0
6
0
| ... | ... |
@@ -37,405 +37,426 @@ |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| 54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
| 55 | 55 |
in conjunction with other graph representations. |
| 56 | 56 |
|
| 57 | 57 |
You are free to use the graph structure that fit your requirements |
| 58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
| 59 | 59 |
with any graph structure. |
| 60 | 60 |
|
| 61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
| 62 | 62 |
*/ |
| 63 | 63 |
|
| 64 | 64 |
/** |
| 65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
| 66 | 66 |
@ingroup graphs |
| 67 | 67 |
\brief Adaptor classes for digraphs and graphs |
| 68 | 68 |
|
| 69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
| 70 | 70 |
|
| 71 | 71 |
The main parts of LEMON are the different graph structures, generic |
| 72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
| 73 | 73 |
adaptors. While the previous notions are more or less clear, the |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup maps Maps |
| 142 | 142 |
@ingroup datas |
| 143 | 143 |
\brief Map structures implemented in LEMON. |
| 144 | 144 |
|
| 145 | 145 |
This group contains the map structures implemented in LEMON. |
| 146 | 146 |
|
| 147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 148 | 148 |
new maps from existing ones. |
| 149 | 149 |
|
| 150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 151 | 151 |
*/ |
| 152 | 152 |
|
| 153 | 153 |
/** |
| 154 | 154 |
@defgroup graph_maps Graph Maps |
| 155 | 155 |
@ingroup maps |
| 156 | 156 |
\brief Special graph-related maps. |
| 157 | 157 |
|
| 158 | 158 |
This group contains maps that are specifically designed to assign |
| 159 | 159 |
values to the nodes and arcs/edges of graphs. |
| 160 | 160 |
|
| 161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 163 | 163 |
*/ |
| 164 | 164 |
|
| 165 | 165 |
/** |
| 166 | 166 |
\defgroup map_adaptors Map Adaptors |
| 167 | 167 |
\ingroup maps |
| 168 | 168 |
\brief Tools to create new maps from existing ones |
| 169 | 169 |
|
| 170 | 170 |
This group contains map adaptors that are used to create "implicit" |
| 171 | 171 |
maps from other maps. |
| 172 | 172 |
|
| 173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 174 | 174 |
They can make arithmetic and logical operations between one or two maps |
| 175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 177 | 177 |
|
| 178 | 178 |
The typical usage of this classes is passing implicit maps to |
| 179 | 179 |
algorithms. If a function type algorithm is called then the function |
| 180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
| 181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
| 182 | 182 |
\code |
| 183 | 183 |
Color nodeColor(int deg) {
|
| 184 | 184 |
if (deg >= 2) {
|
| 185 | 185 |
return Color(0.5, 0.0, 0.5); |
| 186 | 186 |
} else if (deg == 1) {
|
| 187 | 187 |
return Color(1.0, 0.5, 1.0); |
| 188 | 188 |
} else {
|
| 189 | 189 |
return Color(0.0, 0.0, 0.0); |
| 190 | 190 |
} |
| 191 | 191 |
} |
| 192 | 192 |
|
| 193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
| 194 | 194 |
|
| 195 | 195 |
graphToEps(graph, "graph.eps") |
| 196 | 196 |
.coords(coords).scaleToA4().undirected() |
| 197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 198 | 198 |
.run(); |
| 199 | 199 |
\endcode |
| 200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 202 | 202 |
and the previously created map. The composed map is a proper function to |
| 203 | 203 |
get the color of each node. |
| 204 | 204 |
|
| 205 | 205 |
The usage with class type algorithms is little bit harder. In this |
| 206 | 206 |
case the function type map adaptors can not be used, because the |
| 207 | 207 |
function map adaptors give back temporary objects. |
| 208 | 208 |
\code |
| 209 | 209 |
Digraph graph; |
| 210 | 210 |
|
| 211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 212 | 212 |
DoubleArcMap length(graph); |
| 213 | 213 |
DoubleArcMap speed(graph); |
| 214 | 214 |
|
| 215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 216 | 216 |
TimeMap time(length, speed); |
| 217 | 217 |
|
| 218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 219 | 219 |
dijkstra.run(source, target); |
| 220 | 220 |
\endcode |
| 221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
| 223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
| 224 | 224 |
class. We use the implicit minimum time map as the length map of the |
| 225 | 225 |
\c Dijkstra algorithm. |
| 226 | 226 |
*/ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 |
@defgroup matrices Matrices |
|
| 230 |
@ingroup datas |
|
| 231 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 232 |
|
|
| 233 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 234 |
*/ |
|
| 235 |
|
|
| 236 |
/** |
|
| 237 | 229 |
@defgroup paths Path Structures |
| 238 | 230 |
@ingroup datas |
| 239 | 231 |
\brief %Path structures implemented in LEMON. |
| 240 | 232 |
|
| 241 | 233 |
This group contains the path structures implemented in LEMON. |
| 242 | 234 |
|
| 243 | 235 |
LEMON provides flexible data structures to work with paths. |
| 244 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 245 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 247 | 239 |
any kind of path structure. |
| 248 | 240 |
|
| 249 |
\sa |
|
| 241 |
\sa \ref concepts::Path "Path concept" |
|
| 242 |
*/ |
|
| 243 |
|
|
| 244 |
/** |
|
| 245 |
@defgroup heaps Heap Structures |
|
| 246 |
@ingroup datas |
|
| 247 |
\brief %Heap structures implemented in LEMON. |
|
| 248 |
|
|
| 249 |
This group contains the heap structures implemented in LEMON. |
|
| 250 |
|
|
| 251 |
LEMON provides several heap classes. They are efficient implementations |
|
| 252 |
of the abstract data type \e priority \e queue. They store items with |
|
| 253 |
specified values called \e priorities in such a way that finding and |
|
| 254 |
removing the item with minimum priority are efficient. |
|
| 255 |
The basic operations are adding and erasing items, changing the priority |
|
| 256 |
of an item, etc. |
|
| 257 |
|
|
| 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
| 259 |
The heap implementations have the same interface, thus any of them can be |
|
| 260 |
used easily in such algorithms. |
|
| 261 |
|
|
| 262 |
\sa \ref concepts::Heap "Heap concept" |
|
| 263 |
*/ |
|
| 264 |
|
|
| 265 |
/** |
|
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 250 | 271 |
*/ |
| 251 | 272 |
|
| 252 | 273 |
/** |
| 253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
| 254 | 275 |
@ingroup datas |
| 255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
| 256 | 277 |
|
| 257 | 278 |
This group contains some data structures implemented in LEMON in |
| 258 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 259 | 280 |
*/ |
| 260 | 281 |
|
| 261 | 282 |
/** |
| 262 | 283 |
@defgroup algs Algorithms |
| 263 | 284 |
\brief This group contains the several algorithms |
| 264 | 285 |
implemented in LEMON. |
| 265 | 286 |
|
| 266 | 287 |
This group contains the several algorithms |
| 267 | 288 |
implemented in LEMON. |
| 268 | 289 |
*/ |
| 269 | 290 |
|
| 270 | 291 |
/** |
| 271 | 292 |
@defgroup search Graph Search |
| 272 | 293 |
@ingroup algs |
| 273 | 294 |
\brief Common graph search algorithms. |
| 274 | 295 |
|
| 275 | 296 |
This group contains the common graph search algorithms, namely |
| 276 | 297 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 277 | 298 |
*/ |
| 278 | 299 |
|
| 279 | 300 |
/** |
| 280 | 301 |
@defgroup shortest_path Shortest Path Algorithms |
| 281 | 302 |
@ingroup algs |
| 282 | 303 |
\brief Algorithms for finding shortest paths. |
| 283 | 304 |
|
| 284 | 305 |
This group contains the algorithms for finding shortest paths in digraphs. |
| 285 | 306 |
|
| 286 | 307 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 287 | 308 |
when all arc lengths are non-negative. |
| 288 | 309 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 289 | 310 |
from a source node when arc lenghts can be either positive or negative, |
| 290 | 311 |
but the digraph should not contain directed cycles with negative total |
| 291 | 312 |
length. |
| 292 | 313 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 293 | 314 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 294 | 315 |
lenghts can be either positive or negative, but the digraph should |
| 295 | 316 |
not contain directed cycles with negative total length. |
| 296 | 317 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 297 | 318 |
arc-disjoint paths between two nodes having minimum total length. |
| 298 | 319 |
*/ |
| 299 | 320 |
|
| 300 | 321 |
/** |
| 301 | 322 |
@defgroup max_flow Maximum Flow Algorithms |
| 302 | 323 |
@ingroup algs |
| 303 | 324 |
\brief Algorithms for finding maximum flows. |
| 304 | 325 |
|
| 305 | 326 |
This group contains the algorithms for finding maximum flows and |
| 306 | 327 |
feasible circulations. |
| 307 | 328 |
|
| 308 | 329 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 309 | 330 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 310 | 331 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 311 | 332 |
