | 249 |
/// \pre \ref run() must be called before using this function. |
250 | 250 |
int rootDist(const Node& node) const { |
251 | 251 |
return (*_order)[node]; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
/// \brief Return the minimum cut value between two nodes |
255 | 255 |
/// |
256 | 256 |
/// This function returns the minimum cut value between the nodes |
257 |
/// \c s and \c t. |
|
257 |
/// \c s and \c t. |
|
258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
260 | 260 |
/// paths to the ancestor. |
261 | 261 |
/// |
262 | 262 |
/// \pre \ref run() must be called before using this function. |
263 | 263 |
Value minCutValue(const Node& s, const Node& t) const { |
264 | 264 |
Node sn = s, tn = t; |
265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
266 |
|
|
266 |
|
|
267 | 267 |
while (sn != tn) { |
268 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
270 |
tn = (*_pred)[tn]; |
|
271 |
} else { |
|
272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
273 |
sn = (*_pred)[sn]; |
|
274 |
|
|
268 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
270 |
tn = (*_pred)[tn]; |
|
271 |
} else { |
|
272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
273 |
sn = (*_pred)[sn]; |
|
274 |
} |
|
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 |
Value minCutMap(const Node& s, ///< |
|
297 |
Value minCutMap(const Node& s, ///< |
|
298 | 298 |
const Node& t, |
299 |
///< |
|
299 |
///< |
|
300 | 300 |
CutMap& cutMap |
301 |
///< |
|
301 |
///< |
|
302 | 302 |
) const { |
303 | 303 |
Node sn = s, tn = t; |
304 | 304 |
bool s_root=false; |
305 | 305 |
Node rn = INVALID; |
306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
307 |
|
|
307 |
|
|
308 | 308 |
while (sn != tn) { |
309 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
310 |
if ((*_weight)[tn] <= value) { |
|
311 |
|
|
309 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
310 |
if ((*_weight)[tn] <= value) { |
|
311 |
rn = tn; |
|
312 | 312 |
s_root = false; |
313 |
value = (*_weight)[tn]; |
|
314 |
} |
|
315 |
tn = (*_pred)[tn]; |
|
316 |
} else { |
|
317 |
if ((*_weight)[sn] <= value) { |
|
318 |
rn = sn; |
|
313 |
value = (*_weight)[tn]; |
|
314 |
} |
|
315 |
tn = (*_pred)[tn]; |
|
316 |
} else { |
|
317 |
if ((*_weight)[sn] <= value) { |
|
318 |
rn = sn; |
|
319 | 319 |
s_root = true; |
320 |
value = (*_weight)[sn]; |
|
321 |
} |
|
322 |
sn = (*_pred)[sn]; |
|
323 |
} |
|
320 |
value = (*_weight)[sn]; |
|
321 |
} |
|
322 |
sn = (*_pred)[sn]; |
|
323 |
} |
|
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 |
|
|
334 |
st.clear(); |
|
335 | 335 |
Node nn = n; |
336 |
while (!reached[nn]) { |
|
337 |
st.push_back(nn); |
|
338 |
nn = (*_pred)[nn]; |
|
339 |
} |
|
340 |
while (!st.empty()) { |
|
341 |
cutMap.set(st.back(), cutMap[nn]); |
|
342 |
st.pop_back(); |
|
343 |
} |
|
336 |
while (!reached[nn]) { |
|
337 |
st.push_back(nn); |
|
338 |
nn = (*_pred)[nn]; |
|
339 |
} |
|
340 |
while (!st.empty()) { |
|
341 |
cutMap.set(st.back(), cutMap[nn]); |
|
342 |
st.pop_back(); |
|
343 |
} |
|
344 | 344 |
} |
345 |
|
|
345 |
|
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 |
|
|
354 |
|
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 | 362 |
/// GomoruHu<Graph> gom(g, capacities); |
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 | 365 |
/// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
... | ... |
@@ -415,102 +415,102 @@ |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 |
|
|
447 |
|
|
448 | 448 |
friend class MinCutEdgeIt; |
449 |
|
|
449 |
|
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 |
|
|
451 |
|
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 | 459 |
/// GomoruHu<Graph> gom(g, capacities); |
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 | 462 |
/// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 |
|
|
484 |
|
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
|
511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
513 | 513 |
++_node_it) {} |
514 | 514 |
_arc_it = _node_it!=INVALID ? |
515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
... | ... |
@@ -521,50 +521,50 @@ |
521 | 521 |
} |
522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
523 | 523 |
} |
524 | 524 |
/// Conversion to \c Arc |
525 | 525 |
|
526 | 526 |
/// Conversion to \c Arc. |
527 | 527 |
/// |
528 | 528 |
operator typename Graph::Arc() const |
529 | 529 |
{ |
530 | 530 |
return _arc_it; |
531 | 531 |
} |
532 | 532 |
/// Conversion to \c Edge |
533 | 533 |
|
534 | 534 |
/// Conversion to \c Edge. |
535 | 535 |
/// |
536 | 536 |
operator typename Graph::Edge() const |
537 | 537 |
{ |
538 | 538 |
return _arc_it; |
539 | 539 |
} |
540 | 540 |
bool operator==(Invalid) { return _node_it==INVALID; } |
541 | 541 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
542 | 542 |
/// Next edge |
543 | 543 |
|
544 | 544 |
/// Next edge. |
545 | 545 |
/// |
546 | 546 |
MinCutEdgeIt &operator++() |
547 | 547 |
{ |
548 | 548 |
step(); |
549 | 549 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
550 | 550 |
return *this; |
551 | 551 |
} |
552 | 552 |
/// Postfix incrementation |
553 |
|
|
553 |
|
|
554 | 554 |
/// Postfix incrementation. |
555 | 555 |
/// |
556 | 556 |
/// \warning This incrementation |
557 | 557 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
558 | 558 |
typename Graph::Arc operator++(int) |
559 | 559 |
{ |
560 | 560 |
typename Graph::Arc e=*this; |
561 | 561 |
++(*this); |
562 | 562 |
return e; |
563 | 563 |
} |
564 | 564 |
}; |
565 | 565 |
|
566 | 566 |
}; |
567 | 567 |
|
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#include<lemon/bits/windows.h> |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
#include<lemon/core.h> |
37 | 37 |
#include<lemon/dim2.h> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HAO_ORLIN_H |
20 | 20 |
#define LEMON_HAO_ORLIN_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/tolerance.h> |
29 | 29 |
|
30 | 30 |
/// \file |
31 | 31 |
/// \ingroup min_cut |
32 | 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
33 | 33 |
/// |
34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
35 | 35 |
/// in a digraph. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \ingroup min_cut |
40 | 40 |
/// |
41 | 41 |
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
42 | 42 |
/// |
43 | 43 |
/// This class implements the Hao-Orlin algorithm for finding a minimum |
44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
46 | 46 |
/// consists of two phases: in the first phase it determines a |
47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
51 | 51 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
56 | 56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
57 | 57 |
/// purpose of such algorithm is e.g. testing network reliability. |
58 | 58 |
/// |
59 | 59 |
/// For an undirected graph you can run just the first phase of the |
60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
63 | 63 |
/// |
64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
66 | 66 |
/// which can be any numreric type. The default map type is |
67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
68 | 68 |
/// \tparam TOL Tolerance class for handling inexact computations. The |
69 | 69 |
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
70 | 70 |
#ifdef DOXYGEN |
71 | 71 |
template <typename GR, typename CAP, typename TOL> |
72 | 72 |
#else |
73 | 73 |
template <typename GR, |
74 | 74 |
typename CAP = typename GR::template ArcMap<int>, |
75 | 75 |
typename TOL = Tolerance<typename CAP::Value> > |
76 | 76 |
#endif |
77 | 77 |
class HaoOrlin { |
78 | 78 |
public: |
79 |
|
|
79 |
|
|
80 | 80 |
/// The digraph type of the algorithm |
81 | 81 |
typedef GR Digraph; |
82 | 82 |
/// The capacity map type of the algorithm |
83 | 83 |
typedef CAP CapacityMap; |
84 | 84 |
/// The tolerance type of the algorithm |
85 | 85 |
typedef TOL Tolerance; |
86 | 86 |
|
87 | 87 |
private: |
88 | 88 |
|
89 | 89 |
typedef typename CapacityMap::Value Value; |
90 | 90 |
|
91 | 91 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
92 | 92 |
|
93 | 93 |
const Digraph& _graph; |
94 | 94 |
const CapacityMap* _capacity; |
95 | 95 |
|
96 | 96 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
97 | 97 |
FlowMap* _flow; |
98 | 98 |
|
99 | 99 |
Node _source; |
100 | 100 |
|
101 | 101 |
int _node_num; |
102 | 102 |
|
103 | 103 |
// Bucketing structure |
104 | 104 |
std::vector<Node> _first, _last; |
105 | 105 |
typename Digraph::template NodeMap<Node>* _next; |
106 | 106 |
typename Digraph::template NodeMap<Node>* _prev; |
107 | 107 |
typename Digraph::template NodeMap<bool>* _active; |
108 | 108 |
typename Digraph::template NodeMap<int>* _bucket; |
109 | 109 |
|
110 | 110 |
std::vector<bool> _dormant; |
111 | 111 |
|
... | ... |
@@ -818,65 +818,65 @@ |
818 | 818 |
!(*_active)[_first[*_highest]]) { |
819 | 819 |
++_highest; |
820 | 820 |
} |
821 | 821 |
} |
822 | 822 |
} |
823 | 823 |
} |
824 | 824 |
|
825 | 825 |
public: |
826 | 826 |
|
827 | 827 |
/// \name Execution Control |
828 | 828 |
/// The simplest way to execute the algorithm is to use |
829 | 829 |
/// one of the member functions called \ref run(). |
830 | 830 |
/// \n |
831 | 831 |
/// If you need better control on the execution, |
832 | 832 |
/// you have to call one of the \ref init() functions first, then |
833 | 833 |
/// \ref calculateOut() and/or \ref calculateIn(). |
834 | 834 |
|
835 | 835 |
/// @{ |
836 | 836 |
|
837 | 837 |
/// \brief Initialize the internal data structures. |
838 | 838 |
/// |
839 | 839 |
/// This function initializes the internal data structures. It creates |
840 | 840 |
/// the maps and some bucket structures for the algorithm. |
841 | 841 |
/// The first node is used as the source node for the push-relabel |
842 | 842 |
/// algorithm. |
843 | 843 |
void init() { |
844 | 844 |
init(NodeIt(_graph)); |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
/// \brief Initialize the internal data structures. |
848 | 848 |
/// |
849 | 849 |
/// This function initializes the internal data structures. It creates |
850 |
/// the maps and some bucket structures for the algorithm. |
|
850 |
/// the maps and some bucket structures for the algorithm. |
|
851 | 851 |
/// The given node is used as the source node for the push-relabel |
852 | 852 |
/// algorithm. |
853 | 853 |
void init(const Node& source) { |
854 | 854 |
_source = source; |
855 | 855 |
|
856 | 856 |
_node_num = countNodes(_graph); |
857 | 857 |
|
858 | 858 |
_first.resize(_node_num); |
859 | 859 |
_last.resize(_node_num); |
860 | 860 |
|
861 | 861 |
_dormant.resize(_node_num); |
862 | 862 |
|
863 | 863 |
if (!_flow) { |
864 | 864 |
_flow = new FlowMap(_graph); |
865 | 865 |
} |
866 | 866 |
if (!_next) { |
867 | 867 |
_next = new typename Digraph::template NodeMap<Node>(_graph); |
868 | 868 |
} |
869 | 869 |
if (!_prev) { |
870 | 870 |
_prev = new typename Digraph::template NodeMap<Node>(_graph); |
871 | 871 |
} |
872 | 872 |
if (!_active) { |
873 | 873 |
_active = new typename Digraph::template NodeMap<bool>(_graph); |
874 | 874 |
} |
875 | 875 |
if (!_bucket) { |
876 | 876 |
_bucket = new typename Digraph::template NodeMap<int>(_graph); |
877 | 877 |
} |
878 | 878 |
if (!_excess) { |
879 | 879 |
_excess = new ExcessMap(_graph); |
880 | 880 |
} |
881 | 881 |
if (!_source_set) { |
882 | 882 |
_source_set = new SourceSetMap(_graph); |
... | ... |
@@ -898,91 +898,91 @@ |
898 | 898 |
/// |
899 | 899 |
/// \pre \ref init() must be called before using this function. |
900 | 900 |
void calculateOut() { |
901 | 901 |
findMinCutOut(); |
902 | 902 |
} |
903 | 903 |
|
904 | 904 |
/// \brief Calculate a minimum cut with \f$ source \f$ on the |
905 | 905 |
/// sink-side. |
906 | 906 |
/// |
907 | 907 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
908 | 908 |
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with |
909 | 909 |
/// \f$ source \notin X \f$ and minimal outgoing capacity). |
910 | 910 |
/// |
911 | 911 |
/// \pre \ref init() must be called before using this function. |
912 | 912 |
void calculateIn() { |
913 | 913 |
findMinCutIn(); |
914 | 914 |
} |
915 | 915 |
|
916 | 916 |
|
917 | 917 |
/// \brief Run the algorithm. |
918 | 918 |
/// |
919 | 919 |
/// This function runs the algorithm. It finds nodes \c source and |
920 | 920 |
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
921 | 921 |
/// and \ref calculateIn(). |
922 | 922 |
void run() { |
923 | 923 |
init(); |
924 | 924 |
calculateOut(); |
925 | 925 |
calculateIn(); |
926 | 926 |
} |
927 | 927 |
|
928 | 928 |
/// \brief Run the algorithm. |
929 | 929 |
/// |
930 |
/// This function runs the algorithm. It uses the given \c source node, |
|
930 |
/// This function runs the algorithm. It uses the given \c source node, |
|
931 | 931 |
/// finds a proper \c target node and then calls the \ref init(), |
932 | 932 |
/// \ref calculateOut() and \ref calculateIn(). |
933 | 933 |
void run(const Node& s) { |
934 | 934 |
init(s); |
935 | 935 |
calculateOut(); |
936 | 936 |
calculateIn(); |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
/// @} |
940 | 940 |
|
941 | 941 |
/// \name Query Functions |
942 | 942 |
/// The result of the %HaoOrlin algorithm |
943 | 943 |
/// can be obtained using these functions.\n |
944 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
944 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
945 | 945 |
/// should be called before using them. |
946 | 946 |
|
947 | 947 |
/// @{ |
948 | 948 |
|
949 | 949 |
/// \brief Return the value of the minimum cut. |
950 | 950 |
/// |
951 | 951 |
/// This function returns the value of the minimum cut. |
952 | 952 |
/// |
953 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
953 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
954 | 954 |
/// must be called before using this function. |
955 | 955 |
Value minCutValue() const { |
956 | 956 |
return _min_cut; |
957 | 957 |
} |
958 | 958 |
|
959 | 959 |
|
960 | 960 |
/// \brief Return a minimum cut. |
961 | 961 |
/// |
962 | 962 |
/// This function sets \c cutMap to the characteristic vector of a |
963 | 963 |
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
964 | 964 |
/// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly |
965 | 965 |
/// for the nodes of \f$ X \f$). |
966 | 966 |
/// |
967 | 967 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
968 | 968 |
/// \c bool (or convertible) value type. |
969 | 969 |
/// |
970 | 970 |
/// \return The value of the minimum cut. |
971 | 971 |
/// |
972 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
972 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
973 | 973 |
/// must be called before using this function. |
974 | 974 |
template <typename CutMap> |
975 | 975 |
Value minCutMap(CutMap& cutMap) const { |
976 | 976 |
for (NodeIt it(_graph); it != INVALID; ++it) { |
977 | 977 |
cutMap.set(it, (*_min_cut_map)[it]); |
978 | 978 |
} |
979 | 979 |
return _min_cut; |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
/// @} |
983 | 983 |
|
984 | 984 |
}; //class HaoOrlin |
985 | 985 |
|
986 | 986 |
} //namespace lemon |
987 | 987 |
|
988 | 988 |
#endif //LEMON_HAO_ORLIN_H |
... | ... |
@@ -533,65 +533,65 @@ |
533 | 533 |
throw IoError("Cannot open file", fn); |
534 | 534 |
} |
535 | 535 |
} |
536 | 536 |
|
537 | 537 |
/// \brief Destructor |
538 | 538 |
~DigraphReader() { |
539 | 539 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
540 | 540 |
it != _node_maps.end(); ++it) { |
541 | 541 |
delete it->second; |
542 | 542 |
} |
543 | 543 |
|
544 | 544 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
545 | 545 |
it != _arc_maps.end(); ++it) { |
546 | 546 |
delete it->second; |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
for (typename Attributes::iterator it = _attributes.begin(); |
550 | 550 |
it != _attributes.end(); ++it) { |
551 | 551 |
delete it->second; |
552 | 552 |
} |
553 | 553 |
|
554 | 554 |
if (local_is) { |
555 | 555 |
delete _is; |
556 | 556 |
} |
557 | 557 |
|
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
private: |
561 | 561 |
|
562 | 562 |
template <typename TDGR> |
563 | 563 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is); |
564 | 564 |
template <typename TDGR> |
565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
566 | 566 |
const std::string& fn); |
567 | 567 |
template <typename TDGR> |
568 | 568 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn); |
569 | 569 |
|
570 | 570 |
DigraphReader(DigraphReader& other) |
571 | 571 |
: _is(other._is), local_is(other.local_is), _digraph(other._digraph), |
572 | 572 |
_use_nodes(other._use_nodes), _use_arcs(other._use_arcs), |
573 | 573 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
574 | 574 |
|
575 | 575 |
other._is = 0; |
576 | 576 |
other.local_is = false; |
577 | 577 |
|
578 | 578 |
_node_index.swap(other._node_index); |
579 | 579 |
_arc_index.swap(other._arc_index); |
580 | 580 |
|
581 | 581 |
_node_maps.swap(other._node_maps); |
582 | 582 |
_arc_maps.swap(other._arc_maps); |
583 | 583 |
_attributes.swap(other._attributes); |
584 | 584 |
|
585 | 585 |
_nodes_caption = other._nodes_caption; |
586 | 586 |
_arcs_caption = other._arcs_caption; |
587 | 587 |
_attributes_caption = other._attributes_caption; |
588 | 588 |
|
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
DigraphReader& operator=(const DigraphReader&); |
592 | 592 |
|
593 | 593 |
public: |
594 | 594 |
|
595 | 595 |
/// \name Reading Rules |
596 | 596 |
/// @{ |
597 | 597 |
|
... | ... |
@@ -1165,127 +1165,127 @@ |
1165 | 1165 |
if (_attributes_caption.empty() || _attributes_caption == caption) { |
1166 | 1166 |
readAttributes(); |
1167 | 1167 |
attributes_done = true; |
1168 | 1168 |
} |
1169 | 1169 |
} else { |
1170 | 1170 |
readLine(); |
1171 | 1171 |
skipSection(); |
1172 | 1172 |
} |
1173 | 1173 |
} catch (FormatError& error) { |
1174 | 1174 |
error.line(line_num); |
1175 | 1175 |
error.file(_filename); |
1176 | 1176 |
throw; |
1177 | 1177 |
} |
1178 | 1178 |
} |
1179 | 1179 |
|
1180 | 1180 |
if (!nodes_done) { |
1181 | 1181 |
throw FormatError("Section @nodes not found"); |
1182 | 1182 |
} |
1183 | 1183 |
|
1184 | 1184 |
if (!arcs_done) { |
1185 | 1185 |
throw FormatError("Section @arcs not found"); |
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
if (!attributes_done && !_attributes.empty()) { |
1189 | 1189 |
throw FormatError("Section @attributes not found"); |
1190 | 1190 |
} |
1191 | 1191 |
|
1192 | 1192 |
} |
1193 | 1193 |
|
1194 | 1194 |
/// @} |
1195 | 1195 |
|
1196 | 1196 |
}; |
1197 |
|
|
1197 |
|
|
1198 | 1198 |
/// \ingroup lemon_io |
1199 | 1199 |
/// |
1200 | 1200 |
/// \brief Return a \ref DigraphReader class |
1201 | 1201 |
/// |
1202 | 1202 |
/// This function just returns a \ref DigraphReader class. |
1203 | 1203 |
/// |
1204 |
/// With this function a digraph can be read from an |
|
1204 |
/// With this function a digraph can be read from an |
|
1205 | 1205 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
1206 | 1206 |
/// attributes. For example, there is network flow problem on a |
1207 | 1207 |
/// digraph, i.e. a digraph with a \e capacity map on the arcs and |
1208 | 1208 |
/// \e source and \e target nodes. This digraph can be read with the |
1209 | 1209 |
/// following code: |
1210 | 1210 |
/// |
1211 | 1211 |
///\code |
1212 | 1212 |
///ListDigraph digraph; |
1213 | 1213 |
///ListDigraph::ArcMap<int> cm(digraph); |
1214 | 1214 |
///ListDigraph::Node src, trg; |
1215 | 1215 |
///digraphReader(digraph, std::cin). |
1216 | 1216 |
/// arcMap("capacity", cap). |
1217 | 1217 |
/// node("source", src). |
1218 | 1218 |
/// node("target", trg). |
1219 | 1219 |
/// run(); |
1220 | 1220 |
///\endcode |
1221 | 1221 |
/// |
1222 | 1222 |
/// For a complete documentation, please see the \ref DigraphReader |
1223 | 1223 |
/// class documentation. |
1224 | 1224 |
/// \warning Don't forget to put the \ref DigraphReader::run() "run()" |
1225 | 1225 |
/// to the end of the parameter list. |
1226 | 1226 |
/// \relates DigraphReader |
1227 | 1227 |
/// \sa digraphReader(TDGR& digraph, const std::string& fn) |
1228 | 1228 |
/// \sa digraphReader(TDGR& digraph, const char* fn) |
1229 | 1229 |
template <typename TDGR> |
1230 | 1230 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is) { |
1231 | 1231 |
DigraphReader<TDGR> tmp(digraph, is); |
1232 | 1232 |
return tmp; |
1233 | 1233 |
} |
1234 | 1234 |
|
1235 | 1235 |
/// \brief Return a \ref DigraphReader class |
1236 | 1236 |
/// |
1237 | 1237 |
/// This function just returns a \ref DigraphReader class. |
1238 | 1238 |
/// \relates DigraphReader |
1239 | 1239 |
/// \sa digraphReader(TDGR& digraph, std::istream& is) |
1240 | 1240 |
template <typename TDGR> |
1241 | 1241 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, const std::string& fn) { |
1242 | 1242 |
DigraphReader<TDGR> tmp(digraph, fn); |
1243 | 1243 |
return tmp; |
1244 | 1244 |
} |
1245 | 1245 |
|
1246 | 1246 |
/// \brief Return a \ref DigraphReader class |
1247 | 1247 |
/// |
1248 | 1248 |
/// This function just returns a \ref DigraphReader class. |
1249 | 1249 |
/// \relates DigraphReader |
1250 | 1250 |
/// \sa digraphReader(TDGR& digraph, std::istream& is) |
1251 | 1251 |
template <typename TDGR> |
1252 | 1252 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, const char* fn) { |
1253 | 1253 |
DigraphReader<TDGR> tmp(digraph, fn); |
1254 | 1254 |
return tmp; |
1255 | 1255 |
} |
1256 | 1256 |
|
1257 | 1257 |
template <typename GR> |
1258 | 1258 |
class GraphReader; |
1259 |
|
|
1259 |
|
|
1260 | 1260 |
template <typename TGR> |
1261 | 1261 |
GraphReader<TGR> graphReader(TGR& graph, std::istream& is = std::cin); |
1262 | 1262 |
template <typename TGR> |
1263 | 1263 |
GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
1264 | 1264 |
template <typename TGR> |
1265 | 1265 |
GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
1266 | 1266 |
|
1267 | 1267 |
/// \ingroup lemon_io |
1268 | 1268 |
/// |
1269 | 1269 |
/// \brief \ref lgf-format "LGF" reader for undirected graphs |
1270 | 1270 |
/// |
1271 | 1271 |
/// This utility reads an \ref lgf-format "LGF" file. |
1272 | 1272 |
/// |
1273 | 1273 |
/// It can be used almost the same way as \c DigraphReader. |
1274 | 1274 |
/// The only difference is that this class can handle edges and |
1275 | 1275 |
/// edge maps as well as arcs and arc maps. |
1276 | 1276 |
/// |
1277 | 1277 |
/// The columns in the \c \@edges (or \c \@arcs) section are the |
1278 | 1278 |
/// edge maps. However, if there are two maps with the same name |
1279 | 1279 |
/// prefixed with \c '+' and \c '-', then these can be read into an |
1280 | 1280 |
/// arc map. Similarly, an attribute can be read into an arc, if |
1281 | 1281 |
/// it's value is an edge label prefixed with \c '+' or \c '-'. |
1282 | 1282 |
template <typename GR> |
1283 | 1283 |
class GraphReader { |
1284 | 1284 |
public: |
1285 | 1285 |
|
1286 | 1286 |
typedef GR Graph; |
1287 | 1287 |
|
1288 | 1288 |
private: |
1289 | 1289 |
|
1290 | 1290 |
TEMPLATE_GRAPH_TYPEDEFS(GR); |
1291 | 1291 |
|
... | ... |
@@ -1364,65 +1364,65 @@ |
1364 | 1364 |
delete _is; |
1365 | 1365 |
throw IoError("Cannot open file", fn); |
1366 | 1366 |
} |
1367 | 1367 |
} |
1368 | 1368 |
|
1369 | 1369 |
/// \brief Destructor |
1370 | 1370 |
~GraphReader() { |
1371 | 1371 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1372 | 1372 |
it != _node_maps.end(); ++it) { |
1373 | 1373 |
delete it->second; |
1374 | 1374 |
} |
1375 | 1375 |
|
1376 | 1376 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1377 | 1377 |
it != _edge_maps.end(); ++it) { |
1378 | 1378 |
delete it->second; |
1379 | 1379 |
} |
1380 | 1380 |
|
1381 | 1381 |
for (typename Attributes::iterator it = _attributes.begin(); |
1382 | 1382 |
it != _attributes.end(); ++it) { |
1383 | 1383 |
delete it->second; |
1384 | 1384 |
} |
1385 | 1385 |
|
1386 | 1386 |
if (local_is) { |
1387 | 1387 |
delete _is; |
1388 | 1388 |
} |
1389 | 1389 |
|
1390 | 1390 |
} |
1391 | 1391 |
|
1392 | 1392 |
private: |
1393 | 1393 |
template <typename TGR> |
1394 | 1394 |
friend GraphReader<TGR> graphReader(TGR& graph, std::istream& is); |
1395 | 1395 |
template <typename TGR> |
1396 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
1396 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
1397 | 1397 |
template <typename TGR> |
1398 | 1398 |
friend GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
1399 | 1399 |
|
1400 | 1400 |
GraphReader(GraphReader& other) |
1401 | 1401 |
: _is(other._is), local_is(other.local_is), _graph(other._graph), |
1402 | 1402 |
_use_nodes(other._use_nodes), _use_edges(other._use_edges), |
1403 | 1403 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1404 | 1404 |
|
1405 | 1405 |
other._is = 0; |
1406 | 1406 |
other.local_is = false; |
1407 | 1407 |
|
1408 | 1408 |
_node_index.swap(other._node_index); |
1409 | 1409 |
_edge_index.swap(other._edge_index); |
1410 | 1410 |
|
1411 | 1411 |
_node_maps.swap(other._node_maps); |
1412 | 1412 |
_edge_maps.swap(other._edge_maps); |
1413 | 1413 |
_attributes.swap(other._attributes); |
1414 | 1414 |
|
1415 | 1415 |
_nodes_caption = other._nodes_caption; |
1416 | 1416 |
_edges_caption = other._edges_caption; |
1417 | 1417 |
_attributes_caption = other._attributes_caption; |
1418 | 1418 |
|
1419 | 1419 |
} |
1420 | 1420 |
|
1421 | 1421 |
GraphReader& operator=(const GraphReader&); |
1422 | 1422 |
|
1423 | 1423 |
public: |
1424 | 1424 |
|
1425 | 1425 |
/// \name Reading Rules |
1426 | 1426 |
/// @{ |
1427 | 1427 |
|
1428 | 1428 |
/// \brief Node map reading rule |
... | ... |
@@ -2048,67 +2048,67 @@ |
2048 | 2048 |
readLine(); |
2049 | 2049 |
skipSection(); |
2050 | 2050 |
} |
2051 | 2051 |
} catch (FormatError& error) { |
2052 | 2052 |
error.line(line_num); |
2053 | 2053 |
error.file(_filename); |
2054 | 2054 |
throw; |
2055 | 2055 |
} |
2056 | 2056 |
} |
2057 | 2057 |
|
2058 | 2058 |
if (!nodes_done) { |
2059 | 2059 |
throw FormatError("Section @nodes not found"); |
2060 | 2060 |
} |
2061 | 2061 |
|
2062 | 2062 |
if (!edges_done) { |
2063 | 2063 |
throw FormatError("Section @edges not found"); |
2064 | 2064 |
} |
2065 | 2065 |
|
2066 | 2066 |
if (!attributes_done && !_attributes.empty()) { |
2067 | 2067 |
throw FormatError("Section @attributes not found"); |
2068 | 2068 |
} |
2069 | 2069 |
|
2070 | 2070 |
} |
2071 | 2071 |
|
2072 | 2072 |
/// @} |
2073 | 2073 |
|
2074 | 2074 |
}; |
2075 | 2075 |
|
2076 | 2076 |
/// \ingroup lemon_io |
2077 | 2077 |
/// |
2078 | 2078 |
/// \brief Return a \ref GraphReader class |
2079 | 2079 |
/// |
2080 |
/// This function just returns a \ref GraphReader class. |
|
2080 |
/// This function just returns a \ref GraphReader class. |
|
2081 | 2081 |
/// |
2082 |
/// With this function a graph can be read from an |
|
2082 |
/// With this function a graph can be read from an |
|
2083 | 2083 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
2084 | 2084 |
/// attributes. For example, there is weighted matching problem on a |
2085 | 2085 |
/// graph, i.e. a graph with a \e weight map on the edges. This |
2086 | 2086 |
/// graph can be read with the following code: |
2087 | 2087 |
/// |
2088 | 2088 |
///\code |
2089 | 2089 |
///ListGraph graph; |
2090 | 2090 |
///ListGraph::EdgeMap<int> weight(graph); |
2091 | 2091 |
///graphReader(graph, std::cin). |
2092 | 2092 |
/// edgeMap("weight", weight). |
2093 | 2093 |
/// run(); |
2094 | 2094 |
///\endcode |
2095 | 2095 |
/// |
2096 | 2096 |
/// For a complete documentation, please see the \ref GraphReader |
2097 | 2097 |
/// class documentation. |
2098 | 2098 |
/// \warning Don't forget to put the \ref GraphReader::run() "run()" |
2099 | 2099 |
/// to the end of the parameter list. |
2100 | 2100 |
/// \relates GraphReader |
2101 | 2101 |
/// \sa graphReader(TGR& graph, const std::string& fn) |
2102 | 2102 |
/// \sa graphReader(TGR& graph, const char* fn) |
2103 | 2103 |
template <typename TGR> |
2104 | 2104 |
GraphReader<TGR> graphReader(TGR& graph, std::istream& is) { |
2105 | 2105 |
GraphReader<TGR> tmp(graph, is); |
2106 | 2106 |
return tmp; |
2107 | 2107 |
} |
2108 | 2108 |
|
2109 | 2109 |
/// \brief Return a \ref GraphReader class |
2110 | 2110 |
/// |
2111 | 2111 |
/// This function just returns a \ref GraphReader class. |
2112 | 2112 |
/// \relates GraphReader |
2113 | 2113 |
/// \sa graphReader(TGR& graph, std::istream& is) |
2114 | 2114 |
template <typename TGR> |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup lemon_io |
20 | 20 |
///\file |
21 | 21 |
///\brief \ref lgf-format "LEMON Graph Format" writer. |
22 | 22 |
|
23 | 23 |
|
24 | 24 |
#ifndef LEMON_LGF_WRITER_H |
25 | 25 |
#define LEMON_LGF_WRITER_H |
26 | 26 |
|
27 | 27 |
#include <iostream> |
28 | 28 |
#include <fstream> |
29 | 29 |
#include <sstream> |
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
|
33 | 33 |
#include <vector> |
34 | 34 |
#include <functional> |
35 | 35 |
|
36 | 36 |
#include <lemon/core.h> |
37 | 37 |
#include <lemon/maps.h> |
... | ... |
@@ -322,65 +322,65 @@ |
322 | 322 |
|
323 | 323 |
LineSection(const Functor& functor) : _functor(functor) {} |
324 | 324 |
virtual ~LineSection() {} |
325 | 325 |
|
326 | 326 |
virtual void process(std::ostream& os) { |
327 | 327 |
std::string line; |
328 | 328 |
while (!(line = _functor()).empty()) os << line << std::endl; |
329 | 329 |
} |
330 | 330 |
}; |
331 | 331 |
|
332 | 332 |
template <typename Functor> |
333 | 333 |
class StreamSection : public Section { |
334 | 334 |
private: |
335 | 335 |
|
336 | 336 |
Functor _functor; |
337 | 337 |
|
338 | 338 |
public: |
339 | 339 |
|
340 | 340 |
StreamSection(const Functor& functor) : _functor(functor) {} |
341 | 341 |
virtual ~StreamSection() {} |
342 | 342 |
|
343 | 343 |
virtual void process(std::ostream& os) { |
344 | 344 |
_functor(os); |
345 | 345 |
} |
346 | 346 |
}; |
347 | 347 |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
template <typename DGR> |
351 | 351 |
class DigraphWriter; |
352 | 352 |
|
353 | 353 |
template <typename TDGR> |
354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
355 | 355 |
std::ostream& os = std::cout); |
356 | 356 |
template <typename TDGR> |
357 | 357 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const std::string& fn); |
358 | 358 |
|
359 | 359 |
template <typename TDGR> |
360 | 360 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn); |
361 | 361 |
|
362 | 362 |
|
363 | 363 |
/// \ingroup lemon_io |
364 | 364 |
/// |
365 | 365 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
366 | 366 |
/// |
367 | 367 |
/// This utility writes an \ref lgf-format "LGF" file. |
368 | 368 |
/// |
369 | 369 |
/// The writing method does a batch processing. The user creates a |
370 | 370 |
/// writer object, then various writing rules can be added to the |
371 | 371 |
/// writer, and eventually the writing is executed with the \c run() |
372 | 372 |
/// member function. A map writing rule can be added to the writer |
373 | 373 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
374 | 374 |
/// converter parameter can also be added as a standard functor |
375 | 375 |
/// converting from the value type of the map to \c std::string. If it |
376 | 376 |
/// is set, it will determine how the value type of the map is written to |
377 | 377 |
/// the output stream. If the functor is not set, then a default |
378 | 378 |
/// conversion will be used. The \c attribute(), \c node() and \c |
379 | 379 |
/// arc() functions are used to add attribute writing rules. |
380 | 380 |
/// |
381 | 381 |
///\code |
382 | 382 |
/// DigraphWriter<DGR>(digraph, std::cout). |
383 | 383 |
/// nodeMap("coordinates", coord_map). |
384 | 384 |
/// nodeMap("size", size). |
385 | 385 |
/// nodeMap("title", title). |
386 | 386 |
/// arcMap("capacity", cap_map). |
... | ... |
@@ -475,65 +475,65 @@ |
475 | 475 |
_skip_nodes(false), _skip_arcs(false) { |
476 | 476 |
if (!(*_os)) { |
477 | 477 |
delete _os; |
478 | 478 |
throw IoError("Cannot write file", fn); |
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
/// \brief Destructor |
483 | 483 |
~DigraphWriter() { |
484 | 484 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
485 | 485 |
it != _node_maps.end(); ++it) { |
486 | 486 |
delete it->second; |
487 | 487 |
} |
488 | 488 |
|
489 | 489 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
490 | 490 |
it != _arc_maps.end(); ++it) { |
491 | 491 |
delete it->second; |
492 | 492 |
} |
493 | 493 |
|
494 | 494 |
for (typename Attributes::iterator it = _attributes.begin(); |
495 | 495 |
it != _attributes.end(); ++it) { |
496 | 496 |
delete it->second; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
if (local_os) { |
500 | 500 |
delete _os; |
501 | 501 |
} |
502 | 502 |
} |
503 | 503 |
|
504 | 504 |
private: |
505 | 505 |
|
506 | 506 |
template <typename TDGR> |
507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
508 | 508 |
std::ostream& os); |
509 | 509 |
template <typename TDGR> |
510 | 510 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
511 | 511 |
const std::string& fn); |
512 | 512 |
template <typename TDGR> |
513 | 513 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
514 | 514 |
const char *fn); |
515 | 515 |
|
516 | 516 |
DigraphWriter(DigraphWriter& other) |
517 | 517 |
: _os(other._os), local_os(other.local_os), _digraph(other._digraph), |
518 | 518 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
519 | 519 |
|
520 | 520 |
other._os = 0; |
521 | 521 |
other.local_os = false; |
522 | 522 |
|
523 | 523 |
_node_index.swap(other._node_index); |
524 | 524 |
_arc_index.swap(other._arc_index); |
525 | 525 |
|
526 | 526 |
_node_maps.swap(other._node_maps); |
527 | 527 |
_arc_maps.swap(other._arc_maps); |
528 | 528 |
_attributes.swap(other._attributes); |
529 | 529 |
|
530 | 530 |
_nodes_caption = other._nodes_caption; |
531 | 531 |
_arcs_caption = other._arcs_caption; |
532 | 532 |
_attributes_caption = other._attributes_caption; |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
DigraphWriter& operator=(const DigraphWriter&); |
536 | 536 |
|
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
/// \name Writing Rules |
... | ... |
@@ -888,105 +888,105 @@ |
888 | 888 |
|
889 | 889 |
/// \brief Start the batch processing |
890 | 890 |
/// |
891 | 891 |
/// This function starts the batch processing. |
892 | 892 |
void run() { |
893 | 893 |
if (!_skip_nodes) { |
894 | 894 |
writeNodes(); |
895 | 895 |
} else { |
896 | 896 |
createNodeIndex(); |
897 | 897 |
} |
898 | 898 |
if (!_skip_arcs) { |
899 | 899 |
writeArcs(); |
900 | 900 |
} else { |
901 | 901 |
createArcIndex(); |
902 | 902 |
} |
903 | 903 |
writeAttributes(); |
904 | 904 |
} |
905 | 905 |
|
906 | 906 |
/// \brief Give back the stream of the writer |
907 | 907 |
/// |
908 | 908 |
/// Give back the stream of the writer. |
909 | 909 |
std::ostream& ostream() { |
910 | 910 |
return *_os; |
911 | 911 |
} |
912 | 912 |
|
913 | 913 |
/// @} |
914 | 914 |
}; |
915 | 915 |
|
916 | 916 |
/// \ingroup lemon_io |
917 | 917 |
/// |
918 | 918 |
/// \brief Return a \ref DigraphWriter class |
919 | 919 |
/// |
920 |
/// This function just returns a \ref DigraphWriter class. |
|
920 |
/// This function just returns a \ref DigraphWriter class. |
|
921 | 921 |
/// |
922 | 922 |
/// With this function a digraph can be write to a file or output |
923 | 923 |
/// stream in \ref lgf-format "LGF" format with several maps and |
924 | 924 |
/// attributes. For example, with the following code a network flow |
925 | 925 |
/// problem can be written to the standard output, i.e. a digraph |
926 | 926 |
/// with a \e capacity map on the arcs and \e source and \e target |
927 | 927 |
/// nodes: |
928 | 928 |
/// |
929 | 929 |
///\code |
930 | 930 |
///ListDigraph digraph; |
931 | 931 |
///ListDigraph::ArcMap<int> cap(digraph); |
932 | 932 |
///ListDigraph::Node src, trg; |
933 | 933 |
/// // Setting the capacity map and source and target nodes |
934 | 934 |
///digraphWriter(digraph, std::cout). |
935 | 935 |
/// arcMap("capacity", cap). |
936 | 936 |
/// node("source", src). |
937 | 937 |
/// node("target", trg). |
