gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Resolve gcc-4.3 warning in lemon/network_simplex.h
0 1 0
default
1 file changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Show white space 192 line context
... ...
@@ -952,194 +952,194 @@
952 952
    /// The \ref run() function must be called before using them.
953 953

	
954 954
    /// @{
955 955

	
956 956
    /// \brief Return the total cost of the found flow.
957 957
    ///
958 958
    /// This function returns the total cost of the found flow.
959 959
    /// Its complexity is O(e).
960 960
    ///
961 961
    /// \note The return type of the function can be specified as a
962 962
    /// template parameter. For example,
963 963
    /// \code
964 964
    ///   ns.totalCost<double>();
965 965
    /// \endcode
966 966
    /// It is useful if the total cost cannot be stored in the \c Cost
967 967
    /// type of the algorithm, which is the default return type of the
968 968
    /// function.
969 969
    ///
970 970
    /// \pre \ref run() must be called before using this function.
971 971
    template <typename Number>
972 972
    Number totalCost() const {
973 973
      Number c = 0;
974 974
      for (ArcIt a(_graph); a != INVALID; ++a) {
975 975
        int i = _arc_id[a];
976 976
        c += Number(_flow[i]) * Number(_cost[i]);
977 977
      }
978 978
      return c;
979 979
    }
980 980

	
981 981
#ifndef DOXYGEN
982 982
    Cost totalCost() const {
983 983
      return totalCost<Cost>();
984 984
    }
985 985
#endif
986 986

	
987 987
    /// \brief Return the flow on the given arc.
988 988
    ///
989 989
    /// This function returns the flow on the given arc.
990 990
    ///
991 991
    /// \pre \ref run() must be called before using this function.
992 992
    Value flow(const Arc& a) const {
993 993
      return _flow[_arc_id[a]];
994 994
    }
995 995

	
996 996
    /// \brief Return the flow map (the primal solution).
997 997
    ///
998 998
    /// This function copies the flow value on each arc into the given
999 999
    /// map. The \c Value type of the algorithm must be convertible to
1000 1000
    /// the \c Value type of the map.
1001 1001
    ///
1002 1002
    /// \pre \ref run() must be called before using this function.
1003 1003
    template <typename FlowMap>
1004 1004
    void flowMap(FlowMap &map) const {
1005 1005
      for (ArcIt a(_graph); a != INVALID; ++a) {
1006 1006
        map.set(a, _flow[_arc_id[a]]);
1007 1007
      }
1008 1008
    }
1009 1009

	
1010 1010
    /// \brief Return the potential (dual value) of the given node.
1011 1011
    ///
1012 1012
    /// This function returns the potential (dual value) of the
1013 1013
    /// given node.
1014 1014
    ///
1015 1015
    /// \pre \ref run() must be called before using this function.
1016 1016
    Cost potential(const Node& n) const {
1017 1017
      return _pi[_node_id[n]];
1018 1018
    }
1019 1019

	
1020 1020
    /// \brief Return the potential map (the dual solution).
1021 1021
    ///
1022 1022
    /// This function copies the potential (dual value) of each node
1023 1023
    /// into the given map.
1024 1024
    /// The \c Cost type of the algorithm must be convertible to the
1025 1025
    /// \c Value type of the map.
1026 1026
    ///
1027 1027
    /// \pre \ref run() must be called before using this function.
1028 1028
    template <typename PotentialMap>
1029 1029
    void potentialMap(PotentialMap &map) const {
1030 1030
      for (NodeIt n(_graph); n != INVALID; ++n) {
1031 1031
        map.set(n, _pi[_node_id[n]]);
1032 1032
      }
1033 1033
    }
1034 1034

	
1035 1035
    /// @}
1036 1036

	
1037 1037
  private:
1038 1038

	
1039 1039
    // Initialize internal data structures
1040 1040
    bool init() {
1041 1041
      if (_node_num == 0) return false;
1042 1042

	
1043 1043
      // Check the sum of supply values
1044 1044
      _sum_supply = 0;
1045 1045
      for (int i = 0; i != _node_num; ++i) {
1046 1046
        _sum_supply += _supply[i];
1047 1047
      }
1048
      if ( !(_stype == GEQ && _sum_supply <= 0 ||
1049
             _stype == LEQ && _sum_supply >= 0) ) return false;
1048
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
1049
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
1050 1050