\f$s, t \in V\f$ source and target nodes. |
| 312 | 333 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 313 | 334 |
following optimization problem. |
| 314 | 335 |
|
| 315 | 336 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 316 | 337 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 317 | 338 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 318 | 339 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 319 | 340 |
|
| 320 | 341 |
LEMON contains several algorithms for solving maximum flow problems: |
| 321 | 342 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 322 | 343 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 323 | 344 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 324 | 345 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 325 | 346 |
|
| 326 | 347 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 327 | 348 |
fastest method for computing a maximum flow. All implementations |
| 328 | 349 |
also provide functions to query the minimum cut, which is the dual |
| 329 | 350 |
problem of maximum flow. |
| 330 | 351 |
|
| 331 | 352 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 332 | 353 |
for finding feasible circulations, which is a somewhat different problem, |
| 333 | 354 |
but it is strongly related to maximum flow. |
| 334 | 355 |
For more information, see \ref Circulation. |
| 335 | 356 |
*/ |
| 336 | 357 |
|
| 337 | 358 |
/** |
| 338 | 359 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 339 | 360 |
@ingroup algs |
| 340 | 361 |
|
| 341 | 362 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 342 | 363 |
|
| 343 | 364 |
This group contains the algorithms for finding minimum cost flows and |
| 344 | 365 |
circulations. For more information about this problem and its dual |
| 345 | 366 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
| 346 | 367 |
|
| 347 | 368 |
LEMON contains several algorithms for this problem. |
| 348 | 369 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 349 | 370 |
pivot strategies. |
| 350 | 371 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 351 | 372 |
cost scaling. |
| 352 | 373 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 353 | 374 |
capacity scaling. |
| 354 | 375 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
| 355 | 376 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
| 356 | 377 |
|
| 357 | 378 |
In general NetworkSimplex is the most efficient implementation, |
| 358 | 379 |
but in special cases other algorithms could be faster. |
| 359 | 380 |
For example, if the total supply and/or capacities are rather small, |
| 360 | 381 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 361 | 382 |
*/ |
| 362 | 383 |
|
| 363 | 384 |
/** |
| 364 | 385 |
@defgroup min_cut Minimum Cut Algorithms |
| 365 | 386 |
@ingroup algs |
| 366 | 387 |
|
| 367 | 388 |
\brief Algorithms for finding minimum cut in graphs. |
| 368 | 389 |
|
| 369 | 390 |
This group contains the algorithms for finding minimum cut in graphs. |
| 370 | 391 |
|
| 371 | 392 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 372 | 393 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 373 | 394 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 374 | 395 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 375 | 396 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 376 | 397 |
|
| 377 | 398 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 378 | 399 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
|
| 379 | 400 |
|
| 380 | 401 |
LEMON contains several algorithms related to minimum cut problems: |
| 381 | 402 |
|
| 382 | 403 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 383 | 404 |
in directed graphs. |
| 384 | 405 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 385 | 406 |
calculating minimum cut in undirected graphs. |
| 386 | 407 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 387 | 408 |
all-pairs minimum cut in undirected graphs. |
| 388 | 409 |
|
| 389 | 410 |
If you want to find minimum cut just between two distinict nodes, |
| 390 | 411 |
see the \ref max_flow "maximum flow problem". |
| 391 | 412 |
*/ |
| 392 | 413 |
|
| 393 | 414 |
/** |
| 394 | 415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 395 | 416 |
@ingroup algs |
| 396 | 417 |
\brief Algorithms for discovering the graph properties |
| 397 | 418 |
|
| 398 | 419 |
This group contains the algorithms for discovering the graph properties |
| 399 | 420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 400 | 421 |
|
| 401 | 422 |
\image html edge_biconnected_components.png |
| 402 | 423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 403 | 424 |
*/ |
| 404 | 425 |
|
| 405 | 426 |
/** |
| 406 | 427 |
@defgroup planar Planarity Embedding and Drawing |
| 407 | 428 |
@ingroup algs |
| 408 | 429 |
\brief Algorithms for planarity checking, embedding and drawing |
| 409 | 430 |
|
| 410 | 431 |
This group contains the algorithms for planarity checking, |
| 411 | 432 |
embedding and drawing. |
| 412 | 433 |
|
| 413 | 434 |
\image html planar.png |
| 414 | 435 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 415 | 436 |
*/ |
| 416 | 437 |
|
| 417 | 438 |
/** |
| 418 | 439 |
@defgroup matching Matching Algorithms |
| 419 | 440 |
@ingroup algs |
| 420 | 441 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 421 | 442 |
|
| 422 | 443 |
This group contains the algorithms for calculating |
| 423 | 444 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 424 | 445 |
finding a subset of the edges for which each node has at most one incident |
| 425 | 446 |
edge. |
| 426 | 447 |
|
| 427 | 448 |
There are several different algorithms for calculate matchings in |
| 428 | 449 |
graphs. The matching problems in bipartite graphs are generally |
| 429 | 450 |
easier than in general graphs. The goal of the matching optimization |
| 430 | 451 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 431 | 452 |
matching. The search can be constrained to find perfect or |
| 432 | 453 |
maximum cardinality matching. |
| 433 | 454 |
|
| 434 | 455 |
The matching algorithms implemented in LEMON: |
| 435 | 456 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 436 | 457 |
for calculating maximum cardinality matching in bipartite graphs. |
| 437 | 458 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 438 | 459 |
for calculating maximum cardinality matching in bipartite graphs. |
| 439 | 460 |
- \ref MaxWeightedBipartiteMatching |
| 440 | 461 |
Successive shortest path algorithm for calculating maximum weighted |
| 441 | 462 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Binary heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
/// \ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 | 34 |
/// \brief Binary heap data structure. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class implements the \e binary \e heap data structure. |
| 37 | 37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
| 38 | 38 |
/// |
| 39 | 39 |
/// \tparam PR Type of the priorities of the items. |
| 40 | 40 |
/// \tparam IM A read-writable item map with \c int values, used |
| 41 | 41 |
/// internally to handle the cross references. |
| 42 | 42 |
/// \tparam CMP A functor class for comparing the priorities. |
| 43 | 43 |
/// The default is \c std::less<PR>. |
| 44 | 44 |
#ifdef DOXYGEN |
| 45 | 45 |
template <typename PR, typename IM, typename CMP> |
| 46 | 46 |
#else |
| 47 | 47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 48 | 48 |
#endif |
| 49 | 49 |
class BinHeap {
|
| 50 | 50 |
public: |
| 51 | 51 |
|
| 52 | 52 |
/// Type of the item-int map. |
| 53 | 53 |
typedef IM ItemIntMap; |
| 54 | 54 |
/// Type of the priorities. |
| 55 | 55 |
typedef PR Prio; |
| 56 | 56 |
/// Type of the items stored in the heap. |
| 57 | 57 |
typedef typename ItemIntMap::Key Item; |
| 58 | 58 |
/// Type of the item-priority pairs. |
| 59 | 59 |
typedef std::pair<Item,Prio> Pair; |
| 60 | 60 |
/// Functor type for comparing the priorities. |
| 61 | 61 |
typedef CMP Compare; |
| 62 | 62 |
|
| 63 | 63 |
/// \brief Type to represent the states of the items. |
| 64 | 64 |
/// |
| 65 | 65 |
/// Each item has a state associated to it. It can be "in heap", |
| 66 | 66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 67 | 67 |
/// heap's point of view, but may be useful to the user. |
| 68 | 68 |
/// |
| 69 | 69 |
/// The item-int map must be initialized in such way that it assigns |
| 70 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 71 | 71 |
enum State {
|
| 72 | 72 |
IN_HEAP = 0, ///< = 0. |
| 73 | 73 |
PRE_HEAP = -1, ///< = -1. |
| 74 | 74 |
POST_HEAP = -2 ///< = -2. |
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
private: |
| 78 | 78 |
std::vector<Pair> _data; |
| 79 | 79 |
Compare _comp; |
| 80 | 80 |
ItemIntMap &_iim; |
| 81 | 81 |
|
| 82 | 82 |
public: |
| 83 | 83 |
|
| 84 | 84 |
/// \brief Constructor. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Constructor. |
| 87 | 87 |