938 | 938 |
/// run(); |
939 | 939 |
///\endcode |
940 | 940 |
/// |
941 | 941 |
/// For a complete documentation, please see the \ref DigraphWriter |
942 | 942 |
/// class documentation. |
943 | 943 |
/// \warning Don't forget to put the \ref DigraphWriter::run() "run()" |
944 | 944 |
/// to the end of the parameter list. |
945 | 945 |
/// \relates DigraphWriter |
946 | 946 |
/// \sa digraphWriter(const TDGR& digraph, const std::string& fn) |
947 | 947 |
/// \sa digraphWriter(const TDGR& digraph, const char* fn) |
948 | 948 |
template <typename TDGR> |
949 | 949 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, std::ostream& os) { |
950 | 950 |
DigraphWriter<TDGR> tmp(digraph, os); |
951 | 951 |
return tmp; |
952 | 952 |
} |
953 | 953 |
|
954 | 954 |
/// \brief Return a \ref DigraphWriter class |
955 | 955 |
/// |
956 | 956 |
/// This function just returns a \ref DigraphWriter class. |
957 | 957 |
/// \relates DigraphWriter |
958 | 958 |
/// \sa digraphWriter(const TDGR& digraph, std::ostream& os) |
959 | 959 |
template <typename TDGR> |
960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
961 | 961 |
const std::string& fn) { |
962 | 962 |
DigraphWriter<TDGR> tmp(digraph, fn); |
963 | 963 |
return tmp; |
964 | 964 |
} |
965 | 965 |
|
966 | 966 |
/// \brief Return a \ref DigraphWriter class |
967 | 967 |
/// |
968 | 968 |
/// This function just returns a \ref DigraphWriter class. |
969 | 969 |
/// \relates DigraphWriter |
970 | 970 |
/// \sa digraphWriter(const TDGR& digraph, std::ostream& os) |
971 | 971 |
template <typename TDGR> |
972 | 972 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn) { |
973 | 973 |
DigraphWriter<TDGR> tmp(digraph, fn); |
974 | 974 |
return tmp; |
975 | 975 |
} |
976 | 976 |
|
977 | 977 |
template <typename GR> |
978 | 978 |
class GraphWriter; |
979 | 979 |
|
980 | 980 |
template <typename TGR> |
981 | 981 |
GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os = std::cout); |
982 | 982 |
template <typename TGR> |
983 | 983 |
GraphWriter<TGR> graphWriter(const TGR& graph, const std::string& fn); |
984 | 984 |
template <typename TGR> |
985 | 985 |
GraphWriter<TGR> graphWriter(const TGR& graph, const char* fn); |
986 | 986 |
|
987 | 987 |
/// \ingroup lemon_io |
988 | 988 |
/// |
989 | 989 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
990 | 990 |
/// |
991 | 991 |
/// This utility writes an \ref lgf-format "LGF" file. |
992 | 992 |
/// |
... | ... |
@@ -1072,69 +1072,69 @@ |
1072 | 1072 |
delete _os; |
1073 | 1073 |
throw IoError("Cannot write file", fn); |
1074 | 1074 |
} |
1075 | 1075 |
} |
1076 | 1076 |
|
1077 | 1077 |
/// \brief Destructor |
1078 | 1078 |
~GraphWriter() { |
1079 | 1079 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1080 | 1080 |
it != _node_maps.end(); ++it) { |
1081 | 1081 |
delete it->second; |
1082 | 1082 |
} |
1083 | 1083 |
|
1084 | 1084 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1085 | 1085 |
it != _edge_maps.end(); ++it) { |
1086 | 1086 |
delete it->second; |
1087 | 1087 |
} |
1088 | 1088 |
|
1089 | 1089 |
for (typename Attributes::iterator it = _attributes.begin(); |
1090 | 1090 |
it != _attributes.end(); ++it) { |
1091 | 1091 |
delete it->second; |
1092 | 1092 |
} |
1093 | 1093 |
|
1094 | 1094 |
if (local_os) { |
1095 | 1095 |
delete _os; |
1096 | 1096 |
} |
1097 | 1097 |
} |
1098 | 1098 |
|
1099 | 1099 |
private: |
1100 | 1100 |
|
1101 | 1101 |
template <typename TGR> |
1102 | 1102 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os); |
1103 | 1103 |
template <typename TGR> |
1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
1105 | 1105 |
const std::string& fn); |
1106 | 1106 |
template <typename TGR> |
1107 | 1107 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, const char *fn); |
1108 |
|
|
1108 |
|
|
1109 | 1109 |
GraphWriter(GraphWriter& other) |
1110 | 1110 |
: _os(other._os), local_os(other.local_os), _graph(other._graph), |
1111 | 1111 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1112 | 1112 |
|
1113 | 1113 |
other._os = 0; |
1114 | 1114 |
other.local_os = false; |
1115 | 1115 |
|
1116 | 1116 |
_node_index.swap(other._node_index); |
1117 | 1117 |
_edge_index.swap(other._edge_index); |
1118 | 1118 |
|
1119 | 1119 |
_node_maps.swap(other._node_maps); |
1120 | 1120 |
_edge_maps.swap(other._edge_maps); |
1121 | 1121 |
_attributes.swap(other._attributes); |
1122 | 1122 |
|
1123 | 1123 |
_nodes_caption = other._nodes_caption; |
1124 | 1124 |
_edges_caption = other._edges_caption; |
1125 | 1125 |
_attributes_caption = other._attributes_caption; |
1126 | 1126 |
} |
1127 | 1127 |
|
1128 | 1128 |
GraphWriter& operator=(const GraphWriter&); |
1129 | 1129 |
|
1130 | 1130 |
public: |
1131 | 1131 |
|
1132 | 1132 |
/// \name Writing Rules |
1133 | 1133 |
/// @{ |
1134 | 1134 |
|
1135 | 1135 |
/// \brief Node map writing rule |
1136 | 1136 |
/// |
1137 | 1137 |
/// Add a node map writing rule to the writer. |
1138 | 1138 |
template <typename Map> |
1139 | 1139 |
GraphWriter& nodeMap(const std::string& caption, const Map& map) { |
1140 | 1140 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
... | ... |
@@ -1527,65 +1527,65 @@ |
1527 | 1527 |
|
1528 | 1528 |
/// \brief Start the batch processing |
1529 | 1529 |
/// |
1530 | 1530 |
/// This function starts the batch processing. |
1531 | 1531 |
void run() { |
1532 | 1532 |
if (!_skip_nodes) { |
1533 | 1533 |
writeNodes(); |
1534 | 1534 |
} else { |
1535 | 1535 |
createNodeIndex(); |
1536 | 1536 |
} |
1537 | 1537 |
if (!_skip_edges) { |
1538 | 1538 |
writeEdges(); |
1539 | 1539 |
} else { |
1540 | 1540 |
createEdgeIndex(); |
1541 | 1541 |
} |
1542 | 1542 |
writeAttributes(); |
1543 | 1543 |
} |
1544 | 1544 |
|
1545 | 1545 |
/// \brief Give back the stream of the writer |
1546 | 1546 |
/// |
1547 | 1547 |
/// Give back the stream of the writer |
1548 | 1548 |
std::ostream& ostream() { |
1549 | 1549 |
return *_os; |
1550 | 1550 |
} |
1551 | 1551 |
|
1552 | 1552 |
/// @} |
1553 | 1553 |
}; |
1554 | 1554 |
|
1555 | 1555 |
/// \ingroup lemon_io |
1556 | 1556 |
/// |
1557 | 1557 |
/// \brief Return a \ref GraphWriter class |
1558 | 1558 |
/// |
1559 |
/// This function just returns a \ref GraphWriter class. |
|
1559 |
/// This function just returns a \ref GraphWriter class. |
|
1560 | 1560 |
/// |
1561 | 1561 |
/// With this function a graph can be write to a file or output |
1562 | 1562 |
/// stream in \ref lgf-format "LGF" format with several maps and |
1563 | 1563 |
/// attributes. For example, with the following code a weighted |
1564 | 1564 |
/// matching problem can be written to the standard output, i.e. a |
1565 | 1565 |
/// graph with a \e weight map on the edges: |
1566 | 1566 |
/// |
1567 | 1567 |
///\code |
1568 | 1568 |
///ListGraph graph; |
1569 | 1569 |
///ListGraph::EdgeMap<int> weight(graph); |
1570 | 1570 |
/// // Setting the weight map |
1571 | 1571 |
///graphWriter(graph, std::cout). |
1572 | 1572 |
/// edgeMap("weight", weight). |
1573 | 1573 |
/// run(); |
1574 | 1574 |
///\endcode |
1575 | 1575 |
/// |
1576 | 1576 |
/// For a complete documentation, please see the \ref GraphWriter |
1577 | 1577 |
/// class documentation. |
1578 | 1578 |
/// \warning Don't forget to put the \ref GraphWriter::run() "run()" |
1579 | 1579 |
/// to the end of the parameter list. |
1580 | 1580 |
/// \relates GraphWriter |
1581 | 1581 |
/// \sa graphWriter(const TGR& graph, const std::string& fn) |
1582 | 1582 |
/// \sa graphWriter(const TGR& graph, const char* fn) |
1583 | 1583 |
template <typename TGR> |
1584 | 1584 |
GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os) { |
1585 | 1585 |
GraphWriter<TGR> tmp(graph, os); |
1586 | 1586 |
return tmp; |
1587 | 1587 |
} |
1588 | 1588 |
|
1589 | 1589 |
/// \brief Return a \ref GraphWriter class |
1590 | 1590 |
/// |
1591 | 1591 |
/// This function just returns a \ref GraphWriter class. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_H |
20 | 20 |
#define LEMON_LP_H |
21 | 21 |
|
22 | 22 |
#include<lemon/config.h> |
23 | 23 |
|
24 | 24 |
|
25 | 25 |
#ifdef LEMON_HAVE_GLPK |
26 | 26 |
#include <lemon/glpk.h> |
27 | 27 |
#elif LEMON_HAVE_CPLEX |
28 | 28 |
#include <lemon/cplex.h> |
29 | 29 |
#elif LEMON_HAVE_SOPLEX |
30 | 30 |
#include <lemon/soplex.h> |
31 | 31 |
#elif LEMON_HAVE_CLP |
32 | 32 |
#include <lemon/clp.h> |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
///\file |
36 | 36 |
///\brief Defines a default LP solver |
37 | 37 |
///\ingroup lp_group |
... | ... |
@@ -55,39 +55,39 @@ |
55 | 55 |
typedef GlpkLp Lp; |
56 | 56 |
|
57 | 57 |
///The default MIP solver identifier |
58 | 58 |
|
59 | 59 |
///The default MIP solver identifier. |
60 | 60 |
///\ingroup lp_group |
61 | 61 |
/// |
62 | 62 |
///Currently, the possible values are \c GLPK or \c CPLEX |
63 | 63 |
#define LEMON_DEFAULT_MIP SOLVER |
64 | 64 |
///The default MIP solver. |
65 | 65 |
|
66 | 66 |
///The default MIP solver. |
67 | 67 |
///\ingroup lp_group |
68 | 68 |
/// |
69 | 69 |
///Currently, it is either \c GlpkMip or \c CplexMip |
70 | 70 |
typedef GlpkMip Mip; |
71 | 71 |
#else |
72 | 72 |
#ifdef LEMON_HAVE_GLPK |
73 | 73 |
# define LEMON_DEFAULT_LP GLPK |
74 | 74 |
typedef GlpkLp Lp; |
75 | 75 |
# define LEMON_DEFAULT_MIP GLPK |
76 | 76 |
typedef GlpkMip Mip; |
77 | 77 |
#elif LEMON_HAVE_CPLEX |
78 | 78 |
# define LEMON_DEFAULT_LP CPLEX |
79 | 79 |
typedef CplexLp Lp; |
80 | 80 |
# define LEMON_DEFAULT_MIP CPLEX |
81 | 81 |
typedef CplexMip Mip; |
82 | 82 |
#elif LEMON_HAVE_SOPLEX |
83 | 83 |
# define DEFAULT_LP SOPLEX |
84 | 84 |
typedef SoplexLp Lp; |
85 | 85 |
#elif LEMON_HAVE_CLP |
86 | 86 |
# define DEFAULT_LP CLP |
87 |
typedef ClpLp Lp; |
|
87 |
typedef ClpLp Lp; |
|
88 | 88 |
#endif |
89 | 89 |
#endif |
90 | 90 |
|
91 | 91 |
} //namespace lemon |
92 | 92 |
|
93 | 93 |
#endif //LEMON_LP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief The implementation of the LP solver interface. |
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
namespace lemon { |
24 | 24 |
|
25 | 25 |
const LpBase::Value LpBase::INF = |
26 | 26 |
std::numeric_limits<LpBase::Value>::infinity(); |
27 | 27 |
const LpBase::Value LpBase::NaN = |
28 | 28 |
std::numeric_limits<LpBase::Value>::quiet_NaN(); |
29 | 29 |
|
30 | 30 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_BASE_H |
20 | 20 |
#define LEMON_LP_BASE_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<vector> |
24 | 24 |
#include<map> |
25 | 25 |
#include<limits> |
26 | 26 |
#include<lemon/math.h> |
27 | 27 |
|
28 | 28 |
#include<lemon/error.h> |
29 | 29 |
#include<lemon/assert.h> |
30 | 30 |
|
31 | 31 |
#include<lemon/core.h> |
32 | 32 |
#include<lemon/bits/solver_bits.h> |
33 | 33 |
|
34 | 34 |
///\file |
35 | 35 |
///\brief The interface of the LP solver interface. |
36 | 36 |
///\ingroup lp_group |
37 | 37 |
namespace lemon { |
... | ... |
@@ -53,252 +53,252 @@ |
53 | 53 |
///Possible outcomes of an LP solving procedure |
54 | 54 |
enum SolveExitStatus { |
55 | 55 |
/// = 0. It means that the problem has been successfully solved: either |
56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
57 | 57 |
///has been proved. |
58 | 58 |
SOLVED = 0, |
59 | 59 |
/// = 1. Any other case (including the case when some user specified |
60 | 60 |
///limit has been exceeded). |
61 | 61 |
UNSOLVED = 1 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
///Direction of the optimization |
65 | 65 |
enum Sense { |
66 | 66 |
/// Minimization |
67 | 67 |
MIN, |
68 | 68 |
/// Maximization |
69 | 69 |
MAX |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Enum for \c messageLevel() parameter |
73 | 73 |
enum MessageLevel { |
74 | 74 |
/// No output (default value). |
75 | 75 |
MESSAGE_NOTHING, |
76 | 76 |
/// Error messages only. |
77 | 77 |
MESSAGE_ERROR, |
78 | 78 |
/// Warnings. |
79 | 79 |
MESSAGE_WARNING, |
80 | 80 |
/// Normal output. |
81 | 81 |
MESSAGE_NORMAL, |
82 | 82 |
/// Verbose output. |
83 | 83 |
MESSAGE_VERBOSE |
84 | 84 |
}; |
85 |
|
|
85 |
|
|
86 | 86 |
|
87 | 87 |
///The floating point type used by the solver |
88 | 88 |
typedef double Value; |
89 | 89 |
///The infinity constant |
90 | 90 |
static const Value INF; |
91 | 91 |
///The not a number constant |
92 | 92 |
static const Value NaN; |
93 | 93 |
|
94 | 94 |
friend class Col; |
95 | 95 |
friend class ColIt; |
96 | 96 |
friend class Row; |
97 | 97 |
friend class RowIt; |
98 | 98 |
|
99 | 99 |
///Refer to a column of the LP. |
100 | 100 |
|
101 | 101 |
///This type is used to refer to a column of the LP. |
102 | 102 |
/// |
103 | 103 |
///Its value remains valid and correct even after the addition or erase of |
104 | 104 |
///other columns. |
105 | 105 |
/// |
106 | 106 |
///\note This class is similar to other Item types in LEMON, like |
107 | 107 |
///Node and Arc types in digraph. |
108 | 108 |
class Col { |
109 | 109 |
friend class LpBase; |
110 | 110 |
protected: |
111 | 111 |
int _id; |
112 | 112 |
explicit Col(int id) : _id(id) {} |
113 | 113 |
public: |
114 | 114 |
typedef Value ExprValue; |
115 | 115 |
typedef True LpCol; |
116 | 116 |
/// Default constructor |
117 |
|
|
117 |
|
|
118 | 118 |
/// \warning The default constructor sets the Col to an |
119 | 119 |
/// undefined value. |
120 | 120 |
Col() {} |
121 | 121 |
/// Invalid constructor \& conversion. |
122 |
|
|
122 |
|
|
123 | 123 |
/// This constructor initializes the Col to be invalid. |
124 |
/// \sa Invalid for more details. |
|
124 |
/// \sa Invalid for more details. |
|
125 | 125 |
Col(const Invalid&) : _id(-1) {} |
126 | 126 |
/// Equality operator |
127 | 127 |
|
128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
129 | 129 |
/// the same LP column or both are invalid. |
130 | 130 |
bool operator==(Col c) const {return _id == c._id;} |
131 | 131 |
/// Inequality operator |
132 | 132 |
|
133 | 133 |
/// \sa operator==(Col c) |
134 | 134 |
/// |
135 | 135 |
bool operator!=(Col c) const {return _id != c._id;} |
136 | 136 |
/// Artificial ordering operator. |
137 | 137 |
|
138 | 138 |
/// To allow the use of this object in std::map or similar |
139 | 139 |
/// associative container we require this. |
140 | 140 |
/// |
141 | 141 |
/// \note This operator only have to define some strict ordering of |
142 | 142 |
/// the items; this order has nothing to do with the iteration |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 | 149 |
/// Its usage is quite simple, for example you can count the number |
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 |
|
|
159 |
|
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
162 | 162 |
ColIt() {} |
163 | 163 |
/// Sets the iterator to the first Col |
164 |
|
|
164 |
|
|
165 | 165 |
/// Sets the iterator to the first Col. |
166 | 166 |
/// |
167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
168 | 168 |
{ |
169 | 169 |
_solver->cols.firstItem(_id); |
170 | 170 |
} |
171 | 171 |
/// Invalid constructor \& conversion |
172 |
|
|
172 |
|
|
173 | 173 |
/// Initialize the iterator to be invalid. |
174 | 174 |
/// \sa Invalid for more details. |
175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {} |
176 | 176 |
/// Next column |
177 |
|
|
177 |
|
|
178 | 178 |
/// Assign the iterator to the next column. |
179 | 179 |
/// |
180 | 180 |
ColIt &operator++() |
181 | 181 |
{ |
182 | 182 |
_solver->cols.nextItem(_id); |
183 | 183 |
return *this; |
184 | 184 |
} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// \brief Returns the ID of the column. |
188 | 188 |
static int id(const Col& col) { return col._id; } |
189 | 189 |
/// \brief Returns the column with the given ID. |
190 | 190 |
/// |
191 | 191 |
/// \pre The argument should be a valid column ID in the LP problem. |
192 | 192 |
static Col colFromId(int id) { return Col(id); } |
193 | 193 |
|
194 | 194 |
///Refer to a row of the LP. |
195 | 195 |
|
196 | 196 |
///This type is used to refer to a row of the LP. |
197 | 197 |
/// |
198 | 198 |
///Its value remains valid and correct even after the addition or erase of |
199 | 199 |
///other rows. |
200 | 200 |
/// |
201 | 201 |
///\note This class is similar to other Item types in LEMON, like |
202 | 202 |
///Node and Arc types in digraph. |
203 | 203 |
class Row { |
204 | 204 |
friend class LpBase; |
205 | 205 |
protected: |
206 | 206 |
int _id; |
207 | 207 |
explicit Row(int id) : _id(id) {} |
208 | 208 |
public: |
209 | 209 |
typedef Value ExprValue; |
210 | 210 |
typedef True LpRow; |
211 | 211 |
/// Default constructor |
212 |
|
|
212 |
|
|
213 | 213 |
/// \warning The default constructor sets the Row to an |
214 | 214 |
/// undefined value. |
215 | 215 |
Row() {} |
216 | 216 |
/// Invalid constructor \& conversion. |
217 |
|
|
217 |
|
|
218 | 218 |
/// This constructor initializes the Row to be invalid. |
219 |
/// \sa Invalid for more details. |
|
219 |
/// \sa Invalid for more details. |
|
220 | 220 |
Row(const Invalid&) : _id(-1) {} |
221 | 221 |
/// Equality operator |
222 | 222 |
|
223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
224 | 224 |
/// the same LP row or both are invalid. |
225 | 225 |
bool operator==(Row r) const {return _id == r._id;} |
226 | 226 |
/// Inequality operator |
227 |
|
|
227 |
|
|
228 | 228 |
/// \sa operator==(Row r) |
229 | 229 |
/// |
230 | 230 |
bool operator!=(Row r) const {return _id != r._id;} |
231 | 231 |
/// Artificial ordering operator. |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 | 244 |
/// Its usage is quite simple, for example you can count the number |
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 |
|
|
254 |
|
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
257 | 257 |
RowIt() {} |
258 | 258 |
/// Sets the iterator to the first Row |
259 |
|
|
259 |
|
|
260 | 260 |
/// Sets the iterator to the first Row. |
261 | 261 |
/// |
262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
263 | 263 |
{ |
264 | 264 |
_solver->rows.firstItem(_id); |
265 | 265 |
} |
266 | 266 |
/// Invalid constructor \& conversion |
267 |
|
|
267 |
|
|
268 | 268 |
/// Initialize the iterator to be invalid. |
269 | 269 |
/// \sa Invalid for more details. |
270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {} |
271 | 271 |
/// Next row |
272 |
|
|
272 |
|
|
273 | 273 |
/// Assign the iterator to the next row. |
274 | 274 |
/// |
275 | 275 |
RowIt &operator++() |
276 | 276 |
{ |
277 | 277 |
_solver->rows.nextItem(_id); |
278 | 278 |
return *this; |
279 | 279 |
} |
280 | 280 |
}; |
281 | 281 |
|
282 | 282 |
/// \brief Returns the ID of the row. |
283 | 283 |
static int id(const Row& row) { return row._id; } |
284 | 284 |
/// \brief Returns the row with the given ID. |
285 | 285 |
/// |
286 | 286 |
/// \pre The argument should be a valid row ID in the LP problem. |
287 | 287 |
static Row rowFromId(int id) { return Row(id); } |
288 | 288 |
|
289 | 289 |
public: |
290 | 290 |
|
291 | 291 |
///Linear expression of variables and a constant component |
292 | 292 |
|
293 | 293 |
///This data structure stores a linear expression of the variables |
294 | 294 |
///(\ref Col "Col"s) and also has a constant component. |
295 | 295 |
/// |
296 | 296 |
///There are several ways to access and modify the contents of this |
297 | 297 |
///container. |
298 | 298 |
///\code |
299 | 299 |
///e[v]=5; |
300 | 300 |
///e[v]+=12; |
301 | 301 |
///e.erase(v); |
302 | 302 |
///\endcode |
303 | 303 |
///or you can also iterate through its elements. |
304 | 304 |
///\code |
... | ... |
@@ -318,65 +318,65 @@ |
318 | 318 |
///are valid expressions. |
319 | 319 |
///The usual assignment operations are also defined. |
320 | 320 |
///\code |
321 | 321 |
///e=v+w; |
322 | 322 |
///e+=2*v-3.12*(v-w/2)+2; |
323 | 323 |
///e*=3.4; |
324 | 324 |
///e/=5; |
325 | 325 |
///\endcode |
326 | 326 |
///- The constant member can be set and read by dereference |
327 | 327 |
/// operator (unary *) |
328 | 328 |
/// |
329 | 329 |
///\code |
330 | 330 |
///*e=12; |
331 | 331 |
///double c=*e; |
332 | 332 |
///\endcode |
333 | 333 |
/// |
334 | 334 |
///\sa Constr |
335 | 335 |
class Expr { |
336 | 336 |
friend class LpBase; |
337 | 337 |
public: |
338 | 338 |
/// The key type of the expression |
339 | 339 |
typedef LpBase::Col Key; |
340 | 340 |
/// The value type of the expression |
341 | 341 |
typedef LpBase::Value Value; |
342 | 342 |
|
343 | 343 |
protected: |
344 | 344 |
Value const_comp; |
345 | 345 |
std::map<int, Value> comps; |
346 | 346 |
|
347 | 347 |
public: |
348 | 348 |
typedef True SolverExpr; |
349 | 349 |
/// Default constructor |
350 |
|
|
350 |
|
|
351 | 351 |
/// Construct an empty expression, the coefficients and |
352 | 352 |
/// the constant component are initialized to zero. |
353 | 353 |
Expr() : const_comp(0) {} |
354 | 354 |
/// Construct an expression from a column |
355 | 355 |
|
356 | 356 |
/// Construct an expression, which has a term with \c c variable |
357 | 357 |
/// and 1.0 coefficient. |
358 | 358 |
Expr(const Col &c) : const_comp(0) { |
359 | 359 |
typedef std::map<int, Value>::value_type pair_type; |
360 | 360 |
comps.insert(pair_type(id(c), 1)); |
361 | 361 |
} |
362 | 362 |
/// Construct an expression from a constant |
363 | 363 |
|
364 | 364 |
/// Construct an expression, which's constant component is \c v. |
365 | 365 |
/// |
366 | 366 |
Expr(const Value &v) : const_comp(v) {} |
367 | 367 |
/// Returns the coefficient of the column |
368 | 368 |
Value operator[](const Col& c) const { |
369 | 369 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
370 | 370 |
if (it != comps.end()) { |
371 | 371 |
return it->second; |
372 | 372 |
} else { |
373 | 373 |
return 0; |
374 | 374 |
} |
375 | 375 |
} |
376 | 376 |
/// Returns the coefficient of the column |
377 | 377 |
Value& operator[](const Col& c) { |
378 | 378 |
return comps[id(c)]; |
379 | 379 |
} |
380 | 380 |
/// Sets the coefficient of the column |
381 | 381 |
void set(const Col &c, const Value &v) { |
382 | 382 |
if (v != 0.0) { |
... | ... |
@@ -419,141 +419,141 @@ |
419 | 419 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
420 | 420 |
it!=e.comps.end(); ++it) |
421 | 421 |
comps[it->first]+=it->second; |
422 | 422 |
const_comp+=e.const_comp; |
423 | 423 |
return *this; |
424 | 424 |
} |
425 | 425 |
///Compound assignment |
426 | 426 |
Expr &operator-=(const Expr &e) { |
427 | 427 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
428 | 428 |
it!=e.comps.end(); ++it) |
429 | 429 |
comps[it->first]-=it->second; |
430 | 430 |
const_comp-=e.const_comp; |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
///Multiply with a constant |
434 | 434 |
Expr &operator*=(const Value &v) { |
435 | 435 |
for (std::map<int, Value>::iterator it=comps.begin(); |
436 | 436 |
it!=comps.end(); ++it) |
437 | 437 |
it->second*=v; |
438 | 438 |
const_comp*=v; |
439 | 439 |
return *this; |
440 | 440 |
} |
441 | 441 |
///Division with a constant |
442 | 442 |
Expr &operator/=(const Value &c) { |
443 | 443 |
for (std::map<int, Value>::iterator it=comps.begin(); |
444 | 444 |
it!=comps.end(); ++it) |
445 | 445 |
it->second/=c; |
446 | 446 |
const_comp/=c; |
447 | 447 |
return *this; |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
///Iterator over the expression |
451 |
|
|
452 |
///The iterator iterates over the terms of the expression. |
|
453 |
|
|
451 |
|
|
452 |
///The iterator iterates over the terms of the expression. |
|
453 |
/// |
|
454 | 454 |
///\code |
455 | 455 |
///double s=0; |
456 | 456 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
457 | 457 |
/// s+= *i * primal(i); |
458 | 458 |
///\endcode |
459 | 459 |
class CoeffIt { |
460 | 460 |
private: |
461 | 461 |
|
462 | 462 |
std::map<int, Value>::iterator _it, _end; |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
/// Sets the iterator to the first term |
467 |
|
|
467 |
|
|
468 | 468 |
/// Sets the iterator to the first term of the expression. |
469 | 469 |
/// |
470 | 470 |
CoeffIt(Expr& e) |
471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
472 | 472 |
|
473 | 473 |
/// Convert the iterator to the column of the term |
474 | 474 |
operator Col() const { |
475 | 475 |
return colFromId(_it->first); |
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
/// Returns the coefficient of the term |
479 | 479 |
Value& operator*() { return _it->second; } |
480 | 480 |
|
481 | 481 |
/// Returns the coefficient of the term |
482 | 482 |
const Value& operator*() const { return _it->second; } |
483 | 483 |
/// Next term |
484 |
|
|
484 |
|
|
485 | 485 |
/// Assign the iterator to the next term. |
486 | 486 |
/// |
487 | 487 |
CoeffIt& operator++() { ++_it; return *this; } |
488 | 488 |
|
489 | 489 |
/// Equality operator |
490 | 490 |
bool operator==(Invalid) const { return _it == _end; } |
491 | 491 |
/// Inequality operator |
492 | 492 |
bool operator!=(Invalid) const { return _it != _end; } |
493 | 493 |
}; |
494 | 494 |
|
495 | 495 |
/// Const iterator over the expression |
496 |
|
|
497 |
///The iterator iterates over the terms of the expression. |
|
498 |
|
|
496 |
|
|
497 |
///The iterator iterates over the terms of the expression. |
|
498 |
/// |
|
499 | 499 |
///\code |
500 | 500 |
///double s=0; |
501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
502 | 502 |
/// s+=*i * primal(i); |
503 | 503 |
///\endcode |
504 | 504 |
class ConstCoeffIt { |
505 | 505 |
private: |
506 | 506 |
|
507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
508 | 508 |
|
509 | 509 |
public: |
510 | 510 |
|
511 | 511 |
/// Sets the iterator to the first term |
512 |
|
|
512 |
|
|
513 | 513 |
/// Sets the iterator to the first term of the expression. |
514 | 514 |
/// |
515 | 515 |
ConstCoeffIt(const Expr& e) |
516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
517 | 517 |
|
518 | 518 |
/// Convert the iterator to the column of the term |
519 | 519 |
operator Col() const { |
520 | 520 |
return colFromId(_it->first); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// Returns the coefficient of the term |
524 | 524 |
const Value& operator*() const { return _it->second; } |
525 | 525 |
|
526 | 526 |
/// Next term |
527 |
|
|
527 |
|
|
528 | 528 |
/// Assign the iterator to the next term. |
529 | 529 |
/// |
530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
531 | 531 |
|
532 | 532 |
/// Equality operator |
533 | 533 |
bool operator==(Invalid) const { return _it == _end; } |
534 | 534 |
/// Inequality operator |
535 | 535 |
bool operator!=(Invalid) const { return _it != _end; } |
536 | 536 |
}; |
537 | 537 |
|
538 | 538 |
}; |
539 | 539 |
|
540 | 540 |
///Linear constraint |
541 | 541 |
|
542 | 542 |
///This data stucture represents a linear constraint in the LP. |
543 | 543 |
///Basically it is a linear expression with a lower or an upper bound |
544 | 544 |
///(or both). These parts of the constraint can be obtained by the member |
545 | 545 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
546 | 546 |
///respectively. |
547 | 547 |
///There are two ways to construct a constraint. |
548 | 548 |
///- You can set the linear expression and the bounds directly |
549 | 549 |
/// by the functions above. |
550 | 550 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
551 | 551 |
/// are defined between expressions, or even between constraints whenever |
552 | 552 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
553 | 553 |
/// \c s and \c t are numbers, then the followings are valid expressions |
554 | 554 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
555 | 555 |
/// it makes sense. |
556 | 556 |
///\code |
557 | 557 |
/// e<=s |
558 | 558 |
/// e<=f |
559 | 559 |
/// e==f |
... | ... |
@@ -644,226 +644,226 @@ |
644 | 644 |
///- Numbers (<tt>double</tt>'s) |
645 | 645 |
///and variables (\ref Row "Row"s) directly convert to an |
646 | 646 |
///\ref DualExpr and the usual linear operations are defined, so |
647 | 647 |
///\code |
648 | 648 |
///v+w |
649 | 649 |
///2*v-3.12*(v-w/2) |
650 | 650 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
651 | 651 |
///\endcode |
652 | 652 |
///are valid \ref DualExpr dual expressions. |
653 | 653 |
///The usual assignment operations are also defined. |
654 | 654 |
///\code |
655 | 655 |
///e=v+w; |
656 | 656 |
///e+=2*v-3.12*(v-w/2); |
657 | 657 |
///e*=3.4; |
658 | 658 |
///e/=5; |
659 | 659 |
///\endcode |
660 | 660 |
/// |
661 | 661 |
///\sa Expr |
662 | 662 |
class DualExpr { |
663 | 663 |
friend class LpBase; |
664 | 664 |
public: |
665 | 665 |
/// The key type of the expression |
666 | 666 |
typedef LpBase::Row Key; |
667 | 667 |
/// The value type of the expression |
668 | 668 |
typedef LpBase::Value Value; |
669 | 669 |
|
670 | 670 |
protected: |
671 | 671 |
std::map<int, Value> comps; |
672 | 672 |
|
673 | 673 |
public: |
674 | 674 |
typedef True SolverExpr; |
675 | 675 |
/// Default constructor |
676 |
|
|
676 |
|
|
677 | 677 |
/// Construct an empty expression, the coefficients are |
678 | 678 |
/// initialized to zero. |
679 | 679 |
DualExpr() {} |
680 | 680 |
/// Construct an expression from a row |
681 | 681 |
|
682 | 682 |
/// Construct an expression, which has a term with \c r dual |
683 | 683 |
/// variable and 1.0 coefficient. |
684 | 684 |
DualExpr(const Row &r) { |
685 | 685 |
typedef std::map<int, Value>::value_type pair_type; |
686 | 686 |
comps.insert(pair_type(id(r), 1)); |
687 | 687 |
} |
688 | 688 |
/// Returns the coefficient of the row |
689 | 689 |
Value operator[](const Row& r) const { |
690 | 690 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
691 | 691 |
if (it != comps.end()) { |
692 | 692 |
return it->second; |
693 | 693 |
} else { |
694 | 694 |
return 0; |
695 | 695 |
} |
696 | 696 |
} |
697 | 697 |
/// Returns the coefficient of the row |
698 | 698 |
Value& operator[](const Row& r) { |
699 | 699 |
return comps[id(r)]; |
700 | 700 |
} |
701 | 701 |
/// Sets the coefficient of the row |
702 | 702 |
void set(const Row &r, const Value &v) { |
703 | 703 |
if (v != 0.0) { |
704 | 704 |
typedef std::map<int, Value>::value_type pair_type; |
705 | 705 |
comps.insert(pair_type(id(r), v)); |
706 | 706 |
} else { |
707 | 707 |
comps.erase(id(r)); |
708 | 708 |
} |
709 | 709 |
} |
710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
711 |
/// not exceed \c epsilon. |
|
711 |
/// not exceed \c epsilon. |
|
712 | 712 |
void simplify(Value epsilon = 0.0) { |
713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
714 | 714 |
while (it != comps.end()) { |
715 | 715 |
std::map<int, Value>::iterator jt=it; |
716 | 716 |
++jt; |
717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
718 | 718 |
it=jt; |
719 | 719 |
} |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
void simplify(Value epsilon = 0.0) const { |
723 | 723 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
///Sets all coefficients to 0. |
727 | 727 |
void clear() { |
728 | 728 |
comps.clear(); |
729 | 729 |
} |
730 | 730 |
///Compound assignment |
731 | 731 |
DualExpr &operator+=(const DualExpr &e) { |
732 | 732 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
733 | 733 |
it!=e.comps.end(); ++it) |
734 | 734 |
comps[it->first]+=it->second; |
735 | 735 |
return *this; |
736 | 736 |
} |
737 | 737 |
///Compound assignment |
738 | 738 |
DualExpr &operator-=(const DualExpr &e) { |
739 | 739 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
740 | 740 |
it!=e.comps.end(); ++it) |
741 | 741 |
comps[it->first]-=it->second; |
742 | 742 |
return *this; |
743 | 743 |
} |
744 | 744 |
///Multiply with a constant |
745 | 745 |
DualExpr &operator*=(const Value &v) { |
746 | 746 |
for (std::map<int, Value>::iterator it=comps.begin(); |
747 | 747 |
it!=comps.end(); ++it) |
748 | 748 |
it->second*=v; |
749 | 749 |
return *this; |
750 | 750 |
} |
751 | 751 |
///Division with a constant |
752 | 752 |
DualExpr &operator/=(const Value &v) { |
753 | 753 |
for (std::map<int, Value>::iterator it=comps.begin(); |
754 | 754 |
it!=comps.end(); ++it) |
755 | 755 |
it->second/=v; |
756 | 756 |
return *this; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
///Iterator over the expression |
760 |
|
|
761 |
///The iterator iterates over the terms of the expression. |
|
762 |
|
|
760 |
|
|
761 |
///The iterator iterates over the terms of the expression. |
|
762 |
/// |
|
763 | 763 |
///\code |
764 | 764 |
///double s=0; |
765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
766 | 766 |
/// s+= *i * dual(i); |
767 | 767 |
///\endcode |
768 | 768 |
class CoeffIt { |
769 | 769 |
private: |
770 | 770 |
|
771 | 771 |
std::map<int, Value>::iterator _it, _end; |
772 | 772 |
|
773 | 773 |
public: |
774 | 774 |
|
775 | 775 |
/// Sets the iterator to the first term |
776 |
|
|
776 |
|
|
777 | 777 |
/// Sets the iterator to the first term of the expression. |
778 | 778 |
/// |
779 | 779 |
CoeffIt(DualExpr& e) |
780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
781 | 781 |
|
782 | 782 |
/// Convert the iterator to the row of the term |
783 | 783 |
operator Row() const { |
784 | 784 |
return rowFromId(_it->first); |
785 | 785 |
} |
786 | 786 |
|
787 | 787 |
/// Returns the coefficient of the term |
788 | 788 |
Value& operator*() { return _it->second; } |
789 | 789 |
|
790 | 790 |
/// Returns the coefficient of the term |
791 | 791 |
const Value& operator*() const { return _it->second; } |
792 | 792 |
|
793 | 793 |
/// Next term |
794 |
|
|
794 |
|
|
795 | 795 |
/// Assign the iterator to the next term. |
796 | 796 |
/// |
797 | 797 |
CoeffIt& operator++() { ++_it; return *this; } |
798 | 798 |
|
799 | 799 |
/// Equality operator |
800 | 800 |
bool operator==(Invalid) const { return _it == _end; } |
801 | 801 |
/// Inequality operator |
802 | 802 |
bool operator!=(Invalid) const { return _it != _end; } |
803 | 803 |
}; |
804 | 804 |
|
805 | 805 |
///Iterator over the expression |
806 |
|
|
807 |
///The iterator iterates over the terms of the expression. |
|
808 |
|
|
806 |
|
|
807 |
///The iterator iterates over the terms of the expression. |
|
808 |
/// |
|
809 | 809 |
///\code |
810 | 810 |
///double s=0; |
811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
812 | 812 |
/// s+= *i * dual(i); |
813 | 813 |
///\endcode |
814 | 814 |
class ConstCoeffIt { |
815 | 815 |
private: |
816 | 816 |
|
817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
818 | 818 |
|
819 | 819 |
public: |
820 | 820 |
|
821 | 821 |
/// Sets the iterator to the first term |
822 |
|
|
822 |
|
|
823 | 823 |
/// Sets the iterator to the first term of the expression. |
824 | 824 |
/// |
825 | 825 |
ConstCoeffIt(const DualExpr& e) |
826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
827 | 827 |
|
828 | 828 |
/// Convert the iterator to the row of the term |
829 | 829 |
operator Row() const { |
830 | 830 |
return rowFromId(_it->first); |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
/// Returns the coefficient of the term |
834 | 834 |
const Value& operator*() const { return _it->second; } |
835 | 835 |
|
836 | 836 |
/// Next term |
837 |
|
|
837 |
|
|
838 | 838 |
/// Assign the iterator to the next term. |
839 | 839 |
/// |
840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
841 | 841 |
|
842 | 842 |
/// Equality operator |
843 | 843 |
bool operator==(Invalid) const { return _it == _end; } |
844 | 844 |
/// Inequality operator |
845 | 845 |
bool operator!=(Invalid) const { return _it != _end; } |
846 | 846 |
}; |
847 | 847 |
}; |
848 | 848 |
|
849 | 849 |
|
850 | 850 |
protected: |
851 | 851 |
|
852 | 852 |
class InsertIterator { |
853 | 853 |
private: |
854 | 854 |
|
855 | 855 |
std::map<int, Value>& _host; |
856 | 856 |
const _solver_bits::VarIndex& _index; |
857 | 857 |
|
858 | 858 |
public: |
859 | 859 |
|
860 | 860 |
typedef std::output_iterator_tag iterator_category; |
861 | 861 |
typedef void difference_type; |
862 | 862 |
typedef void value_type; |
863 | 863 |
typedef void reference; |
864 | 864 |
typedef void pointer; |
865 | 865 |
|
866 | 866 |
InsertIterator(std::map<int, Value>& host, |
867 | 867 |
const _solver_bits::VarIndex& index) |
868 | 868 |
: _host(host), _index(index) {} |
869 | 869 |
|
... | ... |
@@ -1774,68 +1774,68 @@ |
1774 | 1774 |
|
1775 | 1775 |
/// \ingroup lp_group |
1776 | 1776 |
/// |
1777 | 1777 |