	
1051 1051
      // Remove non-zero lower bounds
1052 1052
      if (_have_lower) {
1053 1053
        for (int i = 0; i != _arc_num; ++i) {
1054 1054
          Value c = _lower[i];
1055 1055
          if (c >= 0) {
1056 1056
            _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1057 1057
          } else {
1058 1058
            _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1059 1059
          }
1060 1060
          _supply[_source[i]] -= c;
1061 1061
          _supply[_target[i]] += c;
1062 1062
        }
1063 1063
      } else {
1064 1064
        for (int i = 0; i != _arc_num; ++i) {
1065 1065
          _cap[i] = _upper[i];
1066 1066
        }
1067 1067
      }
1068 1068

	
1069 1069
      // Initialize artifical cost
1070 1070
      Cost ART_COST;
1071 1071
      if (std::numeric_limits<Cost>::is_exact) {
1072 1072
        ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
1073 1073
      } else {
1074 1074
        ART_COST = std::numeric_limits<Cost>::min();
1075 1075
        for (int i = 0; i != _arc_num; ++i) {
1076 1076
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
1077 1077
        }
1078 1078
        ART_COST = (ART_COST + 1) * _node_num;
1079 1079
      }
1080 1080

	
1081 1081
      // Initialize arc maps
1082 1082
      for (int i = 0; i != _arc_num; ++i) {
1083 1083
        _flow[i] = 0;
1084 1084
        _state[i] = STATE_LOWER;
1085 1085
      }
1086 1086
      
1087 1087
      // Set data for the artificial root node
1088 1088
      _root = _node_num;
1089 1089
      _parent[_root] = -1;
1090 1090
      _pred[_root] = -1;
1091 1091
      _thread[_root] = 0;
1092 1092
      _rev_thread[0] = _root;
1093 1093
      _succ_num[_root] = _node_num + 1;
1094 1094
      _last_succ[_root] = _root - 1;
1095 1095
      _supply[_root] = -_sum_supply;
1096 1096
      _pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST;
1097 1097

	
1098 1098
      // Add artificial arcs and initialize the spanning tree data structure
1099 1099
      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1100 1100
        _parent[u] = _root;
1101 1101
        _pred[u] = e;
1102 1102
        _thread[u] = u + 1;
1103 1103
        _rev_thread[u + 1] = u;
1104 1104
        _succ_num[u] = 1;
1105 1105
        _last_succ[u] = u;
1106 1106
        _cost[e] = ART_COST;
1107 1107
        _cap[e] = INF;
1108 1108
        _state[e] = STATE_TREE;
1109 1109
        if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
1110 1110
          _flow[e] = _supply[u];
1111 1111
          _forward[u] = true;
1112 1112
          _pi[u] = -ART_COST + _pi[_root];
1113 1113
        } else {
1114 1114
          _flow[e] = -_supply[u];
1115 1115
          _forward[u] = false;
1116 1116
          _pi[u] = ART_COST + _pi[_root];
1117 1117
        }
1118 1118
      }
1119 1119

	
1120 1120
      return true;
1121 1121
    }
1122 1122

	
1123 1123
    // Find the join node
1124 1124
    void findJoinNode() {
1125 1125
      int u = _source[in_arc];
1126 1126
      int v = _target[in_arc];
1127 1127
      while (u != v) {
1128 1128
        if (_succ_num[u] < _succ_num[v]) {
1129 1129
          u = _parent[u];
1130 1130
        } else {
1131 1131
          v = _parent[v];
1132 1132
        }
1133 1133
      }
1134 1134
      join = u;
1135 1135
    }
1136 1136

	
1137 1137
    // Find the leaving arc of the cycle and returns true if the
1138 1138
    // leaving arc is not the same as the entering arc
1139 1139
    bool findLeavingArc() {
1140 1140
      // Initialize first and second nodes according to the direction
1141 1141
      // of the cycle
1142 1142
      if (_state[in_arc] == STATE_LOWER) {
1143 1143
        first  = _source[in_arc];
1144 1144
        second = _target[in_arc];
1145 1145
      } else {
0 comments (0 inline)