/// \param map A map that assigns \c int values to the items. |
| 88 | 88 |
/// It is used internally to handle the cross references. |
| 89 | 89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 90 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
| 91 | 91 |
|
| 92 | 92 |
/// \brief Constructor. |
| 93 | 93 |
/// |
| 94 | 94 |
/// Constructor. |
| 95 | 95 |
/// \param map A map that assigns \c int values to the items. |
| 96 | 96 |
/// It is used internally to handle the cross references. |
| 97 | 97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 98 | 98 |
/// \param comp The function object used for comparing the priorities. |
| 99 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
| 100 | 100 |
: _iim(map), _comp(comp) {}
|
| 101 | 101 |
|
| 102 | 102 |
|
| 103 | 103 |
/// \brief The number of items stored in the heap. |
| 104 | 104 |
/// |
| 105 | 105 |
/// This function returns the number of items stored in the heap. |
| 106 | 106 |
int size() const { return _data.size(); }
|
| 107 | 107 |
|
| 108 | 108 |
/// \brief Check if the heap is empty. |
| 109 | 109 |
/// |
| 110 | 110 |
/// This function returns \c true if the heap is empty. |
| 111 | 111 |
bool empty() const { return _data.empty(); }
|
| 112 | 112 |
|
| 113 | 113 |
/// \brief Make the heap empty. |
| 114 | 114 |
/// |
| 115 | 115 |
/// This functon makes the heap empty. |
| 116 | 116 |
/// It does not change the cross reference map. If you want to reuse |
| 117 | 117 |
/// a heap that is not surely empty, you should first clear it and |
| 118 | 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 119 | 119 |
/// for each item. |
| 120 | 120 |
void clear() {
|
| 121 | 121 |
_data.clear(); |
| 122 | 122 |
} |
| 123 | 123 |
|
| 124 | 124 |
private: |
| 125 | 125 |
static int parent(int i) { return (i-1)/2; }
|
| 126 | 126 |
|
| 127 | 127 |
static int second_child(int i) { return 2*i+2; }
|
| 128 | 128 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 129 | 129 |
return _comp(p1.second, p2.second); |
| 130 | 130 |
} |
| 131 | 131 |
|
| 132 | 132 |
int bubble_up(int hole, Pair p) {
|
| 133 | 133 |
int par = parent(hole); |
| 134 | 134 |
while( hole>0 && less(p,_data[par]) ) {
|
| 135 | 135 |
move(_data[par],hole); |
| 136 | 136 |
hole = par; |
| 137 | 137 |
par = parent(hole); |
| 138 | 138 |
} |
| 139 | 139 |
move(p, hole); |
| 140 | 140 |
return hole; |
| 141 | 141 |
} |
| 142 | 142 |
|
| 143 | 143 |
int bubble_down(int hole, Pair p, int length) {
|
| 144 | 144 |
int child = second_child(hole); |
| 145 | 145 |
while(child < length) {
|
| 146 | 146 |
if( less(_data[child-1], _data[child]) ) {
|
| 147 | 147 |
--child; |
| 148 | 148 |
} |
| 149 | 149 |
if( !less(_data[child], p) ) |
| 150 | 150 |
goto ok; |
| 151 | 151 |
move(_data[child], hole); |
| 152 | 152 |
hole = child; |
| 153 | 153 |
child = second_child(hole); |
| 154 | 154 |
} |
| 155 | 155 |
child--; |
| 156 | 156 |
if( child<length && less(_data[child], p) ) {
|
| 157 | 157 |
move(_data[child], hole); |
| 158 | 158 |
hole=child; |
| 159 | 159 |
} |
| 160 | 160 |
ok: |
| 161 | 161 |
move(p, hole); |
| 162 | 162 |
return hole; |
| 163 | 163 |
} |
| 164 | 164 |
|
| 165 | 165 |
void move(const Pair &p, int i) {
|
| 166 | 166 |
_data[i] = p; |
| 167 | 167 |
_iim.set(p.first, i); |
| 168 | 168 |
} |
| 169 | 169 |
|
| 170 | 170 |
public: |
| 171 | 171 |
|
| 172 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
| 173 | 173 |
/// |
| 174 | 174 |
/// This function inserts \c p.first to the heap with priority |
| 175 | 175 |
/// \c p.second. |
| 176 | 176 |
/// \param p The pair to insert. |
| 177 | 177 |
/// \pre \c p.first must not be stored in the heap. |
| 178 | 178 |
void push(const Pair &p) {
|
| 179 | 179 |
int n = _data.size(); |
| 180 | 180 |
_data.resize(n+1); |
| 181 | 181 |
bubble_up(n, p); |
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 | 184 |
/// \brief Insert an item into the heap with the given priority. |
| 185 | 185 |
/// |
| 186 | 186 |
/// This function inserts the given item into the heap with the |
| 187 | 187 |
/// given priority. |
| 188 | 188 |
/// \param i The item to insert. |
| 189 | 189 |
/// \param p The priority of the item. |
| 190 | 190 |
/// \pre \e i must not be stored in the heap. |
| 191 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 192 | 192 |
|
| 193 | 193 |
/// \brief Return the item having minimum priority. |
| 194 | 194 |
/// |
| 195 | 195 |
/// This function returns the item having minimum priority. |
| 196 | 196 |
/// \pre The heap must be non-empty. |
| 197 | 197 |
Item top() const {
|
| 198 | 198 |
return _data[0].first; |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
/// \brief The minimum priority. |
| 202 | 202 |
/// |
| 203 | 203 |
/// This function returns the minimum priority. |
| 204 | 204 |
/// \pre The heap must be non-empty. |
| 205 | 205 |
Prio prio() const {
|
| 206 | 206 |
return _data[0].second; |
| 207 | 207 |
} |
| 208 | 208 |
|
| 209 | 209 |
/// \brief Remove the item having minimum priority. |
| 210 | 210 |
/// |
| 211 | 211 |
/// This function removes the item having minimum priority. |
| 212 | 212 |
/// \pre The heap must be non-empty. |
| 213 | 213 |
void pop() {
|
| 214 | 214 |
int n = _data.size()-1; |
| 215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
| 216 | 216 |
if (n > 0) {
|
| 217 | 217 |
bubble_down(0, _data[n], n); |
| 218 | 218 |
} |
| 219 | 219 |
_data.pop_back(); |
| 220 | 220 |
} |
| 221 | 221 |
|
| 222 | 222 |
/// \brief Remove the given item from the heap. |
| 223 | 223 |
/// |
| 224 | 224 |
/// This function removes the given item from the heap if it is |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
| 20 | 20 |
#define LEMON_BUCKET_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Bucket heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
namespace _bucket_heap_bits {
|
| 33 | 33 |
|
| 34 | 34 |
template <bool MIN> |
| 35 | 35 |
struct DirectionTraits {
|
| 36 | 36 |
static bool less(int left, int right) {
|
| 37 | 37 |
return left < right; |
| 38 | 38 |
} |
| 39 | 39 |
static void increase(int& value) {
|
| 40 | 40 |
++value; |
| 41 | 41 |
} |
| 42 | 42 |
}; |
| 43 | 43 |
|
| 44 | 44 |
template <> |
| 45 | 45 |
struct DirectionTraits<false> {
|
| 46 | 46 |
static bool less(int left, int right) {
|
| 47 | 47 |
return left > right; |
| 48 | 48 |
} |
| 49 | 49 |
static void increase(int& value) {
|
| 50 | 50 |
--value; |
| 51 | 51 |
} |
| 52 | 52 |
}; |
| 53 | 53 |
|
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 |
/// \ingroup |
|
| 56 |
/// \ingroup heaps |
|
| 57 | 57 |
/// |
| 58 | 58 |
/// \brief Bucket heap data structure. |
| 59 | 59 |
/// |
| 60 | 60 |
/// This class implements the \e bucket \e heap data structure. |
| 61 | 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
| 62 | 62 |
/// but it has some limitations. |
| 63 | 63 |
/// |
| 64 | 64 |
/// The bucket heap is a very simple structure. It can store only |
| 65 | 65 |
/// \c int priorities and it maintains a list of items for each priority |
| 66 | 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
| 67 | 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
| 68 | 68 |
/// |
| 69 | 69 |
/// \tparam IM A read-writable item map with \c int values, used |
| 70 | 70 |
/// internally to handle the cross references. |
| 71 | 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
| 72 | 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
| 73 | 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
| 74 | 74 |
/// functions deal with the item having maximum priority instead of the |
| 75 | 75 |
/// minimum. |
| 76 | 76 |
/// |
| 77 | 77 |
/// \sa SimpleBucketHeap |
| 78 | 78 |
template <typename IM, bool MIN = true> |
| 79 | 79 |
class BucketHeap {
|
| 80 | 80 |
|
| 81 | 81 |
public: |
| 82 | 82 |
|
| 83 | 83 |
/// Type of the item-int map. |
| 84 | 84 |
typedef IM ItemIntMap; |
| 85 | 85 |
/// Type of the priorities. |
| 86 | 86 |
typedef int Prio; |
| 87 | 87 |
/// Type of the items stored in the heap. |
| 88 | 88 |
typedef typename ItemIntMap::Key Item; |
| 89 | 89 |
/// Type of the item-priority pairs. |
| 90 | 90 |
typedef std::pair<Item,Prio> Pair; |
| 91 | 91 |
|
| 92 | 92 |
private: |
| 93 | 93 |
|
| 94 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 95 | 95 |
|
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
/// \brief Type to represent the states of the items. |
| 99 | 99 |
/// |
| 100 | 100 |
/// Each item has a state associated to it. It can be "in heap", |
| 101 | 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 102 | 102 |
/// heap's point of view, but may be useful to the user. |
| 103 | 103 |
/// |
| 104 | 104 |
/// The item-int map must be initialized in such way that it assigns |
| 105 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 106 | 106 |
enum State {
|
| 107 | 107 |
IN_HEAP = 0, ///< = 0. |
| 108 | 108 |
PRE_HEAP = -1, ///< = -1. |
| 109 | 109 |
POST_HEAP = -2 ///< = -2. |
| 110 | 110 |
}; |
| 111 | 111 |
|
| 112 | 112 |
public: |
| 113 | 113 |
|
| 114 | 114 |
/// \brief Constructor. |