/// \brief Common base class for LP solvers |
1778 | 1778 |
/// |
1779 | 1779 |
/// This class is an abstract base class for LP solvers. This class |
1780 | 1780 |
/// provides a full interface for set and modify an LP problem, |
1781 | 1781 |
/// solve it and retrieve the solution. You can use one of the |
1782 | 1782 |
/// descendants as a concrete implementation, or the \c Lp |
1783 | 1783 |
/// default LP solver. However, if you would like to handle LP |
1784 | 1784 |
/// solvers as reference or pointer in a generic way, you can use |
1785 | 1785 |
/// this class directly. |
1786 | 1786 |
class LpSolver : virtual public LpBase { |
1787 | 1787 |
public: |
1788 | 1788 |
|
1789 | 1789 |
/// The problem types for primal and dual problems |
1790 | 1790 |
enum ProblemType { |
1791 | 1791 |
/// = 0. Feasible solution hasn't been found (but may exist). |
1792 | 1792 |
UNDEFINED = 0, |
1793 | 1793 |
/// = 1. The problem has no feasible solution. |
1794 | 1794 |
INFEASIBLE = 1, |
1795 | 1795 |
/// = 2. Feasible solution found. |
1796 | 1796 |
FEASIBLE = 2, |
1797 | 1797 |
/// = 3. Optimal solution exists and found. |
1798 | 1798 |
OPTIMAL = 3, |
1799 | 1799 |
/// = 4. The cost function is unbounded. |
1800 | 1800 |
UNBOUNDED = 4 |
1801 | 1801 |
}; |
1802 | 1802 |
|
1803 | 1803 |
///The basis status of variables |
1804 | 1804 |
enum VarStatus { |
1805 | 1805 |
/// The variable is in the basis |
1806 |
BASIC, |
|
1806 |
BASIC, |
|
1807 | 1807 |
/// The variable is free, but not basic |
1808 | 1808 |
FREE, |
1809 |
/// The variable has active lower bound |
|
1809 |
/// The variable has active lower bound |
|
1810 | 1810 |
LOWER, |
1811 | 1811 |
/// The variable has active upper bound |
1812 | 1812 |
UPPER, |
1813 | 1813 |
/// The variable is non-basic and fixed |
1814 | 1814 |
FIXED |
1815 | 1815 |
}; |
1816 | 1816 |
|
1817 | 1817 |
protected: |
1818 | 1818 |
|
1819 | 1819 |
virtual SolveExitStatus _solve() = 0; |
1820 | 1820 |
|
1821 | 1821 |
virtual Value _getPrimal(int i) const = 0; |
1822 | 1822 |
virtual Value _getDual(int i) const = 0; |
1823 | 1823 |
|
1824 | 1824 |
virtual Value _getPrimalRay(int i) const = 0; |
1825 | 1825 |
virtual Value _getDualRay(int i) const = 0; |
1826 | 1826 |
|
1827 | 1827 |
virtual Value _getPrimalValue() const = 0; |
1828 | 1828 |
|
1829 | 1829 |
virtual VarStatus _getColStatus(int i) const = 0; |
1830 | 1830 |
virtual VarStatus _getRowStatus(int i) const = 0; |
1831 | 1831 |
|
1832 | 1832 |
virtual ProblemType _getPrimalType() const = 0; |
1833 | 1833 |
virtual ProblemType _getDualType() const = 0; |
1834 | 1834 |
|
1835 | 1835 |
public: |
1836 | 1836 |
|
1837 | 1837 |
///Allocate a new LP problem instance |
1838 | 1838 |
virtual LpSolver* newSolver() const = 0; |
1839 | 1839 |
///Make a copy of the LP problem |
1840 | 1840 |
virtual LpSolver* cloneSolver() const = 0; |
1841 | 1841 |
|
... | ... |
@@ -1856,99 +1856,99 @@ |
1856 | 1856 |
|
1857 | 1857 |
///@{ |
1858 | 1858 |
|
1859 | 1859 |
/// The type of the primal problem |
1860 | 1860 |
ProblemType primalType() const { |
1861 | 1861 |
return _getPrimalType(); |
1862 | 1862 |
} |
1863 | 1863 |
|
1864 | 1864 |
/// The type of the dual problem |
1865 | 1865 |
ProblemType dualType() const { |
1866 | 1866 |
return _getDualType(); |
1867 | 1867 |
} |
1868 | 1868 |
|
1869 | 1869 |
/// Return the primal value of the column |
1870 | 1870 |
|
1871 | 1871 |
/// Return the primal value of the column. |
1872 | 1872 |
/// \pre The problem is solved. |
1873 | 1873 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); } |
1874 | 1874 |
|
1875 | 1875 |
/// Return the primal value of the expression |
1876 | 1876 |
|
1877 | 1877 |
/// Return the primal value of the expression, i.e. the dot |
1878 | 1878 |
/// product of the primal solution and the expression. |
1879 | 1879 |
/// \pre The problem is solved. |
1880 | 1880 |
Value primal(const Expr& e) const { |
1881 | 1881 |
double res = *e; |
1882 | 1882 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
1883 | 1883 |
res += *c * primal(c); |
1884 | 1884 |
} |
1885 | 1885 |
return res; |
1886 | 1886 |
} |
1887 | 1887 |
/// Returns a component of the primal ray |
1888 |
|
|
1888 |
|
|
1889 | 1889 |
/// The primal ray is solution of the modified primal problem, |
1890 | 1890 |
/// where we change each finite bound to 0, and we looking for a |
1891 | 1891 |
/// negative objective value in case of minimization, and positive |
1892 | 1892 |
/// objective value for maximization. If there is such solution, |
1893 | 1893 |
/// that proofs the unsolvability of the dual problem, and if a |
1894 | 1894 |
/// feasible primal solution exists, then the unboundness of |
1895 | 1895 |
/// primal problem. |
1896 | 1896 |
/// |
1897 | 1897 |
/// \pre The problem is solved and the dual problem is infeasible. |
1898 | 1898 |
/// \note Some solvers does not provide primal ray calculation |
1899 | 1899 |
/// functions. |
1900 | 1900 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
1901 | 1901 |
|
1902 | 1902 |
/// Return the dual value of the row |
1903 | 1903 |
|
1904 | 1904 |
/// Return the dual value of the row. |
1905 | 1905 |
/// \pre The problem is solved. |
1906 | 1906 |
Value dual(Row r) const { return _getDual(rows(id(r))); } |
1907 | 1907 |
|
1908 | 1908 |
/// Return the dual value of the dual expression |
1909 | 1909 |
|
1910 | 1910 |
/// Return the dual value of the dual expression, i.e. the dot |
1911 | 1911 |
/// product of the dual solution and the dual expression. |
1912 | 1912 |
/// \pre The problem is solved. |
1913 | 1913 |
Value dual(const DualExpr& e) const { |
1914 | 1914 |
double res = 0.0; |
1915 | 1915 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
1916 | 1916 |
res += *r * dual(r); |
1917 | 1917 |
} |
1918 | 1918 |
return res; |
1919 | 1919 |
} |
1920 | 1920 |
|
1921 | 1921 |
/// Returns a component of the dual ray |
1922 |
|
|
1922 |
|
|
1923 | 1923 |
/// The dual ray is solution of the modified primal problem, where |
1924 | 1924 |
/// we change each finite bound to 0 (i.e. the objective function |
1925 | 1925 |
/// coefficients in the primal problem), and we looking for a |
1926 | 1926 |
/// ositive objective value. If there is such solution, that |
1927 | 1927 |
/// proofs the unsolvability of the primal problem, and if a |
1928 | 1928 |
/// feasible dual solution exists, then the unboundness of |
1929 | 1929 |
/// dual problem. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \pre The problem is solved and the primal problem is infeasible. |
1932 | 1932 |
/// \note Some solvers does not provide dual ray calculation |
1933 | 1933 |
/// functions. |
1934 | 1934 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
1935 | 1935 |
|
1936 | 1936 |
/// Return the basis status of the column |
1937 | 1937 |
|
1938 | 1938 |
/// \see VarStatus |
1939 | 1939 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } |
1940 | 1940 |
|
1941 | 1941 |
/// Return the basis status of the row |
1942 | 1942 |
|
1943 | 1943 |
/// \see VarStatus |
1944 | 1944 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } |
1945 | 1945 |
|
1946 | 1946 |
///The value of the objective function |
1947 | 1947 |
|
1948 | 1948 |
///\return |
1949 | 1949 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
1950 | 1950 |
/// of the primal problem, depending on whether we minimize or maximize. |
1951 | 1951 |
///- \ref NaN if no primal solution is found. |
1952 | 1952 |
///- The (finite) objective value if an optimal solution is found. |
1953 | 1953 |
Value primal() const { return _getPrimalValue()+obj_const_comp;} |
1954 | 1954 |
///@} |
... | ... |
@@ -2032,57 +2032,57 @@ |
2032 | 2032 |
return _getColType(cols(id(c))); |
2033 | 2033 |
} |
2034 | 2034 |
///@} |
2035 | 2035 |
|
2036 | 2036 |
///\name Obtain the Solution |
2037 | 2037 |
|
2038 | 2038 |
///@{ |
2039 | 2039 |
|
2040 | 2040 |
/// The type of the MIP problem |
2041 | 2041 |
ProblemType type() const { |
2042 | 2042 |
return _getType(); |
2043 | 2043 |
} |
2044 | 2044 |
|
2045 | 2045 |
/// Return the value of the row in the solution |
2046 | 2046 |
|
2047 | 2047 |
/// Return the value of the row in the solution. |
2048 | 2048 |
/// \pre The problem is solved. |
2049 | 2049 |
Value sol(Col c) const { return _getSol(cols(id(c))); } |
2050 | 2050 |
|
2051 | 2051 |
/// Return the value of the expression in the solution |
2052 | 2052 |
|
2053 | 2053 |
/// Return the value of the expression in the solution, i.e. the |
2054 | 2054 |
/// dot product of the solution and the expression. |
2055 | 2055 |
/// \pre The problem is solved. |
2056 | 2056 |
Value sol(const Expr& e) const { |
2057 | 2057 |
double res = *e; |
2058 | 2058 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
2059 | 2059 |
res += *c * sol(c); |
2060 | 2060 |
} |
2061 | 2061 |
return res; |
2062 | 2062 |
} |
2063 | 2063 |
///The value of the objective function |
2064 |
|
|
2064 |
|
|
2065 | 2065 |
///\return |
2066 | 2066 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
2067 | 2067 |
/// of the problem, depending on whether we minimize or maximize. |
2068 | 2068 |
///- \ref NaN if no primal solution is found. |
2069 | 2069 |
///- The (finite) objective value if an optimal solution is found. |
2070 | 2070 |
Value solValue() const { return _getSolValue()+obj_const_comp;} |
2071 | 2071 |
///@} |
2072 | 2072 |
|
2073 | 2073 |
protected: |
2074 | 2074 |
|
2075 | 2075 |
virtual SolveExitStatus _solve() = 0; |
2076 | 2076 |
virtual ColTypes _getColType(int col) const = 0; |
2077 | 2077 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
2078 | 2078 |
virtual ProblemType _getType() const = 0; |
2079 | 2079 |
virtual Value _getSol(int i) const = 0; |
2080 | 2080 |
virtual Value _getSolValue() const = 0; |
2081 | 2081 |
|
2082 | 2082 |
}; |
2083 | 2083 |
|
2084 | 2084 |
|
2085 | 2085 |
|
2086 | 2086 |
} //namespace lemon |
2087 | 2087 |
|
2088 | 2088 |
#endif //LEMON_LP_BASE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/lp_skeleton.h> |
20 | 20 |
|
21 | 21 |
///\file |
22 | 22 |
///\brief A skeleton file to implement LP solver interfaces |
23 | 23 |
namespace lemon { |
24 | 24 |
|
25 | 25 |
int SkeletonSolverBase::_addCol() |
26 | 26 |
{ |
27 | 27 |
return ++col_num; |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
int SkeletonSolverBase::_addRow() |
31 | 31 |
{ |
32 | 32 |
return ++row_num; |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
void SkeletonSolverBase::_eraseCol(int) {} |
36 | 36 |
void SkeletonSolverBase::_eraseRow(int) {} |
37 | 37 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_SKELETON_H |
20 | 20 |
#define LEMON_LP_SKELETON_H |
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
|
24 | 24 |
///\file |
25 | 25 |
///\brief Skeleton file to implement LP/MIP solver interfaces |
26 |
/// |
|
26 |
/// |
|
27 | 27 |
///The classes in this file do nothing, but they can serve as skeletons when |
28 | 28 |
///implementing an interface to new solvers. |
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
///A skeleton class to implement LP/MIP solver base interface |
32 |
|
|
32 |
|
|
33 | 33 |
///This class does nothing, but it can serve as a skeleton when |
34 | 34 |
///implementing an interface to new solvers. |
35 | 35 |
class SkeletonSolverBase : public virtual LpBase { |
36 | 36 |
int col_num,row_num; |
37 | 37 |
|
38 | 38 |
protected: |
39 | 39 |
|
40 | 40 |
SkeletonSolverBase() |
41 | 41 |
: col_num(-1), row_num(-1) {} |
42 | 42 |
|
43 | 43 |
/// \e |
44 | 44 |
virtual int _addCol(); |
45 | 45 |
/// \e |
46 | 46 |
virtual int _addRow(); |
47 | 47 |
/// \e |
48 | 48 |
virtual void _eraseCol(int i); |
49 | 49 |
/// \e |
50 | 50 |
virtual void _eraseRow(int i); |
51 | 51 |
|
52 | 52 |
/// \e |
53 | 53 |
virtual void _getColName(int col, std::string& name) const; |
54 | 54 |
/// \e |
55 | 55 |
virtual void _setColName(int col, const std::string& name); |
56 | 56 |
/// \e |
57 | 57 |
virtual int _colByName(const std::string& name) const; |
58 | 58 |
|
59 | 59 |
/// \e |
60 | 60 |
virtual void _getRowName(int row, std::string& name) const; |
61 | 61 |
/// \e |
62 | 62 |
virtual void _setRowName(int row, const std::string& name); |
63 | 63 |
/// \e |
64 | 64 |
virtual int _rowByName(const std::string& name) const; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
|
28 | 28 |
///\file |
29 | 29 |
///\ingroup maps |
30 | 30 |
///\brief Miscellaneous property maps |
31 | 31 |
|
32 | 32 |
#include <map> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup maps |
37 | 37 |
/// @{ |
... | ... |
@@ -1789,65 +1789,65 @@ |
1789 | 1789 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1790 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1791 |
/// \code |
1792 | 1792 |
/// std::vector<Node> v; |
1793 | 1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1794 | 1794 |
/// \endcode |
1795 | 1795 |
/// \code |
1796 | 1796 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1798 | 1798 |
/// \endcode |
1799 | 1799 |
/// |
1800 | 1800 |
/// \note The container of the iterator must contain enough space |
1801 | 1801 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1802 |
/// |
1803 | 1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1804 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1806 |
/// |
1807 | 1807 |
/// \relates LoggerBoolMap |
1808 | 1808 |
template<typename Iterator> |
1809 | 1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1810 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1811 |
} |
1812 | 1812 |
|
1813 | 1813 |
/// @} |
1814 | 1814 |
|
1815 | 1815 |
/// \addtogroup graph_maps |
1816 | 1816 |
/// @{ |
1817 | 1817 |
|
1818 | 1818 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1819 |
/// |
1820 | 1820 |
/// IdMap provides a unique and immutable id for each item of the |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1822 | 1822 |
/// - \b unique: different items get different ids, |
1823 | 1823 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1824 |
/// delete other nodes). |
1825 | 1825 |
/// |
1826 | 1826 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1827 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1828 |
/// function of the graph. This map can be inverted with its member |
1829 | 1829 |
/// class \c InverseMap or with the \c operator() member. |
1830 | 1830 |
/// |
1831 | 1831 |
/// \tparam GR The graph type. |
1832 | 1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1833 |
/// \c GR::Edge). |
1834 | 1834 |
/// |
1835 | 1835 |
/// \see RangeIdMap |
1836 | 1836 |
template <typename GR, typename K> |
1837 | 1837 |
class IdMap : public MapBase<K, int> { |
1838 | 1838 |
public: |
1839 | 1839 |
/// The graph type of IdMap. |
1840 | 1840 |
typedef GR Graph; |
1841 | 1841 |
typedef GR Digraph; |
1842 | 1842 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1843 | 1843 |
typedef K Item; |
1844 | 1844 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1845 | 1845 |
typedef K Key; |
1846 | 1846 |
/// The value type of IdMap. |
1847 | 1847 |
typedef int Value; |
1848 | 1848 |
|
1849 | 1849 |
/// \brief Constructor. |
1850 | 1850 |
/// |
1851 | 1851 |
/// Constructor of the map. |
1852 | 1852 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1853 | 1853 |
|
... | ... |
@@ -2244,65 +2244,65 @@ |
2244 | 2244 |
Map::clear(); |
2245 | 2245 |
} |
2246 | 2246 |
|
2247 | 2247 |
public: |
2248 | 2248 |
|
2249 | 2249 |
/// \brief Returns the maximal value plus one. |
2250 | 2250 |
/// |
2251 | 2251 |
/// Returns the maximal value plus one in the map. |
2252 | 2252 |
unsigned int size() const { |
2253 | 2253 |
return _inv_map.size(); |
2254 | 2254 |
} |
2255 | 2255 |
|
2256 | 2256 |
/// \brief Swaps the position of the two items in the map. |
2257 | 2257 |
/// |
2258 | 2258 |
/// Swaps the position of the two items in the map. |
2259 | 2259 |
void swap(const Item& p, const Item& q) { |
2260 | 2260 |
int pi = Map::operator[](p); |
2261 | 2261 |
int qi = Map::operator[](q); |
2262 | 2262 |
Map::set(p, qi); |
2263 | 2263 |
_inv_map[qi] = p; |
2264 | 2264 |
Map::set(q, pi); |
2265 | 2265 |
_inv_map[pi] = q; |
2266 | 2266 |
} |
2267 | 2267 |
|
2268 | 2268 |
/// \brief Gives back the \e RangeId of the item |
2269 | 2269 |
/// |
2270 | 2270 |
/// Gives back the \e RangeId of the item. |
2271 | 2271 |
int operator[](const Item& item) const { |
2272 | 2272 |
return Map::operator[](item); |
2273 | 2273 |
} |
2274 | 2274 |
|
2275 | 2275 |
/// \brief Gives back the item belonging to a \e RangeId |
2276 |
/// |
|
2276 |
/// |
|
2277 | 2277 |
/// Gives back the item belonging to a \e RangeId. |
2278 | 2278 |
Item operator()(int id) const { |
2279 | 2279 |
return _inv_map[id]; |
2280 | 2280 |
} |
2281 | 2281 |
|
2282 | 2282 |
private: |
2283 | 2283 |
|
2284 | 2284 |
typedef std::vector<Item> Container; |
2285 | 2285 |
Container _inv_map; |
2286 | 2286 |
|
2287 | 2287 |
public: |
2288 | 2288 |
|
2289 | 2289 |
/// \brief The inverse map type of RangeIdMap. |
2290 | 2290 |
/// |
2291 | 2291 |
/// The inverse map type of RangeIdMap. |
2292 | 2292 |
class InverseMap { |
2293 | 2293 |
public: |
2294 | 2294 |
/// \brief Constructor |
2295 | 2295 |
/// |
2296 | 2296 |
/// Constructor of the InverseMap. |
2297 | 2297 |
explicit InverseMap(const RangeIdMap& inverted) |
2298 | 2298 |
: _inverted(inverted) {} |
2299 | 2299 |
|
2300 | 2300 |
|
2301 | 2301 |
/// The value type of the InverseMap. |
2302 | 2302 |
typedef typename RangeIdMap::Key Value; |
2303 | 2303 |
/// The key type of the InverseMap. |
2304 | 2304 |
typedef typename RangeIdMap::Value Key; |
2305 | 2305 |
|
2306 | 2306 |
/// \brief Subscript operator. |
2307 | 2307 |
/// |
2308 | 2308 |
/// Subscript operator. It gives back the item |
... | ... |
@@ -2470,81 +2470,81 @@ |
2470 | 2470 |
/// |
2471 | 2471 |
/// Constructor. |
2472 | 2472 |
/// \param graph The graph that the map belongs to. |
2473 | 2473 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2474 | 2474 |
|
2475 | 2475 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2476 | 2476 |
/// |
2477 | 2477 |
/// Returns the "backward" directed arc view of the given edge. |
2478 | 2478 |
Value operator[](const Key& key) const { |
2479 | 2479 |
return _graph.direct(key, false); |
2480 | 2480 |
} |
2481 | 2481 |
|
2482 | 2482 |
private: |
2483 | 2483 |
const GR& _graph; |
2484 | 2484 |
}; |
2485 | 2485 |
|
2486 | 2486 |
/// \brief Returns a \c BackwardMap class |
2487 | 2487 |
|
2488 | 2488 |
/// This function just returns a \c BackwardMap class. |
2489 | 2489 |
/// \relates BackwardMap |
2490 | 2490 |
template <typename GR> |
2491 | 2491 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2492 | 2492 |
return BackwardMap<GR>(graph); |
2493 | 2493 |
} |
2494 | 2494 |
|
2495 | 2495 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2496 | 2496 |
/// |
2497 | 2497 |
/// This map returns the in-degree of a node. Once it is constructed, |
2498 | 2498 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2499 | 2499 |
/// in constant time. On the other hand, the values are updated automatically |
2500 | 2500 |
/// whenever the digraph changes. |
2501 | 2501 |
/// |
2502 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2502 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2503 | 2503 |
/// may provide alternative ways to modify the digraph. |
2504 | 2504 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2505 | 2505 |
/// features are used. For example the functions |
2506 | 2506 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2507 | 2507 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2508 | 2508 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2509 | 2509 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2510 | 2510 |
/// |
2511 | 2511 |
/// \sa OutDegMap |
2512 | 2512 |
template <typename GR> |
2513 | 2513 |
class InDegMap |
2514 | 2514 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2515 | 2515 |
::ItemNotifier::ObserverBase { |
2516 | 2516 |
|
2517 | 2517 |
public: |
2518 |
|
|
2518 |
|
|
2519 | 2519 |
/// The graph type of InDegMap |
2520 | 2520 |
typedef GR Graph; |
2521 | 2521 |
typedef GR Digraph; |
2522 | 2522 |
/// The key type |
2523 | 2523 |
typedef typename Digraph::Node Key; |
2524 | 2524 |
/// The value type |
2525 | 2525 |
typedef int Value; |
2526 | 2526 |
|
2527 | 2527 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2528 | 2528 |
::ItemNotifier::ObserverBase Parent; |
2529 | 2529 |
|
2530 | 2530 |
private: |
2531 | 2531 |
|
2532 | 2532 |
class AutoNodeMap |
2533 | 2533 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2534 | 2534 |
public: |
2535 | 2535 |
|
2536 | 2536 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2537 | 2537 |
template Map<int>::Type Parent; |
2538 | 2538 |
|
2539 | 2539 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2540 | 2540 |
|
2541 | 2541 |
virtual void add(const Key& key) { |
2542 | 2542 |
Parent::add(key); |
2543 | 2543 |
Parent::set(key, 0); |
2544 | 2544 |
} |
2545 | 2545 |
|
2546 | 2546 |
virtual void add(const std::vector<Key>& keys) { |
2547 | 2547 |
Parent::add(keys); |
2548 | 2548 |
for (int i = 0; i < int(keys.size()); ++i) { |
2549 | 2549 |
Parent::set(keys[i], 0); |
2550 | 2550 |
} |
... | ... |
@@ -2600,65 +2600,65 @@ |
2600 | 2600 |
} |
2601 | 2601 |
|
2602 | 2602 |
virtual void erase(const std::vector<Arc>& arcs) { |
2603 | 2603 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2604 | 2604 |
--_deg[_digraph.target(arcs[i])]; |
2605 | 2605 |
} |
2606 | 2606 |
} |
2607 | 2607 |
|
2608 | 2608 |
virtual void build() { |
2609 | 2609 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2610 | 2610 |
_deg[it] = countInArcs(_digraph, it); |
2611 | 2611 |
} |
2612 | 2612 |
} |
2613 | 2613 |
|
2614 | 2614 |
virtual void clear() { |
2615 | 2615 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2616 | 2616 |
_deg[it] = 0; |
2617 | 2617 |
} |
2618 | 2618 |
} |
2619 | 2619 |
private: |
2620 | 2620 |
|
2621 | 2621 |
const Digraph& _digraph; |
2622 | 2622 |
AutoNodeMap _deg; |
2623 | 2623 |
}; |
2624 | 2624 |
|
2625 | 2625 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2626 | 2626 |
/// |
2627 | 2627 |
/// This map returns the out-degree of a node. Once it is constructed, |
2628 | 2628 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2629 | 2629 |
/// in constant time. On the other hand, the values are updated automatically |
2630 | 2630 |
/// whenever the digraph changes. |
2631 | 2631 |
/// |
2632 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2632 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2633 | 2633 |
/// may provide alternative ways to modify the digraph. |
2634 | 2634 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2635 | 2635 |
/// features are used. For example the functions |
2636 | 2636 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2637 | 2637 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2638 | 2638 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2639 | 2639 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2640 | 2640 |
/// |
2641 | 2641 |
/// \sa InDegMap |
2642 | 2642 |
template <typename GR> |
2643 | 2643 |
class OutDegMap |
2644 | 2644 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2645 | 2645 |
::ItemNotifier::ObserverBase { |
2646 | 2646 |
|
2647 | 2647 |
public: |
2648 | 2648 |
|
2649 | 2649 |
/// The graph type of OutDegMap |
2650 | 2650 |
typedef GR Graph; |
2651 | 2651 |
typedef GR Digraph; |
2652 | 2652 |
/// The key type |
2653 | 2653 |
typedef typename Digraph::Node Key; |
2654 | 2654 |
/// The value type |
2655 | 2655 |
typedef int Value; |
2656 | 2656 |
|
2657 | 2657 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2658 | 2658 |
::ItemNotifier::ObserverBase Parent; |
2659 | 2659 |
|
2660 | 2660 |
private: |
2661 | 2661 |
|
2662 | 2662 |
class AutoNodeMap |
2663 | 2663 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2664 | 2664 |
public: |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAX_MATCHING_H |
20 | 20 |
#define LEMON_MAX_MATCHING_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <queue> |
24 | 24 |
#include <set> |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
|
32 | 32 |
///\ingroup matching |
33 | 33 |
///\file |
34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \ingroup matching |
39 | 39 |
/// |
40 | 40 |
/// \brief Maximum cardinality matching in general graphs |
41 | 41 |
/// |
42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 | 43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
44 |
/// It can be started from an arbitrary initial matching |
|
44 |
/// It can be started from an arbitrary initial matching |
|
45 | 45 |
/// (the default is the empty one). |
46 | 46 |
/// |
47 | 47 |
/// The dual solution of the problem is a map of the nodes to |
48 | 48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
49 | 49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
50 | 50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
51 | 51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
52 | 52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
53 | 53 |
/// a perfect matching. The number of the factor-critical components |
54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
56 | 56 |
/// tight. This decomposition can be obtained using \ref status() or |
57 | 57 |
/// \ref statusMap() after running the algorithm. |
58 | 58 |
/// |
59 | 59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
60 | 60 |
template <typename GR> |
61 | 61 |
class MaxMatching { |
62 | 62 |
public: |
63 | 63 |
|
64 | 64 |
/// The graph type of the algorithm |
65 | 65 |
typedef GR Graph; |
66 | 66 |
/// The type of the matching map |
67 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
68 | 68 |
MatchingMap; |
69 | 69 |
|
70 | 70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
71 | 71 |
/// |
72 |
///These constants are used for indicating the Gallai-Edmonds |
|
72 |
///These constants are used for indicating the Gallai-Edmonds |
|
73 | 73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
74 | 74 |
///induce a subgraph with factor-critical components, the nodes with |
75 | 75 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
77 | 77 |
///perfect matching. |
78 | 78 |
enum Status { |
79 | 79 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
80 | 80 |
D = 1, |
81 | 81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
82 | 82 |
C = 0, |
83 | 83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
84 | 84 |
A = -1, |
85 | 85 |
UNMATCHED = -2 ///< = -2. |
86 | 86 |
}; |
87 | 87 |
|
88 | 88 |
/// The type of the status map |
89 | 89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
90 | 90 |
|
91 | 91 |
private: |
92 | 92 |
|
93 | 93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
94 | 94 |
|
95 | 95 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
96 | 96 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
97 | 97 |
typedef RangeMap<Node> NodeIntMap; |
98 | 98 |
typedef MatchingMap EarMap; |
99 | 99 |
typedef std::vector<Node> NodeQueue; |
100 | 100 |
|
101 | 101 |
const Graph& _graph; |
102 | 102 |
MatchingMap* _matching; |
103 | 103 |
StatusMap* _status; |
104 | 104 |
|
105 | 105 |
EarMap* _ear; |
106 | 106 |
|
107 | 107 |
IntNodeMap* _blossom_set_index; |
108 | 108 |
BlossomSet* _blossom_set; |
... | ... |
@@ -483,235 +483,235 @@ |
483 | 483 |
|
484 | 484 |
Node u = _graph.u(e); |
485 | 485 |
if ((*_matching)[u] != INVALID) return false; |
486 | 486 |
(*_matching)[u] = _graph.direct(e, true); |
487 | 487 |
(*_status)[u] = MATCHED; |
488 | 488 |
|
489 | 489 |
Node v = _graph.v(e); |
490 | 490 |
if ((*_matching)[v] != INVALID) return false; |
491 | 491 |
(*_matching)[v] = _graph.direct(e, false); |
492 | 492 |
(*_status)[v] = MATCHED; |
493 | 493 |
} |
494 | 494 |
} |
495 | 495 |
return true; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
/// \brief Start Edmonds' algorithm |
499 | 499 |
/// |
500 | 500 |
/// This function runs the original Edmonds' algorithm. |
501 | 501 |
/// |
502 | 502 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
503 | 503 |
/// called before using this function. |
504 | 504 |
void startSparse() { |
505 | 505 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
506 | 506 |
if ((*_status)[n] == UNMATCHED) { |
507 | 507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
508 | 508 |
_tree_set->insert(n); |
509 | 509 |
(*_status)[n] = EVEN; |
510 | 510 |
processSparse(n); |
511 | 511 |
} |
512 | 512 |
} |
513 | 513 |
} |
514 | 514 |
|
515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
516 | 516 |
/// for dense graphs |
517 | 517 |
/// |
518 | 518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
519 | 519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
520 | 520 |
/// |
521 | 521 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
522 | 522 |
/// called before using this function. |
523 | 523 |
void startDense() { |
524 | 524 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
525 | 525 |
if ((*_status)[n] == UNMATCHED) { |
526 | 526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
527 | 527 |
_tree_set->insert(n); |
528 | 528 |
(*_status)[n] = EVEN; |
529 | 529 |
processDense(n); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
|
534 | 534 |
|
535 | 535 |
/// \brief Run Edmonds' algorithm |
536 | 536 |
/// |
537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
538 |
/// postponing shrinks is used for relatively dense graphs |
|
537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
538 |
/// postponing shrinks is used for relatively dense graphs |
|
539 | 539 |
/// (for which <tt>m>=2*n</tt> holds). |
540 | 540 |
void run() { |
541 | 541 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
542 | 542 |
greedyInit(); |
543 | 543 |
startSparse(); |
544 | 544 |
} else { |
545 | 545 |
init(); |
546 | 546 |
startDense(); |
547 | 547 |
} |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
/// @} |
551 | 551 |
|
552 | 552 |
/// \name Primal Solution |
553 | 553 |
/// Functions to get the primal solution, i.e. the maximum matching. |
554 | 554 |
|
555 | 555 |
/// @{ |
556 | 556 |
|
557 | 557 |
/// \brief Return the size (cardinality) of the matching. |
558 | 558 |
/// |
559 |
/// This function returns the size (cardinality) of the current matching. |
|
559 |
/// This function returns the size (cardinality) of the current matching. |
|
560 | 560 |
/// After run() it returns the size of the maximum matching in the graph. |
561 | 561 |
int matchingSize() const { |
562 | 562 |
int size = 0; |
563 | 563 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
564 | 564 |
if ((*_matching)[n] != INVALID) { |
565 | 565 |
++size; |
566 | 566 |
} |
567 | 567 |
} |
568 | 568 |
return size / 2; |
569 | 569 |
} |
570 | 570 |
|
571 | 571 |
/// \brief Return \c true if the given edge is in the matching. |
572 | 572 |
/// |
573 |
/// This function returns \c true if the given edge is in the current |
|
573 |
/// This function returns \c true if the given edge is in the current |
|
574 | 574 |
/// matching. |
575 | 575 |
bool matching(const Edge& edge) const { |
576 | 576 |
return edge == (*_matching)[_graph.u(edge)]; |
577 | 577 |
} |
578 | 578 |
|
579 | 579 |
/// \brief Return the matching arc (or edge) incident to the given node. |
580 | 580 |
/// |
581 | 581 |
/// This function returns the matching arc (or edge) incident to the |
582 |
/// given node in the current matching or \c INVALID if the node is |
|
582 |
/// given node in the current matching or \c INVALID if the node is |
|
583 | 583 |
/// not covered by the matching. |
584 | 584 |
Arc matching(const Node& n) const { |
585 | 585 |
return (*_matching)[n]; |
586 | 586 |
} |
587 | 587 |
|
588 | 588 |
/// \brief Return a const reference to the matching map. |
589 | 589 |
/// |
590 | 590 |
/// This function returns a const reference to a node map that stores |
591 | 591 |
/// the matching arc (or edge) incident to each node. |
592 | 592 |
const MatchingMap& matchingMap() const { |
593 | 593 |
return *_matching; |
594 | 594 |
} |
595 | 595 |
|
596 | 596 |
/// \brief Return the mate of the given node. |
597 | 597 |
/// |
598 |
/// This function returns the mate of the given node in the current |
|
598 |
/// This function returns the mate of the given node in the current |
|
599 | 599 |
/// matching or \c INVALID if the node is not covered by the matching. |
600 | 600 |
Node mate(const Node& n) const { |
601 | 601 |
return (*_matching)[n] != INVALID ? |
602 | 602 |
_graph.target((*_matching)[n]) : INVALID; |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
/// @} |
606 | 606 |
|
607 | 607 |
/// \name Dual Solution |
608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
609 | 609 |
/// decomposition. |
610 | 610 |
|
611 | 611 |
/// @{ |
612 | 612 |
|
613 | 613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
614 | 614 |
/// decomposition. |
615 | 615 |
/// |
616 | 616 |
/// This function returns the \ref Status "status" of the given node |
617 | 617 |
/// in the Edmonds-Gallai decomposition. |
618 | 618 |
Status status(const Node& n) const { |
619 | 619 |
return (*_status)[n]; |
620 | 620 |
} |
621 | 621 |
|
622 | 622 |
/// \brief Return a const reference to the status map, which stores |
623 | 623 |
/// the Edmonds-Gallai decomposition. |
624 | 624 |
/// |
625 | 625 |
/// This function returns a const reference to a node map that stores the |
626 | 626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
627 | 627 |
const StatusMap& statusMap() const { |
628 | 628 |
return *_status; |
629 | 629 |
} |
630 | 630 |
|
631 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
632 | 632 |
/// |
633 | 633 |
/// This function returns \c true if the given node is in the barrier. |
634 | 634 |
bool barrier(const Node& n) const { |
635 | 635 |
return (*_status)[n] == ODD; |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
/// @} |
639 | 639 |
|
640 | 640 |
}; |
641 | 641 |
|
642 | 642 |
/// \ingroup matching |
643 | 643 |
/// |
644 | 644 |
/// \brief Weighted matching in general graphs |
645 | 645 |
/// |
646 | 646 |
/// This class provides an efficient implementation of Edmond's |
647 | 647 |
/// maximum weighted matching algorithm. The implementation is based |
648 | 648 |
/// on extensive use of priority queues and provides |
649 | 649 |
/// \f$O(nm\log n)\f$ time complexity. |
650 | 650 |
/// |
651 |
/// The maximum weighted matching problem is to find a subset of the |
|
652 |
/// edges in an undirected graph with maximum overall weight for which |
|
651 |
/// The maximum weighted matching problem is to find a subset of the |
|
652 |
/// edges in an undirected graph with maximum overall weight for which |
|
653 | 653 |
/// each node has at most one incident edge. |
654 | 654 |
/// It can be formulated with the following linear program. |
655 | 655 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
656 | 656 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
657 | 657 |
\quad \forall B\in\mathcal{O}\f] */ |
658 | 658 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
659 | 659 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
660 | 660 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
661 | 661 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
662 | 662 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
663 | 663 |
/// subsets of the nodes. |
664 | 664 |
/// |
665 | 665 |
/// The algorithm calculates an optimal matching and a proof of the |
666 | 666 |
/// optimality. The solution of the dual problem can be used to check |
667 | 667 |
/// the result of the algorithm. The dual linear problem is the |
668 | 668 |
/// following. |
669 | 669 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
670 | 670 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
671 | 671 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
672 | 672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
673 | 673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
674 | 674 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
675 | 675 |
/// |
676 |
/// The algorithm can be executed with the run() function. |
|
676 |
/// The algorithm can be executed with the run() function. |
|
677 | 677 |
/// After it the matching (the primal solution) and the dual solution |
678 |
/// can be obtained using the query functions and the |
|
679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
680 |
/// |
|
678 |
/// can be obtained using the query functions and the |
|
679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
680 |
/// which is able to iterate on the nodes of a blossom. |
|
681 | 681 |
/// If the value type is integer, then the dual solution is multiplied |
682 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
683 | 683 |
/// |
684 | 684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
685 |
/// \tparam WM The type edge weight map. The default type is |
|
685 |
/// \tparam WM The type edge weight map. The default type is |
|
686 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
687 | 687 |
#ifdef DOXYGEN |
688 | 688 |
template <typename GR, typename WM> |
689 | 689 |
#else |
690 | 690 |
template <typename GR, |
691 | 691 |
typename WM = typename GR::template EdgeMap<int> > |
692 | 692 |
#endif |
693 | 693 |
class MaxWeightedMatching { |
694 | 694 |
public: |
695 | 695 |
|
696 | 696 |
/// The graph type of the algorithm |
697 | 697 |
typedef GR Graph; |
698 | 698 |
/// The type of the edge weight map |
699 | 699 |
typedef WM WeightMap; |
700 | 700 |
/// The value type of the edge weights |
701 | 701 |
typedef typename WeightMap::Value Value; |
702 | 702 |
|
703 | 703 |
/// The type of the matching map |
704 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
705 | 705 |
MatchingMap; |
706 | 706 |
|
707 | 707 |
/// \brief Scaling factor for dual solution |
708 | 708 |
/// |
709 | 709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
710 | 710 |
/// according to the value type. |
711 | 711 |
static const int dualScale = |
712 | 712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
713 | 713 |
|
714 | 714 |
private: |
715 | 715 |
|
716 | 716 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
717 | 717 |
|
... | ... |
@@ -1691,65 +1691,65 @@ |
1691 | 1691 |
~MaxWeightedMatching() { |
1692 | 1692 |
destroyStructures(); |
1693 | 1693 |
} |
1694 | 1694 |
|
1695 | 1695 |
/// \name Execution Control |
1696 | 1696 |
/// The simplest way to execute the algorithm is to use the |
1697 | 1697 |
/// \ref run() member function. |
1698 | 1698 |
|
1699 | 1699 |
///@{ |
1700 | 1700 |
|
1701 | 1701 |
/// \brief Initialize the algorithm |
1702 | 1702 |
/// |
1703 | 1703 |
/// This function initializes the algorithm. |
1704 | 1704 |
void init() { |
1705 | 1705 |
createStructures(); |
1706 | 1706 |
|
1707 | 1707 |
_blossom_node_list.clear(); |
1708 | 1708 |
_blossom_potential.clear(); |
1709 | 1709 |
|
1710 | 1710 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1711 | 1711 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1712 | 1712 |
} |
1713 | 1713 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1714 | 1714 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1715 | 1715 |
} |
1716 | 1716 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1717 | 1717 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
1718 | 1718 |
} |
1719 | 1719 |
for (int i = 0; i < _blossom_num; ++i) { |
1720 | 1720 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1721 | 1721 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1722 | 1722 |
} |
1723 |
|
|
1723 |
|
|
1724 | 1724 |
_delta1->clear(); |
1725 | 1725 |
_delta2->clear(); |
1726 | 1726 |
_delta3->clear(); |
1727 | 1727 |
_delta4->clear(); |
1728 | 1728 |
_blossom_set->clear(); |
1729 | 1729 |
_tree_set->clear(); |
1730 | 1730 |
|
1731 | 1731 |
int index = 0; |
1732 | 1732 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1733 | 1733 |
Value max = 0; |
1734 | 1734 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1735 | 1735 |
if (_graph.target(e) == n) continue; |
1736 | 1736 |
if ((dualScale * _weight[e]) / 2 > max) { |
1737 | 1737 |
max = (dualScale * _weight[e]) / 2; |
1738 | 1738 |
} |
1739 | 1739 |
} |
1740 | 1740 |
(*_node_index)[n] = index; |
1741 | 1741 |
(*_node_data)[index].heap_index.clear(); |
1742 | 1742 |
(*_node_data)[index].heap.clear(); |
1743 | 1743 |
(*_node_data)[index].pot = max; |
1744 | 1744 |
_delta1->push(n, max); |
1745 | 1745 |
int blossom = |
1746 | 1746 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
1747 | 1747 |
|
1748 | 1748 |
_tree_set->insert(blossom); |
1749 | 1749 |
|
1750 | 1750 |
(*_blossom_data)[blossom].status = EVEN; |
1751 | 1751 |
(*_blossom_data)[blossom].pred = INVALID; |
1752 | 1752 |
(*_blossom_data)[blossom].next = INVALID; |
1753 | 1753 |
(*_blossom_data)[blossom].pot = 0; |
1754 | 1754 |
(*_blossom_data)[blossom].offset = 0; |
1755 | 1755 |
++index; |
... | ... |
@@ -1839,307 +1839,307 @@ |
1839 | 1839 |
shrinkOnEdge(e, left_tree); |
1840 | 1840 |
} else { |
1841 | 1841 |
augmentOnEdge(e); |
1842 | 1842 |
unmatched -= 2; |
1843 | 1843 |
} |
1844 | 1844 |
} |
1845 | 1845 |
} break; |
1846 | 1846 |
case D4: |
1847 | 1847 |
splitBlossom(_delta4->top()); |
1848 | 1848 |
break; |
1849 | 1849 |
} |
1850 | 1850 |
} |
1851 | 1851 |
extractMatching(); |
1852 | 1852 |
} |
1853 | 1853 |
|
1854 | 1854 |
/// \brief Run the algorithm. |
1855 | 1855 |
/// |
1856 | 1856 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
1857 | 1857 |
/// |
1858 | 1858 |
/// \note mwm.run() is just a shortcut of the following code. |
1859 | 1859 |
/// \code |
1860 | 1860 |
/// mwm.init(); |
1861 | 1861 |
/// mwm.start(); |
1862 | 1862 |
/// \endcode |
1863 | 1863 |
void run() { |
1864 | 1864 |
init(); |
1865 | 1865 |
start(); |
1866 | 1866 |
} |
1867 | 1867 |
|
1868 | 1868 |
/// @} |
1869 | 1869 |
|
1870 | 1870 |
/// \name Primal Solution |
1871 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1871 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1872 | 1872 |
/// matching.\n |
1873 | 1873 |
/// Either \ref run() or \ref start() function should be called before |
1874 | 1874 |
/// using them. |
1875 | 1875 |
|
1876 | 1876 |
/// @{ |
1877 | 1877 |
|
1878 | 1878 |
/// \brief Return the weight of the matching. |
1879 | 1879 |
/// |
1880 | 1880 |
/// This function returns the weight of the found matching. |
1881 | 1881 |
/// |
1882 | 1882 |
/// \pre Either run() or start() must be called before using this function. |
1883 | 1883 |
Value matchingWeight() const { |
1884 | 1884 |
Value sum = 0; |
1885 | 1885 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1886 | 1886 |
if ((*_matching)[n] != INVALID) { |
1887 | 1887 |
sum += _weight[(*_matching)[n]]; |
1888 | 1888 |
} |
1889 | 1889 |
} |
1890 | 1890 |
return sum /= 2; |
1891 | 1891 |
} |
1892 | 1892 |
|
1893 | 1893 |
/// \brief Return the size (cardinality) of the matching. |
1894 | 1894 |
/// |
1895 | 1895 |
/// This function returns the size (cardinality) of the found matching. |
1896 | 1896 |
/// |
1897 | 1897 |
/// \pre Either run() or start() must be called before using this function. |
1898 | 1898 |
int matchingSize() const { |
1899 | 1899 |
int num = 0; |
1900 | 1900 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1901 | 1901 |
if ((*_matching)[n] != INVALID) { |
1902 | 1902 |
++num; |
1903 | 1903 |
} |
1904 | 1904 |
} |
1905 | 1905 |
return num /= 2; |
1906 | 1906 |
} |
1907 | 1907 |
|
1908 | 1908 |
/// \brief Return \c true if the given edge is in the matching. |
1909 | 1909 |
/// |
1910 |
/// This function returns \c true if the given edge is in the found |
|
1910 |
/// This function returns \c true if the given edge is in the found |
|
1911 | 1911 |
/// matching. |
1912 | 1912 |
/// |
1913 | 1913 |
/// \pre Either run() or start() must be called before using this function. |
1914 | 1914 |
bool matching(const Edge& edge) const { |
1915 | 1915 |
return edge == (*_matching)[_graph.u(edge)]; |
1916 | 1916 |
} |
1917 | 1917 |
|
1918 | 1918 |
/// \brief Return the matching arc (or edge) incident to the given node. |
1919 | 1919 |
/// |
1920 | 1920 |
/// This function returns the matching arc (or edge) incident to the |
1921 |
/// given node in the found matching or \c INVALID if the node is |
|
1921 |
/// given node in the found matching or \c INVALID if the node is |
|
1922 | 1922 |
/// not covered by the matching. |
1923 | 1923 |
/// |
1924 | 1924 |
/// \pre Either run() or start() must be called before using this function. |
1925 | 1925 |
Arc matching(const Node& node) const { |
1926 | 1926 |
return (*_matching)[node]; |
1927 | 1927 |
} |
1928 | 1928 |
|
1929 | 1929 |
/// \brief Return a const reference to the matching map. |
1930 | 1930 |
/// |
1931 | 1931 |
/// This function returns a const reference to a node map that stores |
1932 | 1932 |
/// the matching arc (or edge) incident to each node. |
1933 | 1933 |
const MatchingMap& matchingMap() const { |
1934 | 1934 |
return *_matching; |
1935 | 1935 |
} |
1936 | 1936 |
|
1937 | 1937 |
/// \brief Return the mate of the given node. |
1938 | 1938 |
/// |
1939 |
/// This function returns the mate of the given node in the found |
|
1939 |
/// This function returns the mate of the given node in the found |
|
1940 | 1940 |
/// matching or \c INVALID if the node is not covered by the matching. |
1941 | 1941 |
/// |
1942 | 1942 |
/// \pre Either run() or start() must be called before using this function. |
1943 | 1943 |
Node mate(const Node& node) const { |
1944 | 1944 |
return (*_matching)[node] != INVALID ? |
1945 | 1945 |
_graph.target((*_matching)[node]) : INVALID; |
1946 | 1946 |
} |
1947 | 1947 |
|
1948 | 1948 |
/// @} |
1949 | 1949 |
|
1950 | 1950 |
/// \name Dual Solution |
1951 | 1951 |
/// Functions to get the dual solution.\n |
1952 | 1952 |
/// Either \ref run() or \ref start() function should be called before |
1953 | 1953 |
/// using them. |
1954 | 1954 |
|
1955 | 1955 |
/// @{ |
1956 | 1956 |
|
1957 | 1957 |
/// \brief Return the value of the dual solution. |
1958 | 1958 |
/// |
1959 |
/// This function returns the value of the dual solution. |
|
1960 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1959 |
/// This function returns the value of the dual solution. |
|
1960 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1961 | 1961 |
/// "dual scale". |
1962 | 1962 |
/// |
1963 | 1963 |
/// \pre Either run() or start() must be called before using this function. |
1964 | 1964 |
Value dualValue() const { |
1965 | 1965 |
Value sum = 0; |
1966 | 1966 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1967 | 1967 |
sum += nodeValue(n); |
1968 | 1968 |
} |
1969 | 1969 |
for (int i = 0; i < blossomNum(); ++i) { |
1970 | 1970 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
1971 | 1971 |
} |
1972 | 1972 |
return sum; |
1973 | 1973 |
} |
1974 | 1974 |
|
1975 | 1975 |
/// \brief Return the dual value (potential) of the given node. |
1976 | 1976 |
/// |
1977 | 1977 |
/// This function returns the dual value (potential) of the given node. |
1978 | 1978 |
/// |
1979 | 1979 |
/// \pre Either run() or start() must be called before using this function. |
1980 | 1980 |
Value nodeValue(const Node& n) const { |
1981 | 1981 |
return (*_node_potential)[n]; |
1982 | 1982 |
} |
1983 | 1983 |
|
1984 | 1984 |
/// \brief Return the number of the blossoms in the basis. |
1985 | 1985 |
/// |
1986 | 1986 |
/// This function returns the number of the blossoms in the basis. |
1987 | 1987 |
/// |
1988 | 1988 |
/// \pre Either run() or start() must be called before using this function. |
1989 | 1989 |
/// \see BlossomIt |
1990 | 1990 |
int blossomNum() const { |
1991 | 1991 |
return _blossom_potential.size(); |
1992 | 1992 |
} |
1993 | 1993 |
|
1994 | 1994 |
/// \brief Return the number of the nodes in the given blossom. |
1995 | 1995 |
/// |
1996 | 1996 |
/// This function returns the number of the nodes in the given blossom. |
1997 | 1997 |
/// |
1998 | 1998 |
/// \pre Either run() or start() must be called before using this function. |
1999 | 1999 |
/// \see BlossomIt |
2000 | 2000 |
int blossomSize(int k) const { |
2001 | 2001 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
2002 | 2002 |
} |
2003 | 2003 |
|
2004 | 2004 |
/// \brief Return the dual value (ptential) of the given blossom. |
2005 | 2005 |
/// |
2006 | 2006 |
/// This function returns the dual value (ptential) of the given blossom. |
2007 | 2007 |
/// |
2008 | 2008 |
/// \pre Either run() or start() must be called before using this function. |
2009 | 2009 |
Value blossomValue(int k) const { |
2010 | 2010 |
return _blossom_potential[k].value; |
2011 | 2011 |
} |
2012 | 2012 |
|
2013 | 2013 |
/// \brief Iterator for obtaining the nodes of a blossom. |
2014 | 2014 |
/// |
2015 |
/// This class provides an iterator for obtaining the nodes of the |
|
2015 |
/// This class provides an iterator for obtaining the nodes of the |
|
2016 | 2016 |
/// given blossom. It lists a subset of the nodes. |
2017 |
/// Before using this iterator, you must allocate a |
|
2017 |
/// Before using this iterator, you must allocate a |
|
2018 | 2018 |
/// MaxWeightedMatching class and execute it. |
2019 | 2019 |
class BlossomIt { |
2020 | 2020 |
public: |
2021 | 2021 |
|
2022 | 2022 |
/// \brief Constructor. |
2023 | 2023 |
/// |
2024 | 2024 |
/// Constructor to get the nodes of the given variable. |
2025 | 2025 |
/// |
2026 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
2027 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
2026 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
2027 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
2028 | 2028 |
/// called before initializing this iterator. |
2029 | 2029 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
2030 | 2030 |
: _algorithm(&algorithm) |
2031 | 2031 |
{ |
2032 | 2032 |
_index = _algorithm->_blossom_potential[variable].begin; |
2033 | 2033 |
_last = _algorithm->_blossom_potential[variable].end; |
2034 | 2034 |
} |
2035 | 2035 |
|
2036 | 2036 |
/// \brief Conversion to \c Node. |
2037 | 2037 |
/// |
2038 | 2038 |
/// Conversion to \c Node. |
2039 | 2039 |
operator Node() const { |
2040 | 2040 |
return _algorithm->_blossom_node_list[_index]; |
2041 | 2041 |
} |
2042 | 2042 |
|
2043 | 2043 |
/// \brief Increment operator. |
2044 | 2044 |
/// |
2045 | 2045 |
/// Increment operator. |
2046 | 2046 |
BlossomIt& operator++() { |
2047 | 2047 |
++_index; |
2048 | 2048 |
return *this; |
2049 | 2049 |
} |
2050 | 2050 |
|
2051 | 2051 |
/// \brief Validity checking |
2052 | 2052 |
/// |
2053 | 2053 |
/// Checks whether the iterator is invalid. |
2054 | 2054 |
bool operator==(Invalid) const { return _index == _last; } |
2055 | 2055 |
|
2056 | 2056 |
/// \brief Validity checking |
2057 | 2057 |
/// |
2058 | 2058 |
/// Checks whether the iterator is valid. |
2059 | 2059 |
bool operator!=(Invalid) const { return _index != _last; } |
2060 | 2060 |
|
2061 | 2061 |
private: |
2062 | 2062 |
const MaxWeightedMatching* _algorithm; |
2063 | 2063 |
int _last; |
2064 | 2064 |
int _index; |
2065 | 2065 |
}; |
2066 | 2066 |
|
2067 | 2067 |
/// @} |
2068 | 2068 |
|
2069 | 2069 |
}; |
2070 | 2070 |
|
2071 | 2071 |
/// \ingroup matching |
2072 | 2072 |
/// |
2073 | 2073 |
/// \brief Weighted perfect matching in general graphs |
2074 | 2074 |
/// |
2075 | 2075 |
/// This class provides an efficient implementation of Edmond's |
2076 | 2076 |
/// maximum weighted perfect matching algorithm. The implementation |
2077 | 2077 |
/// is based on extensive use of priority queues and provides |
2078 | 2078 |
/// \f$O(nm\log n)\f$ time complexity. |
2079 | 2079 |
/// |
2080 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
2081 |
/// the edges in an undirected graph with maximum overall weight for which |
|
2080 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
2081 |
/// the edges in an undirected graph with maximum overall weight for which |
|
2082 | 2082 |
/// each node has exactly one incident edge. |
2083 | 2083 |
/// It can be formulated with the following linear program. |
2084 | 2084 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
2085 | 2085 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
2086 | 2086 |
\quad \forall B\in\mathcal{O}\f] */ |
2087 | 2087 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
2088 | 2088 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
2089 | 2089 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
2090 | 2090 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
2091 | 2091 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
2092 | 2092 |
/// subsets of the nodes. |
2093 | 2093 |
/// |
2094 | 2094 |
/// The algorithm calculates an optimal matching and a proof of the |
2095 | 2095 |
/// optimality. The solution of the dual problem can be used to check |
2096 | 2096 |
/// the result of the algorithm. The dual linear problem is the |
2097 | 2097 |
/// following. |
2098 | 2098 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
2099 | 2099 |
w_{uv} \quad \forall uv\in E\f] */ |
2100 | 2100 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
2101 | 2101 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
2102 | 2102 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
2103 | 2103 |
/// |
2104 |
/// The algorithm can be executed with the run() function. |
|
2104 |
/// The algorithm can be executed with the run() function. |
|
2105 | 2105 |
/// After it the matching (the primal solution) and the dual solution |
2106 |
/// can be obtained using the query functions and the |
|
2107 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
2108 |
/// |
|
2106 |
/// can be obtained using the query functions and the |
|
2107 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
2108 |
/// which is able to iterate on the nodes of a blossom. |
|
2109 | 2109 |
/// If the value type is integer, then the dual solution is multiplied |
2110 | 2110 |
/// by \ref MaxWeightedMatching::dualScale "4". |
2111 | 2111 |
/// |
2112 | 2112 |
/// \tparam GR The undirected graph type the algorithm runs on. |
2113 |
/// \tparam WM The type edge weight map. The default type is |
|
2113 |
/// \tparam WM The type edge weight map. The default type is |
|
2114 | 2114 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
2115 | 2115 |
#ifdef DOXYGEN |
2116 | 2116 |
template <typename GR, typename WM> |
2117 | 2117 |
#else |
2118 | 2118 |
template <typename GR, |
2119 | 2119 |
typename WM = typename GR::template EdgeMap<int> > |
2120 | 2120 |
#endif |
2121 | 2121 |
class MaxWeightedPerfectMatching { |
2122 | 2122 |
public: |
2123 | 2123 |
|
2124 | 2124 |
/// The graph type of the algorithm |
2125 | 2125 |
typedef GR Graph; |
2126 | 2126 |
/// The type of the edge weight map |
2127 | 2127 |
typedef WM WeightMap; |
2128 | 2128 |
/// The value type of the edge weights |
2129 | 2129 |
typedef typename WeightMap::Value Value; |
2130 | 2130 |
|
2131 | 2131 |
/// \brief Scaling factor for dual solution |
2132 | 2132 |
/// |
2133 | 2133 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
2134 | 2134 |
/// according to the value type. |
2135 | 2135 |
static const int dualScale = |
2136 | 2136 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
2137 | 2137 |
|
2138 | 2138 |
/// The type of the matching map |
2139 | 2139 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
2140 | 2140 |
MatchingMap; |
2141 | 2141 |
|
2142 | 2142 |
private: |
2143 | 2143 |
|
2144 | 2144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2145 | 2145 |
|
... | ... |
@@ -3086,205 +3086,205 @@ |
3086 | 3086 |
} else { |
3087 | 3087 |
augmentOnEdge(e); |
3088 | 3088 |
unmatched -= 2; |
3089 | 3089 |
} |
3090 | 3090 |
} |
3091 | 3091 |
} break; |
3092 | 3092 |
case D4: |
3093 | 3093 |
splitBlossom(_delta4->top()); |
3094 | 3094 |
break; |
3095 | 3095 |
} |
3096 | 3096 |
} |
3097 | 3097 |
extractMatching(); |
3098 | 3098 |
return true; |
3099 | 3099 |
} |
3100 | 3100 |
|
3101 | 3101 |
/// \brief Run the algorithm. |
3102 | 3102 |
/// |
3103 | 3103 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
3104 | 3104 |
/// |
3105 | 3105 |
/// \note mwpm.run() is just a shortcut of the following code. |
3106 | 3106 |
/// \code |
3107 | 3107 |
/// mwpm.init(); |
3108 | 3108 |
/// mwpm.start(); |
3109 | 3109 |
/// \endcode |
3110 | 3110 |
bool run() { |
3111 | 3111 |
init(); |
3112 | 3112 |
return start(); |
3113 | 3113 |
} |
3114 | 3114 |
|
3115 | 3115 |
/// @} |
3116 | 3116 |
|
3117 | 3117 |
/// \name Primal Solution |
3118 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
3118 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
3119 | 3119 |
/// perfect matching.\n |
3120 | 3120 |
/// Either \ref run() or \ref start() function should be called before |
3121 | 3121 |
/// using them. |
3122 | 3122 |
|
3123 | 3123 |
/// @{ |
3124 | 3124 |
|
3125 | 3125 |
/// \brief Return the weight of the matching. |
3126 | 3126 |
/// |
3127 | 3127 |
/// This function returns the weight of the found matching. |
3128 | 3128 |
/// |
3129 | 3129 |
/// \pre Either run() or start() must be called before using this function. |
3130 | 3130 |
Value matchingWeight() const { |
3131 | 3131 |
Value sum = 0; |
3132 | 3132 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3133 | 3133 |
if ((*_matching)[n] != INVALID) { |
3134 | 3134 |
sum += _weight[(*_matching)[n]]; |
3135 | 3135 |
} |
3136 | 3136 |
} |
3137 | 3137 |
return sum /= 2; |
3138 | 3138 |
} |
3139 | 3139 |
|
3140 | 3140 |
/// \brief Return \c true if the given edge is in the matching. |
3141 | 3141 |
/// |
3142 |
/// This function returns \c true if the given edge is in the found |
|
3142 |
/// This function returns \c true if the given edge is in the found |
|
3143 | 3143 |
/// matching. |
3144 | 3144 |
/// |
3145 | 3145 |
/// \pre Either run() or start() must be called before using this function. |
3146 | 3146 |
bool matching(const Edge& edge) const { |
3147 | 3147 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
3148 | 3148 |
} |
3149 | 3149 |
|
3150 | 3150 |
/// \brief Return the matching arc (or edge) incident to the given node. |
3151 | 3151 |
/// |
3152 | 3152 |
/// This function returns the matching arc (or edge) incident to the |
3153 |
/// given node in the found matching or \c INVALID if the node is |
|
3153 |
/// given node in the found matching or \c INVALID if the node is |
|
3154 | 3154 |
/// not covered by the matching. |
3155 | 3155 |
/// |
3156 | 3156 |
/// \pre Either run() or start() must be called before using this function. |
3157 | 3157 |
Arc matching(const Node& node) const { |
3158 | 3158 |
return (*_matching)[node]; |
3159 | 3159 |
} |
3160 | 3160 |
|
3161 | 3161 |
/// \brief Return a const reference to the matching map. |
3162 | 3162 |
/// |
3163 | 3163 |
/// This function returns a const reference to a node map that stores |
3164 | 3164 |
/// the matching arc (or edge) incident to each node. |
3165 | 3165 |
const MatchingMap& matchingMap() const { |
3166 | 3166 |
return *_matching; |
3167 | 3167 |
} |
3168 | 3168 |
|
3169 | 3169 |
/// \brief Return the mate of the given node. |
3170 | 3170 |
/// |
3171 |
/// This function returns the mate of the given node in the found |
|
3171 |
/// This function returns the mate of the given node in the found |
|
3172 | 3172 |
/// matching or \c INVALID if the node is not covered by the matching. |
3173 | 3173 |
/// |
3174 | 3174 |
/// \pre Either run() or start() must be called before using this function. |
3175 | 3175 |
Node mate(const Node& node) const { |
3176 | 3176 |
return _graph.target((*_matching)[node]); |
3177 | 3177 |
} |
3178 | 3178 |
|
3179 | 3179 |
/// @} |
3180 | 3180 |
|
3181 | 3181 |
/// \name Dual Solution |
3182 | 3182 |
/// Functions to get the dual solution.\n |
3183 | 3183 |
/// Either \ref run() or \ref start() function should be called before |
3184 | 3184 |
/// using them. |
3185 | 3185 |
|
3186 | 3186 |
/// @{ |
3187 | 3187 |
|
3188 | 3188 |
/// \brief Return the value of the dual solution. |
3189 | 3189 |
/// |
3190 |
/// This function returns the value of the dual solution. |
|
3191 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
3190 |
/// This function returns the value of the dual solution. |
|
3191 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
3192 | 3192 |
/// "dual scale". |
3193 | 3193 |
/// |
3194 | 3194 |
/// \pre Either run() or start() must be called before using this function. |
3195 | 3195 |
Value dualValue() const { |
3196 | 3196 |
Value sum = 0; |
3197 | 3197 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3198 | 3198 |
sum += nodeValue(n); |
3199 | 3199 |
} |
3200 | 3200 |
for (int i = 0; i < blossomNum(); ++i) { |
3201 | 3201 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
3202 | 3202 |
} |
3203 | 3203 |
return sum; |
3204 | 3204 |
} |
3205 | 3205 |
|
3206 | 3206 |
/// \brief Return the dual value (potential) of the given node. |
3207 | 3207 |
/// |
3208 | 3208 |
/// This function returns the dual value (potential) of the given node. |
3209 | 3209 |
/// |
3210 | 3210 |
/// \pre Either run() or start() must be called before using this function. |
3211 | 3211 |
Value nodeValue(const Node& n) const { |
3212 | 3212 |
return (*_node_potential)[n]; |
3213 | 3213 |
} |
3214 | 3214 |
|
3215 | 3215 |
/// \brief Return the number of the blossoms in the basis. |
3216 | 3216 |
/// |
3217 | 3217 |
/// This function returns the number of the blossoms in the basis. |
3218 | 3218 |
/// |
3219 | 3219 |
/// \pre Either run() or start() must be called before using this function. |
3220 | 3220 |
/// \see BlossomIt |
3221 | 3221 |
int blossomNum() const { |
3222 | 3222 |
return _blossom_potential.size(); |
3223 | 3223 |
} |
3224 | 3224 |
|
3225 | 3225 |
/// \brief Return the number of the nodes in the given blossom. |
3226 | 3226 |
/// |
3227 | 3227 |
/// This function returns the number of the nodes in the given blossom. |
3228 | 3228 |
/// |
3229 | 3229 |
/// \pre Either run() or start() must be called before using this function. |
3230 | 3230 |
/// \see BlossomIt |
3231 | 3231 |
int blossomSize(int k) const { |
3232 | 3232 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
3233 | 3233 |
} |
3234 | 3234 |
|
3235 | 3235 |
/// \brief Return the dual value (ptential) of the given blossom. |
3236 | 3236 |
/// |
3237 | 3237 |
/// This function returns the dual value (ptential) of the given blossom. |
3238 | 3238 |
/// |
3239 | 3239 |
/// \pre Either run() or start() must be called before using this function. |
3240 | 3240 |
Value blossomValue(int k) const { |
3241 | 3241 |
return _blossom_potential[k].value; |
3242 | 3242 |
} |
3243 | 3243 |
|
3244 | 3244 |
/// \brief Iterator for obtaining the nodes of a blossom. |
3245 | 3245 |
/// |
3246 |
/// This class provides an iterator for obtaining the nodes of the |
|
3246 |
/// This class provides an iterator for obtaining the nodes of the |
|
3247 | 3247 |
/// given blossom. It lists a subset of the nodes. |
3248 |
/// Before using this iterator, you must allocate a |
|
3248 |
/// Before using this iterator, you must allocate a |
|
3249 | 3249 |
/// MaxWeightedPerfectMatching class and execute it. |
3250 | 3250 |
class BlossomIt { |
3251 | 3251 |
public: |
3252 | 3252 |
|
3253 | 3253 |
/// \brief Constructor. |
3254 | 3254 |
/// |
3255 | 3255 |
/// Constructor to get the nodes of the given variable. |
3256 | 3256 |
/// |
3257 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
3258 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
3257 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
3258 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
3259 | 3259 |
/// must be called before initializing this iterator. |
3260 | 3260 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
3261 | 3261 |
: _algorithm(&algorithm) |
3262 | 3262 |
{ |
3263 | 3263 |
_index = _algorithm->_blossom_potential[variable].begin; |
3264 | 3264 |
_last = _algorithm->_blossom_potential[variable].end; |
3265 | 3265 |
} |
3266 | 3266 |
|
3267 | 3267 |
/// \brief Conversion to \c Node. |
3268 | 3268 |
/// |
3269 | 3269 |
/// Conversion to \c Node. |
3270 | 3270 |
operator Node() const { |
3271 | 3271 |
return _algorithm->_blossom_node_list[_index]; |
3272 | 3272 |
} |
3273 | 3273 |
|
3274 | 3274 |
/// \brief Increment operator. |
3275 | 3275 |
/// |
3276 | 3276 |
/// Increment operator. |
3277 | 3277 |
BlossomIt& operator++() { |
3278 | 3278 |
++_index; |
3279 | 3279 |
return *this; |
3280 | 3280 |
} |
3281 | 3281 |
|
3282 | 3282 |
/// \brief Validity checking |
3283 | 3283 |
/// |
3284 | 3284 |
/// This function checks whether the iterator is invalid. |
3285 | 3285 |
bool operator==(Invalid) const { return _index == _last; } |
3286 | 3286 |
|
3287 | 3287 |
/// \brief Validity checking |
3288 | 3288 |
/// |
3289 | 3289 |
/// This function checks whether the iterator is valid. |
3290 | 3290 |
bool operator!=(Invalid) const { return _index != _last; } |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MATH_H |
20 | 20 |
#define LEMON_MATH_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Some extensions to the standard \c cmath library. |
25 | 25 |
/// |
26 | 26 |
///Some extensions to the standard \c cmath library. |
27 | 27 |
/// |
28 | 28 |
///This file includes the standard math library (cmath). |
29 | 29 |
|
30 | 30 |
#include<cmath> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \addtogroup misc |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
/// The Euler constant |
38 | 38 |
const long double E = 2.7182818284590452353602874713526625L; |
39 | 39 |
/// log_2(e) |
40 | 40 |
const long double LOG2E = 1.4426950408889634073599246810018921L; |
41 | 41 |
/// log_10(e) |
42 | 42 |
const long double LOG10E = 0.4342944819032518276511289189166051L; |
43 | 43 |
/// ln(2) |
44 | 44 |
const long double LN2 = 0.6931471805599453094172321214581766L; |
45 | 45 |
/// ln(10) |
46 | 46 |
const long double LN10 = 2.3025850929940456840179914546843642L; |
47 | 47 |
/// pi |
48 | 48 |
const long double PI = 3.1415926535897932384626433832795029L; |
49 | 49 |
/// pi/2 |
50 | 50 |
const long double PI_2 = 1.5707963267948966192313216916397514L; |
51 | 51 |
/// pi/4 |
52 | 52 |
const long double PI_4 = 0.7853981633974483096156608458198757L; |
53 | 53 |
/// sqrt(2) |
54 | 54 |
const long double SQRT2 = 1.4142135623730950488016887242096981L; |
55 | 55 |
/// 1/sqrt(2) |
56 | 56 |
const long double SQRT1_2 = 0.7071067811865475244008443621048490L; |
57 | 57 |
|
58 | 58 |
///Check whether the parameter is NaN or not |
59 |
|
|
59 |
|
|
60 | 60 |
///This function checks whether the parameter is NaN or not. |
61 | 61 |
///Is should be equivalent with std::isnan(), but it is not |
62 | 62 |
///provided by all compilers. |
63 | 63 |
inline bool isNaN(double v) |
64 | 64 |
{ |
65 | 65 |
return v!=v; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
/// @} |
69 | 69 |
|
70 | 70 |
} //namespace lemon |
71 | 71 |
|
72 | 72 |
#endif //LEMON_TOLERANCE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MIN_COST_ARBORESCENCE_H |
20 | 20 |
#define LEMON_MIN_COST_ARBORESCENCE_H |
21 | 21 |
|
22 | 22 |
///\ingroup spantree |
23 | 23 |
///\file |
24 | 24 |
///\brief Minimum Cost Arborescence algorithm. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/list_graph.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/assert.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
/// \brief Default traits class for MinCostArborescence class. |
36 | 36 |
/// |
37 | 37 |
/// Default traits class for MinCostArborescence class. |
... | ... |
@@ -98,66 +98,66 @@ |
98 | 98 |
/// This class provides an efficient implementation of the |
99 | 99 |
/// Minimum Cost Arborescence algorithm. The arborescence is a tree |
100 | 100 |
/// which is directed from a given source node of the digraph. One or |
101 | 101 |
/// more sources should be given to the algorithm and it will calculate |
102 | 102 |
/// the minimum cost subgraph that is the union of arborescences with the |
103 | 103 |
/// given sources and spans all the nodes which are reachable from the |
104 | 104 |
/// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e). |
105 | 105 |
/// |
106 | 106 |
/// The algorithm also provides an optimal dual solution, therefore |
107 | 107 |
/// the optimality of the solution can be checked. |
108 | 108 |
/// |
109 | 109 |
/// \param GR The digraph type the algorithm runs on. |
110 | 110 |
/// \param CM A read-only arc map storing the costs of the |
111 | 111 |
/// arcs. It is read once for each arc, so the map may involve in |
112 | 112 |
/// relatively time consuming process to compute the arc costs if |
113 | 113 |
/// it is necessary. The default map type is \ref |
114 | 114 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
115 | 115 |
/// \param TR Traits class to set various data types used |
116 | 116 |
/// by the algorithm. The default traits class is |
117 | 117 |
/// \ref MinCostArborescenceDefaultTraits |
118 | 118 |
/// "MinCostArborescenceDefaultTraits<GR, CM>". |
119 | 119 |
#ifndef DOXYGEN |
120 | 120 |
template <typename GR, |
121 | 121 |
typename CM = typename GR::template ArcMap<int>, |
122 | 122 |
typename TR = |
123 | 123 |
MinCostArborescenceDefaultTraits<GR, CM> > |
124 | 124 |
#else |
125 | 125 |
template <typename GR, typename CM, typedef TR> |
126 | 126 |
#endif |
127 | 127 |
class MinCostArborescence { |
128 | 128 |
public: |
129 | 129 |
|
130 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
131 |
/// of the algorithm. |
|
130 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
131 |
/// of the algorithm. |
|
132 | 132 |
typedef TR Traits; |
133 | 133 |
/// The type of the underlying digraph. |
134 | 134 |
typedef typename Traits::Digraph Digraph; |
135 | 135 |
/// The type of the map that stores the arc costs. |
136 | 136 |
typedef typename Traits::CostMap CostMap; |
137 | 137 |
///The type of the costs of the arcs. |
138 | 138 |
typedef typename Traits::Value Value; |
139 | 139 |
///The type of the predecessor map. |
140 | 140 |
typedef typename Traits::PredMap PredMap; |
141 | 141 |
///The type of the map that stores which arcs are in the arborescence. |
142 | 142 |
typedef typename Traits::ArborescenceMap ArborescenceMap; |
143 | 143 |
|
144 | 144 |
typedef MinCostArborescence Create; |
145 | 145 |
|
146 | 146 |
private: |
147 | 147 |
|
148 | 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
149 | 149 |
|
150 | 150 |
struct CostArc { |
151 | 151 |
|
152 | 152 |
Arc arc; |
153 | 153 |
Value value; |
154 | 154 |
|
155 | 155 |
CostArc() {} |
156 | 156 |
CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {} |
157 | 157 |
|
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
const Digraph *_digraph; |
161 | 161 |
const CostMap *_cost; |
162 | 162 |
|
163 | 163 |
PredMap *_pred; |
... | ... |
@@ -406,65 +406,65 @@ |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
/// \brief \ref named-templ-param "Named parameter" for |
409 | 409 |
/// setting \c ArborescenceMap type |
410 | 410 |
/// |
411 | 411 |
/// \ref named-templ-param "Named parameter" for setting |
412 | 412 |
/// \c ArborescenceMap type. |
413 | 413 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept, |
414 | 414 |
/// and its value type must be \c bool (or convertible). |
415 | 415 |
/// Initially it will be set to \c false on each arc, |
416 | 416 |
/// then it will be set on each arborescence arc once. |
417 | 417 |
template <class T> |
418 | 418 |
struct SetArborescenceMap |
419 | 419 |
: public MinCostArborescence<Digraph, CostMap, |
420 | 420 |
SetArborescenceMapTraits<T> > { |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <class T> |
424 | 424 |
struct SetPredMapTraits : public Traits { |
425 | 425 |
typedef T PredMap; |
426 | 426 |
static PredMap *createPredMap(const Digraph &) |
427 | 427 |
{ |
428 | 428 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
429 | 429 |
return 0; // ignore warnings |
430 | 430 |
} |
431 | 431 |
}; |
432 | 432 |
|
433 | 433 |
/// \brief \ref named-templ-param "Named parameter" for |
434 | 434 |
/// setting \c PredMap type |
435 | 435 |
/// |
436 | 436 |
/// \ref named-templ-param "Named parameter" for setting |
437 | 437 |
/// \c PredMap type. |
438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
439 | 439 |
/// and its value type must be the \c Arc type of the digraph. |