| 115 | 115 |
/// |
| 116 | 116 |
/// Constructor. |
| 117 | 117 |
/// \param map A map that assigns \c int values to the items. |
| 118 | 118 |
/// It is used internally to handle the cross references. |
| 119 | 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 120 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
| 121 | 121 |
|
| 122 | 122 |
/// \brief The number of items stored in the heap. |
| 123 | 123 |
/// |
| 124 | 124 |
/// This function returns the number of items stored in the heap. |
| 125 | 125 |
int size() const { return _data.size(); }
|
| 126 | 126 |
|
| 127 | 127 |
/// \brief Check if the heap is empty. |
| 128 | 128 |
/// |
| 129 | 129 |
/// This function returns \c true if the heap is empty. |
| 130 | 130 |
bool empty() const { return _data.empty(); }
|
| 131 | 131 |
|
| 132 | 132 |
/// \brief Make the heap empty. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This functon makes the heap empty. |
| 135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
| 136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
| 137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 138 | 138 |
/// for each item. |
| 139 | 139 |
void clear() {
|
| 140 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
| 141 | 141 |
} |
| 142 | 142 |
|
| 143 | 143 |
private: |
| 144 | 144 |
|
| 145 | 145 |
void relocate_last(int idx) {
|
| 146 | 146 |
if (idx + 1 < int(_data.size())) {
|
| 147 | 147 |
_data[idx] = _data.back(); |
| 148 | 148 |
if (_data[idx].prev != -1) {
|
| 149 | 149 |
_data[_data[idx].prev].next = idx; |
| 150 | 150 |
} else {
|
| 151 | 151 |
_first[_data[idx].value] = idx; |
| 152 | 152 |
} |
| 153 | 153 |
if (_data[idx].next != -1) {
|
| 154 | 154 |
_data[_data[idx].next].prev = idx; |
| 155 | 155 |
} |
| 156 | 156 |
_iim[_data[idx].item] = idx; |
| 157 | 157 |
} |
| 158 | 158 |
_data.pop_back(); |
| 159 | 159 |
} |
| 160 | 160 |
|
| 161 | 161 |
void unlace(int idx) {
|
| 162 | 162 |
if (_data[idx].prev != -1) {
|
| 163 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
| 164 | 164 |
} else {
|
| 165 | 165 |
_first[_data[idx].value] = _data[idx].next; |
| 166 | 166 |
} |
| 167 | 167 |
if (_data[idx].next != -1) {
|
| 168 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
| 169 | 169 |
} |
| 170 | 170 |
} |
| 171 | 171 |
|
| 172 | 172 |
void lace(int idx) {
|
| 173 | 173 |
if (int(_first.size()) <= _data[idx].value) {
|
| 174 | 174 |
_first.resize(_data[idx].value + 1, -1); |
| 175 | 175 |
} |
| 176 | 176 |
_data[idx].next = _first[_data[idx].value]; |
| 177 | 177 |
if (_data[idx].next != -1) {
|
| 178 | 178 |
_data[_data[idx].next].prev = idx; |
| 179 | 179 |
} |
| 180 | 180 |
_first[_data[idx].value] = idx; |
| 181 | 181 |
_data[idx].prev = -1; |
| 182 | 182 |
} |
| 183 | 183 |
|
| 184 | 184 |
public: |
| 185 | 185 |
|
| 186 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
| 187 | 187 |
/// |
| 188 | 188 |
/// This function inserts \c p.first to the heap with priority |
| 189 | 189 |
/// \c p.second. |
| 190 | 190 |
/// \param p The pair to insert. |
| 191 | 191 |
/// \pre \c p.first must not be stored in the heap. |
| 192 | 192 |
void push(const Pair& p) {
|
| 193 | 193 |
push(p.first, p.second); |
| 194 | 194 |
} |
| 195 | 195 |
|
| 196 | 196 |
/// \brief Insert an item into the heap with the given priority. |
| 197 | 197 |
/// |
| 198 | 198 |
/// This function inserts the given item into the heap with the |
| 199 | 199 |
/// given priority. |
| 200 | 200 |
/// \param i The item to insert. |
| 201 | 201 |
/// \param p The priority of the item. |
| 202 | 202 |
/// \pre \e i must not be stored in the heap. |
| 203 | 203 |
void push(const Item &i, const Prio &p) {
|
| 204 | 204 |
int idx = _data.size(); |
| 205 | 205 |
_iim[i] = idx; |
| 206 | 206 |
_data.push_back(BucketItem(i, p)); |
| 207 | 207 |
lace(idx); |
| 208 | 208 |
if (Direction::less(p, _minimum)) {
|
| 209 | 209 |
_minimum = p; |
| 210 | 210 |
} |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
/// \brief Return the item having minimum priority. |
| 214 | 214 |
/// |
| 215 | 215 |
/// This function returns the item having minimum priority. |
| 216 | 216 |
/// \pre The heap must be non-empty. |
| 217 | 217 |
Item top() const {
|
| 218 | 218 |
while (_first[_minimum] == -1) {
|
| 219 | 219 |
Direction::increase(_minimum); |
| 220 | 220 |
} |
| 221 | 221 |
return _data[_first[_minimum]].item; |
| 222 | 222 |
} |
| 223 | 223 |
|
| 224 | 224 |
/// \brief The minimum priority. |
| 225 | 225 |
/// |
| 226 | 226 |
/// This function returns the minimum priority. |
| 227 | 227 |
/// \pre The heap must be non-empty. |
| 228 | 228 |
Prio prio() const {
|
| 229 | 229 |
while (_first[_minimum] == -1) {
|
| 230 | 230 |
Direction::increase(_minimum); |
| 231 | 231 |
} |
| 232 | 232 |
return _minimum; |
| 233 | 233 |
} |
| 234 | 234 |
|
| 235 | 235 |
/// \brief Remove the item having minimum priority. |
| 236 | 236 |
/// |
| 237 | 237 |
/// This function removes the item having minimum priority. |
| 238 | 238 |
/// \pre The heap must be non-empty. |
| 239 | 239 |
void pop() {
|
| 240 | 240 |
while (_first[_minimum] == -1) {
|
| 241 | 241 |
Direction::increase(_minimum); |
| 242 | 242 |
} |
| 243 | 243 |
int idx = _first[_minimum]; |
| 244 | 244 |
_iim[_data[idx].item] = -2; |
| 245 | 245 |
unlace(idx); |
| 246 | 246 |
relocate_last(idx); |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
/// \brief Remove the given item from the heap. |
| 250 | 250 |
/// |
| 251 | 251 |
/// This function removes the given item from the heap if it is |
| 252 | 252 |
/// already stored. |
| 253 | 253 |
/// \param i The item to delete. |
| 254 | 254 |
/// \pre \e i must be in the heap. |
| 255 | 255 |
void erase(const Item &i) {
|
| 256 | 256 |
int idx = _iim[i]; |
| 257 | 257 |
_iim[_data[idx].item] = -2; |
| 258 | 258 |
unlace(idx); |
| 259 | 259 |
relocate_last(idx); |
| 260 | 260 |
} |
| 261 | 261 |
|
| 262 | 262 |
/// \brief The priority of the given item. |
| 263 | 263 |
/// |
| 264 | 264 |
/// This function returns the priority of the given item. |
| 265 | 265 |
/// \param i The item. |
| 266 | 266 |
/// \pre \e i must be in the heap. |
| 267 | 267 |
Prio operator[](const Item &i) const {
|
| 268 | 268 |
int idx = _iim[i]; |
| 269 | 269 |
return _data[idx].value; |
| 270 | 270 |
} |
| 271 | 271 |
|
| 272 | 272 |
/// \brief Set the priority of an item or insert it, if it is |
| 273 | 273 |
/// not stored in the heap. |
| 274 | 274 |
/// |
| 275 | 275 |
/// This method sets the priority of the given item if it is |
| 276 | 276 |
/// already stored in the heap. Otherwise it inserts the given |
| 277 | 277 |
/// item into the heap with the given priority. |
| 278 | 278 |
/// \param i The item. |
| 279 | 279 |
/// \param p The priority. |
| 280 | 280 |
void set(const Item &i, const Prio &p) {
|
| 281 | 281 |
int idx = _iim[i]; |
| 282 | 282 |
if (idx < 0) {
|
| 283 | 283 |
push(i, p); |
| 284 | 284 |
} else if (Direction::less(p, _data[idx].value)) {
|
| 285 | 285 |
decrease(i, p); |
| 286 | 286 |
} else {
|
| 287 | 287 |
increase(i, p); |
| 288 | 288 |
} |
| 289 | 289 |
} |
| 290 | 290 |
|
| 291 | 291 |
/// \brief Decrease the priority of an item to the given value. |
| 292 | 292 |
/// |
| 293 | 293 |
/// This function decreases the priority of an item to the given value. |
| 294 | 294 |
/// \param i The item. |
| 295 | 295 |
/// \param p The priority. |
| 296 | 296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
| 297 | 297 |
void decrease(const Item &i, const Prio &p) {
|
| 298 | 298 |
int idx = _iim[i]; |
| 299 | 299 |
unlace(idx); |
| 300 | 300 |
_data[idx].value = p; |
| 301 | 301 |
if (Direction::less(p, _minimum)) {
|
| 302 | 302 |
_minimum = p; |
| 303 | 303 |
} |
| 304 | 304 |
lace(idx); |
| 305 | 305 |
} |
| 306 | 306 |
|
| 307 | 307 |
/// \brief Increase the priority of an item to the given value. |
| 308 | 308 |
/// |
| 309 | 309 |
/// This function increases the priority of an item to the given value. |
| 310 | 310 |
/// \param i The item. |
| 311 | 311 |
/// \param p The priority. |
| 312 | 312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
| 313 | 313 |
void increase(const Item &i, const Prio &p) {
|
| 314 | 314 |
int idx = _iim[i]; |
| 315 | 315 |
unlace(idx); |
| 316 | 316 |
_data[idx].value = p; |
| 317 | 317 |
lace(idx); |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
/// \brief Return the state of an item. |
| 321 | 321 |
/// |
| 322 | 322 |
/// This method returns \c PRE_HEAP if the given item has never |
| 323 | 323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 324 | 324 |
/// and \c POST_HEAP otherwise. |
| 325 | 325 |
/// In the latter case it is possible that the item will get back |
| 326 | 326 |
/// to the heap again. |
| 327 | 327 |
/// \param i The item. |
| 328 | 328 |
State state(const Item &i) const {
|
| 329 | 329 |
int idx = _iim[i]; |
| 330 | 330 |
if (idx >= 0) idx = 0; |
| 331 | 331 |
return State(idx); |
| 332 | 332 |
} |
| 333 | 333 |
|
| 334 | 334 |
/// \brief Set the state of an item in the heap. |
| 335 | 335 |
/// |
| 336 | 336 |
/// This function sets the state of the given item in the heap. |
| 337 | 337 |
/// It can be used to manually clear the heap when it is important |
| 338 | 338 |
/// to achive better time complexity. |
| 339 | 339 |
/// \param i The item. |
| 340 | 340 |
/// \param st The state. It should not be \c IN_HEAP. |
| 341 | 341 |
void state(const Item& i, State st) {
|
| 342 | 342 |
switch (st) {
|
| 343 | 343 |
case POST_HEAP: |
| 344 | 344 |
case PRE_HEAP: |
| 345 | 345 |
if (state(i) == IN_HEAP) {
|
| 346 | 346 |
erase(i); |
| 347 | 347 |
} |
| 348 | 348 |
_iim[i] = st; |
| 349 | 349 |
break; |
| 350 | 350 |
case IN_HEAP: |
| 351 | 351 |
break; |
| 352 | 352 |
} |
| 353 | 353 |
} |
| 354 | 354 |
|
| 355 | 355 |
private: |
| 356 | 356 |
|
| 357 | 357 |
struct BucketItem {
|
| 358 | 358 |
BucketItem(const Item& _item, int _value) |
| 359 | 359 |
: item(_item), value(_value) {}
|
| 360 | 360 |
|
| 361 | 361 |
Item item; |
| 362 | 362 |
int value; |
| 363 | 363 |
|
| 364 | 364 |
int prev, next; |
| 365 | 365 |
}; |
| 366 | 366 |
|
| 367 | 367 |
ItemIntMap& _iim; |
| 368 | 368 |
std::vector<int> _first; |
| 369 | 369 |
std::vector<BucketItem> _data; |
| 370 | 370 |
mutable int _minimum; |
| 371 | 371 |
|
| 372 | 372 |
}; // class BucketHeap |
| 373 | 373 |
|
| 374 |
/// \ingroup |
|
| 374 |
/// \ingroup heaps |
|
| 375 | 375 |
/// |
| 376 | 376 |
/// \brief Simplified bucket heap data structure. |
| 377 | 377 |
/// |
| 378 | 378 |
/// This class implements a simplified \e bucket \e heap data |
| 379 | 379 |
/// structure. It does not provide some functionality, but it is |
| 380 | 380 |
/// faster and simpler than BucketHeap. The main difference is |
| 381 | 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
| 382 | 382 |
/// this class stores only simply-linked lists. It supports erasing |
| 383 | 383 |
/// only for the item having minimum priority and it does not support |
| 384 | 384 |
/// key increasing and decreasing. |
| 385 | 385 |
/// |
| 386 | 386 |
/// Note that this implementation does not conform to the |
| 387 | 387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
| 388 | 388 |
/// functionality. |
| 389 | 389 |
/// |
| 390 | 390 |
/// \tparam IM A read-writable item map with \c int values, used |
| 391 | 391 |
/// internally to handle the cross references. |
| 392 | 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
| 393 | 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
| 394 | 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
| 395 | 395 |
/// functions deal with the item having maximum priority instead of the |
| 396 | 396 |
/// minimum. |
| 397 | 397 |
/// |
| 398 | 398 |
/// \sa BucketHeap |
| 399 | 399 |
template <typename IM, bool MIN = true > |
| 400 | 400 |
class SimpleBucketHeap {
|
| 401 | 401 |
|
| 402 | 402 |
public: |
| 403 | 403 |
|
| 404 | 404 |
/// Type of the item-int map. |
| 405 | 405 |
typedef IM ItemIntMap; |
| 406 | 406 |
/// Type of the priorities. |
| 407 | 407 |
typedef int Prio; |
| 408 | 408 |
/// Type of the items stored in the heap. |
| 409 | 409 |
typedef typename ItemIntMap::Key Item; |
| 410 | 410 |
/// Type of the item-priority pairs. |
| 411 | 411 |
typedef std::pair<Item,Prio> Pair; |
| 412 | 412 |
|
| 413 | 413 |
private: |
| 414 | 414 |
|
| 415 | 415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
| 416 | 416 |
|
| 417 | 417 |
public: |
| 418 | 418 |
|
| 419 | 419 |
/// \brief Type to represent the states of the items. |
| 420 | 420 |
/// |
| 421 | 421 |
/// Each item has a state associated to it. It can be "in heap", |
| 422 | 422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 423 | 423 |
/// heap's point of view, but may be useful to the user. |
| 424 | 424 |
/// |
| 425 | 425 |
/// The item-int map must be initialized in such way that it assigns |
| 426 | 426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 427 | 427 |
enum State {
|
| 428 | 428 |
IN_HEAP = 0, ///< = 0. |
| 429 | 429 |
PRE_HEAP = -1, ///< = -1. |
| 430 | 430 |
POST_HEAP = -2 ///< = -2. |
| 431 | 431 |
}; |
| 432 | 432 |
|
| 433 | 433 |
public: |
| 434 | 434 |
|
| 435 | 435 |
/// \brief Constructor. |
| 436 | 436 |
/// |
| 437 | 437 |
/// Constructor. |
| 438 | 438 |
/// \param map A map that assigns \c int values to the items. |
| 439 | 439 |
/// It is used internally to handle the cross references. |
| 440 | 440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 441 | 441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
| 442 | 442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
| 443 | 443 |
|
| 444 | 444 |
/// \brief The number of items stored in the heap. |
| 445 | 445 |
/// |
| 446 | 446 |
/// This function returns the number of items stored in the heap. |
| 447 | 447 |
int size() const { return _num; }
|
| 448 | 448 |
|
| 449 | 449 |
/// \brief Check if the heap is empty. |
| 450 | 450 |
/// |
| 451 | 451 |
/// This function returns \c true if the heap is empty. |
| 452 | 452 |
bool empty() const { return _num == 0; }
|
| 453 | 453 |
|
| 454 | 454 |
/// \brief Make the heap empty. |
| 455 | 455 |
/// |
| 456 | 456 |
/// This functon makes the heap empty. |
| 457 | 457 |
/// It does not change the cross reference map. If you want to reuse |
| 458 | 458 |
/// a heap that is not surely empty, you should first clear it and |
| 459 | 459 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 460 | 460 |
/// for each item. |
| 461 | 461 |
void clear() {
|
| 462 | 462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
/// \brief Insert a pair of item and priority into the heap. |
| 466 | 466 |
/// |
| 467 | 467 |
/// This function inserts \c p.first to the heap with priority |
| 468 | 468 |
/// \c p.second. |
| 469 | 469 |
/// \param p The pair to insert. |
| 470 | 470 |
/// \pre \c p.first must not be stored in the heap. |
| 471 | 471 |
void push(const Pair& p) {
|
| 472 | 472 |
push(p.first, p.second); |
| 473 | 473 |
} |
| 474 | 474 |
|
| 475 | 475 |
/// \brief Insert an item into the heap with the given priority. |
| 476 | 476 |
/// |
| 477 | 477 |
/// This function inserts the given item into the heap with the |
| 478 | 478 |
/// given priority. |
| 479 | 479 |
/// \param i The item to insert. |
| 480 | 480 |
/// \param p The priority of the item. |
| 481 | 481 |
/// \pre \e i must not be stored in the heap. |
| 482 | 482 |
void push(const Item &i, const Prio &p) {
|
| 483 | 483 |
int idx; |
| 484 | 484 |
if (_free == -1) {
|
| 485 | 485 |
idx = _data.size(); |
| 486 | 486 |
_data.push_back(BucketItem(i)); |
| 487 | 487 |
} else {
|
| 488 | 488 |
idx = _free; |
| 489 | 489 |
_free = _data[idx].next; |
| 490 | 490 |
_data[idx].item = i; |
| 491 | 491 |
} |
| 492 | 492 |
_iim[i] = idx; |
| 493 | 493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
| 494 | 494 |
_data[idx].next = _first[p]; |
| 495 | 495 |
_first[p] = idx; |
| 496 | 496 |
if (Direction::less(p, _minimum)) {
|
| 497 | 497 |
_minimum = p; |
| 498 | 498 |
} |
| 499 | 499 |
++_num; |
| 500 | 500 |
} |
| 501 | 501 |
|
| 502 | 502 |
/// \brief Return the item having minimum priority. |
| 503 | 503 |
/// |
| 504 | 504 |
/// This function returns the item having minimum priority. |
| 505 | 505 |
/// \pre The heap must be non-empty. |
| 506 | 506 |
Item top() const {
|
| 507 | 507 |
while (_first[_minimum] == -1) {
|
| 508 | 508 |
Direction::increase(_minimum); |
| 509 | 509 |
} |
| 510 | 510 |
return _data[_first[_minimum]].item; |
| 511 | 511 |
} |
| 512 | 512 |
|
| 513 | 513 |
/// \brief The minimum priority. |
| 514 | 514 |
/// |
| 515 | 515 |
/// This function returns the minimum priority. |
| 516 | 516 |
/// \pre The heap must be non-empty. |
| 517 | 517 |
Prio prio() const {
|
| 518 | 518 |
while (_first[_minimum] == -1) {
|
| 519 | 519 |
Direction::increase(_minimum); |
| 520 | 520 |
} |
| 521 | 521 |
return _minimum; |
| 522 | 522 |
} |
| 523 | 523 |
|
| 524 | 524 |
/// \brief Remove the item having minimum priority. |
| 525 | 525 |
/// |
| 526 | 526 |
/// This function removes the item having minimum priority. |
| 527 | 527 |
/// \pre The heap must be non-empty. |
| 528 | 528 |
void pop() {
|
| 529 | 529 |
while (_first[_minimum] == -1) {
|
| 530 | 530 |
Direction::increase(_minimum); |
| 531 | 531 |
} |
| 532 | 532 |
int idx = _first[_minimum]; |
| 533 | 533 |
_iim[_data[idx].item] = -2; |
| 534 | 534 |
_first[_minimum] = _data[idx].next; |
| 535 | 535 |
_data[idx].next = _free; |
| 536 | 536 |
_free = idx; |
| 537 | 537 |
--_num; |
| 538 | 538 |
} |
| 539 | 539 |
|
| 540 | 540 |
/// \brief The priority of the given item. |
| 541 | 541 |
/// |
| 542 | 542 |
/// This function returns the priority of the given item. |
| 543 | 543 |
/// \param i The item. |
| 544 | 544 |
/// \pre \e i must be in the heap. |
| 545 | 545 |
/// \warning This operator is not a constant time function because |
| 546 | 546 |
/// it scans the whole data structure to find the proper value. |
| 547 | 547 |
Prio operator[](const Item &i) const {
|
| 548 | 548 |
for (int k = 0; k < int(_first.size()); ++k) {
|
| 549 | 549 |
int idx = _first[k]; |
| 550 | 550 |