440 | 440 |
template <class T> |
441 | 441 |
struct SetPredMap |
442 | 442 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > { |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// @} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor. |
448 | 448 |
/// |
449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
450 | 450 |
/// \param cost The cost map used by the algorithm. |
451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
453 | 453 |
_arborescence(0), local_arborescence(false), |
454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
455 | 455 |
_heap_cross_ref(0), _heap(0) {} |
456 | 456 |
|
457 | 457 |
/// \brief Destructor. |
458 | 458 |
~MinCostArborescence() { |
459 | 459 |
destroyStructures(); |
460 | 460 |
} |
461 | 461 |
|
462 | 462 |
/// \brief Sets the arborescence map. |
463 | 463 |
/// |
464 | 464 |
/// Sets the arborescence map. |
465 | 465 |
/// \return <tt>(*this)</tt> |
466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
... | ... |
@@ -66,126 +66,126 @@ |
66 | 66 |
/// |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 | 69 |
/// by default. For more information see \ref PivotRule. |
70 | 70 |
template <typename GR, typename V = int, typename C = V> |
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The type of the flow amounts, capacity bounds and supply values |
76 | 76 |
typedef V Value; |
77 | 77 |
/// The type of the arc costs |
78 | 78 |
typedef C Cost; |
79 | 79 |
|
80 | 80 |
public: |
81 | 81 |
|
82 | 82 |
/// \brief Problem type constants for the \c run() function. |
83 | 83 |
/// |
84 | 84 |
/// Enum type containing the problem type constants that can be |
85 | 85 |
/// returned by the \ref run() function of the algorithm. |
86 | 86 |
enum ProblemType { |
87 | 87 |
/// The problem has no feasible solution (flow). |
88 | 88 |
INFEASIBLE, |
89 | 89 |
/// The problem has optimal solution (i.e. it is feasible and |
90 | 90 |
/// bounded), and the algorithm has found optimal flow and node |
91 | 91 |
/// potentials (primal and dual solutions). |
92 | 92 |
OPTIMAL, |
93 | 93 |
/// The objective function of the problem is unbounded, i.e. |
94 | 94 |
/// there is a directed cycle having negative total cost and |
95 | 95 |
/// infinite upper bound. |
96 | 96 |
UNBOUNDED |
97 | 97 |
}; |
98 |
|
|
98 |
|
|
99 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
100 | 100 |
/// |
101 | 101 |
/// Enum type containing constants for selecting the supply type, |
102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
104 | 104 |
/// |
105 | 105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
106 | 106 |
/// selected using \ref supplyType(). |
107 | 107 |
/// The equality form is a special case of both supply types. |
108 | 108 |
enum SupplyType { |
109 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
110 | 110 |
/// supply/demand constraints in the definition of the problem. |
111 | 111 |
GEQ, |
112 | 112 |
/// This option means that there are <em>"less or equal"</em> |
113 | 113 |
/// supply/demand constraints in the definition of the problem. |
114 | 114 |
LEQ |
115 | 115 |
}; |
116 |
|
|
116 |
|
|
117 | 117 |
/// \brief Constants for selecting the pivot rule. |
118 | 118 |
/// |
119 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
120 | 120 |
/// the \ref run() function. |
121 | 121 |
/// |
122 | 122 |
/// \ref NetworkSimplex provides five different pivot rule |
123 | 123 |
/// implementations that significantly affect the running time |
124 | 124 |
/// of the algorithm. |
125 | 125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
126 | 126 |
/// proved to be the most efficient and the most robust on various |
127 | 127 |
/// test inputs according to our benchmark tests. |
128 | 128 |
/// However another pivot rule can be selected using the \ref run() |
129 | 129 |
/// function with the proper parameter. |
130 | 130 |
enum PivotRule { |
131 | 131 |
|
132 | 132 |
/// The First Eligible pivot rule. |
133 | 133 |
/// The next eligible arc is selected in a wraparound fashion |
134 | 134 |
/// in every iteration. |
135 | 135 |
FIRST_ELIGIBLE, |
136 | 136 |
|
137 | 137 |
/// The Best Eligible pivot rule. |
138 | 138 |
/// The best eligible arc is selected in every iteration. |
139 | 139 |
BEST_ELIGIBLE, |
140 | 140 |
|
141 | 141 |
/// The Block Search pivot rule. |
142 | 142 |
/// A specified number of arcs are examined in every iteration |
143 | 143 |
/// in a wraparound fashion and the best eligible arc is selected |
144 | 144 |
/// from this block. |
145 | 145 |
BLOCK_SEARCH, |
146 | 146 |
|
147 | 147 |
/// The Candidate List pivot rule. |
148 | 148 |
/// In a major iteration a candidate list is built from eligible arcs |
149 | 149 |
/// in a wraparound fashion and in the following minor iterations |
150 | 150 |
/// the best eligible arc is selected from this list. |
151 | 151 |
CANDIDATE_LIST, |
152 | 152 |
|
153 | 153 |
/// The Altering Candidate List pivot rule. |
154 | 154 |
/// It is a modified version of the Candidate List method. |
155 | 155 |
/// It keeps only the several best eligible arcs from the former |
156 | 156 |
/// candidate list and extends this list in every iteration. |
157 | 157 |
ALTERING_LIST |
158 | 158 |
}; |
159 |
|
|
159 |
|
|
160 | 160 |
private: |
161 | 161 |
|
162 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
163 | 163 |
|
164 | 164 |
typedef std::vector<Arc> ArcVector; |
165 | 165 |
typedef std::vector<Node> NodeVector; |
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<bool> BoolVector; |
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
172 | 172 |
enum ArcStateEnum { |
173 | 173 |
STATE_UPPER = -1, |
174 | 174 |
STATE_TREE = 0, |
175 | 175 |
STATE_LOWER = 1 |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
private: |
179 | 179 |
|
180 | 180 |
// Data related to the underlying digraph |
181 | 181 |
const GR &_graph; |
182 | 182 |
int _node_num; |
183 | 183 |
int _arc_num; |
184 | 184 |
int _all_arc_num; |
185 | 185 |
int _search_arc_num; |
186 | 186 |
|
187 | 187 |
// Parameters of the problem |
188 | 188 |
bool _have_lower; |
189 | 189 |
SupplyType _stype; |
190 | 190 |
Value _sum_supply; |
191 | 191 |
|
... | ... |
@@ -194,65 +194,65 @@ |
194 | 194 |
IntArcMap _arc_id; |
195 | 195 |
IntVector _source; |
196 | 196 |
IntVector _target; |
197 | 197 |
|
198 | 198 |
// Node and arc data |
199 | 199 |
ValueVector _lower; |
200 | 200 |
ValueVector _upper; |
201 | 201 |
ValueVector _cap; |
202 | 202 |
CostVector _cost; |
203 | 203 |
ValueVector _supply; |
204 | 204 |
ValueVector _flow; |
205 | 205 |
CostVector _pi; |
206 | 206 |
|
207 | 207 |
// Data for storing the spanning tree structure |
208 | 208 |
IntVector _parent; |
209 | 209 |
IntVector _pred; |
210 | 210 |
IntVector _thread; |
211 | 211 |
IntVector _rev_thread; |
212 | 212 |
IntVector _succ_num; |
213 | 213 |
IntVector _last_succ; |
214 | 214 |
IntVector _dirty_revs; |
215 | 215 |
BoolVector _forward; |
216 | 216 |
IntVector _state; |
217 | 217 |
int _root; |
218 | 218 |
|
219 | 219 |
// Temporary data used in the current pivot iteration |
220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
221 | 221 |
int first, second, right, last; |
222 | 222 |
int stem, par_stem, new_stem; |
223 | 223 |
Value delta; |
224 | 224 |
|
225 | 225 |
public: |
226 |
|
|
226 |
|
|
227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 228 |
/// |
229 | 229 |
/// Constant for infinite upper bounds (capacities). |
230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 232 |
const Value INF; |
233 | 233 |
|
234 | 234 |
private: |
235 | 235 |
|
236 | 236 |
// Implementation of the First Eligible pivot rule |
237 | 237 |
class FirstEligiblePivotRule |
238 | 238 |
{ |
239 | 239 |
private: |
240 | 240 |
|
241 | 241 |
// References to the NetworkSimplex class |
242 | 242 |
const IntVector &_source; |
243 | 243 |
const IntVector &_target; |
244 | 244 |
const CostVector &_cost; |
245 | 245 |
const IntVector &_state; |
246 | 246 |
const CostVector &_pi; |
247 | 247 |
int &_in_arc; |
248 | 248 |
int _search_arc_num; |
249 | 249 |
|
250 | 250 |
// Pivot rule data |
251 | 251 |
int _next_arc; |
252 | 252 |
|
253 | 253 |
public: |
254 | 254 |
|
255 | 255 |
// Constructor |
256 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
257 | 257 |
_source(ns._source), _target(ns._target), |
258 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
... | ... |
@@ -615,105 +615,105 @@ |
615 | 615 |
// Make heap of the candidate list (approximating a partial sort) |
616 | 616 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
617 | 617 |
_sort_func ); |
618 | 618 |
|
619 | 619 |
// Pop the first element of the heap |
620 | 620 |
_in_arc = _candidates[0]; |
621 | 621 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
622 | 622 |
_sort_func ); |
623 | 623 |
_curr_length = std::min(_head_length, _curr_length - 1); |
624 | 624 |
return true; |
625 | 625 |
} |
626 | 626 |
|
627 | 627 |
}; //class AlteringListPivotRule |
628 | 628 |
|
629 | 629 |
public: |
630 | 630 |
|
631 | 631 |
/// \brief Constructor. |
632 | 632 |
/// |
633 | 633 |
/// The constructor of the class. |
634 | 634 |
/// |
635 | 635 |
/// \param graph The digraph the algorithm runs on. |
636 | 636 |
NetworkSimplex(const GR& graph) : |
637 | 637 |
_graph(graph), _node_id(graph), _arc_id(graph), |
638 | 638 |
INF(std::numeric_limits<Value>::has_infinity ? |
639 | 639 |
std::numeric_limits<Value>::infinity() : |
640 | 640 |
std::numeric_limits<Value>::max()) |
641 | 641 |
{ |
642 | 642 |
// Check the value types |
643 | 643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
644 | 644 |
"The flow type of NetworkSimplex must be signed"); |
645 | 645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
646 | 646 |
"The cost type of NetworkSimplex must be signed"); |
647 |
|
|
647 |
|
|
648 | 648 |
// Resize vectors |
649 | 649 |
_node_num = countNodes(_graph); |
650 | 650 |
_arc_num = countArcs(_graph); |
651 | 651 |
int all_node_num = _node_num + 1; |
652 | 652 |
int max_arc_num = _arc_num + 2 * _node_num; |
653 | 653 |
|
654 | 654 |
_source.resize(max_arc_num); |
655 | 655 |
_target.resize(max_arc_num); |
656 | 656 |
|
657 | 657 |
_lower.resize(_arc_num); |
658 | 658 |
_upper.resize(_arc_num); |
659 | 659 |
_cap.resize(max_arc_num); |
660 | 660 |
_cost.resize(max_arc_num); |
661 | 661 |
_supply.resize(all_node_num); |
662 | 662 |
_flow.resize(max_arc_num); |
663 | 663 |
_pi.resize(all_node_num); |
664 | 664 |
|
665 | 665 |
_parent.resize(all_node_num); |
666 | 666 |
_pred.resize(all_node_num); |
667 | 667 |
_forward.resize(all_node_num); |
668 | 668 |
_thread.resize(all_node_num); |
669 | 669 |
_rev_thread.resize(all_node_num); |
670 | 670 |
_succ_num.resize(all_node_num); |
671 | 671 |
_last_succ.resize(all_node_num); |
672 | 672 |
_state.resize(max_arc_num); |
673 | 673 |
|
674 | 674 |
// Copy the graph (store the arcs in a mixed order) |
675 | 675 |
int i = 0; |
676 | 676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
677 | 677 |
_node_id[n] = i; |
678 | 678 |
} |
679 | 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
680 | 680 |
i = 0; |
681 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
682 | 682 |
_arc_id[a] = i; |
683 | 683 |
_source[i] = _node_id[_graph.source(a)]; |
684 | 684 |
_target[i] = _node_id[_graph.target(a)]; |
685 | 685 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
686 | 686 |
} |
687 |
|
|
687 |
|
|
688 | 688 |
// Initialize maps |
689 | 689 |
for (int i = 0; i != _node_num; ++i) { |
690 | 690 |
_supply[i] = 0; |
691 | 691 |
} |
692 | 692 |
for (int i = 0; i != _arc_num; ++i) { |
693 | 693 |
_lower[i] = 0; |
694 | 694 |
_upper[i] = INF; |
695 | 695 |
_cost[i] = 1; |
696 | 696 |
} |
697 | 697 |
_have_lower = false; |
698 | 698 |
_stype = GEQ; |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
/// \name Parameters |
702 | 702 |
/// The parameters of the algorithm can be specified using these |
703 | 703 |
/// functions. |
704 | 704 |
|
705 | 705 |
/// @{ |
706 | 706 |
|
707 | 707 |
/// \brief Set the lower bounds on the arcs. |
708 | 708 |
/// |
709 | 709 |
/// This function sets the lower bounds on the arcs. |
710 | 710 |
/// If it is not used before calling \ref run(), the lower bounds |
711 | 711 |
/// will be set to zero on all arcs. |
712 | 712 |
/// |
713 | 713 |
/// \param map An arc map storing the lower bounds. |
714 | 714 |
/// Its \c Value type must be convertible to the \c Value type |
715 | 715 |
/// of the algorithm. |
716 | 716 |
/// |
717 | 717 |
/// \return <tt>(*this)</tt> |
718 | 718 |
template <typename LowerMap> |
719 | 719 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
... | ... |
@@ -780,91 +780,91 @@ |
780 | 780 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
781 | 781 |
_supply[_node_id[n]] = map[n]; |
782 | 782 |
} |
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Set single source and target nodes and a supply value. |
787 | 787 |
/// |
788 | 788 |
/// This function sets a single source node and a single target node |
789 | 789 |
/// and the required flow value. |
790 | 790 |
/// If neither this function nor \ref supplyMap() is used before |
791 | 791 |
/// calling \ref run(), the supply of each node will be set to zero. |
792 | 792 |
/// (It makes sense only if non-zero lower bounds are given.) |
793 | 793 |
/// |
794 | 794 |
/// Using this function has the same effect as using \ref supplyMap() |
795 | 795 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
796 | 796 |
/// assigned to \c t and all other nodes have zero supply value. |
797 | 797 |
/// |
798 | 798 |
/// \param s The source node. |
799 | 799 |
/// \param t The target node. |
800 | 800 |
/// \param k The required amount of flow from node \c s to node \c t |
801 | 801 |
/// (i.e. the supply of \c s and the demand of \c t). |
802 | 802 |
/// |
803 | 803 |
/// \return <tt>(*this)</tt> |
804 | 804 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
805 | 805 |
for (int i = 0; i != _node_num; ++i) { |
806 | 806 |
_supply[i] = 0; |
807 | 807 |
} |
808 | 808 |
_supply[_node_id[s]] = k; |
809 | 809 |
_supply[_node_id[t]] = -k; |
810 | 810 |
return *this; |
811 | 811 |
} |
812 |
|
|
812 |
|
|
813 | 813 |
/// \brief Set the type of the supply constraints. |
814 | 814 |
/// |
815 | 815 |
/// This function sets the type of the supply/demand constraints. |
816 | 816 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
817 | 817 |
/// type will be used. |
818 | 818 |
/// |
819 | 819 |
/// For more information see \ref SupplyType. |
820 | 820 |
/// |
821 | 821 |
/// \return <tt>(*this)</tt> |
822 | 822 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
823 | 823 |
_stype = supply_type; |
824 | 824 |
return *this; |
825 | 825 |
} |
826 | 826 |
|
827 | 827 |
/// @} |
828 | 828 |
|
829 | 829 |
/// \name Execution Control |
830 | 830 |
/// The algorithm can be executed using \ref run(). |
831 | 831 |
|
832 | 832 |
/// @{ |
833 | 833 |
|
834 | 834 |
/// \brief Run the algorithm. |
835 | 835 |
/// |
836 | 836 |
/// This function runs the algorithm. |
837 | 837 |
/// The paramters can be specified using functions \ref lowerMap(), |
838 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
838 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
839 | 839 |
/// \ref supplyType(). |
840 | 840 |
/// For example, |
841 | 841 |
/// \code |
842 | 842 |
/// NetworkSimplex<ListDigraph> ns(graph); |
843 | 843 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
844 | 844 |
/// .supplyMap(sup).run(); |
845 | 845 |
/// \endcode |
846 | 846 |
/// |
847 | 847 |
/// This function can be called more than once. All the parameters |
848 | 848 |
/// that have been given are kept for the next call, unless |
849 | 849 |
/// \ref reset() is called, thus only the modified parameters |
850 | 850 |
/// have to be set again. See \ref reset() for examples. |
851 | 851 |
/// However the underlying digraph must not be modified after this |
852 | 852 |
/// class have been constructed, since it copies and extends the graph. |
853 | 853 |
/// |
854 | 854 |
/// \param pivot_rule The pivot rule that will be used during the |
855 | 855 |
/// algorithm. For more information see \ref PivotRule. |
856 | 856 |
/// |
857 | 857 |
/// \return \c INFEASIBLE if no feasible flow exists, |
858 | 858 |
/// \n \c OPTIMAL if the problem has optimal solution |
859 | 859 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
860 | 860 |
/// optimal flow and node potentials (primal and dual solutions), |
861 | 861 |
/// \n \c UNBOUNDED if the objective function of the problem is |
862 | 862 |
/// unbounded, i.e. there is a directed cycle having negative total |
863 | 863 |
/// cost and infinite upper bound. |
864 | 864 |
/// |
865 | 865 |
/// \see ProblemType, PivotRule |
866 | 866 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
867 | 867 |
if (!init()) return INFEASIBLE; |
868 | 868 |
return start(pivot_rule); |
869 | 869 |
} |
870 | 870 |
|
... | ... |
@@ -1025,65 +1025,65 @@ |
1025 | 1025 |
Value c = _lower[i]; |
1026 | 1026 |
if (c >= 0) { |
1027 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
1028 | 1028 |
} else { |
1029 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
1030 | 1030 |
} |
1031 | 1031 |
_supply[_source[i]] -= c; |
1032 | 1032 |
_supply[_target[i]] += c; |
1033 | 1033 |
} |
1034 | 1034 |
} else { |
1035 | 1035 |
for (int i = 0; i != _arc_num; ++i) { |
1036 | 1036 |
_cap[i] = _upper[i]; |
1037 | 1037 |
} |
1038 | 1038 |
} |
1039 | 1039 |
|
1040 | 1040 |
// Initialize artifical cost |
1041 | 1041 |
Cost ART_COST; |
1042 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1043 | 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1044 | 1044 |
} else { |
1045 | 1045 |
ART_COST = 0; |
1046 | 1046 |
for (int i = 0; i != _arc_num; ++i) { |
1047 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1048 | 1048 |
} |
1049 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
1050 | 1050 |
} |
1051 | 1051 |
|
1052 | 1052 |
// Initialize arc maps |
1053 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1054 | 1054 |
_flow[i] = 0; |
1055 | 1055 |
_state[i] = STATE_LOWER; |
1056 | 1056 |
} |
1057 |
|
|
1057 |
|
|
1058 | 1058 |
// Set data for the artificial root node |
1059 | 1059 |
_root = _node_num; |
1060 | 1060 |
_parent[_root] = -1; |
1061 | 1061 |
_pred[_root] = -1; |
1062 | 1062 |
_thread[_root] = 0; |
1063 | 1063 |
_rev_thread[0] = _root; |
1064 | 1064 |
_succ_num[_root] = _node_num + 1; |
1065 | 1065 |
_last_succ[_root] = _root - 1; |
1066 | 1066 |
_supply[_root] = -_sum_supply; |
1067 | 1067 |
_pi[_root] = 0; |
1068 | 1068 |
|
1069 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
1070 | 1070 |
if (_sum_supply == 0) { |
1071 | 1071 |
// EQ supply constraints |
1072 | 1072 |
_search_arc_num = _arc_num; |
1073 | 1073 |
_all_arc_num = _arc_num + _node_num; |
1074 | 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1075 | 1075 |
_parent[u] = _root; |
1076 | 1076 |
_pred[u] = e; |
1077 | 1077 |
_thread[u] = u + 1; |
1078 | 1078 |
_rev_thread[u + 1] = u; |
1079 | 1079 |
_succ_num[u] = 1; |
1080 | 1080 |
_last_succ[u] = u; |
1081 | 1081 |
_cap[e] = INF; |
1082 | 1082 |
_state[e] = STATE_TREE; |
1083 | 1083 |
if (_supply[u] >= 0) { |
1084 | 1084 |
_forward[u] = true; |
1085 | 1085 |
_pi[u] = 0; |
1086 | 1086 |
_source[e] = u; |
1087 | 1087 |
_target[e] = _root; |
1088 | 1088 |
_flow[e] = _supply[u]; |
1089 | 1089 |
_cost[e] = 0; |
... | ... |
@@ -1199,65 +1199,65 @@ |
1199 | 1199 |
|
1200 | 1200 |
// Find the leaving arc of the cycle and returns true if the |
1201 | 1201 |
// leaving arc is not the same as the entering arc |
1202 | 1202 |
bool findLeavingArc() { |
1203 | 1203 |
// Initialize first and second nodes according to the direction |
1204 | 1204 |
// of the cycle |
1205 | 1205 |
if (_state[in_arc] == STATE_LOWER) { |
1206 | 1206 |
first = _source[in_arc]; |
1207 | 1207 |
second = _target[in_arc]; |
1208 | 1208 |
} else { |
1209 | 1209 |
first = _target[in_arc]; |
1210 | 1210 |
second = _source[in_arc]; |
1211 | 1211 |
} |
1212 | 1212 |
delta = _cap[in_arc]; |
1213 | 1213 |
int result = 0; |
1214 | 1214 |
Value d; |
1215 | 1215 |
int e; |
1216 | 1216 |
|
1217 | 1217 |
// Search the cycle along the path form the first node to the root |
1218 | 1218 |
for (int u = first; u != join; u = _parent[u]) { |
1219 | 1219 |
e = _pred[u]; |
1220 | 1220 |
d = _forward[u] ? |
1221 | 1221 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
1222 | 1222 |
if (d < delta) { |
1223 | 1223 |
delta = d; |
1224 | 1224 |
u_out = u; |
1225 | 1225 |
result = 1; |
1226 | 1226 |
} |
1227 | 1227 |
} |
1228 | 1228 |
// Search the cycle along the path form the second node to the root |
1229 | 1229 |
for (int u = second; u != join; u = _parent[u]) { |
1230 | 1230 |
e = _pred[u]; |
1231 |
d = _forward[u] ? |
|
1231 |
d = _forward[u] ? |
|
1232 | 1232 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
1233 | 1233 |
if (d <= delta) { |
1234 | 1234 |
delta = d; |
1235 | 1235 |
u_out = u; |
1236 | 1236 |
result = 2; |
1237 | 1237 |
} |
1238 | 1238 |
} |
1239 | 1239 |
|
1240 | 1240 |
if (result == 1) { |
1241 | 1241 |
u_in = first; |
1242 | 1242 |
v_in = second; |
1243 | 1243 |
} else { |
1244 | 1244 |
u_in = second; |
1245 | 1245 |
v_in = first; |
1246 | 1246 |
} |
1247 | 1247 |
return result != 0; |
1248 | 1248 |
} |
1249 | 1249 |
|
1250 | 1250 |
// Change _flow and _state vectors |
1251 | 1251 |
void changeFlow(bool change) { |
1252 | 1252 |
// Augment along the cycle |
1253 | 1253 |
if (delta > 0) { |
1254 | 1254 |
Value val = _state[in_arc] * delta; |
1255 | 1255 |
_flow[in_arc] += val; |
1256 | 1256 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1257 | 1257 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1258 | 1258 |
} |
1259 | 1259 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1260 | 1260 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1261 | 1261 |
} |
1262 | 1262 |
} |
1263 | 1263 |
// Update the state of the entering and leaving arcs |
... | ... |
@@ -1406,82 +1406,82 @@ |
1406 | 1406 |
ProblemType start(PivotRule pivot_rule) { |
1407 | 1407 |
// Select the pivot rule implementation |
1408 | 1408 |
switch (pivot_rule) { |
1409 | 1409 |
case FIRST_ELIGIBLE: |
1410 | 1410 |
return start<FirstEligiblePivotRule>(); |
1411 | 1411 |
case BEST_ELIGIBLE: |
1412 | 1412 |
return start<BestEligiblePivotRule>(); |
1413 | 1413 |
case BLOCK_SEARCH: |
1414 | 1414 |
return start<BlockSearchPivotRule>(); |
1415 | 1415 |
case CANDIDATE_LIST: |
1416 | 1416 |
return start<CandidateListPivotRule>(); |
1417 | 1417 |
case ALTERING_LIST: |
1418 | 1418 |
return start<AlteringListPivotRule>(); |
1419 | 1419 |
} |
1420 | 1420 |
return INFEASIBLE; // avoid warning |
1421 | 1421 |
} |
1422 | 1422 |
|
1423 | 1423 |
template <typename PivotRuleImpl> |
1424 | 1424 |
ProblemType start() { |
1425 | 1425 |
PivotRuleImpl pivot(*this); |
1426 | 1426 |
|
1427 | 1427 |
// Execute the Network Simplex algorithm |
1428 | 1428 |
while (pivot.findEnteringArc()) { |
1429 | 1429 |
findJoinNode(); |
1430 | 1430 |
bool change = findLeavingArc(); |
1431 | 1431 |
if (delta >= INF) return UNBOUNDED; |
1432 | 1432 |
changeFlow(change); |
1433 | 1433 |
if (change) { |
1434 | 1434 |
updateTreeStructure(); |
1435 | 1435 |
updatePotential(); |
1436 | 1436 |
} |
1437 | 1437 |
} |
1438 |
|
|
1438 |
|
|
1439 | 1439 |
// Check feasibility |
1440 | 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1441 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
1442 | 1442 |
} |
1443 | 1443 |
|
1444 | 1444 |
// Transform the solution and the supply map to the original form |
1445 | 1445 |
if (_have_lower) { |
1446 | 1446 |
for (int i = 0; i != _arc_num; ++i) { |
1447 | 1447 |
Value c = _lower[i]; |
1448 | 1448 |
if (c != 0) { |
1449 | 1449 |
_flow[i] += c; |
1450 | 1450 |
_supply[_source[i]] += c; |
1451 | 1451 |
_supply[_target[i]] -= c; |
1452 | 1452 |
} |
1453 | 1453 |
} |
1454 | 1454 |
} |
1455 |
|
|
1455 |
|
|
1456 | 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1457 | 1457 |
// optimality conditions |
1458 | 1458 |
if (_sum_supply == 0) { |
1459 | 1459 |
if (_stype == GEQ) { |
1460 | 1460 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
1461 | 1461 |
for (int i = 0; i != _node_num; ++i) { |
1462 | 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1463 | 1463 |
} |
1464 | 1464 |
if (max_pot > 0) { |
1465 | 1465 |
for (int i = 0; i != _node_num; ++i) |
1466 | 1466 |
_pi[i] -= max_pot; |
1467 | 1467 |
} |
1468 | 1468 |
} else { |
1469 | 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1470 | 1470 |
for (int i = 0; i != _node_num; ++i) { |
1471 | 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1472 | 1472 |
} |
1473 | 1473 |
if (min_pot < 0) { |
1474 | 1474 |
for (int i = 0; i != _node_num; ++i) |
1475 | 1475 |
_pi[i] -= min_pot; |
1476 | 1476 |
} |
1477 | 1477 |
} |
1478 | 1478 |
} |
1479 | 1479 |
|
1480 | 1480 |
return OPTIMAL; |
1481 | 1481 |
} |
1482 | 1482 |
|
1483 | 1483 |
}; //class NetworkSimplex |
1484 | 1484 |
|
1485 | 1485 |
///@} |
1486 | 1486 |
|
1487 | 1487 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup paths |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_PATH_H |
25 | 25 |
#define LEMON_PATH_H |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <algorithm> |
29 | 29 |
|
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/concepts/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup paths |
37 | 37 |
/// @{ |
... | ... |
@@ -937,78 +937,78 @@ |
937 | 937 |
to.addBack(it); |
938 | 938 |
} |
939 | 939 |
} |
940 | 940 |
}; |
941 | 941 |
|
942 | 942 |
template <typename From, typename To> |
943 | 943 |
struct PathCopySelectorForward<From, To, true> { |
944 | 944 |
static void copy(const From& from, To& to) { |
945 | 945 |
to.clear(); |
946 | 946 |
to.build(from); |
947 | 947 |
} |
948 | 948 |
}; |
949 | 949 |
|
950 | 950 |
template <typename From, typename To, |
951 | 951 |
bool buildEnable = BuildTagIndicator<To>::value> |
952 | 952 |
struct PathCopySelectorBackward { |
953 | 953 |
static void copy(const From& from, To& to) { |
954 | 954 |
to.clear(); |
955 | 955 |
for (typename From::RevArcIt it(from); it != INVALID; ++it) { |
956 | 956 |
to.addFront(it); |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
}; |
960 | 960 |
|
961 | 961 |
template <typename From, typename To> |
962 | 962 |
struct PathCopySelectorBackward<From, To, true> { |
963 | 963 |
static void copy(const From& from, To& to) { |
964 | 964 |
to.clear(); |
965 | 965 |
to.buildRev(from); |
966 | 966 |
} |
967 | 967 |
}; |
968 | 968 |
|
969 |
|
|
969 |
|
|
970 | 970 |
template <typename From, typename To, |
971 | 971 |
bool revEnable = RevPathTagIndicator<From>::value> |
972 | 972 |
struct PathCopySelector { |
973 | 973 |
static void copy(const From& from, To& to) { |
974 | 974 |
PathCopySelectorForward<From, To>::copy(from, to); |
975 |
} |
|
975 |
} |
|
976 | 976 |
}; |
977 | 977 |
|
978 | 978 |
template <typename From, typename To> |
979 | 979 |
struct PathCopySelector<From, To, true> { |
980 | 980 |
static void copy(const From& from, To& to) { |
981 | 981 |
PathCopySelectorBackward<From, To>::copy(from, to); |
982 |
} |
|
982 |
} |
|
983 | 983 |
}; |
984 | 984 |
|
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
|
988 | 988 |
/// \brief Make a copy of a path. |
989 | 989 |
/// |
990 | 990 |
/// This function makes a copy of a path. |
991 | 991 |
template <typename From, typename To> |
992 | 992 |
void pathCopy(const From& from, To& to) { |
993 | 993 |
checkConcept<concepts::PathDumper<typename From::Digraph>, From>(); |
994 | 994 |
_path_bits::PathCopySelector<From, To>::copy(from, to); |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
/// \brief Deprecated version of \ref pathCopy(). |
998 | 998 |
/// |
999 | 999 |
/// Deprecated version of \ref pathCopy() (only for reverse compatibility). |
1000 | 1000 |
template <typename To, typename From> |
1001 | 1001 |
void copyPath(To& to, const From& from) { |
1002 | 1002 |
pathCopy(from, to); |
1003 | 1003 |
} |
1004 | 1004 |
|
1005 | 1005 |
/// \brief Check the consistency of a path. |
1006 | 1006 |
/// |
1007 | 1007 |
/// This function checks that the target of each arc is the same |
1008 | 1008 |
/// as the source of the next one. |
1009 | 1009 |
/// |
1010 | 1010 |
template <typename Digraph, typename Path> |
1011 | 1011 |
bool checkPath(const Digraph& digraph, const Path& path) { |
1012 | 1012 |
typename Path::ArcIt it(path); |
1013 | 1013 |
if (it == INVALID) return true; |
1014 | 1014 |
typename Digraph::Node node = digraph.target(it); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
... | ... |
@@ -507,96 +507,96 @@ |
507 | 507 |
} |
508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 509 |
Node v = _graph.target(e); |
510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 511 |
reached[v] = true; |
512 | 512 |
_level->initAddItem(v); |
513 | 513 |
nqueue.push_back(v); |
514 | 514 |
} |
515 | 515 |
} |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 | 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 | 528 |
} |
529 | 529 |
} |
530 | 530 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
531 | 531 |
Value rem = (*_flow)[e]; |
532 | 532 |
if (_tolerance.positive(rem)) { |
533 | 533 |
Node v = _graph.source(e); |
534 | 534 |
if ((*_level)[v] == _level->maxLevel()) continue; |
535 | 535 |
_flow->set(e, 0); |
536 | 536 |
(*_excess)[v] += rem; |
537 | 537 |
} |
538 | 538 |
} |
539 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
539 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
540 | 540 |
if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n])) |
541 | 541 |
_level->activate(n); |
542 |
|
|
542 |
|
|
543 | 543 |
return true; |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
/// \brief Starts the first phase of the preflow algorithm. |
547 | 547 |
/// |
548 | 548 |
/// The preflow algorithm consists of two phases, this method runs |
549 | 549 |
/// the first phase. After the first phase the maximum flow value |
550 | 550 |
/// and a minimum value cut can already be computed, although a |
551 | 551 |
/// maximum flow is not yet obtained. So after calling this method |
552 | 552 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
553 | 553 |
/// minCut() returns a minimum cut. |
554 | 554 |
/// \pre One of the \ref init() functions must be called before |
555 | 555 |
/// using this function. |
556 | 556 |
void startFirstPhase() { |
557 | 557 |
_phase = true; |
558 | 558 |
|
559 | 559 |
while (true) { |
560 | 560 |
int num = _node_num; |
561 | 561 |
|
562 | 562 |
Node n = INVALID; |
563 | 563 |
int level = -1; |
564 | 564 |
|
565 | 565 |
while (num > 0) { |
566 | 566 |
n = _level->highestActive(); |
567 | 567 |
if (n == INVALID) goto first_phase_done; |
568 | 568 |
level = _level->highestActiveLevel(); |
569 | 569 |
--num; |
570 |
|
|
570 |
|
|
571 | 571 |
Value excess = (*_excess)[n]; |
572 | 572 |
int new_level = _level->maxLevel(); |
573 | 573 |
|
574 | 574 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
575 | 575 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
576 | 576 |
if (!_tolerance.positive(rem)) continue; |
577 | 577 |
Node v = _graph.target(e); |
578 | 578 |
if ((*_level)[v] < level) { |
579 | 579 |
if (!_level->active(v) && v != _target) { |
580 | 580 |
_level->activate(v); |
581 | 581 |
} |
582 | 582 |
if (!_tolerance.less(rem, excess)) { |
583 | 583 |
_flow->set(e, (*_flow)[e] + excess); |
584 | 584 |
(*_excess)[v] += excess; |
585 | 585 |
excess = 0; |
586 | 586 |
goto no_more_push_1; |
587 | 587 |
} else { |
588 | 588 |
excess -= rem; |
589 | 589 |
(*_excess)[v] += rem; |
590 | 590 |
_flow->set(e, (*_capacity)[e]); |
591 | 591 |
} |
592 | 592 |
} else if (new_level > (*_level)[v]) { |
593 | 593 |
new_level = (*_level)[v]; |
594 | 594 |
} |
595 | 595 |
} |
596 | 596 |
|
597 | 597 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
598 | 598 |
Value rem = (*_flow)[e]; |
599 | 599 |
if (!_tolerance.positive(rem)) continue; |
600 | 600 |
Node v = _graph.source(e); |
601 | 601 |
if ((*_level)[v] < level) { |
602 | 602 |
if (!_level->active(v) && v != _target) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <lemon/soplex.h> |
21 | 21 |
|
22 | 22 |
#include <soplex.h> |
23 | 23 |
#include <spxout.h> |
24 | 24 |
|
25 | 25 |
|
26 | 26 |
///\file |
27 | 27 |
///\brief Implementation of the LEMON-SOPLEX lp solver interface. |
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
SoplexLp::SoplexLp() { |
31 | 31 |
soplex = new soplex::SoPlex; |
32 | 32 |
messageLevel(MESSAGE_NOTHING); |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
SoplexLp::~SoplexLp() { |
36 | 36 |
delete soplex; |
37 | 37 |
} |
... | ... |
@@ -245,65 +245,65 @@ |
245 | 245 |
} |
246 | 246 |
|
247 | 247 |
void SoplexLp::_setObjCoeffs(ExprIterator b, ExprIterator e) { |
248 | 248 |
for (int j = 0; j < soplex->nCols(); ++j) { |
249 | 249 |
soplex->changeObj(j, 0.0); |
250 | 250 |
} |
251 | 251 |
for (ExprIterator it = b; it != e; ++it) { |
252 | 252 |
soplex->changeObj(it->first, it->second); |
253 | 253 |
} |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
void SoplexLp::_getObjCoeffs(InsertIterator b) const { |
257 | 257 |
for (int j = 0; j < soplex->nCols(); ++j) { |
258 | 258 |
Value coef = soplex->obj(j); |
259 | 259 |
if (coef != 0.0) { |
260 | 260 |
*b = std::make_pair(j, coef); |
261 | 261 |
++b; |
262 | 262 |
} |
263 | 263 |
} |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
void SoplexLp::_setObjCoeff(int i, Value obj_coef) { |
267 | 267 |
soplex->changeObj(i, obj_coef); |
268 | 268 |
} |
269 | 269 |
|
270 | 270 |
SoplexLp::Value SoplexLp::_getObjCoeff(int i) const { |
271 | 271 |
return soplex->obj(i); |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
SoplexLp::SolveExitStatus SoplexLp::_solve() { |
275 | 275 |
|
276 | 276 |
_clear_temporals(); |
277 |
|
|
277 |
|
|
278 | 278 |
_applyMessageLevel(); |
279 | 279 |
|
280 | 280 |
soplex::SPxSolver::Status status = soplex->solve(); |
281 | 281 |
|
282 | 282 |
switch (status) { |
283 | 283 |
case soplex::SPxSolver::OPTIMAL: |
284 | 284 |
case soplex::SPxSolver::INFEASIBLE: |
285 | 285 |
case soplex::SPxSolver::UNBOUNDED: |
286 | 286 |
return SOLVED; |
287 | 287 |
default: |
288 | 288 |
return UNSOLVED; |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
|
292 | 292 |
SoplexLp::Value SoplexLp::_getPrimal(int i) const { |
293 | 293 |
if (_primal_values.empty()) { |
294 | 294 |
_primal_values.resize(soplex->nCols()); |
295 | 295 |
soplex::Vector pv(_primal_values.size(), &_primal_values.front()); |
296 | 296 |
soplex->getPrimal(pv); |
297 | 297 |
} |
298 | 298 |
return _primal_values[i]; |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
SoplexLp::Value SoplexLp::_getDual(int i) const { |
302 | 302 |
if (_dual_values.empty()) { |
303 | 303 |
_dual_values.resize(soplex->nRows()); |
304 | 304 |
soplex::Vector dv(_dual_values.size(), &_dual_values.front()); |
305 | 305 |
soplex->getDual(dv); |
306 | 306 |
} |
307 | 307 |
return _dual_values[i]; |
308 | 308 |
} |
309 | 309 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SOPLEX_H |
20 | 20 |
#define LEMON_SOPLEX_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-SOPLEX lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <vector> |
26 | 26 |
#include <string> |
27 | 27 |
|
28 | 28 |
#include <lemon/lp_base.h> |
29 | 29 |
|
30 | 30 |
// Forward declaration |
31 | 31 |
namespace soplex { |
32 | 32 |
class SoPlex; |
33 | 33 |
} |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup lp_group |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/path.h> |
31 | 31 |
#include <lemon/list_graph.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup shortest_path |
37 | 37 |
/// @{ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_UNION_FIND_H |
20 | 20 |
#define LEMON_UNION_FIND_H |
21 | 21 |
|
22 | 22 |
//!\ingroup auxdat |
23 | 23 |
//!\file |
24 | 24 |
//!\brief Union-Find data structures. |
25 | 25 |
//! |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <list> |
29 | 29 |
#include <utility> |
30 | 30 |
#include <algorithm> |