while (idx != -1) {
|
| 551 | 551 |
if (_data[idx].item == i) {
|
| 552 | 552 |
return k; |
| 553 | 553 |
} |
| 554 | 554 |
idx = _data[idx].next; |
| 555 | 555 |
} |
| 556 | 556 |
} |
| 557 | 557 |
return -1; |
| 558 | 558 |
} |
| 559 | 559 |
|
| 560 | 560 |
/// \brief Return the state of an item. |
| 561 | 561 |
/// |
| 562 | 562 |
/// This method returns \c PRE_HEAP if the given item has never |
| 563 | 563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 564 | 564 |
/// and \c POST_HEAP otherwise. |
| 565 | 565 |
/// In the latter case it is possible that the item will get back |
| 566 | 566 |
/// to the heap again. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
| 20 | 20 |
#define LEMON_CONCEPTS_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup concept |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of heaps. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This concept class describes the main interface of heaps. |
| 39 |
/// The various heap structures are efficient |
|
| 39 |
/// The various \ref heaps "heap structures" are efficient |
|
| 40 | 40 |
/// implementations of the abstract data type \e priority \e queue. |
| 41 | 41 |
/// They store items with specified values called \e priorities |
| 42 | 42 |
/// in such a way that finding and removing the item with minimum |
| 43 | 43 |
/// priority are efficient. The basic operations are adding and |
| 44 | 44 |
/// erasing items, changing the priority of an item, etc. |
| 45 | 45 |
/// |
| 46 | 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
| 47 | 47 |
/// Any class that conforms to this concept can be used easily in such |
| 48 | 48 |
/// algorithms. |
| 49 | 49 |
/// |
| 50 | 50 |
/// \tparam PR Type of the priorities of the items. |
| 51 | 51 |
/// \tparam IM A read-writable item map with \c int values, used |
| 52 | 52 |
/// internally to handle the cross references. |
| 53 | 53 |
/// \tparam CMP A functor class for comparing the priorities. |
| 54 | 54 |
/// The default is \c std::less<PR>. |
| 55 | 55 |
#ifdef DOXYGEN |
| 56 | 56 |
template <typename PR, typename IM, typename CMP> |
| 57 | 57 |
#else |
| 58 | 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 59 | 59 |
#endif |
| 60 | 60 |
class Heap {
|
| 61 | 61 |
public: |
| 62 | 62 |
|
| 63 | 63 |
/// Type of the item-int map. |
| 64 | 64 |
typedef IM ItemIntMap; |
| 65 | 65 |
/// Type of the priorities. |
| 66 | 66 |
typedef PR Prio; |
| 67 | 67 |
/// Type of the items stored in the heap. |
| 68 | 68 |
typedef typename ItemIntMap::Key Item; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief Type to represent the states of the items. |
| 71 | 71 |
/// |
| 72 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
| 73 | 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 74 | 74 |
/// heap's point of view, but may be useful to the user. |
| 75 | 75 |
/// |
| 76 | 76 |
/// The item-int map must be initialized in such way that it assigns |
| 77 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 78 | 78 |
enum State {
|
| 79 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
| 80 | 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
| 81 | 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
| 82 | 82 |
}; |
| 83 | 83 |
|
| 84 | 84 |
/// \brief Constructor. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Constructor. |
| 87 | 87 |
/// \param map A map that assigns \c int values to keys of type |
| 88 | 88 |
/// \c Item. It is used internally by the heap implementations to |
| 89 | 89 |
/// handle the cross references. The assigned value must be |
| 90 | 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 91 | 91 |
explicit Heap(ItemIntMap &map) {}
|
| 92 | 92 |
|
| 93 | 93 |
/// \brief Constructor. |
| 94 | 94 |
/// |
| 95 | 95 |
/// Constructor. |
| 96 | 96 |
/// \param map A map that assigns \c int values to keys of type |
| 97 | 97 |
/// \c Item. It is used internally by the heap implementations to |
| 98 | 98 |
/// handle the cross references. The assigned value must be |
| 99 | 99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 100 | 100 |
/// \param comp The function object used for comparing the priorities. |
| 101 | 101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {}
|
| 102 | 102 |
|
| 103 | 103 |
/// \brief The number of items stored in the heap. |
| 104 | 104 |
/// |
| 105 | 105 |
/// This function returns the number of items stored in the heap. |
| 106 | 106 |
int size() const { return 0; }
|
| 107 | 107 |
|
| 108 | 108 |
/// \brief Check if the heap is empty. |
| 109 | 109 |
/// |
| 110 | 110 |
/// This function returns \c true if the heap is empty. |
| 111 | 111 |
bool empty() const { return false; }
|
| 112 | 112 |
|
| 113 | 113 |
/// \brief Make the heap empty. |
| 114 | 114 |
/// |
| 115 | 115 |
/// This functon makes the heap empty. |
| 116 | 116 |
/// It does not change the cross reference map. If you want to reuse |
| 117 | 117 |
/// a heap that is not surely empty, you should first clear it and |
| 118 | 118 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 119 | 119 |
/// for each item. |
| 120 | 120 |
void clear() {}
|
| 121 | 121 |
|
| 122 | 122 |
/// \brief Insert an item into the heap with the given priority. |
| 123 | 123 |
/// |
| 124 | 124 |
/// This function inserts the given item into the heap with the |
| 125 | 125 |
/// given priority. |
| 126 | 126 |
/// \param i The item to insert. |
| 127 | 127 |
/// \param p The priority of the item. |
| 128 | 128 |
/// \pre \e i must not be stored in the heap. |
| 129 | 129 |
void push(const Item &i, const Prio &p) {}
|
| 130 | 130 |
|
| 131 | 131 |
/// \brief Return the item having minimum priority. |
| 132 | 132 |
/// |
| 133 | 133 |
/// This function returns the item having minimum priority. |
| 134 | 134 |
/// \pre The heap must be non-empty. |
| 135 | 135 |
Item top() const {}
|
| 136 | 136 |
|
| 137 | 137 |
/// \brief The minimum priority. |
| 138 | 138 |
/// |
| 139 | 139 |
/// This function returns the minimum priority. |
| 140 | 140 |
/// \pre The heap must be non-empty. |
| 141 | 141 |
Prio prio() const {}
|
| 142 | 142 |
|
| 143 | 143 |
/// \brief Remove the item having minimum priority. |
| 144 | 144 |
/// |
| 145 | 145 |
/// This function removes the item having minimum priority. |
| 146 | 146 |
/// \pre The heap must be non-empty. |
| 147 | 147 |
void pop() {}
|
| 148 | 148 |
|
| 149 | 149 |
/// \brief Remove the given item from the heap. |
| 150 | 150 |
/// |
| 151 | 151 |
/// This function removes the given item from the heap if it is |
| 152 | 152 |
/// already stored. |
| 153 | 153 |
/// \param i The item to delete. |
| 154 | 154 |
/// \pre \e i must be in the heap. |
| 155 | 155 |
void erase(const Item &i) {}
|
| 156 | 156 |
|
| 157 | 157 |
/// \brief The priority of the given item. |
| 158 | 158 |
/// |
| 159 | 159 |
/// This function returns the priority of the given item. |
| 160 | 160 |
/// \param i The item. |
| 161 | 161 |
/// \pre \e i must be in the heap. |
| 162 | 162 |
Prio operator[](const Item &i) const {}
|
| 163 | 163 |
|
| 164 | 164 |
/// \brief Set the priority of an item or insert it, if it is |
| 165 | 165 |
/// not stored in the heap. |
| 166 | 166 |
/// |
| 167 | 167 |
/// This method sets the priority of the given item if it is |
| 168 | 168 |
/// already stored in the heap. Otherwise it inserts the given |
| 169 | 169 |
/// item into the heap with the given priority. |
| 170 | 170 |
/// |
| 171 | 171 |
/// \param i The item. |
| 172 | 172 |
/// \param p The priority. |
| 173 | 173 |
void set(const Item &i, const Prio &p) {}
|
| 174 | 174 |
|
| 175 | 175 |
/// \brief Decrease the priority of an item to the given value. |
| 176 | 176 |
/// |
| 177 | 177 |
/// This function decreases the priority of an item to the given value. |
| 178 | 178 |
/// \param i The item. |
| 179 | 179 |
/// \param p The priority. |
| 180 | 180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
| 181 | 181 |
void decrease(const Item &i, const Prio &p) {}
|
| 182 | 182 |
|
| 183 | 183 |
/// \brief Increase the priority of an item to the given value. |
| 184 | 184 |
/// |
| 185 | 185 |
/// This function increases the priority of an item to the given value. |
| 186 | 186 |
/// \param i The item. |
| 187 | 187 |
/// \param p The priority. |
| 188 | 188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
| 189 | 189 |
void increase(const Item &i, const Prio &p) {}
|
| 190 | 190 |
|
| 191 | 191 |
/// \brief Return the state of an item. |
| 192 | 192 |
/// |
| 193 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
| 194 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 195 | 195 |
/// and \c POST_HEAP otherwise. |
| 196 | 196 |
/// In the latter case it is possible that the item will get back |
| 197 | 197 |
/// to the heap again. |
| 198 | 198 |
/// \param i The item. |
| 199 | 199 |
State state(const Item &i) const {}
|
| 200 | 200 |
|
| 201 | 201 |
/// \brief Set the state of an item in the heap. |
| 202 | 202 |
/// |
| 203 | 203 |
/// This function sets the state of the given item in the heap. |