31 | 31 |
#include <functional> |
32 | 32 |
|
33 | 33 |
#include <lemon/core.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup auxdat |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
|
26 | 26 |
#include "graph_test.h" |
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
... | ... |
@@ -54,110 +54,110 @@ |
54 | 54 |
{ |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
typedef Bfs<Digraph> BType; |
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
|
60 | 60 |
Digraph G; |
61 | 61 |
Node s, t, n; |
62 | 62 |
Arc e; |
63 | 63 |
int l, i; |
64 | 64 |
bool b; |
65 | 65 |
BType::DistMap d(G); |
66 | 66 |
BType::PredMap p(G); |
67 | 67 |
Path<Digraph> pp; |
68 | 68 |
concepts::ReadMap<Node,bool> nm; |
69 | 69 |
|
70 | 70 |
{ |
71 | 71 |
BType bfs_test(G); |
72 | 72 |
const BType& const_bfs_test = bfs_test; |
73 | 73 |
|
74 | 74 |
bfs_test.run(s); |
75 | 75 |
bfs_test.run(s,t); |
76 | 76 |
bfs_test.run(); |
77 | 77 |
|
78 | 78 |
bfs_test.init(); |
79 | 79 |
bfs_test.addSource(s); |
80 | 80 |
n = bfs_test.processNextNode(); |
81 | 81 |
n = bfs_test.processNextNode(t, b); |
82 | 82 |
n = bfs_test.processNextNode(nm, n); |
83 | 83 |
n = const_bfs_test.nextNode(); |
84 | 84 |
b = const_bfs_test.emptyQueue(); |
85 | 85 |
i = const_bfs_test.queueSize(); |
86 |
|
|
86 |
|
|
87 | 87 |
bfs_test.start(); |
88 | 88 |
bfs_test.start(t); |
89 | 89 |
bfs_test.start(nm); |
90 | 90 |
|
91 | 91 |
l = const_bfs_test.dist(t); |
92 | 92 |
e = const_bfs_test.predArc(t); |
93 | 93 |
s = const_bfs_test.predNode(t); |
94 | 94 |
b = const_bfs_test.reached(t); |
95 | 95 |
d = const_bfs_test.distMap(); |
96 | 96 |
p = const_bfs_test.predMap(); |
97 | 97 |
pp = const_bfs_test.path(t); |
98 | 98 |
} |
99 | 99 |
{ |
100 | 100 |
BType |
101 | 101 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
102 | 102 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
103 | 103 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
104 | 104 |
::SetStandardProcessedMap |
105 | 105 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
106 | 106 |
::Create bfs_test(G); |
107 |
|
|
107 |
|
|
108 | 108 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
109 | 109 |
concepts::ReadWriteMap<Node,int> dist_map; |
110 | 110 |
concepts::ReadWriteMap<Node,bool> reached_map; |
111 | 111 |
concepts::WriteMap<Node,bool> processed_map; |
112 |
|
|
112 |
|
|
113 | 113 |
bfs_test |
114 | 114 |
.predMap(pred_map) |
115 | 115 |
.distMap(dist_map) |
116 | 116 |
.reachedMap(reached_map) |
117 | 117 |
.processedMap(processed_map); |
118 | 118 |
|
119 | 119 |
bfs_test.run(s); |
120 | 120 |
bfs_test.run(s,t); |
121 | 121 |
bfs_test.run(); |
122 |
|
|
122 |
|
|
123 | 123 |
bfs_test.init(); |
124 | 124 |
bfs_test.addSource(s); |
125 | 125 |
n = bfs_test.processNextNode(); |
126 | 126 |
n = bfs_test.processNextNode(t, b); |
127 | 127 |
n = bfs_test.processNextNode(nm, n); |
128 | 128 |
n = bfs_test.nextNode(); |
129 | 129 |
b = bfs_test.emptyQueue(); |
130 | 130 |
i = bfs_test.queueSize(); |
131 |
|
|
131 |
|
|
132 | 132 |
bfs_test.start(); |
133 | 133 |
bfs_test.start(t); |
134 | 134 |
bfs_test.start(nm); |
135 | 135 |
|
136 | 136 |
l = bfs_test.dist(t); |
137 | 137 |
e = bfs_test.predArc(t); |
138 | 138 |
s = bfs_test.predNode(t); |
139 | 139 |
b = bfs_test.reached(t); |
140 | 140 |
pp = bfs_test.path(t); |
141 | 141 |
} |
142 | 142 |
} |
143 | 143 |
|
144 | 144 |
void checkBfsFunctionCompile() |
145 | 145 |
{ |
146 | 146 |
typedef int VType; |
147 | 147 |
typedef concepts::Digraph Digraph; |
148 | 148 |
typedef Digraph::Arc Arc; |
149 | 149 |
typedef Digraph::Node Node; |
150 | 150 |
|
151 | 151 |
Digraph g; |
152 | 152 |
bool b; |
153 | 153 |
bfs(g).run(Node()); |
154 | 154 |
b=bfs(g).run(Node(),Node()); |
155 | 155 |
bfs(g).run(); |
156 | 156 |
bfs(g) |
157 | 157 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
158 | 158 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
159 | 159 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
160 | 160 |
.processedMap(concepts::WriteMap<Node,bool>()) |
161 | 161 |
.run(Node()); |
162 | 162 |
b=bfs(g) |
163 | 163 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/list_graph.h> |
23 | 23 |
#include <lemon/circulation.h> |
24 | 24 |
#include <lemon/lgf_reader.h> |
25 | 25 |
#include <lemon/concepts/digraph.h> |
26 | 26 |
#include <lemon/concepts/maps.h> |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
|
30 | 30 |
char test_lgf[] = |
31 | 31 |
"@nodes\n" |
32 | 32 |
"label\n" |
33 | 33 |
"0\n" |
34 | 34 |
"1\n" |
35 | 35 |
"2\n" |
36 | 36 |
"3\n" |
37 | 37 |
"4\n" |
... | ... |
@@ -52,81 +52,81 @@ |
52 | 52 |
void checkCirculationCompile() |
53 | 53 |
{ |
54 | 54 |
typedef int VType; |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
|
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
60 | 60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
63 | 63 |
|
64 | 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
65 | 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
66 | 66 |
|
67 | 67 |
Digraph g; |
68 | 68 |
Node n; |
69 | 69 |
Arc a; |
70 | 70 |
CapMap lcap, ucap; |
71 | 71 |
SupplyMap supply; |
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 | 77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 |
|
|
84 |
|
|
85 | 85 |
circ_test |
86 | 86 |
.lowerMap(lcap) |
87 | 87 |
.upperMap(ucap) |
88 | 88 |
.supplyMap(supply) |
89 | 89 |
.flowMap(flow); |
90 | 90 |
|
91 | 91 |
circ_test.init(); |
92 | 92 |
circ_test.greedyInit(); |
93 | 93 |
circ_test.start(); |
94 | 94 |
circ_test.run(); |
95 | 95 |
|
96 | 96 |
v = const_circ_test.flow(a); |
97 | 97 |
const FlowMap& fm = const_circ_test.flowMap(); |
98 | 98 |
b = const_circ_test.barrier(n); |
99 | 99 |
const_circ_test.barrierMap(bar); |
100 |
|
|
100 |
|
|
101 | 101 |
ignore_unused_variable_warning(fm); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
template <class G, class LM, class UM, class DM> |
105 | 105 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
106 | 106 |
const DM& dm, bool find) |
107 | 107 |
{ |
108 | 108 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
109 | 109 |
bool ret = circ.run(); |
110 | 110 |
if (find) { |
111 | 111 |
check(ret, "A feasible solution should have been found."); |
112 | 112 |
check(circ.checkFlow(), "The found flow is corrupt."); |
113 | 113 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
114 | 114 |
} else { |
115 | 115 |
check(!ret, "A feasible solution should not have been found."); |
116 | 116 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
117 | 117 |
} |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
int main (int, char*[]) |
121 | 121 |
{ |
122 | 122 |
typedef ListDigraph Digraph; |
123 | 123 |
DIGRAPH_TYPEDEFS(Digraph); |
124 | 124 |
|
125 | 125 |
Digraph g; |
126 | 126 |
IntArcMap lo(g), up(g); |
127 | 127 |
IntNodeMap delta(g, 0); |
128 | 128 |
Node s, t; |
129 | 129 |
|
130 | 130 |
std::istringstream input(test_lgf); |
131 | 131 |
DigraphReader<Digraph>(g,input). |
132 | 132 |
arcMap("lcap", lo). |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/connectivity.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/adaptors.h> |
22 | 22 |
|
23 | 23 |
#include "test_tools.h" |
24 | 24 |
|
25 | 25 |
using namespace lemon; |
26 | 26 |
|
27 | 27 |
|
28 | 28 |
int main() |
29 | 29 |
{ |
30 | 30 |
typedef ListDigraph Digraph; |
31 | 31 |
typedef Undirector<Digraph> Graph; |
32 |
|
|
32 |
|
|
33 | 33 |
{ |
34 | 34 |
Digraph d; |
35 | 35 |
Digraph::NodeMap<int> order(d); |
36 | 36 |
Graph g(d); |
37 |
|
|
37 |
|
|
38 | 38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
39 | 39 |
check(countStronglyConnectedComponents(d) == 0, |
40 | 40 |
"The empty digraph has 0 strongly connected component"); |
41 | 41 |
check(connected(g), "The empty graph is connected"); |
42 | 42 |
check(countConnectedComponents(g) == 0, |
43 | 43 |
"The empty graph has 0 connected component"); |
44 | 44 |
|
45 | 45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
46 | 46 |
check(countBiNodeConnectedComponents(g) == 0, |
47 | 47 |
"The empty graph has 0 bi-node-connected component"); |
48 | 48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
49 | 49 |
check(countBiEdgeConnectedComponents(g) == 0, |
50 | 50 |
"The empty graph has 0 bi-edge-connected component"); |
51 |
|
|
51 |
|
|
52 | 52 |
check(dag(d), "The empty digraph is DAG."); |
53 | 53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
54 | 54 |
check(loopFree(d), "The empty digraph is loop-free."); |
55 | 55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
56 | 56 |
check(simpleGraph(d), "The empty digraph is simple."); |
57 | 57 |
|
58 | 58 |
check(acyclic(g), "The empty graph is acyclic."); |
59 | 59 |
check(tree(g), "The empty graph is tree."); |
60 | 60 |
check(bipartite(g), "The empty graph is bipartite."); |
61 | 61 |
check(loopFree(g), "The empty graph is loop-free."); |
62 | 62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
63 | 63 |
check(simpleGraph(g), "The empty graph is simple."); |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
{ |
67 | 67 |
Digraph d; |
68 | 68 |
Digraph::NodeMap<int> order(d); |
69 | 69 |
Graph g(d); |
70 | 70 |
Digraph::Node n = d.addNode(); |
71 | 71 |
|
72 | 72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
73 | 73 |
check(countStronglyConnectedComponents(d) == 1, |
74 | 74 |
"This digraph has 1 strongly connected component"); |
75 | 75 |
check(connected(g), "This graph is connected"); |
76 | 76 |
check(countConnectedComponents(g) == 1, |
77 | 77 |
"This graph has 1 connected component"); |
78 | 78 |
|
79 | 79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
80 | 80 |
check(countBiNodeConnectedComponents(g) == 0, |
81 | 81 |
"This graph has 0 bi-node-connected component"); |
82 | 82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
83 | 83 |
check(countBiEdgeConnectedComponents(g) == 1, |
84 | 84 |
"This graph has 1 bi-edge-connected component"); |
85 |
|
|
85 |
|
|
86 | 86 |
check(dag(d), "This digraph is DAG."); |
87 | 87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
88 | 88 |
check(loopFree(d), "This digraph is loop-free."); |
89 | 89 |
check(parallelFree(d), "This digraph is parallel-free."); |
90 | 90 |
check(simpleGraph(d), "This digraph is simple."); |
91 | 91 |
|
92 | 92 |
check(acyclic(g), "This graph is acyclic."); |
93 | 93 |
check(tree(g), "This graph is tree."); |
94 | 94 |
check(bipartite(g), "This graph is bipartite."); |
95 | 95 |
check(loopFree(g), "This graph is loop-free."); |
96 | 96 |
check(parallelFree(g), "This graph is parallel-free."); |
97 | 97 |
check(simpleGraph(g), "This graph is simple."); |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
{ |
101 | 101 |
Digraph d; |
102 | 102 |
Digraph::NodeMap<int> order(d); |
103 | 103 |
Graph g(d); |
104 |
|
|
104 |
|
|
105 | 105 |
Digraph::Node n1 = d.addNode(); |
106 | 106 |
Digraph::Node n2 = d.addNode(); |
107 | 107 |
Digraph::Node n3 = d.addNode(); |
108 | 108 |
Digraph::Node n4 = d.addNode(); |
109 | 109 |
Digraph::Node n5 = d.addNode(); |
110 | 110 |
Digraph::Node n6 = d.addNode(); |
111 |
|
|
111 |
|
|
112 | 112 |
d.addArc(n1, n3); |
113 | 113 |
d.addArc(n3, n2); |
114 | 114 |
d.addArc(n2, n1); |
115 | 115 |
d.addArc(n4, n2); |
116 | 116 |
d.addArc(n4, n3); |
117 | 117 |
d.addArc(n5, n6); |
118 | 118 |
d.addArc(n6, n5); |
119 | 119 |
|
120 | 120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
121 | 121 |
check(countStronglyConnectedComponents(d) == 3, |
122 | 122 |
"This digraph has 3 strongly connected components"); |
123 | 123 |
check(!connected(g), "This graph is not connected"); |
124 | 124 |
check(countConnectedComponents(g) == 2, |
125 | 125 |
"This graph has 2 connected components"); |
126 | 126 |
|
127 | 127 |
check(!dag(d), "This digraph is not DAG."); |
128 | 128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
129 | 129 |
check(loopFree(d), "This digraph is loop-free."); |
130 | 130 |
check(parallelFree(d), "This digraph is parallel-free."); |
131 | 131 |
check(simpleGraph(d), "This digraph is simple."); |
132 | 132 |
|
133 | 133 |
check(!acyclic(g), "This graph is not acyclic."); |
134 | 134 |
check(!tree(g), "This graph is not tree."); |
135 | 135 |
check(!bipartite(g), "This graph is not bipartite."); |
136 | 136 |
check(loopFree(g), "This graph is loop-free."); |
137 | 137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
138 | 138 |
check(!simpleGraph(g), "This graph is not simple."); |
139 |
|
|
139 |
|
|
140 | 140 |
d.addArc(n3, n3); |
141 |
|
|
141 |
|
|
142 | 142 |
check(!loopFree(d), "This digraph is not loop-free."); |
143 | 143 |
check(!loopFree(g), "This graph is not loop-free."); |
144 | 144 |
check(!simpleGraph(d), "This digraph is not simple."); |
145 |
|
|
145 |
|
|
146 | 146 |
d.addArc(n3, n2); |
147 |
|
|
147 |
|
|
148 | 148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
149 | 149 |
} |
150 |
|
|
150 |
|
|
151 | 151 |
{ |
152 | 152 |
Digraph d; |
153 | 153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
154 | 154 |
Graph g(d); |
155 |
|
|
155 |
|
|
156 | 156 |
Digraph::Node n1 = d.addNode(); |
157 | 157 |
Digraph::Node n2 = d.addNode(); |
158 | 158 |
Digraph::Node n3 = d.addNode(); |
159 | 159 |
Digraph::Node n4 = d.addNode(); |
160 | 160 |
Digraph::Node n5 = d.addNode(); |
161 | 161 |
Digraph::Node n6 = d.addNode(); |
162 | 162 |
Digraph::Node n7 = d.addNode(); |
163 | 163 |
Digraph::Node n8 = d.addNode(); |
164 | 164 |
|
165 | 165 |
d.addArc(n1, n2); |
166 | 166 |
d.addArc(n5, n1); |
167 | 167 |
d.addArc(n2, n8); |
168 | 168 |
d.addArc(n8, n5); |
169 | 169 |
d.addArc(n6, n4); |
170 | 170 |
d.addArc(n4, n6); |
171 | 171 |
d.addArc(n2, n5); |
172 | 172 |
d.addArc(n1, n8); |
173 | 173 |
d.addArc(n6, n7); |
174 | 174 |
d.addArc(n7, n6); |
175 |
|
|
175 |
|
|
176 | 176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
177 | 177 |
check(countStronglyConnectedComponents(d) == 3, |
178 | 178 |
"This digraph has 3 strongly connected components"); |
179 | 179 |
Digraph::NodeMap<int> scomp1(d); |
180 | 180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
181 | 181 |
"This digraph has 3 strongly connected components"); |
182 | 182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
183 | 183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
184 | 184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
185 | 185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
186 | 186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
187 | 187 |
"Wrong stronglyConnectedComponents()"); |
188 | 188 |
Digraph::ArcMap<bool> scut1(d, false); |
189 | 189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
190 | 190 |
"This digraph has 0 strongly connected cut arc."); |
191 | 191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
192 | 192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
193 | 193 |
} |
194 | 194 |
|
195 | 195 |
check(!connected(g), "This graph is not connected"); |
196 | 196 |
check(countConnectedComponents(g) == 3, |
197 | 197 |
"This graph has 3 connected components"); |
198 | 198 |
Graph::NodeMap<int> comp(g); |
199 | 199 |
check(connectedComponents(g, comp) == 3, |
200 | 200 |
"This graph has 3 connected components"); |
201 | 201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
202 | 202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
203 | 203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
204 | 204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
205 | 205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
206 | 206 |
"Wrong connectedComponents()"); |
207 | 207 |
|
208 | 208 |
cutarcs[d.addArc(n3, n1)] = true; |
209 | 209 |
cutarcs[d.addArc(n3, n5)] = true; |
210 | 210 |
cutarcs[d.addArc(n3, n8)] = true; |
211 | 211 |
cutarcs[d.addArc(n8, n6)] = true; |
212 | 212 |
cutarcs[d.addArc(n8, n7)] = true; |
213 | 213 |
|
214 | 214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
215 | 215 |
check(countStronglyConnectedComponents(d) == 3, |
216 | 216 |
"This digraph has 3 strongly connected components"); |
217 | 217 |
Digraph::NodeMap<int> scomp2(d); |
218 | 218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
219 | 219 |
"This digraph has 3 strongly connected components"); |
220 | 220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
221 | 221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
222 | 222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
223 | 223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
224 | 224 |
"Wrong stronglyConnectedComponents()"); |
225 | 225 |
Digraph::ArcMap<bool> scut2(d, false); |
226 | 226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
227 | 227 |
"This digraph has 5 strongly connected cut arcs."); |
228 | 228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
229 | 229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
230 | 230 |
} |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
{ |
234 | 234 |
// DAG example for topological sort from the book New Algorithms |
235 | 235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
236 | 236 |
Digraph d; |
237 | 237 |
Digraph::NodeMap<int> order(d); |
238 |
|
|
238 |
|
|
239 | 239 |
Digraph::Node belt = d.addNode(); |
240 | 240 |
Digraph::Node trousers = d.addNode(); |
241 | 241 |
Digraph::Node necktie = d.addNode(); |
242 | 242 |
Digraph::Node coat = d.addNode(); |
243 | 243 |
Digraph::Node socks = d.addNode(); |
244 | 244 |
Digraph::Node shirt = d.addNode(); |
245 | 245 |
Digraph::Node shoe = d.addNode(); |
246 | 246 |
Digraph::Node watch = d.addNode(); |
247 | 247 |
Digraph::Node pants = d.addNode(); |
248 | 248 |
|
249 | 249 |
d.addArc(socks, shoe); |
250 | 250 |
d.addArc(pants, shoe); |
251 | 251 |
d.addArc(pants, trousers); |
252 | 252 |
d.addArc(trousers, shoe); |
253 | 253 |
d.addArc(trousers, belt); |
254 | 254 |
d.addArc(belt, coat); |
255 | 255 |
d.addArc(shirt, belt); |
256 | 256 |
d.addArc(shirt, necktie); |
257 | 257 |
d.addArc(necktie, coat); |
258 |
|
|
258 |
|
|
259 | 259 |
check(dag(d), "This digraph is DAG."); |
260 | 260 |
topologicalSort(d, order); |
261 | 261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
262 | 262 |
check(order[d.source(a)] < order[d.target(a)], |
263 | 263 |
"Wrong topologicalSort()"); |
264 | 264 |
} |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
{ |
268 | 268 |
ListGraph g; |
269 | 269 |
ListGraph::NodeMap<bool> map(g); |
270 |
|
|
270 |
|
|
271 | 271 |
ListGraph::Node n1 = g.addNode(); |
272 | 272 |
ListGraph::Node n2 = g.addNode(); |
273 | 273 |
ListGraph::Node n3 = g.addNode(); |
274 | 274 |
ListGraph::Node n4 = g.addNode(); |
275 | 275 |
ListGraph::Node n5 = g.addNode(); |
276 | 276 |
ListGraph::Node n6 = g.addNode(); |
277 | 277 |
ListGraph::Node n7 = g.addNode(); |
278 | 278 |
|
279 | 279 |
g.addEdge(n1, n3); |
280 | 280 |
g.addEdge(n1, n4); |
281 | 281 |
g.addEdge(n2, n5); |
282 | 282 |
g.addEdge(n3, n6); |
283 | 283 |
g.addEdge(n4, n6); |
284 | 284 |
g.addEdge(n4, n7); |
285 | 285 |
g.addEdge(n5, n7); |
286 |
|
|
286 |
|
|
287 | 287 |
check(bipartite(g), "This graph is bipartite"); |
288 | 288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
289 |
|
|
289 |
|
|
290 | 290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
291 | 291 |
"Wrong bipartitePartitions()"); |
292 | 292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
293 | 293 |
"Wrong bipartitePartitions()"); |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
return 0; |
297 | 297 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dfs.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
|
26 | 26 |
#include "graph_test.h" |
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
... | ... |
@@ -57,108 +57,108 @@ |
57 | 57 |
|
58 | 58 |
void checkDfsCompile() |
59 | 59 |
{ |
60 | 60 |
typedef concepts::Digraph Digraph; |
61 | 61 |
typedef Dfs<Digraph> DType; |
62 | 62 |
typedef Digraph::Node Node; |
63 | 63 |
typedef Digraph::Arc Arc; |
64 | 64 |
|
65 | 65 |
Digraph G; |
66 | 66 |
Node s, t; |
67 | 67 |
Arc e; |
68 | 68 |
int l, i; |
69 | 69 |
bool b; |
70 | 70 |
DType::DistMap d(G); |
71 | 71 |
DType::PredMap p(G); |
72 | 72 |
Path<Digraph> pp; |
73 | 73 |
concepts::ReadMap<Arc,bool> am; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
DType dfs_test(G); |
77 | 77 |
const DType& const_dfs_test = dfs_test; |
78 | 78 |
|
79 | 79 |
dfs_test.run(s); |
80 | 80 |
dfs_test.run(s,t); |
81 | 81 |
dfs_test.run(); |
82 | 82 |
|
83 | 83 |
dfs_test.init(); |
84 | 84 |
dfs_test.addSource(s); |
85 | 85 |
e = dfs_test.processNextArc(); |
86 | 86 |
e = const_dfs_test.nextArc(); |
87 | 87 |
b = const_dfs_test.emptyQueue(); |
88 | 88 |
i = const_dfs_test.queueSize(); |
89 |
|
|
89 |
|
|
90 | 90 |
dfs_test.start(); |
91 | 91 |
dfs_test.start(t); |
92 | 92 |
dfs_test.start(am); |
93 | 93 |
|
94 | 94 |
l = const_dfs_test.dist(t); |
95 | 95 |
e = const_dfs_test.predArc(t); |
96 | 96 |
s = const_dfs_test.predNode(t); |
97 | 97 |
b = const_dfs_test.reached(t); |
98 | 98 |
d = const_dfs_test.distMap(); |
99 | 99 |
p = const_dfs_test.predMap(); |
100 | 100 |
pp = const_dfs_test.path(t); |
101 | 101 |
} |
102 | 102 |
{ |
103 | 103 |
DType |
104 | 104 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
106 | 106 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
107 | 107 |
::SetStandardProcessedMap |
108 | 108 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
109 | 109 |
::Create dfs_test(G); |
110 | 110 |
|
111 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
112 | 112 |
concepts::ReadWriteMap<Node,int> dist_map; |
113 | 113 |
concepts::ReadWriteMap<Node,bool> reached_map; |
114 | 114 |
concepts::WriteMap<Node,bool> processed_map; |
115 |
|
|
115 |
|
|
116 | 116 |
dfs_test |
117 | 117 |
.predMap(pred_map) |
118 | 118 |
.distMap(dist_map) |
119 | 119 |
.reachedMap(reached_map) |
120 | 120 |
.processedMap(processed_map); |
121 | 121 |
|
122 | 122 |
dfs_test.run(s); |
123 | 123 |
dfs_test.run(s,t); |
124 | 124 |
dfs_test.run(); |
125 | 125 |
dfs_test.init(); |
126 | 126 |
|
127 | 127 |
dfs_test.addSource(s); |
128 | 128 |
e = dfs_test.processNextArc(); |
129 | 129 |
e = dfs_test.nextArc(); |
130 | 130 |
b = dfs_test.emptyQueue(); |
131 | 131 |
i = dfs_test.queueSize(); |
132 |
|
|
132 |
|
|
133 | 133 |
dfs_test.start(); |
134 | 134 |
dfs_test.start(t); |
135 | 135 |
dfs_test.start(am); |
136 | 136 |
|
137 | 137 |
l = dfs_test.dist(t); |
138 | 138 |
e = dfs_test.predArc(t); |
139 | 139 |
s = dfs_test.predNode(t); |
140 | 140 |
b = dfs_test.reached(t); |
141 | 141 |
pp = dfs_test.path(t); |
142 | 142 |
} |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
void checkDfsFunctionCompile() |
146 | 146 |
{ |
147 | 147 |
typedef int VType; |
148 | 148 |
typedef concepts::Digraph Digraph; |
149 | 149 |
typedef Digraph::Arc Arc; |
150 | 150 |
typedef Digraph::Node Node; |
151 | 151 |
|
152 | 152 |
Digraph g; |
153 | 153 |
bool b; |
154 | 154 |
dfs(g).run(Node()); |
155 | 155 |
b=dfs(g).run(Node(),Node()); |
156 | 156 |
dfs(g).run(); |
157 | 157 |
dfs(g) |
158 | 158 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
159 | 159 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
160 | 160 |
.reachedMap(concepts::ReadWriteMap<Node,bool>()) |
161 | 161 |
.processedMap(concepts::WriteMap<Node,bool>()) |
162 | 162 |
.run(Node()); |
163 | 163 |
b=dfs(g) |
164 | 164 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
... | ... |
@@ -190,45 +190,45 @@ |
190 | 190 |
node("target", t). |
191 | 191 |
node("source1", s1). |
192 | 192 |
node("target1", t1). |
193 | 193 |
run(); |
194 | 194 |
|
195 | 195 |
Dfs<Digraph> dfs_test(G); |
196 | 196 |
dfs_test.run(s); |
197 | 197 |
|
198 | 198 |
Path<Digraph> p = dfs_test.path(t); |
199 | 199 |
check(p.length() == dfs_test.dist(t),"path() found a wrong path."); |
200 | 200 |
check(checkPath(G, p),"path() found a wrong path."); |
201 | 201 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
202 | 202 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
203 | 203 |
|
204 | 204 |
for(NodeIt v(G); v!=INVALID; ++v) { |
205 | 205 |
if (dfs_test.reached(v)) { |
206 | 206 |
check(v==s || dfs_test.predArc(v)!=INVALID, "Wrong tree."); |
207 | 207 |
if (dfs_test.predArc(v)!=INVALID ) { |
208 | 208 |
Arc e=dfs_test.predArc(v); |
209 | 209 |
Node u=G.source(e); |
210 | 210 |
check(u==dfs_test.predNode(v),"Wrong tree."); |
211 | 211 |
check(dfs_test.dist(v) - dfs_test.dist(u) == 1, |
212 | 212 |
"Wrong distance. (" << dfs_test.dist(u) << "->" |
213 | 213 |
<< dfs_test.dist(v) << ")"); |
214 | 214 |
} |
215 | 215 |
} |
216 | 216 |
} |
217 | 217 |
|
218 | 218 |
{ |
219 | 219 |
Dfs<Digraph> dfs(G); |
220 | 220 |
check(dfs.run(s1,t1) && dfs.reached(t1),"Node 3 is reachable from Node 6."); |
221 | 221 |
} |
222 |
|
|
222 |
|
|
223 | 223 |
{ |
224 | 224 |
NullMap<Node,Arc> myPredMap; |
225 | 225 |
dfs(G).predMap(myPredMap).run(s); |
226 | 226 |
} |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
int main() |
230 | 230 |
{ |
231 | 231 |
checkDfs<ListDigraph>(); |
232 | 232 |
checkDfs<SmartDigraph>(); |
233 | 233 |
return 0; |
234 | 234 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dijkstra.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
#include <lemon/bin_heap.h> |
26 | 26 |
|
27 | 27 |
#include "graph_test.h" |
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
|
32 | 32 |
char test_lgf[] = |
33 | 33 |
"@nodes\n" |
34 | 34 |
"label\n" |
35 | 35 |
"0\n" |
36 | 36 |
"1\n" |
37 | 37 |
"2\n" |
... | ... |
@@ -56,116 +56,116 @@ |
56 | 56 |
typedef concepts::Digraph Digraph; |
57 | 57 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
58 | 58 |
typedef Dijkstra<Digraph, LengthMap> DType; |
59 | 59 |
typedef Digraph::Node Node; |
60 | 60 |
typedef Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
Digraph G; |
63 | 63 |
Node s, t, n; |
64 | 64 |
Arc e; |
65 | 65 |
VType l; |
66 | 66 |
int i; |
67 | 67 |
bool b; |
68 | 68 |
DType::DistMap d(G); |
69 | 69 |
DType::PredMap p(G); |
70 | 70 |
LengthMap length; |
71 | 71 |
Path<Digraph> pp; |
72 | 72 |
concepts::ReadMap<Node,bool> nm; |
73 | 73 |
|
74 | 74 |
{ |
75 | 75 |
DType dijkstra_test(G,length); |
76 | 76 |
const DType& const_dijkstra_test = dijkstra_test; |
77 | 77 |
|
78 | 78 |
dijkstra_test.run(s); |
79 | 79 |
dijkstra_test.run(s,t); |
80 | 80 |
|
81 | 81 |
dijkstra_test.init(); |
82 | 82 |
dijkstra_test.addSource(s); |
83 | 83 |
dijkstra_test.addSource(s, 1); |
84 | 84 |
n = dijkstra_test.processNextNode(); |
85 | 85 |
n = const_dijkstra_test.nextNode(); |
86 | 86 |
b = const_dijkstra_test.emptyQueue(); |
87 | 87 |
i = const_dijkstra_test.queueSize(); |
88 |
|
|
88 |
|
|
89 | 89 |
dijkstra_test.start(); |
90 | 90 |
dijkstra_test.start(t); |
91 | 91 |
dijkstra_test.start(nm); |
92 | 92 |
|
93 | 93 |
l = const_dijkstra_test.dist(t); |
94 | 94 |
e = const_dijkstra_test.predArc(t); |
95 | 95 |
s = const_dijkstra_test.predNode(t); |
96 | 96 |
b = const_dijkstra_test.reached(t); |
97 | 97 |
b = const_dijkstra_test.processed(t); |
98 | 98 |
d = const_dijkstra_test.distMap(); |
99 | 99 |
p = const_dijkstra_test.predMap(); |
100 | 100 |
pp = const_dijkstra_test.path(t); |
101 | 101 |
l = const_dijkstra_test.currentDist(t); |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
DType |
105 | 105 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
106 | 106 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
107 | 107 |
::SetStandardProcessedMap |
108 | 108 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
109 | 109 |
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> > |
110 | 110 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
111 | 111 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
113 | 113 |
concepts::ReadWriteMap<Node,int> > |
114 | 114 |
::Create dijkstra_test(G,length); |
115 | 115 |
|
116 | 116 |
LengthMap length_map; |
117 | 117 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
118 | 118 |
concepts::ReadWriteMap<Node,VType> dist_map; |
119 | 119 |
concepts::WriteMap<Node,bool> processed_map; |
120 | 120 |
concepts::ReadWriteMap<Node,int> heap_cross_ref; |
121 | 121 |
BinHeap<VType, concepts::ReadWriteMap<Node,int> > heap(heap_cross_ref); |
122 |
|
|
122 |
|
|
123 | 123 |
dijkstra_test |
124 | 124 |
.lengthMap(length_map) |
125 | 125 |
.predMap(pred_map) |
126 | 126 |
.distMap(dist_map) |
127 | 127 |
.processedMap(processed_map) |
128 | 128 |
.heap(heap, heap_cross_ref); |
129 | 129 |
|
130 | 130 |
dijkstra_test.run(s); |
131 | 131 |
dijkstra_test.run(s,t); |
132 | 132 |
|
133 | 133 |
dijkstra_test.addSource(s); |
134 | 134 |
dijkstra_test.addSource(s, 1); |
135 | 135 |
n = dijkstra_test.processNextNode(); |
136 | 136 |
n = dijkstra_test.nextNode(); |
137 | 137 |
b = dijkstra_test.emptyQueue(); |
138 | 138 |
i = dijkstra_test.queueSize(); |
139 |
|
|
139 |
|
|
140 | 140 |
dijkstra_test.start(); |
141 | 141 |
dijkstra_test.start(t); |
142 | 142 |
dijkstra_test.start(nm); |
143 | 143 |
|
144 | 144 |
l = dijkstra_test.dist(t); |
145 | 145 |
e = dijkstra_test.predArc(t); |
146 | 146 |
s = dijkstra_test.predNode(t); |
147 | 147 |
b = dijkstra_test.reached(t); |
148 | 148 |
b = dijkstra_test.processed(t); |
149 | 149 |
pp = dijkstra_test.path(t); |
150 | 150 |
l = dijkstra_test.currentDist(t); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
} |
154 | 154 |
|
155 | 155 |
void checkDijkstraFunctionCompile() |
156 | 156 |
{ |
157 | 157 |
typedef int VType; |
158 | 158 |
typedef concepts::Digraph Digraph; |
159 | 159 |
typedef Digraph::Arc Arc; |
160 | 160 |
typedef Digraph::Node Node; |
161 | 161 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
162 | 162 |
|
163 | 163 |
Digraph g; |
164 | 164 |
bool b; |
165 | 165 |
dijkstra(g,LengthMap()).run(Node()); |
166 | 166 |
b=dijkstra(g,LengthMap()).run(Node(),Node()); |
167 | 167 |
dijkstra(g,LengthMap()) |
168 | 168 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
169 | 169 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
170 | 170 |
.processedMap(concepts::WriteMap<Node,bool>()) |
171 | 171 |
.run(Node()); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <vector> |
21 | 21 |
|
22 | 22 |
#include <lemon/concepts/digraph.h> |
23 | 23 |
#include <lemon/concepts/graph.h> |
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/edge_set.h> |
29 | 29 |
|
30 | 30 |
#include "graph_test.h" |
31 | 31 |
#include "test_tools.h" |
32 | 32 |
|
33 | 33 |
using namespace lemon; |
34 | 34 |
|
35 | 35 |
void checkSmartArcSet() { |
36 | 36 |
checkConcept<concepts::Digraph, SmartArcSet<ListDigraph> >(); |
37 | 37 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/euler.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/adaptors.h> |
22 | 22 |
#include "test_tools.h" |
23 | 23 |
|
24 | 24 |
using namespace lemon; |
25 | 25 |
|
26 | 26 |
template <typename Digraph> |
27 | 27 |
void checkDiEulerIt(const Digraph& g, |
28 | 28 |
const typename Digraph::Node& start = INVALID) |
29 | 29 |
{ |
30 | 30 |
typename Digraph::template ArcMap<int> visitationNumber(g, 0); |
31 | 31 |
|
32 | 32 |
DiEulerIt<Digraph> e(g, start); |
33 | 33 |
if (e == INVALID) return; |
34 | 34 |
typename Digraph::Node firstNode = g.source(e); |
35 | 35 |
typename Digraph::Node lastNode = g.target(e); |
36 | 36 |
if (start != INVALID) { |
37 | 37 |
check(firstNode == start, "checkDiEulerIt: Wrong first node"); |
... | ... |
@@ -56,168 +56,168 @@ |
56 | 56 |
void checkEulerIt(const Graph& g, |
57 | 57 |
const typename Graph::Node& start = INVALID) |
58 | 58 |
{ |
59 | 59 |
typename Graph::template EdgeMap<int> visitationNumber(g, 0); |
60 | 60 |
|
61 | 61 |
EulerIt<Graph> e(g, start); |
62 | 62 |
if (e == INVALID) return; |
63 | 63 |
typename Graph::Node firstNode = g.source(typename Graph::Arc(e)); |
64 | 64 |
typename Graph::Node lastNode = g.target(typename Graph::Arc(e)); |
65 | 65 |
if (start != INVALID) { |
66 | 66 |
check(firstNode == start, "checkEulerIt: Wrong first node"); |
67 | 67 |
} |
68 | 68 |
|
69 | 69 |
for (; e != INVALID; ++e) { |
70 | 70 |
if (e != INVALID) lastNode = g.target(typename Graph::Arc(e)); |
71 | 71 |
++visitationNumber[e]; |
72 | 72 |
} |
73 | 73 |
|
74 | 74 |
check(firstNode == lastNode, |
75 | 75 |
"checkEulerIt: First and last nodes are not the same"); |
76 | 76 |
|
77 | 77 |
for (typename Graph::EdgeIt e(g); e != INVALID; ++e) |
78 | 78 |
{ |
79 | 79 |
check(visitationNumber[e] == 1, |
80 | 80 |
"checkEulerIt: Not visited or multiple times visited edge found"); |
81 | 81 |
} |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
int main() |
85 | 85 |
{ |
86 | 86 |
typedef ListDigraph Digraph; |
87 | 87 |
typedef Undirector<Digraph> Graph; |
88 |
|
|
88 |
|
|
89 | 89 |
{ |
90 | 90 |
Digraph d; |
91 | 91 |
Graph g(d); |
92 |
|
|
92 |
|
|
93 | 93 |
checkDiEulerIt(d); |
94 | 94 |
checkDiEulerIt(g); |
95 | 95 |
checkEulerIt(g); |
96 | 96 |
|
97 | 97 |
check(eulerian(d), "This graph is Eulerian"); |
98 | 98 |
check(eulerian(g), "This graph is Eulerian"); |
99 | 99 |
} |
100 | 100 |
{ |
101 | 101 |
Digraph d; |
102 | 102 |
Graph g(d); |
103 | 103 |
Digraph::Node n = d.addNode(); |
104 | 104 |
|
105 | 105 |
checkDiEulerIt(d); |
106 | 106 |
checkDiEulerIt(g); |
107 | 107 |
checkEulerIt(g); |
108 | 108 |
|
109 | 109 |
check(eulerian(d), "This graph is Eulerian"); |
110 | 110 |
check(eulerian(g), "This graph is Eulerian"); |
111 | 111 |
} |
112 | 112 |
{ |
113 | 113 |
Digraph d; |
114 | 114 |
Graph g(d); |
115 | 115 |
Digraph::Node n = d.addNode(); |
116 | 116 |
d.addArc(n, n); |
117 | 117 |
|
118 | 118 |
checkDiEulerIt(d); |
119 | 119 |
checkDiEulerIt(g); |
120 | 120 |
checkEulerIt(g); |
121 | 121 |
|
122 | 122 |
check(eulerian(d), "This graph is Eulerian"); |
123 | 123 |
check(eulerian(g), "This graph is Eulerian"); |
124 | 124 |
} |
125 | 125 |
{ |
126 | 126 |
Digraph d; |
127 | 127 |
Graph g(d); |
128 | 128 |
Digraph::Node n1 = d.addNode(); |
129 | 129 |
Digraph::Node n2 = d.addNode(); |
130 | 130 |
Digraph::Node n3 = d.addNode(); |
131 |
|
|
131 |
|
|
132 | 132 |
d.addArc(n1, n2); |
133 | 133 |
d.addArc(n2, n1); |
134 | 134 |
d.addArc(n2, n3); |
135 | 135 |
d.addArc(n3, n2); |
136 | 136 |
|
137 | 137 |
checkDiEulerIt(d); |
138 | 138 |
checkDiEulerIt(d, n2); |
139 | 139 |
checkDiEulerIt(g); |
140 | 140 |
checkDiEulerIt(g, n2); |
141 | 141 |
checkEulerIt(g); |
142 | 142 |
checkEulerIt(g, n2); |
143 | 143 |
|
144 | 144 |
check(eulerian(d), "This graph is Eulerian"); |
145 | 145 |
check(eulerian(g), "This graph is Eulerian"); |
146 | 146 |
} |
147 | 147 |
{ |
148 | 148 |
Digraph d; |
149 | 149 |
Graph g(d); |
150 | 150 |
Digraph::Node n1 = d.addNode(); |
151 | 151 |
Digraph::Node n2 = d.addNode(); |
152 | 152 |
Digraph::Node n3 = d.addNode(); |
153 | 153 |
Digraph::Node n4 = d.addNode(); |
154 | 154 |
Digraph::Node n5 = d.addNode(); |
155 | 155 |
Digraph::Node n6 = d.addNode(); |
156 |
|
|
156 |
|
|
157 | 157 |
d.addArc(n1, n2); |
158 | 158 |
d.addArc(n2, n4); |
159 | 159 |
d.addArc(n1, n3); |
160 | 160 |
d.addArc(n3, n4); |
161 | 161 |
d.addArc(n4, n1); |
162 | 162 |
d.addArc(n3, n5); |
163 | 163 |
d.addArc(n5, n2); |
164 | 164 |
d.addArc(n4, n6); |
165 | 165 |
d.addArc(n2, n6); |
166 | 166 |
d.addArc(n6, n1); |
167 | 167 |
d.addArc(n6, n3); |
168 | 168 |
|
169 | 169 |
checkDiEulerIt(d); |
170 | 170 |
checkDiEulerIt(d, n1); |
171 | 171 |
checkDiEulerIt(d, n5); |
172 | 172 |
|
173 | 173 |
checkDiEulerIt(g); |
174 | 174 |
checkDiEulerIt(g, n1); |
175 | 175 |
checkDiEulerIt(g, n5); |
176 | 176 |
checkEulerIt(g); |
177 | 177 |
checkEulerIt(g, n1); |
178 | 178 |
checkEulerIt(g, n5); |
179 | 179 |
|
180 | 180 |
check(eulerian(d), "This graph is Eulerian"); |
181 | 181 |
check(eulerian(g), "This graph is Eulerian"); |
182 | 182 |
} |
183 | 183 |
{ |
184 | 184 |
Digraph d; |
185 | 185 |
Graph g(d); |
186 | 186 |
Digraph::Node n0 = d.addNode(); |
187 | 187 |
Digraph::Node n1 = d.addNode(); |
188 | 188 |
Digraph::Node n2 = d.addNode(); |
189 | 189 |
Digraph::Node n3 = d.addNode(); |
190 | 190 |
Digraph::Node n4 = d.addNode(); |
191 | 191 |
Digraph::Node n5 = d.addNode(); |
192 |
|
|
192 |
|
|
193 | 193 |
d.addArc(n1, n2); |
194 | 194 |
d.addArc(n2, n3); |
195 | 195 |
d.addArc(n3, n1); |
196 | 196 |
|
197 | 197 |
checkDiEulerIt(d); |
198 | 198 |
checkDiEulerIt(d, n2); |
199 | 199 |