| 204 | 204 |
/// It can be used to manually clear the heap when it is important |
| 205 | 205 |
/// to achive better time complexity. |
| 206 | 206 |
/// \param i The item. |
| 207 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
| 208 | 208 |
void state(const Item& i, State st) {}
|
| 209 | 209 |
|
| 210 | 210 |
|
| 211 | 211 |
template <typename _Heap> |
| 212 | 212 |
struct Constraints {
|
| 213 | 213 |
public: |
| 214 | 214 |
void constraints() {
|
| 215 | 215 |
typedef typename _Heap::Item OwnItem; |
| 216 | 216 |
typedef typename _Heap::Prio OwnPrio; |
| 217 | 217 |
typedef typename _Heap::State OwnState; |
| 218 | 218 |
|
| 219 | 219 |
Item item; |
| 220 | 220 |
Prio prio; |
| 221 | 221 |
item=Item(); |
| 222 | 222 |
prio=Prio(); |
| 223 | 223 |
ignore_unused_variable_warning(item); |
| 224 | 224 |
ignore_unused_variable_warning(prio); |
| 225 | 225 |
|
| 226 | 226 |
OwnItem own_item; |
| 227 | 227 |
OwnPrio own_prio; |
| 228 | 228 |
OwnState own_state; |
| 229 | 229 |
own_item=Item(); |
| 230 | 230 |
own_prio=Prio(); |
| 231 | 231 |
ignore_unused_variable_warning(own_item); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FIB_HEAP_H |
| 20 | 20 |
#define LEMON_FIB_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\file |
| 23 |
///\ingroup |
|
| 23 |
///\ingroup heaps |
|
| 24 | 24 |
///\brief Fibonacci heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
#include <lemon/math.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 |
/// \ingroup |
|
| 33 |
/// \ingroup heaps |
|
| 34 | 34 |
/// |
| 35 | 35 |
/// \brief Fibonacci heap data structure. |
| 36 | 36 |
/// |
| 37 | 37 |
/// This class implements the \e Fibonacci \e heap data structure. |
| 38 | 38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
| 39 | 39 |
/// |
| 40 | 40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
| 41 | 41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
| 42 | 42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
| 43 | 43 |
/// |
| 44 | 44 |
/// \tparam PR Type of the priorities of the items. |
| 45 | 45 |
/// \tparam IM A read-writable item map with \c int values, used |
| 46 | 46 |
/// internally to handle the cross references. |
| 47 | 47 |
/// \tparam CMP A functor class for comparing the priorities. |
| 48 | 48 |
/// The default is \c std::less<PR>. |
| 49 | 49 |
#ifdef DOXYGEN |
| 50 | 50 |
template <typename PR, typename IM, typename CMP> |
| 51 | 51 |
#else |
| 52 | 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
| 53 | 53 |
#endif |
| 54 | 54 |
class FibHeap {
|
| 55 | 55 |
public: |
| 56 | 56 |
|
| 57 | 57 |
/// Type of the item-int map. |
| 58 | 58 |
typedef IM ItemIntMap; |
| 59 | 59 |
/// Type of the priorities. |
| 60 | 60 |
typedef PR Prio; |
| 61 | 61 |
/// Type of the items stored in the heap. |
| 62 | 62 |
typedef typename ItemIntMap::Key Item; |
| 63 | 63 |
/// Type of the item-priority pairs. |
| 64 | 64 |
typedef std::pair<Item,Prio> Pair; |
| 65 | 65 |
/// Functor type for comparing the priorities. |
| 66 | 66 |
typedef CMP Compare; |
| 67 | 67 |
|
| 68 | 68 |
private: |
| 69 | 69 |
class Store; |
| 70 | 70 |
|
| 71 | 71 |
std::vector<Store> _data; |
| 72 | 72 |
int _minimum; |
| 73 | 73 |
ItemIntMap &_iim; |
| 74 | 74 |
Compare _comp; |
| 75 | 75 |
int _num; |
| 76 | 76 |
|
| 77 | 77 |
public: |
| 78 | 78 |
|
| 79 | 79 |
/// \brief Type to represent the states of the items. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Each item has a state associated to it. It can be "in heap", |
| 82 | 82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 83 | 83 |
/// heap's point of view, but may be useful to the user. |
| 84 | 84 |
/// |
| 85 | 85 |
/// The item-int map must be initialized in such way that it assigns |
| 86 | 86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 87 | 87 |
enum State {
|
| 88 | 88 |
IN_HEAP = 0, ///< = 0. |
| 89 | 89 |
PRE_HEAP = -1, ///< = -1. |
| 90 | 90 |
POST_HEAP = -2 ///< = -2. |
| 91 | 91 |
}; |
| 92 | 92 |
|
| 93 | 93 |
/// \brief Constructor. |
| 94 | 94 |
/// |
| 95 | 95 |
/// Constructor. |
| 96 | 96 |
/// \param map A map that assigns \c int values to the items. |
| 97 | 97 |
/// It is used internally to handle the cross references. |
| 98 | 98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 99 | 99 |
explicit FibHeap(ItemIntMap &map) |
| 100 | 100 |
: _minimum(0), _iim(map), _num() {}
|
| 101 | 101 |
|
| 102 | 102 |
/// \brief Constructor. |
| 103 | 103 |
/// |
| 104 | 104 |
/// Constructor. |
| 105 | 105 |
/// \param map A map that assigns \c int values to the items. |
| 106 | 106 |
/// It is used internally to handle the cross references. |
| 107 | 107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 108 | 108 |
/// \param comp The function object used for comparing the priorities. |
| 109 | 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
| 110 | 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
| 111 | 111 |
|
| 112 | 112 |
/// \brief The number of items stored in the heap. |
| 113 | 113 |
/// |
| 114 | 114 |
/// This function returns the number of items stored in the heap. |
| 115 | 115 |
int size() const { return _num; }
|
| 116 | 116 |
|
| 117 | 117 |
/// \brief Check if the heap is empty. |
| 118 | 118 |
/// |
| 119 | 119 |
/// This function returns \c true if the heap is empty. |
| 120 | 120 |
bool empty() const { return _num==0; }
|
| 121 | 121 |
|
| 122 | 122 |
/// \brief Make the heap empty. |
| 123 | 123 |
/// |
| 124 | 124 |
/// This functon makes the heap empty. |
| 125 | 125 |
/// It does not change the cross reference map. If you want to reuse |
| 126 | 126 |
/// a heap that is not surely empty, you should first clear it and |
| 127 | 127 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 128 | 128 |
/// for each item. |
| 129 | 129 |
void clear() {
|
| 130 | 130 |
_data.clear(); _minimum = 0; _num = 0; |
| 131 | 131 |
} |
| 132 | 132 |
|
| 133 | 133 |
/// \brief Insert an item into the heap with the given priority. |
| 134 | 134 |
/// |
| 135 | 135 |
/// This function inserts the given item into the heap with the |
| 136 | 136 |
/// given priority. |
| 137 | 137 |
/// \param item The item to insert. |
| 138 | 138 |
/// \param prio The priority of the item. |
| 139 | 139 |
/// \pre \e item must not be stored in the heap. |
| 140 | 140 |
void push (const Item& item, const Prio& prio) {
|
| 141 | 141 |
int i=_iim[item]; |
| 142 | 142 |
if ( i < 0 ) {
|
| 143 | 143 |
int s=_data.size(); |
| 144 | 144 |
_iim.set( item, s ); |
| 145 | 145 |
Store st; |
| 146 | 146 |
st.name=item; |
| 147 | 147 |
_data.push_back(st); |
| 148 | 148 |
i=s; |
| 149 | 149 |
} else {
|
| 150 | 150 |
_data[i].parent=_data[i].child=-1; |
| 151 | 151 |
_data[i].degree=0; |
| 152 | 152 |
_data[i].in=true; |
| 153 | 153 |
_data[i].marked=false; |
| 154 | 154 |
} |
| 155 | 155 |
|
| 156 | 156 |
if ( _num ) {
|
| 157 | 157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
| 158 | 158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
| 159 | 159 |
_data[_minimum].right_neighbor=i; |
| 160 | 160 |
_data[i].left_neighbor=_minimum; |
| 161 | 161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
| 162 | 162 |
} else {
|
| 163 | 163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
| 164 | 164 |
_minimum=i; |
| 165 | 165 |
} |
| 166 | 166 |
_data[i].prio=prio; |
| 167 | 167 |
++_num; |
| 168 | 168 |
} |
| 169 | 169 |
|
| 170 | 170 |
/// \brief Return the item having minimum priority. |
| 171 | 171 |
/// |
| 172 | 172 |
/// This function returns the item having minimum priority. |
| 173 | 173 |
/// \pre The heap must be non-empty. |
| 174 | 174 |
Item top() const { return _data[_minimum].name; }
|
| 175 | 175 |
|
| 176 | 176 |
/// \brief The minimum priority. |
| 177 | 177 |
/// |
| 178 | 178 |
/// This function returns the minimum priority. |
| 179 | 179 |
/// \pre The heap must be non-empty. |
| 180 | 180 |
Prio prio() const { return _data[_minimum].prio; }
|
| 181 | 181 |
|
| 182 | 182 |
/// \brief Remove the item having minimum priority. |
| 183 | 183 |
/// |
| 184 | 184 |
/// This function removes the item having minimum priority. |
| 185 | 185 |
/// \pre The heap must be non-empty. |
| 186 | 186 |
void pop() {
|
| 187 | 187 |
/*The first case is that there are only one root.*/ |
| 188 | 188 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
| 189 | 189 |
_data[_minimum].in=false; |
| 190 | 190 |
if ( _data[_minimum].degree!=0 ) {
|
| 191 | 191 |
makeroot(_data[_minimum].child); |
| 192 | 192 |
_minimum=_data[_minimum].child; |
| 193 | 193 |
balance(); |
| 194 | 194 |
} |
| 195 | 195 |
} else {
|
| 196 | 196 |
int right=_data[_minimum].right_neighbor; |
| 197 | 197 |
unlace(_minimum); |
| 198 | 198 |
_data[_minimum].in=false; |
| 199 | 199 |
if ( _data[_minimum].degree > 0 ) {
|
| 200 | 200 |
int left=_data[_minimum].left_neighbor; |
| 201 | 201 |
int child=_data[_minimum].child; |
| 202 | 202 |
int last_child=_data[child].left_neighbor; |
| 203 | 203 |
|
| 204 | 204 |
makeroot(child); |
| 205 | 205 |
|
| 206 | 206 |
_data[left].right_neighbor=child; |
| 207 | 207 |
_data[child].left_neighbor=left; |
| 208 | 208 |
_data[right].left_neighbor=last_child; |
| 209 | 209 |
_data[last_child].right_neighbor=right; |
| 210 | 210 |
} |
| 211 | 211 |
_minimum=right; |
| 212 | 212 |
balance(); |
| 213 | 213 |
} // the case where there are more roots |
| 214 | 214 |
--_num; |
| 215 | 215 |
} |
| 216 | 216 |
|
| 217 | 217 |
/// \brief Remove the given item from the heap. |
| 218 | 218 |
/// |
| 219 | 219 |
/// This function removes the given item from the heap if it is |
| 220 | 220 |
/// already stored. |
| 221 | 221 |
/// \param item The item to delete. |
| 222 | 222 |
/// \pre \e item must be in the heap. |
| 223 | 223 |
void erase (const Item& item) {
|
| 224 | 224 |
int i=_iim[item]; |
| 225 | 225 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_RADIX_HEAP_H |
| 20 | 20 |
#define LEMON_RADIX_HEAP_H |
| 21 | 21 |
|
| 22 |
///\ingroup |
|
| 22 |
///\ingroup heaps |
|
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Radix heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
|
| 32 |
/// \ingroup |
|
| 32 |
/// \ingroup heaps |
|
| 33 | 33 |
/// |
| 34 | 34 |
/// \brief Radix heap data structure. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class implements the \e radix \e heap data structure. |
| 37 | 37 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
| 38 | 38 |
/// but it has some limitations due its special implementation. |
| 39 | 39 |
/// The type of the priorities must be \c int and the priority of an |
| 40 | 40 |
/// item cannot be decreased under the priority of the last removed item. |
| 41 | 41 |
/// |
| 42 | 42 |
/// \tparam IM A read-writable item map with \c int values, used |
| 43 | 43 |
/// internally to handle the cross references. |
| 44 | 44 |
template <typename IM> |
| 45 | 45 |
class RadixHeap {
|
| 46 | 46 |
|
| 47 | 47 |
public: |
| 48 | 48 |
|
| 49 | 49 |
/// Type of the item-int map. |
| 50 | 50 |
typedef IM ItemIntMap; |
| 51 | 51 |
/// Type of the priorities. |
| 52 | 52 |
typedef int Prio; |
| 53 | 53 |
/// Type of the items stored in the heap. |
| 54 | 54 |
typedef typename ItemIntMap::Key Item; |
| 55 | 55 |
|
| 56 | 56 |
/// \brief Exception thrown by RadixHeap. |
| 57 | 57 |
/// |
| 58 | 58 |
/// This exception is thrown when an item is inserted into a |
| 59 | 59 |
/// RadixHeap with a priority smaller than the last erased one. |
| 60 | 60 |
/// \see RadixHeap |
| 61 | 61 |
class UnderFlowPriorityError : public Exception {
|
| 62 | 62 |
public: |
| 63 | 63 |
virtual const char* what() const throw() {
|
| 64 | 64 |
return "lemon::RadixHeap::UnderFlowPriorityError"; |
| 65 | 65 |
} |
| 66 | 66 |
}; |
| 67 | 67 |
|
| 68 | 68 |
/// \brief Type to represent the states of the items. |
| 69 | 69 |
/// |
| 70 | 70 |
/// Each item has a state associated to it. It can be "in heap", |
| 71 | 71 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
| 72 | 72 |
/// heap's point of view, but may be useful to the user. |
| 73 | 73 |
/// |
| 74 | 74 |
/// The item-int map must be initialized in such way that it assigns |
| 75 | 75 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
| 76 | 76 |
enum State {
|
| 77 | 77 |
IN_HEAP = 0, ///< = 0. |
| 78 | 78 |
PRE_HEAP = -1, ///< = -1. |
| 79 | 79 |
POST_HEAP = -2 ///< = -2. |
| 80 | 80 |
}; |
| 81 | 81 |
|
| 82 | 82 |
private: |
| 83 | 83 |
|
| 84 | 84 |
struct RadixItem {
|
| 85 | 85 |
int prev, next, box; |
| 86 | 86 |
Item item; |
| 87 | 87 |
int prio; |
| 88 | 88 |
RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
|
| 89 | 89 |
}; |
| 90 | 90 |
|
| 91 | 91 |
struct RadixBox {
|
| 92 | 92 |
int first; |
| 93 | 93 |
int min, size; |
| 94 | 94 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
|
| 95 | 95 |
}; |
| 96 | 96 |
|
| 97 | 97 |
std::vector<RadixItem> data; |
| 98 | 98 |
std::vector<RadixBox> boxes; |
| 99 | 99 |
|
| 100 | 100 |
ItemIntMap &_iim; |
| 101 | 101 |
|
| 102 | 102 |
public: |
| 103 | 103 |
|
| 104 | 104 |
/// \brief Constructor. |
| 105 | 105 |
/// |
| 106 | 106 |
/// Constructor. |
| 107 | 107 |
/// \param map A map that assigns \c int values to the items. |
| 108 | 108 |
/// It is used internally to handle the cross references. |
| 109 | 109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
| 110 | 110 |
/// \param minimum The initial minimum value of the heap. |
| 111 | 111 |
/// \param capacity The initial capacity of the heap. |
| 112 | 112 |
RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0) |
| 113 | 113 |
: _iim(map) |
| 114 | 114 |
{
|
| 115 | 115 |
boxes.push_back(RadixBox(minimum, 1)); |
| 116 | 116 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
| 117 | 117 |
while (lower(boxes.size() - 1, capacity + minimum - 1)) {
|
| 118 | 118 |
extend(); |
| 119 | 119 |
} |
| 120 | 120 |
} |
| 121 | 121 |
|
| 122 | 122 |
/// \brief The number of items stored in the heap. |
| 123 | 123 |
/// |
| 124 | 124 |
/// This function returns the number of items stored in the heap. |
| 125 | 125 |
int size() const { return data.size(); }
|
| 126 | 126 |
|
| 127 | 127 |
/// \brief Check if the heap is empty. |
| 128 | 128 |
/// |
| 129 | 129 |
/// This function returns \c true if the heap is empty. |
| 130 | 130 |
bool empty() const { return data.empty(); }
|
| 131 | 131 |
|
| 132 | 132 |
/// \brief Make the heap empty. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This functon makes the heap empty. |
| 135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
| 136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
| 137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
| 138 | 138 |
/// for each item. |
| 139 | 139 |
/// \param minimum The minimum value of the heap. |
| 140 | 140 |
/// \param capacity The capacity of the heap. |
| 141 | 141 |
void clear(int minimum = 0, int capacity = 0) {
|
| 142 | 142 |
data.clear(); boxes.clear(); |
| 143 | 143 |
boxes.push_back(RadixBox(minimum, 1)); |
| 144 | 144 |
boxes.push_back(RadixBox(minimum + 1, 1)); |
| 145 | 145 |
while (lower(boxes.size() - 1, capacity + minimum - 1)) {
|
| 146 | 146 |
extend(); |
| 147 | 147 |
} |
| 148 | 148 |
} |
| 149 | 149 |
|
| 150 | 150 |
private: |
| 151 | 151 |
|
| 152 | 152 |
bool upper(int box, Prio pr) {
|
| 153 | 153 |
return pr < boxes[box].min; |
| 154 | 154 |
} |
| 155 | 155 |
|
| 156 | 156 |
bool lower(int box, Prio pr) {
|
| 157 | 157 |
return pr >= boxes[box].min + boxes[box].size; |
| 158 | 158 |
} |
| 159 | 159 |
|
| 160 | 160 |
// Remove item from the box list |
| 161 | 161 |
void remove(int index) {
|
| 162 | 162 |
if (data[index].prev >= 0) {
|
| 163 | 163 |
data[data[index].prev].next = data[index].next; |
| 164 | 164 |
} else {
|
| 165 | 165 |
boxes[data[index].box].first = data[index].next; |
| 166 | 166 |
} |
| 167 | 167 |
if (data[index].next >= 0) {
|
| 168 | 168 |
data[data[index].next].prev = data[index].prev; |
| 169 | 169 |
} |
| 170 | 170 |
} |
| 171 | 171 |
|
| 172 | 172 |
// Insert item into the box list |
| 173 | 173 |
void insert(int box, int index) {
|
| 174 | 174 |
if (boxes[box].first == -1) {
|
| 175 | 175 |
boxes[box].first = index; |
| 176 | 176 |
data[index].next = data[index].prev = -1; |
| 177 | 177 |
} else {
|
| 178 | 178 |
data[index].next = boxes[box].first; |
| 179 | 179 |
data[boxes[box].first].prev = index; |
| 180 | 180 |
data[index].prev = -1; |
| 181 | 181 |
boxes[box].first = index; |
| 182 | 182 |
} |
| 183 | 183 |
data[index].box = box; |
| 184 | 184 |
} |
| 185 | 185 |
|
| 186 | 186 |
// Add a new box to the box list |
| 187 | 187 |
void extend() {
|
| 188 | 188 |
int min = boxes.back().min + boxes.back().size; |
| 189 | 189 |
int bs = 2 * boxes.back().size; |
| 190 | 190 |
boxes.push_back(RadixBox(min, bs)); |
| 191 | 191 |
} |
| 192 | 192 |
|
| 193 | 193 |
// Move an item up into the proper box. |
| 194 | 194 |
void bubble_up(int index) {
|
| 195 | 195 |
if (!lower(data[index].box, data[index].prio)) return; |
| 196 | 196 |
remove(index); |
| 197 | 197 |
int box = findUp(data[index].box, data[index].prio); |
| 198 | 198 |
insert(box, index); |
| 199 | 199 |
} |
| 200 | 200 |
|
| 201 | 201 |
// Find up the proper box for the item with the given priority |
| 202 | 202 |
int findUp(int start, int pr) {
|
| 203 | 203 |
while (lower(start, pr)) {
|
| 204 | 204 |
if (++start == int(boxes.size())) {
|
| 205 | 205 |
extend(); |
| 206 | 206 |
} |
| 207 | 207 |
} |
| 208 | 208 |
return start; |
| 209 | 209 |
} |
| 210 | 210 |
|
| 211 | 211 |
// Move an item down into the proper box |
| 212 | 212 |
void bubble_down(int index) {
|
| 213 | 213 |
if (!upper(data[index].box, data[index].prio)) return; |
| 214 | 214 |
remove(index); |
| 215 | 215 |
int box = findDown(data[index].box, data[index].prio); |
| 216 | 216 |
insert(box, index); |
| 217 | 217 |
} |
| 218 | 218 |
|
| 219 | 219 |
// Find down the proper box for the item with the given priority |
| 220 | 220 |
int findDown(int start, int pr) {
|
| 221 | 221 |
while (upper(start, pr)) {
|
| 222 | 222 |
if (--start < 0) throw UnderFlowPriorityError(); |
| 223 | 223 |
} |
| 224 | 224 |
return start; |
0 comments (0 inline)