|
200 | 200 |
checkDiEulerIt(g); |
201 | 201 |
checkDiEulerIt(g, n2); |
202 | 202 |
checkEulerIt(g); |
203 | 203 |
checkEulerIt(g, n2); |
204 | 204 |
|
205 | 205 |
check(!eulerian(d), "This graph is not Eulerian"); |
206 | 206 |
check(!eulerian(g), "This graph is not Eulerian"); |
207 | 207 |
} |
208 | 208 |
{ |
209 | 209 |
Digraph d; |
210 | 210 |
Graph g(d); |
211 | 211 |
Digraph::Node n1 = d.addNode(); |
212 | 212 |
Digraph::Node n2 = d.addNode(); |
213 | 213 |
Digraph::Node n3 = d.addNode(); |
214 |
|
|
214 |
|
|
215 | 215 |
d.addArc(n1, n2); |
216 | 216 |
d.addArc(n2, n3); |
217 | 217 |
|
218 | 218 |
check(!eulerian(d), "This graph is not Eulerian"); |
219 | 219 |
check(!eulerian(g), "This graph is not Eulerian"); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
return 0; |
223 | 223 |
} |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2011 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
1 | 19 |
#include <iostream> |
2 | 20 |
|
3 | 21 |
#include "test_tools.h" |
4 | 22 |
#include <lemon/smart_graph.h> |
5 | 23 |
#include <lemon/concepts/graph.h> |
6 | 24 |
#include <lemon/concepts/maps.h> |
7 | 25 |
#include <lemon/lgf_reader.h> |
8 | 26 |
#include <lemon/gomory_hu.h> |
9 | 27 |
#include <cstdlib> |
10 | 28 |
|
11 | 29 |
using namespace std; |
12 | 30 |
using namespace lemon; |
13 | 31 |
|
14 | 32 |
typedef SmartGraph Graph; |
15 | 33 |
|
16 | 34 |
char test_lgf[] = |
17 | 35 |
"@nodes\n" |
18 | 36 |
"label\n" |
19 | 37 |
"0\n" |
20 | 38 |
"1\n" |
21 | 39 |
"2\n" |
22 | 40 |
"3\n" |
23 | 41 |
"4\n" |
24 | 42 |
"@arcs\n" |
25 | 43 |
" label capacity\n" |
26 | 44 |
"0 1 0 1\n" |
27 | 45 |
"1 2 1 1\n" |
28 | 46 |
"2 3 2 1\n" |
29 | 47 |
"0 3 4 5\n" |
30 | 48 |
"0 3 5 10\n" |
31 | 49 |
"0 3 6 7\n" |
32 | 50 |
"4 2 7 1\n" |
33 | 51 |
"@attributes\n" |
34 | 52 |
"source 0\n" |
35 | 53 |
"target 3\n"; |
36 |
|
|
54 |
|
|
37 | 55 |
void checkGomoryHuCompile() |
38 | 56 |
{ |
39 | 57 |
typedef int Value; |
40 | 58 |
typedef concepts::Graph Graph; |
41 | 59 |
|
42 | 60 |
typedef Graph::Node Node; |
43 | 61 |
typedef Graph::Edge Edge; |
44 | 62 |
typedef concepts::ReadMap<Edge, Value> CapMap; |
45 | 63 |
typedef concepts::ReadWriteMap<Node, bool> CutMap; |
46 | 64 |
|
47 | 65 |
Graph g; |
48 | 66 |
Node n; |
49 | 67 |
CapMap cap; |
50 | 68 |
CutMap cut; |
51 | 69 |
Value v; |
52 | 70 |
int d; |
53 | 71 |
|
54 | 72 |
GomoryHu<Graph, CapMap> gh_test(g, cap); |
55 | 73 |
const GomoryHu<Graph, CapMap>& |
56 | 74 |
const_gh_test = gh_test; |
57 | 75 |
|
58 | 76 |
gh_test.run(); |
59 | 77 |
|
60 | 78 |
n = const_gh_test.predNode(n); |
61 | 79 |
v = const_gh_test.predValue(n); |
62 | 80 |
d = const_gh_test.rootDist(n); |
63 | 81 |
v = const_gh_test.minCutValue(n, n); |
64 | 82 |
v = const_gh_test.minCutMap(n, n, cut); |
65 | 83 |
} |
66 | 84 |
|
67 | 85 |
GRAPH_TYPEDEFS(Graph); |
68 | 86 |
typedef Graph::EdgeMap<int> IntEdgeMap; |
69 | 87 |
typedef Graph::NodeMap<bool> BoolNodeMap; |
70 | 88 |
|
71 | 89 |
int cutValue(const Graph& graph, const BoolNodeMap& cut, |
72 |
|
|
90 |
const IntEdgeMap& capacity) { |
|
73 | 91 |
|
74 | 92 |
int sum = 0; |
75 | 93 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
76 | 94 |
Node s = graph.u(e); |
77 | 95 |
Node t = graph.v(e); |
78 | 96 |
|
79 | 97 |
if (cut[s] != cut[t]) { |
80 | 98 |
sum += capacity[e]; |
81 | 99 |
} |
82 | 100 |
} |
83 | 101 |
return sum; |
84 | 102 |
} |
85 | 103 |
|
86 | 104 |
|
87 | 105 |
int main() { |
88 | 106 |
Graph graph; |
89 | 107 |
IntEdgeMap capacity(graph); |
90 | 108 |
|
91 | 109 |
std::istringstream input(test_lgf); |
92 | 110 |
GraphReader<Graph>(graph, input). |
93 | 111 |
edgeMap("capacity", capacity).run(); |
94 | 112 |
|
95 | 113 |
GomoryHu<Graph> ght(graph, capacity); |
96 | 114 |
ght.run(); |
97 | 115 |
|
98 | 116 |
for (NodeIt u(graph); u != INVALID; ++u) { |
99 | 117 |
for (NodeIt v(graph); v != u; ++v) { |
100 | 118 |
Preflow<Graph, IntEdgeMap> pf(graph, capacity, u, v); |
101 | 119 |
pf.runMinCut(); |
102 | 120 |
BoolNodeMap cm(graph); |
103 | 121 |
ght.minCutMap(u, v, cm); |
104 | 122 |
check(pf.flowValue() == ght.minCutValue(u, v), "Wrong cut 1"); |
105 | 123 |
check(cm[u] != cm[v], "Wrong cut 2"); |
106 | 124 |
check(pf.flowValue() == cutValue(graph, cm, capacity), "Wrong cut 3"); |
107 | 125 |
|
108 | 126 |
int sum=0; |
109 | 127 |
for(GomoryHu<Graph>::MinCutEdgeIt a(ght, u, v);a!=INVALID;++a) |
110 |
sum+=capacity[a]; |
|
128 |
sum+=capacity[a]; |
|
111 | 129 |
check(sum == ght.minCutValue(u, v), "Problem with MinCutEdgeIt"); |
112 | 130 |
|
113 | 131 |
sum=0; |
114 | 132 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,true);n!=INVALID;++n) |
115 | 133 |
sum++; |
116 | 134 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,false);n!=INVALID;++n) |
117 | 135 |
sum++; |
118 | 136 |
check(sum == countNodes(graph), "Problem with MinCutNodeIt"); |
119 | 137 |
} |
120 | 138 |
} |
121 |
|
|
139 |
|
|
122 | 140 |
return 0; |
123 | 141 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/smart_graph.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/lgf_reader.h> |
22 | 22 |
#include <lemon/error.h> |
23 | 23 |
|
24 | 24 |
#include "test_tools.h" |
25 | 25 |
|
26 | 26 |
using namespace std; |
27 | 27 |
using namespace lemon; |
28 | 28 |
|
29 | 29 |
void digraph_copy_test() { |
30 | 30 |
const int nn = 10; |
31 | 31 |
|
32 | 32 |
// Build a digraph |
33 | 33 |
SmartDigraph from; |
34 | 34 |
SmartDigraph::NodeMap<int> fnm(from); |
35 | 35 |
SmartDigraph::ArcMap<int> fam(from); |
36 | 36 |
SmartDigraph::Node fn = INVALID; |
37 | 37 |
SmartDigraph::Arc fa = INVALID; |
... | ... |
@@ -41,93 +41,93 @@ |
41 | 41 |
SmartDigraph::Node node = from.addNode(); |
42 | 42 |
fnv.push_back(node); |
43 | 43 |
fnm[node] = i * i; |
44 | 44 |
if (i == 0) fn = node; |
45 | 45 |
} |
46 | 46 |
|
47 | 47 |
for (int i = 0; i < nn; ++i) { |
48 | 48 |
for (int j = 0; j < nn; ++j) { |
49 | 49 |
SmartDigraph::Arc arc = from.addArc(fnv[i], fnv[j]); |
50 | 50 |
fam[arc] = i + j * j; |
51 | 51 |
if (i == 0 && j == 0) fa = arc; |
52 | 52 |
} |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
// Test digraph copy |
56 | 56 |
ListDigraph to; |
57 | 57 |
ListDigraph::NodeMap<int> tnm(to); |
58 | 58 |
ListDigraph::ArcMap<int> tam(to); |
59 | 59 |
ListDigraph::Node tn; |
60 | 60 |
ListDigraph::Arc ta; |
61 | 61 |
|
62 | 62 |
SmartDigraph::NodeMap<ListDigraph::Node> nr(from); |
63 | 63 |
SmartDigraph::ArcMap<ListDigraph::Arc> er(from); |
64 | 64 |
|
65 | 65 |
ListDigraph::NodeMap<SmartDigraph::Node> ncr(to); |
66 | 66 |
ListDigraph::ArcMap<SmartDigraph::Arc> ecr(to); |
67 | 67 |
|
68 | 68 |
digraphCopy(from, to). |
69 | 69 |
nodeMap(fnm, tnm).arcMap(fam, tam). |
70 | 70 |
nodeRef(nr).arcRef(er). |
71 | 71 |
nodeCrossRef(ncr).arcCrossRef(ecr). |
72 | 72 |
node(fn, tn).arc(fa, ta).run(); |
73 |
|
|
73 |
|
|
74 | 74 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
75 | 75 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
76 | 76 |
|
77 | 77 |
for (SmartDigraph::NodeIt it(from); it != INVALID; ++it) { |
78 | 78 |
check(ncr[nr[it]] == it, "Wrong copy."); |
79 | 79 |
check(fnm[it] == tnm[nr[it]], "Wrong copy."); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
for (SmartDigraph::ArcIt it(from); it != INVALID; ++it) { |
83 | 83 |
check(ecr[er[it]] == it, "Wrong copy."); |
84 | 84 |
check(fam[it] == tam[er[it]], "Wrong copy."); |
85 | 85 |
check(nr[from.source(it)] == to.source(er[it]), "Wrong copy."); |
86 | 86 |
check(nr[from.target(it)] == to.target(er[it]), "Wrong copy."); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
for (ListDigraph::NodeIt it(to); it != INVALID; ++it) { |
90 | 90 |
check(nr[ncr[it]] == it, "Wrong copy."); |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
for (ListDigraph::ArcIt it(to); it != INVALID; ++it) { |
94 | 94 |
check(er[ecr[it]] == it, "Wrong copy."); |
95 | 95 |
} |
96 | 96 |
check(tn == nr[fn], "Wrong copy."); |
97 | 97 |
check(ta == er[fa], "Wrong copy."); |
98 | 98 |
|
99 | 99 |
// Test repeated copy |
100 | 100 |
digraphCopy(from, to).run(); |
101 |
|
|
101 |
|
|
102 | 102 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
103 | 103 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
void graph_copy_test() { |
107 | 107 |
const int nn = 10; |
108 | 108 |
|
109 | 109 |
// Build a graph |
110 | 110 |
SmartGraph from; |
111 | 111 |
SmartGraph::NodeMap<int> fnm(from); |
112 | 112 |
SmartGraph::ArcMap<int> fam(from); |
113 | 113 |
SmartGraph::EdgeMap<int> fem(from); |
114 | 114 |
SmartGraph::Node fn = INVALID; |
115 | 115 |
SmartGraph::Arc fa = INVALID; |
116 | 116 |
SmartGraph::Edge fe = INVALID; |
117 | 117 |
|
118 | 118 |
std::vector<SmartGraph::Node> fnv; |
119 | 119 |
for (int i = 0; i < nn; ++i) { |
120 | 120 |
SmartGraph::Node node = from.addNode(); |
121 | 121 |
fnv.push_back(node); |
122 | 122 |
fnm[node] = i * i; |
123 | 123 |
if (i == 0) fn = node; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
for (int i = 0; i < nn; ++i) { |
127 | 127 |
for (int j = 0; j < nn; ++j) { |
128 | 128 |
SmartGraph::Edge edge = from.addEdge(fnv[i], fnv[j]); |
129 | 129 |
fem[edge] = i * i + j * j; |
130 | 130 |
fam[from.direct(edge, true)] = i + j * j; |
131 | 131 |
fam[from.direct(edge, false)] = i * i + j; |
132 | 132 |
if (i == 0 && j == 0) fa = from.direct(edge, true); |
133 | 133 |
if (i == 0 && j == 0) fe = edge; |
... | ... |
@@ -171,45 +171,45 @@ |
171 | 171 |
check(fam[it] == tam[ar[it]], "Wrong copy."); |
172 | 172 |
check(nr[from.source(it)] == to.source(ar[it]), "Wrong copy."); |
173 | 173 |
check(nr[from.target(it)] == to.target(ar[it]), "Wrong copy."); |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
for (SmartGraph::EdgeIt it(from); it != INVALID; ++it) { |
177 | 177 |
check(ecr[er[it]] == it, "Wrong copy."); |
178 | 178 |
check(fem[it] == tem[er[it]], "Wrong copy."); |
179 | 179 |
check(nr[from.u(it)] == to.u(er[it]) || nr[from.u(it)] == to.v(er[it]), |
180 | 180 |
"Wrong copy."); |
181 | 181 |
check(nr[from.v(it)] == to.u(er[it]) || nr[from.v(it)] == to.v(er[it]), |
182 | 182 |
"Wrong copy."); |
183 | 183 |
check((from.u(it) != from.v(it)) == (to.u(er[it]) != to.v(er[it])), |
184 | 184 |
"Wrong copy."); |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
for (ListGraph::NodeIt it(to); it != INVALID; ++it) { |
188 | 188 |
check(nr[ncr[it]] == it, "Wrong copy."); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
for (ListGraph::ArcIt it(to); it != INVALID; ++it) { |
192 | 192 |
check(ar[acr[it]] == it, "Wrong copy."); |
193 | 193 |
} |
194 | 194 |
for (ListGraph::EdgeIt it(to); it != INVALID; ++it) { |
195 | 195 |
check(er[ecr[it]] == it, "Wrong copy."); |
196 | 196 |
} |
197 | 197 |
check(tn == nr[fn], "Wrong copy."); |
198 | 198 |
check(ta == ar[fa], "Wrong copy."); |
199 | 199 |
check(te == er[fe], "Wrong copy."); |
200 | 200 |
|
201 | 201 |
// Test repeated copy |
202 | 202 |
graphCopy(from, to).run(); |
203 |
|
|
203 |
|
|
204 | 204 |
check(countNodes(from) == countNodes(to), "Wrong copy."); |
205 | 205 |
check(countEdges(from) == countEdges(to), "Wrong copy."); |
206 | 206 |
check(countArcs(from) == countArcs(to), "Wrong copy."); |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
|
210 | 210 |
int main() { |
211 | 211 |
digraph_copy_test(); |
212 | 212 |
graph_copy_test(); |
213 | 213 |
|
214 | 214 |
return 0; |
215 | 215 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <sstream> |
20 | 20 |
|
21 | 21 |
#include <lemon/smart_graph.h> |
22 | 22 |
#include <lemon/adaptors.h> |
23 | 23 |
#include <lemon/concepts/digraph.h> |
24 | 24 |
#include <lemon/concepts/maps.h> |
25 | 25 |
#include <lemon/lgf_reader.h> |
26 | 26 |
#include <lemon/hao_orlin.h> |
27 | 27 |
|
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
using namespace std; |
32 | 32 |
|
33 | 33 |
const std::string lgf = |
34 | 34 |
"@nodes\n" |
35 | 35 |
"label\n" |
36 | 36 |
"0\n" |
37 | 37 |
"1\n" |
... | ... |
@@ -54,110 +54,110 @@ |
54 | 54 |
void checkHaoOrlinCompile() |
55 | 55 |
{ |
56 | 56 |
typedef int Value; |
57 | 57 |
typedef concepts::Digraph Digraph; |
58 | 58 |
|
59 | 59 |
typedef Digraph::Node Node; |
60 | 60 |
typedef Digraph::Arc Arc; |
61 | 61 |
typedef concepts::ReadMap<Arc, Value> CapMap; |
62 | 62 |
typedef concepts::WriteMap<Node, bool> CutMap; |
63 | 63 |
|
64 | 64 |
Digraph g; |
65 | 65 |
Node n; |
66 | 66 |
CapMap cap; |
67 | 67 |
CutMap cut; |
68 | 68 |
Value v; |
69 | 69 |
|
70 | 70 |
HaoOrlin<Digraph, CapMap> ho_test(g, cap); |
71 | 71 |
const HaoOrlin<Digraph, CapMap>& |
72 | 72 |
const_ho_test = ho_test; |
73 | 73 |
|
74 | 74 |
ho_test.init(); |
75 | 75 |
ho_test.init(n); |
76 | 76 |
ho_test.calculateOut(); |
77 | 77 |
ho_test.calculateIn(); |
78 | 78 |
ho_test.run(); |
79 | 79 |
ho_test.run(n); |
80 | 80 |
|
81 | 81 |
v = const_ho_test.minCutValue(); |
82 | 82 |
v = const_ho_test.minCutMap(cut); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
template <typename Graph, typename CapMap, typename CutMap> |
86 |
typename CapMap::Value |
|
86 |
typename CapMap::Value |
|
87 | 87 |
cutValue(const Graph& graph, const CapMap& cap, const CutMap& cut) |
88 | 88 |
{ |
89 | 89 |
typename CapMap::Value sum = 0; |
90 | 90 |
for (typename Graph::ArcIt a(graph); a != INVALID; ++a) { |
91 | 91 |
if (cut[graph.source(a)] && !cut[graph.target(a)]) |
92 | 92 |
sum += cap[a]; |
93 | 93 |
} |
94 | 94 |
return sum; |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
int main() { |
98 | 98 |
SmartDigraph graph; |
99 | 99 |
SmartDigraph::ArcMap<int> cap1(graph), cap2(graph), cap3(graph); |
100 | 100 |
SmartDigraph::NodeMap<bool> cut(graph); |
101 | 101 |
|
102 | 102 |
istringstream input(lgf); |
103 | 103 |
digraphReader(graph, input) |
104 | 104 |
.arcMap("cap1", cap1) |
105 | 105 |
.arcMap("cap2", cap2) |
106 | 106 |
.arcMap("cap3", cap3) |
107 | 107 |
.run(); |
108 | 108 |
|
109 | 109 |
{ |
110 | 110 |
HaoOrlin<SmartDigraph> ho(graph, cap1); |
111 | 111 |
ho.run(); |
112 | 112 |
ho.minCutMap(cut); |
113 |
|
|
113 |
|
|
114 | 114 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
115 | 115 |
check(ho.minCutValue() == cutValue(graph, cap1, cut), "Wrong cut value"); |
116 | 116 |
} |
117 | 117 |
{ |
118 | 118 |
HaoOrlin<SmartDigraph> ho(graph, cap2); |
119 | 119 |
ho.run(); |
120 | 120 |
ho.minCutMap(cut); |
121 | 121 |
|
122 | 122 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
123 | 123 |
check(ho.minCutValue() == cutValue(graph, cap2, cut), "Wrong cut value"); |
124 | 124 |
} |
125 | 125 |
{ |
126 | 126 |
HaoOrlin<SmartDigraph> ho(graph, cap3); |
127 | 127 |
ho.run(); |
128 | 128 |
ho.minCutMap(cut); |
129 |
|
|
129 |
|
|
130 | 130 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
131 | 131 |
check(ho.minCutValue() == cutValue(graph, cap3, cut), "Wrong cut value"); |
132 | 132 |
} |
133 |
|
|
133 |
|
|
134 | 134 |
typedef Undirector<SmartDigraph> UGraph; |
135 | 135 |
UGraph ugraph(graph); |
136 |
|
|
136 |
|
|
137 | 137 |
{ |
138 | 138 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap1); |
139 | 139 |
ho.run(); |
140 | 140 |
ho.minCutMap(cut); |
141 |
|
|
141 |
|
|
142 | 142 |
check(ho.minCutValue() == 2, "Wrong cut value"); |
143 | 143 |
check(ho.minCutValue() == cutValue(ugraph, cap1, cut), "Wrong cut value"); |
144 | 144 |
} |
145 | 145 |
{ |
146 | 146 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap2); |
147 | 147 |
ho.run(); |
148 | 148 |
ho.minCutMap(cut); |
149 |
|
|
149 |
|
|
150 | 150 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
151 | 151 |
check(ho.minCutValue() == cutValue(ugraph, cap2, cut), "Wrong cut value"); |
152 | 152 |
} |
153 | 153 |
{ |
154 | 154 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap3); |
155 | 155 |
ho.run(); |
156 | 156 |
ho.minCutMap(cut); |
157 |
|
|
157 |
|
|
158 | 158 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
159 | 159 |
check(ho.minCutValue() == cutValue(ugraph, cap3, cut), "Wrong cut value"); |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
return 0; |
163 | 163 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/lgf_reader.h> |
30 | 30 |
#include <lemon/dijkstra.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/bin_heap.h> |
34 | 34 |
#include <lemon/fib_heap.h> |
35 | 35 |
#include <lemon/radix_heap.h> |
36 | 36 |
#include <lemon/bucket_heap.h> |
37 | 37 |
... | ... |
@@ -34,136 +34,136 @@ |
34 | 34 |
"@attributes\n" |
35 | 35 |
"source 0\n" |
36 | 36 |
"target 1\n"; |
37 | 37 |
|
38 | 38 |
char test_lgf_nomap[] = |
39 | 39 |
"@nodes\n" |
40 | 40 |
"label\n" |
41 | 41 |
"0\n" |
42 | 42 |
"1\n" |
43 | 43 |
"@arcs\n" |
44 | 44 |
" -\n" |
45 | 45 |
"0 1\n"; |
46 | 46 |
|
47 | 47 |
char test_lgf_bad1[] = |
48 | 48 |
"@nodes\n" |
49 | 49 |
"label\n" |
50 | 50 |
"0\n" |
51 | 51 |
"1\n" |
52 | 52 |
"@arcs\n" |
53 | 53 |
" - another\n" |
54 | 54 |
"0 1\n"; |
55 | 55 |
|
56 | 56 |
char test_lgf_bad2[] = |
57 | 57 |
"@nodes\n" |
58 | 58 |
"label\n" |
59 | 59 |
"0\n" |
60 | 60 |
"1\n" |
61 | 61 |
"@arcs\n" |
62 | 62 |
" label -\n" |
63 | 63 |
"0 1\n"; |
64 | 64 |
|
65 | 65 |
|
66 |
int main() |
|
66 |
int main() |
|
67 | 67 |
{ |
68 | 68 |
{ |
69 |
ListDigraph d; |
|
69 |
ListDigraph d; |
|
70 | 70 |
ListDigraph::Node s,t; |
71 | 71 |
ListDigraph::ArcMap<int> label(d); |
72 | 72 |
std::istringstream input(test_lgf); |
73 | 73 |
digraphReader(d, input). |
74 | 74 |
node("source", s). |
75 | 75 |
node("target", t). |
76 | 76 |
arcMap("label", label). |
77 | 77 |
run(); |
78 | 78 |
check(countNodes(d) == 2,"There should be 2 nodes"); |
79 | 79 |
check(countArcs(d) == 2,"There should be 2 arcs"); |
80 | 80 |
} |
81 | 81 |
{ |
82 | 82 |
ListGraph g; |
83 | 83 |
ListGraph::Node s,t; |
84 | 84 |
ListGraph::EdgeMap<int> label(g); |
85 | 85 |
std::istringstream input(test_lgf); |
86 | 86 |
graphReader(g, input). |
87 | 87 |
node("source", s). |
88 | 88 |
node("target", t). |
89 | 89 |
edgeMap("label", label). |
90 | 90 |
run(); |
91 | 91 |
check(countNodes(g) == 2,"There should be 2 nodes"); |
92 | 92 |
check(countEdges(g) == 2,"There should be 2 arcs"); |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
{ |
96 |
ListDigraph d; |
|
96 |
ListDigraph d; |
|
97 | 97 |
std::istringstream input(test_lgf_nomap); |
98 | 98 |
digraphReader(d, input). |
99 | 99 |
run(); |
100 | 100 |
check(countNodes(d) == 2,"There should be 2 nodes"); |
101 | 101 |
check(countArcs(d) == 1,"There should be 1 arc"); |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
ListGraph g; |
105 | 105 |
std::istringstream input(test_lgf_nomap); |
106 | 106 |
graphReader(g, input). |
107 | 107 |
run(); |
108 | 108 |
check(countNodes(g) == 2,"There should be 2 nodes"); |
109 | 109 |
check(countEdges(g) == 1,"There should be 1 edge"); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
{ |
113 |
ListDigraph d; |
|
113 |
ListDigraph d; |
|
114 | 114 |
std::istringstream input(test_lgf_bad1); |
115 | 115 |
bool ok=false; |
116 | 116 |
try { |
117 | 117 |
digraphReader(d, input). |
118 | 118 |
run(); |
119 | 119 |
} |
120 |
catch (FormatError& error) |
|
120 |
catch (FormatError& error) |
|
121 | 121 |
{ |
122 | 122 |
ok = true; |
123 | 123 |
} |
124 | 124 |
check(ok,"FormatError exception should have occured"); |
125 | 125 |
} |
126 | 126 |
{ |
127 | 127 |
ListGraph g; |
128 | 128 |
std::istringstream input(test_lgf_bad1); |
129 | 129 |
bool ok=false; |
130 | 130 |
try { |
131 | 131 |
graphReader(g, input). |
132 | 132 |
run(); |
133 | 133 |
} |
134 | 134 |
catch (FormatError& error) |
135 | 135 |
{ |
136 | 136 |
ok = true; |
137 | 137 |
} |
138 | 138 |
check(ok,"FormatError exception should have occured"); |
139 | 139 |
} |
140 | 140 |
|
141 | 141 |
{ |
142 |
ListDigraph d; |
|
142 |
ListDigraph d; |
|
143 | 143 |
std::istringstream input(test_lgf_bad2); |
144 | 144 |
bool ok=false; |
145 | 145 |
try { |
146 | 146 |
digraphReader(d, input). |
147 | 147 |
run(); |
148 | 148 |
} |
149 | 149 |
catch (FormatError& error) |
150 | 150 |
{ |
151 | 151 |
ok = true; |
152 | 152 |
} |
153 | 153 |
check(ok,"FormatError exception should have occured"); |
154 | 154 |
} |
155 | 155 |
{ |
156 | 156 |
ListGraph g; |
157 | 157 |
std::istringstream input(test_lgf_bad2); |
158 | 158 |
bool ok=false; |
159 | 159 |
try { |
160 | 160 |
graphReader(g, input). |
161 | 161 |
run(); |
162 | 162 |
} |
163 | 163 |
catch (FormatError& error) |
164 | 164 |
{ |
165 | 165 |
ok = true; |
166 | 166 |
} |
167 | 167 |
check(ok,"FormatError exception should have occured"); |
168 | 168 |
} |
169 | 169 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 | 25 |
#include <lemon/list_graph.h> |
26 | 26 |
|
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
using namespace lemon::concepts; |
31 | 31 |
|
32 | 32 |
struct A {}; |
33 | 33 |
inline bool operator<(A, A) { return true; } |
34 | 34 |
struct B {}; |
35 | 35 |
|
36 | 36 |
class C { |
37 | 37 |
int x; |
... | ... |
@@ -41,66 +41,68 @@ |
41 | 41 |
|
42 | 42 |
class F { |
43 | 43 |
public: |
44 | 44 |
typedef A argument_type; |
45 | 45 |
typedef B result_type; |
46 | 46 |
|
47 | 47 |
B operator()(const A&) const { return B(); } |
48 | 48 |
private: |
49 | 49 |
F& operator=(const F&); |
50 | 50 |
}; |
51 | 51 |
|
52 | 52 |
int func(A) { return 3; } |
53 | 53 |
|
54 | 54 |
int binc(int a, B) { return a+1; } |
55 | 55 |
|
56 | 56 |
typedef ReadMap<A, double> DoubleMap; |
57 | 57 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
58 | 58 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
59 | 59 |
|
60 | 60 |
typedef ReadMap<A, bool> BoolMap; |
61 | 61 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
62 | 62 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
63 | 63 |
|
64 | 64 |
int main() |
65 | 65 |
{ |
66 | 66 |
// Map concepts |
67 | 67 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
68 | 68 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
69 | 69 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
70 | 70 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
71 | 71 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
72 | 72 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
73 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
|
74 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
|
73 |
checkConcept<ReferenceMap<A,B,B&,const B&>, |
|
74 |
ReferenceMap<A,B,B&,const B&> >(); |
|
75 |
checkConcept<ReferenceMap<A,C,C&,const C&>, |
|
76 |
ReferenceMap<A,C,C&,const C&> >(); |
|
75 | 77 |
|
76 | 78 |
// NullMap |
77 | 79 |
{ |
78 | 80 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
79 | 81 |
NullMap<A,B> map1; |
80 | 82 |
NullMap<A,B> map2 = map1; |
81 | 83 |
map1 = nullMap<A,B>(); |
82 | 84 |
} |
83 | 85 |
|
84 | 86 |
// ConstMap |
85 | 87 |
{ |
86 | 88 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
87 | 89 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
88 | 90 |
ConstMap<A,B> map1; |
89 | 91 |
ConstMap<A,B> map2 = B(); |
90 | 92 |
ConstMap<A,B> map3 = map1; |
91 | 93 |
map1 = constMap<A>(B()); |
92 | 94 |
map1 = constMap<A,B>(); |
93 | 95 |
map1.setAll(B()); |
94 | 96 |
ConstMap<A,C> map4(C(1)); |
95 | 97 |
ConstMap<A,C> map5 = map4; |
96 | 98 |
map4 = constMap<A>(C(2)); |
97 | 99 |
map4.setAll(C(3)); |
98 | 100 |
|
99 | 101 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
100 | 102 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
101 | 103 |
|
102 | 104 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
103 | 105 |
ConstMap<A,Const<int,10> > map6; |
104 | 106 |
ConstMap<A,Const<int,10> > map7 = map6; |
105 | 107 |
map6 = constMap<A,int,10>(); |
106 | 108 |
map7 = constMap<A,Const<int,10> >(); |
... | ... |
@@ -171,65 +173,66 @@ |
171 | 173 |
{ |
172 | 174 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
173 | 175 |
checkConcept<ReadMap<B,double>, CompMap>(); |
174 | 176 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
175 | 177 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
176 | 178 |
|
177 | 179 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
178 | 180 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
179 | 181 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
180 | 182 |
"Something is wrong with ComposeMap") |
181 | 183 |
} |
182 | 184 |
|
183 | 185 |
// CombineMap |
184 | 186 |
{ |
185 | 187 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
186 | 188 |
checkConcept<ReadMap<A,double>, CombMap>(); |
187 | 189 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
188 | 190 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
189 | 191 |
|
190 | 192 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
191 | 193 |
"Something is wrong with CombineMap"); |
192 | 194 |
} |
193 | 195 |
|
194 | 196 |
// FunctorToMap, MapToFunctor |
195 | 197 |
{ |
196 | 198 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
197 | 199 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
198 | 200 |
FunctorToMap<F> map1; |
199 | 201 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
200 | 202 |
B b = functorToMap(F())[A()]; |
201 | 203 |
|
202 | 204 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
203 |
MapToFunctor<ReadMap<A,B> > map = |
|
205 |
MapToFunctor<ReadMap<A,B> > map = |
|
206 |
MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
|
204 | 207 |
|
205 | 208 |
check(functorToMap(&func)[A()] == 3, |
206 | 209 |
"Something is wrong with FunctorToMap"); |
207 | 210 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
208 | 211 |
"Something is wrong with MapToFunctor"); |
209 | 212 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
210 | 213 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
211 | 214 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
212 | 215 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
213 | 216 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
214 | 217 |
} |
215 | 218 |
|
216 | 219 |
// ConvertMap |
217 | 220 |
{ |
218 | 221 |
checkConcept<ReadMap<double,double>, |
219 | 222 |
ConvertMap<ReadMap<double, int>, double> >(); |
220 | 223 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
221 | 224 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
222 | 225 |
} |
223 | 226 |
|
224 | 227 |
// ForkMap |
225 | 228 |
{ |
226 | 229 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
227 | 230 |
|
228 | 231 |
typedef RangeMap<double> RM; |
229 | 232 |
typedef SparseMap<int, double> SM; |
230 | 233 |
RM m1(10, -1); |
231 | 234 |
SM m2(-1); |
232 | 235 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
233 | 236 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
234 | 237 |
ForkMap<RM, SM> map1(m1,m2); |
235 | 238 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
... | ... |
@@ -320,69 +323,69 @@ |
320 | 323 |
ConstMap<int, double> cm(2.0); |
321 | 324 |
IdentityMap<int> im; |
322 | 325 |
ConvertMap<IdentityMap<int>, double> id(im); |
323 | 326 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
324 | 327 |
"Something is wrong with LessMap"); |
325 | 328 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
326 | 329 |
"Something is wrong with EqualMap"); |
327 | 330 |
} |
328 | 331 |
|
329 | 332 |
// LoggerBoolMap |
330 | 333 |
{ |
331 | 334 |
typedef std::vector<int> vec; |
332 | 335 |
vec v1; |
333 | 336 |
vec v2(10); |
334 | 337 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
335 | 338 |
map1(std::back_inserter(v1)); |
336 | 339 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
337 | 340 |
map1.set(10, false); |
338 | 341 |
map1.set(20, true); map2.set(20, true); |
339 | 342 |
map1.set(30, false); map2.set(40, false); |
340 | 343 |
map1.set(50, true); map2.set(50, true); |
341 | 344 |
map1.set(60, true); map2.set(60, true); |
342 | 345 |
check(v1.size() == 3 && v2.size() == 10 && |
343 | 346 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
344 | 347 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
345 | 348 |
"Something is wrong with LoggerBoolMap"); |
346 | 349 |
|
347 | 350 |
int i = 0; |
348 | 351 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
349 | 352 |
it != map2.end(); ++it ) |
350 | 353 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
351 | 354 |
} |
352 |
|
|
355 |
|
|
353 | 356 |
// CrossRefMap |
354 | 357 |
{ |
355 | 358 |
typedef ListDigraph Graph; |
356 | 359 |
DIGRAPH_TYPEDEFS(Graph); |
357 | 360 |
|
358 | 361 |
checkConcept<ReadWriteMap<Node, int>, |
359 | 362 |
CrossRefMap<Graph, Node, int> >(); |
360 |
|
|
363 |
|
|
361 | 364 |
Graph gr; |
362 | 365 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
363 | 366 |
typedef CRMap::ValueIterator ValueIt; |
364 | 367 |
CRMap map(gr); |
365 |
|
|
368 |
|
|
366 | 369 |
Node n0 = gr.addNode(); |
367 | 370 |
Node n1 = gr.addNode(); |
368 | 371 |
Node n2 = gr.addNode(); |
369 |
|
|
372 |
|
|
370 | 373 |
map.set(n0, 'A'); |
371 | 374 |
map.set(n1, 'B'); |
372 | 375 |
map.set(n2, 'C'); |
373 | 376 |
map.set(n2, 'A'); |
374 | 377 |
map.set(n0, 'C'); |
375 | 378 |
|
376 | 379 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
377 | 380 |
"Wrong CrossRefMap"); |
378 | 381 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
379 | 382 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
380 | 383 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
381 | 384 |
|
382 | 385 |
ValueIt it = map.beginValue(); |
383 | 386 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
384 | 387 |
it == map.endValue(), "Wrong value iterator"); |
385 | 388 |
} |
386 | 389 |
|
387 | 390 |
return 0; |
388 | 391 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <sstream> |
21 | 21 |
#include <vector> |
22 | 22 |
#include <queue> |
23 | 23 |
#include <cstdlib> |
24 | 24 |
|
25 | 25 |
#include <lemon/matching.h> |
26 | 26 |
#include <lemon/smart_graph.h> |
27 | 27 |
#include <lemon/concepts/graph.h> |
28 | 28 |
#include <lemon/concepts/maps.h> |
29 | 29 |
#include <lemon/lgf_reader.h> |
30 | 30 |
#include <lemon/math.h> |
31 | 31 |
|
32 | 32 |
#include "test_tools.h" |
33 | 33 |
|
34 | 34 |
using namespace std; |
35 | 35 |
using namespace lemon; |
36 | 36 |
|
37 | 37 |
GRAPH_TYPEDEFS(SmartGraph); |
... | ... |
@@ -105,146 +105,146 @@ |
105 | 105 |
" label weight\n" |
106 | 106 |
"6 2 0 553\n" |
107 | 107 |
"0 7 1 653\n" |
108 | 108 |
"6 3 2 22\n" |
109 | 109 |
"4 7 3 846\n" |
110 | 110 |
"7 2 4 981\n" |
111 | 111 |
"7 6 5 250\n" |
112 | 112 |
"5 2 6 539\n", |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
void checkMaxMatchingCompile() |
116 | 116 |
{ |
117 | 117 |
typedef concepts::Graph Graph; |
118 | 118 |
typedef Graph::Node Node; |
119 | 119 |
typedef Graph::Edge Edge; |
120 | 120 |
typedef Graph::EdgeMap<bool> MatMap; |
121 | 121 |
|
122 | 122 |
Graph g; |
123 | 123 |
Node n; |
124 | 124 |
Edge e; |
125 | 125 |
MatMap mat(g); |
126 | 126 |
|
127 | 127 |
MaxMatching<Graph> mat_test(g); |
128 | 128 |
const MaxMatching<Graph>& |
129 | 129 |
const_mat_test = mat_test; |
130 | 130 |
|
131 | 131 |
mat_test.init(); |
132 | 132 |
mat_test.greedyInit(); |
133 | 133 |
mat_test.matchingInit(mat); |
134 | 134 |
mat_test.startSparse(); |
135 | 135 |
mat_test.startDense(); |
136 | 136 |
mat_test.run(); |
137 |
|
|
137 |
|
|
138 | 138 |
const_mat_test.matchingSize(); |
139 | 139 |
const_mat_test.matching(e); |
140 | 140 |
const_mat_test.matching(n); |
141 | 141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
142 | 142 |
const_mat_test.matchingMap(); |
143 | 143 |
e = mmap[n]; |
144 | 144 |
const_mat_test.mate(n); |
145 | 145 |
|
146 |
MaxMatching<Graph>::Status stat = |
|
146 |
MaxMatching<Graph>::Status stat = |
|
147 | 147 |
const_mat_test.status(n); |
148 | 148 |
const MaxMatching<Graph>::StatusMap& smap = |
149 | 149 |
const_mat_test.statusMap(); |
150 | 150 |
stat = smap[n]; |
151 | 151 |
const_mat_test.barrier(n); |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
void checkMaxWeightedMatchingCompile() |
155 | 155 |
{ |
156 | 156 |
typedef concepts::Graph Graph; |
157 | 157 |
typedef Graph::Node Node; |
158 | 158 |
typedef Graph::Edge Edge; |
159 | 159 |
typedef Graph::EdgeMap<int> WeightMap; |
160 | 160 |
|
161 | 161 |
Graph g; |
162 | 162 |
Node n; |
163 | 163 |
Edge e; |
164 | 164 |
WeightMap w(g); |
165 | 165 |
|
166 | 166 |
MaxWeightedMatching<Graph> mat_test(g, w); |
167 | 167 |
const MaxWeightedMatching<Graph>& |
168 | 168 |
const_mat_test = mat_test; |
169 | 169 |
|
170 | 170 |
mat_test.init(); |
171 | 171 |
mat_test.start(); |
172 | 172 |
mat_test.run(); |
173 |
|
|
173 |
|
|
174 | 174 |
const_mat_test.matchingWeight(); |
175 | 175 |
const_mat_test.matchingSize(); |
176 | 176 |
const_mat_test.matching(e); |
177 | 177 |
const_mat_test.matching(n); |
178 | 178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
179 | 179 |
const_mat_test.matchingMap(); |
180 | 180 |
e = mmap[n]; |
181 | 181 |
const_mat_test.mate(n); |
182 |
|
|
182 |
|
|
183 | 183 |
int k = 0; |
184 | 184 |
const_mat_test.dualValue(); |
185 | 185 |
const_mat_test.nodeValue(n); |
186 | 186 |
const_mat_test.blossomNum(); |
187 | 187 |
const_mat_test.blossomSize(k); |
188 | 188 |
const_mat_test.blossomValue(k); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
void checkMaxWeightedPerfectMatchingCompile() |
192 | 192 |
{ |
193 | 193 |
typedef concepts::Graph Graph; |
194 | 194 |
typedef Graph::Node Node; |
195 | 195 |
typedef Graph::Edge Edge; |
196 | 196 |
typedef Graph::EdgeMap<int> WeightMap; |
197 | 197 |
|
198 | 198 |
Graph g; |
199 | 199 |
Node n; |
200 | 200 |
Edge e; |
201 | 201 |
WeightMap w(g); |
202 | 202 |
|
203 | 203 |
MaxWeightedPerfectMatching<Graph> mat_test(g, w); |
204 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
205 | 205 |
const_mat_test = mat_test; |
206 | 206 |
|
207 | 207 |
mat_test.init(); |
208 | 208 |
mat_test.start(); |
209 | 209 |
mat_test.run(); |
210 |
|
|
210 |
|
|
211 | 211 |
const_mat_test.matchingWeight(); |
212 | 212 |
const_mat_test.matching(e); |
213 | 213 |
const_mat_test.matching(n); |
214 | 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
215 | 215 |
const_mat_test.matchingMap(); |
216 | 216 |
e = mmap[n]; |
217 | 217 |
const_mat_test.mate(n); |
218 |
|
|
218 |
|
|
219 | 219 |
int k = 0; |
220 | 220 |
const_mat_test.dualValue(); |
221 | 221 |
const_mat_test.nodeValue(n); |
222 | 222 |
const_mat_test.blossomNum(); |
223 | 223 |
const_mat_test.blossomSize(k); |
224 | 224 |
const_mat_test.blossomValue(k); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
void checkMatching(const SmartGraph& graph, |
228 | 228 |
const MaxMatching<SmartGraph>& mm) { |
229 | 229 |
int num = 0; |
230 | 230 |
|
231 | 231 |
IntNodeMap comp_index(graph); |
232 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
233 | 233 |
|
234 | 234 |
int barrier_num = 0; |
235 | 235 |
|
236 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) { |
237 | 237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
238 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
239 | 239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) { |
240 | 240 |
++barrier_num; |
241 | 241 |
} else { |
242 | 242 |
comp.insert(n); |
243 | 243 |
} |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
247 | 247 |
if (mm.matching(e)) { |
248 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
249 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
250 | 250 |
++num; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <set> |
21 | 21 |
#include <vector> |
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/smart_graph.h> |
25 | 25 |
#include <lemon/min_cost_arborescence.h> |
26 | 26 |
#include <lemon/lgf_reader.h> |
27 | 27 |
#include <lemon/concepts/digraph.h> |
28 | 28 |
|
29 | 29 |
#include "test_tools.h" |
30 | 30 |
|
31 | 31 |
using namespace lemon; |
32 | 32 |
using namespace std; |
33 | 33 |
|
34 | 34 |
const char test_lgf[] = |
35 | 35 |
"@nodes\n" |
36 | 36 |
"label\n" |
37 | 37 |
"0\n" |
... | ... |
@@ -81,80 +81,80 @@ |
81 | 81 |
typedef Digraph::Arc Arc; |
82 | 82 |
typedef concepts::WriteMap<Digraph::Arc, bool> ArbMap; |
83 | 83 |
typedef concepts::ReadWriteMap<Digraph::Node, Digraph::Arc> PredMap; |
84 | 84 |
|
85 | 85 |
typedef MinCostArborescence<Digraph, CostMap>:: |
86 | 86 |
SetArborescenceMap<ArbMap>:: |
87 | 87 |
SetPredMap<PredMap>::Create MinCostArbType; |
88 | 88 |
|
89 | 89 |
Digraph g; |
90 | 90 |
Node s, n; |
91 | 91 |
Arc e; |
92 | 92 |
VType c; |
93 | 93 |
bool b; |
94 | 94 |
int i; |
95 | 95 |
CostMap cost; |
96 | 96 |
ArbMap arb; |
97 | 97 |
PredMap pred; |
98 | 98 |
|
99 | 99 |
MinCostArbType mcarb_test(g, cost); |
100 | 100 |
const MinCostArbType& const_mcarb_test = mcarb_test; |
101 | 101 |
|
102 | 102 |
mcarb_test |
103 | 103 |
.arborescenceMap(arb) |
104 | 104 |
.predMap(pred) |
105 | 105 |
.run(s); |
106 | 106 |
|
107 | 107 |
mcarb_test.init(); |
108 | 108 |
mcarb_test.addSource(s); |
109 | 109 |
mcarb_test.start(); |
110 | 110 |
n = mcarb_test.processNextNode(); |
111 | 111 |
b = const_mcarb_test.emptyQueue(); |
112 | 112 |
i = const_mcarb_test.queueSize(); |
113 |
|
|
113 |
|
|
114 | 114 |
c = const_mcarb_test.arborescenceCost(); |
115 | 115 |
b = const_mcarb_test.arborescence(e); |
116 | 116 |
e = const_mcarb_test.pred(n); |
117 | 117 |
const MinCostArbType::ArborescenceMap &am = |
118 | 118 |
const_mcarb_test.arborescenceMap(); |
119 | 119 |
const MinCostArbType::PredMap &pm = |
120 | 120 |
const_mcarb_test.predMap(); |
121 | 121 |
b = const_mcarb_test.reached(n); |
122 | 122 |
b = const_mcarb_test.processed(n); |
123 |
|
|
123 |
|
|
124 | 124 |
i = const_mcarb_test.dualNum(); |
125 | 125 |
c = const_mcarb_test.dualValue(); |
126 | 126 |
i = const_mcarb_test.dualSize(i); |
127 | 127 |
c = const_mcarb_test.dualValue(i); |
128 |
|
|
128 |
|
|
129 | 129 |
ignore_unused_variable_warning(am); |
130 | 130 |
ignore_unused_variable_warning(pm); |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
int main() { |
134 | 134 |
typedef SmartDigraph Digraph; |
135 | 135 |
DIGRAPH_TYPEDEFS(Digraph); |
136 | 136 |
|
137 | 137 |
typedef Digraph::ArcMap<double> CostMap; |
138 | 138 |
|
139 | 139 |
Digraph digraph; |
140 | 140 |
CostMap cost(digraph); |
141 | 141 |
Node source; |
142 | 142 |
|
143 | 143 |
std::istringstream is(test_lgf); |
144 | 144 |
digraphReader(digraph, is). |
145 | 145 |
arcMap("cost", cost). |
146 | 146 |
node("source", source).run(); |
147 | 147 |
|
148 | 148 |
MinCostArborescence<Digraph, CostMap> mca(digraph, cost); |
149 | 149 |
mca.run(source); |
150 | 150 |
|
151 | 151 |
vector<pair<double, set<Node> > > dualSolution(mca.dualNum()); |
152 | 152 |
|
153 | 153 |
for (int i = 0; i < mca.dualNum(); ++i) { |
154 | 154 |
dualSolution[i].first = mca.dualValue(i); |
155 | 155 |
for (MinCostArborescence<Digraph, CostMap>::DualIt it(mca, i); |
156 | 156 |
it != INVALID; ++it) { |
157 | 157 |
dualSolution[i].second.insert(it); |
158 | 158 |
} |
159 | 159 |
} |
160 | 160 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <limits> |
22 | 22 |
|
23 | 23 |
#include <lemon/list_graph.h> |
24 | 24 |
#include <lemon/lgf_reader.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/network_simplex.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concept_check.h> |
30 | 30 |
|
31 | 31 |
#include "test_tools.h" |
32 | 32 |
|
33 | 33 |
using namespace lemon; |
34 | 34 |
|
35 | 35 |
char test_lgf[] = |
36 | 36 |
"@nodes\n" |
37 | 37 |
"label sup1 sup2 sup3 sup4 sup5 sup6\n" |
38 | 38 |
" 1 20 27 0 30 20 30\n" |
39 | 39 |
" 2 -4 0 0 0 -8 -3\n" |
40 | 40 |
" 3 0 0 0 0 0 0\n" |
41 | 41 |
" 4 0 0 0 0 0 0\n" |
42 | 42 |
" 5 9 0 0 0 6 11\n" |
43 | 43 |
" 6 -6 0 0 0 -5 -6\n" |
44 | 44 |
" 7 0 0 0 0 0 0\n" |
45 | 45 |
" 8 0 0 0 0 0 3\n" |
46 | 46 |
" 9 3 0 0 0 0 0\n" |
47 | 47 |
" 10 -2 0 0 0 -7 -2\n" |
48 | 48 |
" 11 0 0 0 0 -10 0\n" |
49 | 49 |
" 12 -20 -27 0 -30 -30 -20\n" |
50 |
"\n" |
|
50 |
"\n" |
|
51 | 51 |
"@arcs\n" |
52 | 52 |
" cost cap low1 low2 low3\n" |
53 | 53 |
" 1 2 70 11 0 8 8\n" |
54 | 54 |
" 1 3 150 3 0 1 0\n" |
55 | 55 |
" 1 4 80 15 0 2 2\n" |
56 | 56 |
" 2 8 80 12 0 0 0\n" |
57 | 57 |
" 3 5 140 5 0 3 1\n" |
58 | 58 |
" 4 6 60 10 0 1 0\n" |
59 | 59 |
" 4 7 80 2 0 0 0\n" |
60 | 60 |
" 4 8 110 3 0 0 0\n" |
61 | 61 |
" 5 7 60 14 0 0 0\n" |
62 | 62 |
" 5 11 120 12 0 0 0\n" |
63 | 63 |
" 6 3 0 3 0 0 0\n" |
64 | 64 |
" 6 9 140 4 0 0 0\n" |
65 | 65 |
" 6 10 90 8 0 0 0\n" |
66 | 66 |
" 7 1 30 5 0 0 -5\n" |
67 | 67 |
" 8 12 60 16 0 4 3\n" |
68 | 68 |
" 9 12 50 6 0 0 0\n" |
69 | 69 |
"10 12 70 13 0 5 2\n" |
70 | 70 |
"10 2 100 7 0 0 0\n" |
71 | 71 |
"10 7 60 10 0 0 -3\n" |
72 | 72 |
"11 10 20 14 0 6 -20\n" |
73 | 73 |
"12 11 30 10 0 0 -10\n" |
74 | 74 |
"\n" |
75 | 75 |
"@attributes\n" |
76 | 76 |
"source 1\n" |
77 | 77 |
"target 12\n"; |
78 | 78 |
|
79 | 79 |
|
80 | 80 |
enum SupplyType { |
81 | 81 |
EQ, |
82 | 82 |
GEQ, |
83 | 83 |
LEQ |
84 | 84 |
}; |
85 | 85 |
|
86 | 86 |
// Check the interface of an MCF algorithm |
87 | 87 |
template <typename GR, typename Value, typename Cost> |
88 | 88 |
class McfClassConcept |
89 | 89 |
{ |
90 | 90 |
public: |
91 | 91 |
|
92 | 92 |
template <typename MCF> |
93 | 93 |
struct Constraints { |
94 | 94 |
void constraints() { |
95 | 95 |
checkConcept<concepts::Digraph, GR>(); |
96 |
|
|
96 |
|
|
97 | 97 |
const Constraints& me = *this; |
98 | 98 |
|
99 | 99 |
MCF mcf(me.g); |
100 | 100 |
const MCF& const_mcf = mcf; |
101 | 101 |
|
102 | 102 |
b = mcf.reset() |
103 | 103 |
.lowerMap(me.lower) |
104 | 104 |
.upperMap(me.upper) |
105 | 105 |
.costMap(me.cost) |
106 | 106 |
.supplyMap(me.sup) |
107 | 107 |
.stSupply(me.n, me.n, me.k) |
108 | 108 |
.run(); |
109 | 109 |
|
110 | 110 |
c = const_mcf.totalCost(); |
111 | 111 |
x = const_mcf.template totalCost<double>(); |
112 | 112 |
v = const_mcf.flow(me.a); |
113 | 113 |
c = const_mcf.potential(me.n); |
114 | 114 |
const_mcf.flowMap(fm); |
115 | 115 |
const_mcf.potentialMap(pm); |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
typedef typename GR::Node Node; |
119 | 119 |
typedef typename GR::Arc Arc; |
120 | 120 |
typedef concepts::ReadMap<Node, Value> NM; |
121 | 121 |
typedef concepts::ReadMap<Arc, Value> VAM; |
122 | 122 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
123 | 123 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
124 | 124 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
125 |
|
|
125 |
|
|
126 | 126 |
GR g; |
127 | 127 |
VAM lower; |
128 | 128 |
VAM upper; |
129 | 129 |
CAM cost; |
130 | 130 |
NM sup; |
131 | 131 |
Node n; |
132 | 132 |
Arc a; |
133 | 133 |
Value k; |
134 | 134 |
|
135 | 135 |
FlowMap fm; |
136 | 136 |
PotMap pm; |
137 | 137 |
bool b; |
138 | 138 |
double x; |
139 | 139 |
typename MCF::Value v; |
140 | 140 |
typename MCF::Cost c; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
}; |
144 | 144 |
|
145 | 145 |
|
146 | 146 |
// Check the feasibility of the given flow (primal soluiton) |
147 | 147 |
template < typename GR, typename LM, typename UM, |
148 | 148 |
typename SM, typename FM > |
149 | 149 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
150 | 150 |
const SM& supply, const FM& flow, |
151 | 151 |
SupplyType type = EQ ) |
152 | 152 |
{ |
153 | 153 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
154 | 154 |
|
155 | 155 |
for (ArcIt e(gr); e != INVALID; ++e) { |
156 | 156 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
for (NodeIt n(gr); n != INVALID; ++n) { |
160 | 160 |
typename SM::Value sum = 0; |
161 | 161 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
162 | 162 |
sum += flow[e]; |
163 | 163 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
164 | 164 |
sum -= flow[e]; |
165 | 165 |
bool b = (type == EQ && sum == supply[n]) || |
166 | 166 |
(type == GEQ && sum >= supply[n]) || |
167 | 167 |
(type == LEQ && sum <= supply[n]); |
168 | 168 |
if (!b) return false; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
return true; |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
// Check the feasibility of the given potentials (dual soluiton) |
175 | 175 |
// using the "Complementary Slackness" optimality condition |
176 | 176 |
template < typename GR, typename LM, typename UM, |
177 | 177 |
typename CM, typename SM, typename FM, typename PM > |
178 | 178 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
179 |
const CM& cost, const SM& supply, const FM& flow, |
|
179 |
const CM& cost, const SM& supply, const FM& flow, |
|
180 | 180 |
const PM& pi, SupplyType type ) |
181 | 181 |
{ |
182 | 182 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
183 | 183 |
|
184 | 184 |
bool opt = true; |
185 | 185 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
186 | 186 |
typename CM::Value red_cost = |
187 | 187 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
188 | 188 |
opt = red_cost == 0 || |
189 | 189 |
(red_cost > 0 && flow[e] == lower[e]) || |
190 | 190 |
(red_cost < 0 && flow[e] == upper[e]); |
191 | 191 |
} |
192 |
|
|
192 |
|
|
193 | 193 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
194 | 194 |
typename SM::Value sum = 0; |
195 | 195 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
196 | 196 |
sum += flow[e]; |
197 | 197 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
198 | 198 |
sum -= flow[e]; |
199 | 199 |
if (type != LEQ) { |
200 | 200 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
201 | 201 |
} else { |
202 | 202 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
203 | 203 |
} |
204 | 204 |
} |
205 |
|
|
205 |
|
|
206 | 206 |
return opt; |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
// Check whether the dual cost is equal to the primal cost |
210 | 210 |
template < typename GR, typename LM, typename UM, |
211 | 211 |
typename CM, typename SM, typename PM > |
212 | 212 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
213 | 213 |
const CM& cost, const SM& supply, const PM& pi, |
214 | 214 |
typename CM::Value total ) |
215 | 215 |
{ |
216 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
217 | 217 |
|
218 | 218 |
typename CM::Value dual_cost = 0; |
219 | 219 |
SM red_supply(gr); |
220 | 220 |
for (NodeIt n(gr); n != INVALID; ++n) { |
221 | 221 |
red_supply[n] = supply[n]; |
222 | 222 |
} |
223 | 223 |
for (ArcIt a(gr); a != INVALID; ++a) { |
224 | 224 |
if (lower[a] != 0) { |
225 | 225 |
dual_cost += lower[a] * cost[a]; |
226 | 226 |
red_supply[gr.source(a)] -= lower[a]; |
227 | 227 |
red_supply[gr.target(a)] += lower[a]; |
228 | 228 |
} |
229 | 229 |
} |
230 |
|
|
230 |
|
|
231 | 231 |
for (NodeIt n(gr); n != INVALID; ++n) { |
232 | 232 |
dual_cost -= red_supply[n] * pi[n]; |
233 | 233 |
} |
234 | 234 |
for (ArcIt a(gr); a != INVALID; ++a) { |
235 | 235 |
typename CM::Value red_cost = |
236 | 236 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
237 | 237 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
238 | 238 |
} |
239 |
|
|
239 |
|
|
240 | 240 |
return dual_cost == total; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
// Run a minimum cost flow algorithm and check the results |
244 | 244 |
template < typename MCF, typename GR, |
245 | 245 |
typename LM, typename UM, |
246 | 246 |
typename CM, typename SM, |
247 | 247 |
typename PT > |
248 | 248 |
void checkMcf( const MCF& mcf, PT mcf_result, |
249 | 249 |
const GR& gr, const LM& lower, const UM& upper, |
250 | 250 |
const CM& cost, const SM& supply, |
251 | 251 |
PT result, bool optimal, typename CM::Value total, |
252 | 252 |
const std::string &test_id = "", |
253 | 253 |
SupplyType type = EQ ) |
254 | 254 |
{ |
255 | 255 |
check(mcf_result == result, "Wrong result " + test_id); |
256 | 256 |
if (optimal) { |
257 | 257 |
typename GR::template ArcMap<typename SM::Value> flow(gr); |
258 | 258 |
typename GR::template NodeMap<typename CM::Value> pi(gr); |
259 | 259 |
mcf.flowMap(flow); |
260 | 260 |
mcf.potentialMap(pi); |
261 | 261 |
check(checkFlow(gr, lower, upper, supply, flow, type), |
262 | 262 |
"The flow is not feasible " + test_id); |
263 | 263 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
264 | 264 |
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type), |
265 | 265 |
"Wrong potentials " + test_id); |
266 | 266 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
267 | 267 |
"Wrong dual cost " + test_id); |
268 | 268 |
} |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
int main() |
... | ... |
@@ -279,95 +279,95 @@ |
279 | 279 |
NetworkSimplex<GR, double> >(); |
280 | 280 |
checkConcept< McfClassConcept<GR, int, double>, |
281 | 281 |
NetworkSimplex<GR, int, double> >(); |
282 | 282 |
} |
283 | 283 |
|
284 | 284 |
// Run various MCF tests |
285 | 285 |
typedef ListDigraph Digraph; |
286 | 286 |
DIGRAPH_TYPEDEFS(ListDigraph); |
287 | 287 |
|
288 | 288 |
// Read the test digraph |
289 | 289 |
Digraph gr; |
290 | 290 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr); |
291 | 291 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr); |
292 | 292 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
293 | 293 |
Node v, w; |
294 | 294 |
|
295 | 295 |
std::istringstream input(test_lgf); |
296 | 296 |
DigraphReader<Digraph>(gr, input) |
297 | 297 |
.arcMap("cost", c) |
298 | 298 |
.arcMap("cap", u) |
299 | 299 |
.arcMap("low1", l1) |
300 | 300 |
.arcMap("low2", l2) |
301 | 301 |
.arcMap("low3", l3) |
302 | 302 |
.nodeMap("sup1", s1) |
303 | 303 |
.nodeMap("sup2", s2) |
304 | 304 |
.nodeMap("sup3", s3) |
305 | 305 |
.nodeMap("sup4", s4) |
306 | 306 |
.nodeMap("sup5", s5) |
307 | 307 |
.nodeMap("sup6", s6) |
308 | 308 |
.node("source", v) |
309 | 309 |
.node("target", w) |
310 | 310 |
.run(); |
311 |
|
|
311 |
|
|
312 | 312 |
// Build test digraphs with negative costs |
313 | 313 |
Digraph neg_gr; |
314 | 314 |
Node n1 = neg_gr.addNode(); |
315 | 315 |
Node n2 = neg_gr.addNode(); |
316 | 316 |
Node n3 = neg_gr.addNode(); |
317 | 317 |
Node n4 = neg_gr.addNode(); |
318 | 318 |
Node n5 = neg_gr.addNode(); |
319 | 319 |
Node n6 = neg_gr.addNode(); |
320 | 320 |
Node n7 = neg_gr.addNode(); |
321 |
|
|
321 |
|
|
322 | 322 |
Arc a1 = neg_gr.addArc(n1, n2); |
323 | 323 |
Arc a2 = neg_gr.addArc(n1, n3); |
324 | 324 |
Arc a3 = neg_gr.addArc(n2, n4); |
325 | 325 |
Arc a4 = neg_gr.addArc(n3, n4); |
326 | 326 |
Arc a5 = neg_gr.addArc(n3, n2); |
327 | 327 |
Arc a6 = neg_gr.addArc(n5, n3); |
328 | 328 |
Arc a7 = neg_gr.addArc(n5, n6); |
329 | 329 |
Arc a8 = neg_gr.addArc(n6, n7); |
330 | 330 |
Arc a9 = neg_gr.addArc(n7, n5); |
331 |
|
|
331 |
|
|
332 | 332 |
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0); |
333 | 333 |
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000); |
334 | 334 |
Digraph::NodeMap<int> neg_s(neg_gr, 0); |
335 |
|
|
335 |
|
|
336 | 336 |
neg_l2[a7] = 1000; |
337 | 337 |
neg_l2[a8] = -1000; |
338 |
|
|
338 |
|
|
339 | 339 |
neg_s[n1] = 100; |
340 | 340 |
neg_s[n4] = -100; |
341 |
|
|
341 |
|
|
342 | 342 |
neg_c[a1] = 100; |
343 | 343 |
neg_c[a2] = 30; |
344 | 344 |
neg_c[a3] = 20; |
345 | 345 |
neg_c[a4] = 80; |
346 | 346 |
neg_c[a5] = 50; |
347 | 347 |
neg_c[a6] = 10; |
348 | 348 |
neg_c[a7] = 80; |
349 | 349 |
neg_c[a8] = 30; |
350 | 350 |
neg_c[a9] = -120; |
351 | 351 |
|
352 | 352 |
Digraph negs_gr; |
353 | 353 |
Digraph::NodeMap<int> negs_s(negs_gr); |
354 | 354 |
Digraph::ArcMap<int> negs_c(negs_gr); |
355 | 355 |
ConstMap<Arc, int> negs_l(0), negs_u(1000); |
356 | 356 |
n1 = negs_gr.addNode(); |
357 | 357 |
n2 = negs_gr.addNode(); |
358 | 358 |
negs_s[n1] = 100; |
359 | 359 |
negs_s[n2] = -300; |
360 | 360 |
negs_c[negs_gr.addArc(n1, n2)] = -1; |
361 | 361 |
|
362 | 362 |
|
363 | 363 |
// A. Test NetworkSimplex with the default pivot rule |
364 | 364 |
{ |
365 | 365 |
NetworkSimplex<Digraph> mcf(gr); |
366 | 366 |
|
367 | 367 |
// Check the equality form |
368 | 368 |
mcf.upperMap(u).costMap(c); |
369 | 369 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
370 | 370 |
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1"); |
371 | 371 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
372 | 372 |
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2"); |
373 | 373 |
mcf.lowerMap(l2); |
... | ... |
@@ -393,58 +393,58 @@ |
393 | 393 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s5); |
394 | 394 |
checkMcf(mcf, mcf.run(), |
395 | 395 |
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ); |
396 | 396 |
mcf.supplyType(mcf.GEQ); |
397 | 397 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
398 | 398 |
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ); |
399 | 399 |
mcf.supplyMap(s6); |
400 | 400 |
checkMcf(mcf, mcf.run(), |
401 | 401 |
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ); |
402 | 402 |
|
403 | 403 |
// Check the LEQ form |
404 | 404 |
mcf.reset().supplyType(mcf.LEQ); |
405 | 405 |
mcf.upperMap(u).costMap(c).supplyMap(s6); |
406 | 406 |
checkMcf(mcf, mcf.run(), |
407 | 407 |
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ); |
408 | 408 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
409 | 409 |
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ); |
410 | 410 |
mcf.supplyMap(s5); |
411 | 411 |
checkMcf(mcf, mcf.run(), |
412 | 412 |
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ); |
413 | 413 |
|
414 | 414 |
// Check negative costs |
415 | 415 |
NetworkSimplex<Digraph> neg_mcf(neg_gr); |
416 | 416 |
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s); |
417 | 417 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1, |
418 | 418 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16"); |
419 | 419 |
neg_mcf.upperMap(neg_u2); |
420 | 420 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2, |
421 | 421 |
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17"); |
422 | 422 |
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s); |
423 | 423 |
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1, |
424 | 424 |
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18"); |
425 |
|
|
425 |
|
|
426 | 426 |
NetworkSimplex<Digraph> negs_mcf(negs_gr); |
427 | 427 |
negs_mcf.costMap(negs_c).supplyMap(negs_s); |
428 | 428 |
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u, |
429 | 429 |
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ); |
430 | 430 |
} |
431 | 431 |
|
432 | 432 |
// B. Test NetworkSimplex with each pivot rule |
433 | 433 |
{ |
434 | 434 |
NetworkSimplex<Digraph> mcf(gr); |
435 | 435 |
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2); |
436 | 436 |
|
437 | 437 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
438 | 438 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1"); |
439 | 439 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
440 | 440 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2"); |
441 | 441 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
442 | 442 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3"); |
443 | 443 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
444 | 444 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4"); |
445 | 445 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
446 | 446 |
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5"); |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
return 0; |
450 | 450 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/smart_graph.h> |
23 | 23 |
#include <lemon/preflow.h> |
24 | 24 |
#include <lemon/concepts/digraph.h> |
25 | 25 |
#include <lemon/concepts/maps.h> |
26 | 26 |
#include <lemon/lgf_reader.h> |
27 | 27 |
#include <lemon/elevator.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"0\n" |
35 | 35 |
"1\n" |
36 | 36 |
"2\n" |
37 | 37 |
"3\n" |
... | ... |
@@ -84,106 +84,106 @@ |
84 | 84 |
CapMap cap; |
85 | 85 |
FlowMap flow; |
86 | 86 |
CutMap cut; |
87 | 87 |
VType v; |
88 | 88 |
bool b; |
89 | 89 |
|
90 | 90 |
typedef Preflow<Digraph, CapMap> |
91 | 91 |
::SetFlowMap<FlowMap> |
92 | 92 |
::SetElevator<Elev> |
93 | 93 |
::SetStandardElevator<LinkedElev> |
94 | 94 |
::Create PreflowType; |
95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
97 | 97 |
|
98 | 98 |
preflow_test |
99 | 99 |
.capacityMap(cap) |
100 | 100 |
.flowMap(flow) |
101 | 101 |
.source(n) |
102 | 102 |
.target(n); |
103 | 103 |
|
104 | 104 |
preflow_test.init(); |
105 | 105 |
preflow_test.init(cap); |
106 | 106 |
preflow_test.startFirstPhase(); |
107 | 107 |
preflow_test.startSecondPhase(); |
108 | 108 |
preflow_test.run(); |
109 | 109 |
preflow_test.runMinCut(); |
110 | 110 |
|
111 | 111 |
v = const_preflow_test.flowValue(); |
112 | 112 |
v = const_preflow_test.flow(e); |
113 | 113 |
const FlowMap& fm = const_preflow_test.flowMap(); |
114 | 114 |
b = const_preflow_test.minCut(n); |
115 | 115 |
const_preflow_test.minCutMap(cut); |
116 |
|
|
116 |
|
|
117 | 117 |
ignore_unused_variable_warning(fm); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
int cutValue (const SmartDigraph& g, |
121 | 121 |
const SmartDigraph::NodeMap<bool>& cut, |
122 | 122 |
const SmartDigraph::ArcMap<int>& cap) { |
123 | 123 |
|
124 | 124 |
int c=0; |
125 | 125 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) { |
126 | 126 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
127 | 127 |
} |
128 | 128 |
return c; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
bool checkFlow(const SmartDigraph& g, |
132 | 132 |
const SmartDigraph::ArcMap<int>& flow, |
133 | 133 |
const SmartDigraph::ArcMap<int>& cap, |
134 | 134 |
SmartDigraph::Node s, SmartDigraph::Node t) { |
135 | 135 |
|
136 | 136 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) { |
137 | 137 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) { |
141 | 141 |
if (n == s || n == t) continue; |
142 | 142 |
int sum = 0; |
143 | 143 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) { |
144 | 144 |
sum += flow[e]; |
145 | 145 |
} |
146 | 146 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) { |
147 | 147 |
sum -= flow[e]; |
148 | 148 |
} |
149 | 149 |
if (sum != 0) return false; |
150 | 150 |
} |
151 | 151 |
return true; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
void initFlowTest() |
155 | 155 |
{ |
156 | 156 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
157 |
|
|
157 |
|
|
158 | 158 |
SmartDigraph g; |
159 | 159 |
SmartDigraph::ArcMap<int> cap(g),iflow(g); |
160 | 160 |
Node s=g.addNode(); Node t=g.addNode(); |
161 | 161 |
Node n1=g.addNode(); Node n2=g.addNode(); |
162 | 162 |
Arc a; |
163 | 163 |
a=g.addArc(s,n1); cap[a]=20; iflow[a]=20; |
164 | 164 |
a=g.addArc(n1,n2); cap[a]=10; iflow[a]=0; |
165 | 165 |
a=g.addArc(n2,t); cap[a]=20; iflow[a]=0; |
166 | 166 |
|
167 | 167 |
Preflow<SmartDigraph> pre(g,cap,s,t); |
168 | 168 |
pre.init(iflow); |
169 | 169 |
pre.startFirstPhase(); |
170 | 170 |
check(pre.flowValue() == 10, "The incorrect max flow value."); |
171 | 171 |
check(pre.minCut(s), "Wrong min cut (Node s)."); |
172 | 172 |
check(pre.minCut(n1), "Wrong min cut (Node n1)."); |
173 | 173 |
check(!pre.minCut(n2), "Wrong min cut (Node n2)."); |
174 | 174 |
check(!pre.minCut(t), "Wrong min cut (Node t)."); |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
|
178 | 178 |
int main() { |
179 | 179 |
|
180 | 180 |
typedef SmartDigraph Digraph; |
181 | 181 |
|
182 | 182 |
typedef Digraph::Node Node; |
183 | 183 |
typedef Digraph::NodeIt NodeIt; |
184 | 184 |
typedef Digraph::ArcIt ArcIt; |
185 | 185 |
typedef Digraph::ArcMap<int> CapMap; |
186 | 186 |
typedef Digraph::ArcMap<int> FlowMap; |
187 | 187 |
typedef Digraph::NodeMap<bool> CutMap; |
188 | 188 |
|
189 | 189 |
typedef Preflow<Digraph, CapMap> PType; |
... | ... |
@@ -237,35 +237,35 @@ |
237 | 237 |
preflow_test.minCutMap(min_cut2); |
238 | 238 |
min_cut_value=cutValue(g,min_cut2,cap); |
239 | 239 |
|
240 | 240 |
check(preflow_test.flowValue() == min_cut_value && |
241 | 241 |
min_cut_value == 2*flow_value, |
242 | 242 |
"The max flow value or the three min cut values were not doubled"); |
243 | 243 |
|
244 | 244 |
|
245 | 245 |
preflow_test.flowMap(flow); |
246 | 246 |
|
247 | 247 |
NodeIt tmp1(g,s); |
248 | 248 |
++tmp1; |
249 | 249 |
if ( tmp1 != INVALID ) s=tmp1; |
250 | 250 |
|
251 | 251 |
NodeIt tmp2(g,t); |
252 | 252 |
++tmp2; |
253 | 253 |
if ( tmp2 != INVALID ) t=tmp2; |
254 | 254 |
|
255 | 255 |
preflow_test.source(s); |
256 | 256 |
preflow_test.target(t); |
257 | 257 |
|
258 | 258 |
preflow_test.run(); |
259 | 259 |
|
260 | 260 |
CutMap min_cut3(g); |
261 | 261 |
preflow_test.minCutMap(min_cut3); |
262 | 262 |
min_cut_value=cutValue(g,min_cut3,cap); |
263 | 263 |
|
264 | 264 |
|
265 | 265 |
check(preflow_test.flowValue() == min_cut_value, |
266 | 266 |
"The max flow value or the three min cut values are incorrect."); |
267 | 267 |
|
268 | 268 |
initFlowTest(); |
269 |
|
|
269 |
|
|
270 | 270 |
return 0; |
271 | 271 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/path.h> |
24 | 24 |
#include <lemon/suurballe.h> |
25 | 25 |
#include <lemon/concepts/digraph.h> |
26 | 26 |
|
27 | 27 |
#include "test_tools.h" |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
|
31 | 31 |
char test_lgf[] = |
32 | 32 |
"@nodes\n" |
33 | 33 |
"label\n" |
34 | 34 |
"1\n" |
35 | 35 |
"2\n" |
36 | 36 |
"3\n" |
37 | 37 |
"4\n" |
... | ... |
@@ -51,101 +51,101 @@ |
51 | 51 |
" 2 8 80\n" |
52 | 52 |
" 3 5 140\n" |
53 | 53 |
" 4 6 60\n" |
54 | 54 |
" 4 7 80\n" |
55 | 55 |
" 4 8 110\n" |
56 | 56 |
" 5 7 60\n" |
57 | 57 |
" 5 11 120\n" |
58 | 58 |
" 6 3 0\n" |
59 | 59 |
" 6 9 140\n" |
60 | 60 |
" 6 10 90\n" |
61 | 61 |
" 7 1 30\n" |
62 | 62 |
" 8 12 60\n" |
63 | 63 |
" 9 12 50\n" |
64 | 64 |
"10 12 70\n" |
65 | 65 |
"10 2 100\n" |
66 | 66 |
"10 7 60\n" |
67 | 67 |
"11 10 20\n" |
68 | 68 |
"12 11 30\n" |
69 | 69 |
"@attributes\n" |
70 | 70 |
"source 1\n" |
71 | 71 |
"target 12\n" |
72 | 72 |
"@end\n"; |
73 | 73 |
|
74 | 74 |
// Check the interface of Suurballe |
75 | 75 |
void checkSuurballeCompile() |
76 | 76 |
{ |
77 | 77 |
typedef int VType; |
78 | 78 |
typedef concepts::Digraph Digraph; |
79 | 79 |
|
80 | 80 |
typedef Digraph::Node Node; |
81 | 81 |
typedef Digraph::Arc Arc; |
82 | 82 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
83 |
|
|
83 |
|
|
84 | 84 |
typedef Suurballe<Digraph, LengthMap> SuurballeType; |
85 | 85 |
|
86 | 86 |
Digraph g; |
87 | 87 |
Node n; |
88 | 88 |
Arc e; |
89 | 89 |
LengthMap len; |
90 | 90 |
SuurballeType::FlowMap flow(g); |
91 | 91 |
SuurballeType::PotentialMap pi(g); |
92 | 92 |
|
93 | 93 |
SuurballeType suurb_test(g, len); |
94 | 94 |
const SuurballeType& const_suurb_test = suurb_test; |
95 | 95 |
|
96 | 96 |
suurb_test |
97 | 97 |
.flowMap(flow) |
98 | 98 |
.potentialMap(pi); |
99 | 99 |
|
100 | 100 |
int k; |
101 | 101 |
k = suurb_test.run(n, n); |
102 | 102 |
k = suurb_test.run(n, n, k); |
103 | 103 |
suurb_test.init(n); |
104 | 104 |
k = suurb_test.findFlow(n); |
105 | 105 |
k = suurb_test.findFlow(n, k); |
106 | 106 |
suurb_test.findPaths(); |
107 |
|
|
107 |
|
|
108 | 108 |
int f; |
109 | 109 |
VType c; |
110 | 110 |
c = const_suurb_test.totalLength(); |
111 | 111 |
f = const_suurb_test.flow(e); |
112 | 112 |
const SuurballeType::FlowMap& fm = |
113 | 113 |
const_suurb_test.flowMap(); |
114 | 114 |
c = const_suurb_test.potential(n); |
115 | 115 |
const SuurballeType::PotentialMap& pm = |
116 | 116 |
const_suurb_test.potentialMap(); |
117 | 117 |
k = const_suurb_test.pathNum(); |
118 | 118 |
Path<Digraph> p = const_suurb_test.path(k); |
119 |
|
|
119 |
|
|
120 | 120 |
ignore_unused_variable_warning(fm); |
121 | 121 |
ignore_unused_variable_warning(pm); |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
// Check the feasibility of the flow |
125 | 125 |
template <typename Digraph, typename FlowMap> |
126 | 126 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
127 | 127 |
typename Digraph::Node s, typename Digraph::Node t, |
128 | 128 |
int value ) |
129 | 129 |
{ |
130 | 130 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
131 | 131 |
for (ArcIt e(gr); e != INVALID; ++e) |
132 | 132 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
133 | 133 |
|
134 | 134 |
for (NodeIt n(gr); n != INVALID; ++n) { |
135 | 135 |
int sum = 0; |
136 | 136 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
137 | 137 |
sum += flow[e]; |
138 | 138 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
139 | 139 |
sum -= flow[e]; |
140 | 140 |
if (n == s && sum != value) return false; |
141 | 141 |
if (n == t && sum != -value) return false; |
142 | 142 |
if (n != s && n != t && sum != 0) return false; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
return true; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
// Check the optimalitiy of the flow |
149 | 149 |
template < typename Digraph, typename CostMap, |
150 | 150 |
typename FlowMap, typename PotentialMap > |
151 | 151 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2011 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// dimacs-solver --help |
28 | 28 |
/// \endcode |
29 | 29 |
/// for more info on usage. |
30 | 30 |
|
31 | 31 |
#include <iostream> |
32 | 32 |
#include <fstream> |
33 | 33 |
#include <cstring> |
34 | 34 |
|
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/dimacs.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
... | ... |
@@ -59,142 +59,142 @@ |
59 | 59 |
Node s; |
60 | 60 |
Digraph::ArcMap<Value> len(g); |
61 | 61 |
Timer t; |
62 | 62 |
t.restart(); |
63 | 63 |
readDimacsSp(is, g, len, s, desc); |
64 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
65 | 65 |
t.restart(); |
66 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
67 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
68 | 68 |
t.restart(); |
69 | 69 |
dij.run(s); |
70 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
template<class Value> |
74 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
75 | 75 |
Value infty, DimacsDescriptor &desc) |
76 | 76 |
{ |
77 | 77 |
bool report = !ap.given("q"); |
78 | 78 |
Digraph g; |
79 | 79 |
Node s,t; |
80 | 80 |
Digraph::ArcMap<Value> cap(g); |
81 | 81 |
Timer ti; |
82 | 82 |
ti.restart(); |
83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 85 |
ti.restart(); |
86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 88 |
ti.restart(); |
89 | 89 |
pre.run(); |
90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
template<class Value> |
95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
96 | 96 |
Value infty, DimacsDescriptor &desc) |
97 | 97 |
{ |
98 | 98 |
bool report = !ap.given("q"); |
99 | 99 |
Digraph g; |
100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
101 | 101 |
Digraph::NodeMap<Value> sup(g); |
102 | 102 |
Timer ti; |
103 | 103 |
|
104 | 104 |
ti.restart(); |
105 | 105 |
readDimacsMin(is, g, lower, cap, cost, sup, infty, desc); |
106 | 106 |
ti.stop(); |
107 | 107 |
Value sum_sup = 0; |
108 | 108 |
for (Digraph::NodeIt n(g); n != INVALID; ++n) { |
109 | 109 |
sum_sup += sup[n]; |
110 | 110 |
} |
111 | 111 |
if (report) { |
112 | 112 |
std::cerr << "Sum of supply values: " << sum_sup << "\n"; |
113 | 113 |
if (sum_sup <= 0) |
114 | 114 |
std::cerr << "GEQ supply contraints are used for NetworkSimplex\n\n"; |
115 | 115 |
else |
116 | 116 |
std::cerr << "LEQ supply contraints are used for NetworkSimplex\n\n"; |
117 | 117 |
} |
118 | 118 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
119 | 119 |
|
120 | 120 |
ti.restart(); |
121 | 121 |
NetworkSimplex<Digraph, Value> ns(g); |
122 | 122 |
ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup); |
123 | 123 |
if (sum_sup > 0) ns.supplyType(ns.LEQ); |
124 | 124 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
125 | 125 |
ti.restart(); |
126 | 126 |
bool res = ns.run(); |
127 | 127 |
if (report) { |
128 | 128 |
std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; |
129 | 129 |
std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; |
130 | 130 |
if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; |
131 | 131 |
} |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
135 | 135 |
DimacsDescriptor &desc) |
136 | 136 |
{ |
137 | 137 |
bool report = !ap.given("q"); |
138 | 138 |
Graph g; |
139 | 139 |
Timer ti; |
140 | 140 |
ti.restart(); |
141 | 141 |
readDimacsMat(is, g, desc); |
142 | 142 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
143 | 143 |
ti.restart(); |
144 | 144 |
MaxMatching<Graph> mat(g); |
145 | 145 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
146 | 146 |
ti.restart(); |
147 | 147 |
mat.run(); |
148 | 148 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
149 | 149 |
if(report) std::cerr << "\nCardinality of max matching: " |
150 |
<< mat.matchingSize() << '\n'; |
|
150 |
<< mat.matchingSize() << '\n'; |
|
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
|
154 | 154 |
template<class Value> |
155 | 155 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
156 | 156 |
DimacsDescriptor &desc) |
157 | 157 |
{ |
158 | 158 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
159 | 159 |
Value infty; |
160 | 160 |
iss >> infty; |
161 | 161 |
if(iss.fail()) |
162 | 162 |
{ |
163 | 163 |
std::cerr << "Cannot interpret '" |
164 | 164 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
165 | 165 |
<< std::endl; |
166 | 166 |
exit(1); |
167 | 167 |
} |
168 |
|
|
168 |
|
|
169 | 169 |
switch(desc.type) |
170 | 170 |
{ |
171 | 171 |
case DimacsDescriptor::MIN: |
172 | 172 |
solve_min<Value>(ap,is,os,infty,desc); |
173 | 173 |
break; |
174 | 174 |
case DimacsDescriptor::MAX: |
175 | 175 |
solve_max<Value>(ap,is,os,infty,desc); |
176 | 176 |
break; |
177 | 177 |
case DimacsDescriptor::SP: |
178 | 178 |
solve_sp<Value>(ap,is,os,desc); |
179 | 179 |
break; |
180 | 180 |
case DimacsDescriptor::MAT: |
181 | 181 |
solve_mat(ap,is,os,desc); |
182 | 182 |
break; |
183 | 183 |
default: |
184 | 184 |
break; |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
int main(int argc, const char *argv[]) { |
189 | 189 |
typedef SmartDigraph Digraph; |
190 | 190 |
|
191 | 191 |
typedef Digraph::Arc Arc; |
192 | 192 |
|
193 | 193 |
std::string inputName; |
194 | 194 |
std::string outputName; |
195 | 195 |
|
196 | 196 |
ArgParser ap(argc, argv); |
197 | 197 |
ap.other("[INFILE [OUTFILE]]", |
198 | 198 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
199 | 199 |
" input/output will be used instead.") |
200 | 200 |
.boolOption("q", "Do not print any report") |
... | ... |
@@ -208,70 +208,70 @@ |
208 | 208 |
.optionGroup("datatype","double") |
209 | 209 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
210 | 210 |
.optionGroup("datatype","ldouble") |
211 | 211 |
.onlyOneGroup("datatype") |
212 | 212 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
213 | 213 |
.run(); |
214 | 214 |
|
215 | 215 |
std::ifstream input; |
216 | 216 |
std::ofstream output; |
217 | 217 |
|
218 | 218 |
switch(ap.files().size()) |
219 | 219 |
{ |
220 | 220 |
case 2: |
221 | 221 |
output.open(ap.files()[1].c_str()); |
222 | 222 |
if (!output) { |
223 | 223 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
224 | 224 |
} |
225 | 225 |
case 1: |
226 | 226 |
input.open(ap.files()[0].c_str()); |
227 | 227 |
if (!input) { |
228 | 228 |
throw IoError("File cannot be found", ap.files()[0]); |
229 | 229 |
} |
230 | 230 |
case 0: |
231 | 231 |
break; |
232 | 232 |
default: |
233 | 233 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
234 | 234 |
return 1; |
235 | 235 |
} |
236 | 236 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
237 | 237 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
238 | 238 |
|
239 | 239 |
DimacsDescriptor desc = dimacsType(is); |
240 |
|
|
240 |
|
|
241 | 241 |
if(!ap.given("q")) |
242 | 242 |
{ |
243 | 243 |
std::cout << "Problem type: "; |
244 | 244 |
switch(desc.type) |
245 | 245 |
{ |
246 | 246 |
case DimacsDescriptor::MIN: |
247 | 247 |
std::cout << "min"; |
248 | 248 |
break; |
249 | 249 |
case DimacsDescriptor::MAX: |
250 | 250 |
std::cout << "max"; |
251 | 251 |
break; |
252 | 252 |
case DimacsDescriptor::SP: |
253 | 253 |
std::cout << "sp"; |
254 | 254 |
case DimacsDescriptor::MAT: |
255 | 255 |
std::cout << "mat"; |
256 | 256 |
break; |
257 | 257 |
default: |
258 | 258 |
exit(1); |
259 | 259 |
break; |
260 | 260 |
} |
261 | 261 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
262 | 262 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
263 | 263 |
std::cout << "\n\n"; |
264 | 264 |
} |
265 |
|
|
265 |
|
|
266 | 266 |
if(ap.given("double")) |
267 | 267 |
solve<double>(ap,is,os,desc); |
268 | 268 |
else if(ap.given("ldouble")) |
269 | 269 |
solve<long double>(ap,is,os,desc); |
270 | 270 |
#ifdef LEMON_HAVE_LONG_LONG |
271 | 271 |
else if(ap.given("long")) |
272 | 272 |
solve<long long>(ap,is,os,desc); |
273 | 273 |
#endif |
274 | 274 |
else solve<int>(ap,is,os,desc); |
275 | 275 |
|
276 | 276 |
return 0; |
277 | 277 |
} |
0 comments (0 inline)