gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
New heuristics for MCF algorithms (#340) and some implementation improvements. - A useful heuristic is added to NetworkSimplex to make the initial pivots faster. - A powerful global update heuristic is added to CostScaling and the implementation is reworked with various improvements. - Better relabeling in CostScaling to improve numerical stability and make the code faster. - A small improvement is made in CapacityScaling for better delta computation. - Add notes to the classes about the usage of vector<char> instead of vector<bool> for efficiency reasons.
0 4 0
default
4 files changed with 365 insertions and 149 deletions:
↑ Collapse diff ↑
Show white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CAPACITY_SCALING_H
20 20
#define LEMON_CAPACITY_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/bin_heap.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \brief Default traits class of CapacityScaling algorithm.
35 35
  ///
36 36
  /// Default traits class of CapacityScaling algorithm.
37 37
  /// \tparam GR Digraph type.
38 38
  /// \tparam V The number type used for flow amounts, capacity bounds
39 39
  /// and supply values. By default it is \c int.
40 40
  /// \tparam C The number type used for costs and potentials.
41 41
  /// By default it is the same as \c V.
42 42
  template <typename GR, typename V = int, typename C = V>
43 43
  struct CapacityScalingDefaultTraits
44 44
  {
45 45
    /// The type of the digraph
46 46
    typedef GR Digraph;
47 47
    /// The type of the flow amounts, capacity bounds and supply values
48 48
    typedef V Value;
49 49
    /// The type of the arc costs
50 50
    typedef C Cost;
51 51

	
52 52
    /// \brief The type of the heap used for internal Dijkstra computations.
53 53
    ///
54 54
    /// The type of the heap used for internal Dijkstra computations.
55 55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 56
    /// its priority type must be \c Cost and its cross reference type
57 57
    /// must be \ref RangeMap "RangeMap<int>".
58 58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
59 59
  };
60 60

	
61 61
  /// \addtogroup min_cost_flow_algs
62 62
  /// @{
63 63

	
64 64
  /// \brief Implementation of the Capacity Scaling algorithm for
65 65
  /// finding a \ref min_cost_flow "minimum cost flow".
66 66
  ///
67 67
  /// \ref CapacityScaling implements the capacity scaling version
68 68
  /// of the successive shortest path algorithm for finding a
69 69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 70
  /// \ref edmondskarp72theoretical. It is an efficient dual
71 71
  /// solution method.
72 72
  ///
73 73
  /// Most of the parameters of the problem (except for the digraph)
74 74
  /// can be given using separate functions, and the algorithm can be
75 75
  /// executed using the \ref run() function. If some parameters are not
76 76
  /// specified, then default values will be used.
77 77
  ///
78 78
  /// \tparam GR The digraph type the algorithm runs on.
79 79
  /// \tparam V The number type used for flow amounts, capacity bounds
80 80
  /// and supply values in the algorithm. By default it is \c int.
81 81
  /// \tparam C The number type used for costs and potentials in the
82 82
  /// algorithm. By default it is the same as \c V.
83 83
  ///
84 84
  /// \warning Both number types must be signed and all input data must
85 85
  /// be integer.
86 86
  /// \warning This algorithm does not support negative costs for such
87 87
  /// arcs that have infinite upper bound.
88 88
#ifdef DOXYGEN
89 89
  template <typename GR, typename V, typename C, typename TR>
90 90
#else
91 91
  template < typename GR, typename V = int, typename C = V,
92 92
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
93 93
#endif
94 94
  class CapacityScaling
95 95
  {
96 96
  public:
97 97

	
98 98
    /// The type of the digraph
99 99
    typedef typename TR::Digraph Digraph;
100 100
    /// The type of the flow amounts, capacity bounds and supply values
101 101
    typedef typename TR::Value Value;
102 102
    /// The type of the arc costs
103 103
    typedef typename TR::Cost Cost;
104 104

	
105 105
    /// The type of the heap used for internal Dijkstra computations
106 106
    typedef typename TR::Heap Heap;
107 107

	
108 108
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
109 109
    typedef TR Traits;
110 110

	
111 111
  public:
112 112

	
113 113
    /// \brief Problem type constants for the \c run() function.
114 114
    ///
115 115
    /// Enum type containing the problem type constants that can be
116 116
    /// returned by the \ref run() function of the algorithm.
117 117
    enum ProblemType {
118 118
      /// The problem has no feasible solution (flow).
119 119
      INFEASIBLE,
120 120
      /// The problem has optimal solution (i.e. it is feasible and
121 121
      /// bounded), and the algorithm has found optimal flow and node
122 122
      /// potentials (primal and dual solutions).
123 123
      OPTIMAL,
124 124
      /// The digraph contains an arc of negative cost and infinite
125 125
      /// upper bound. It means that the objective function is unbounded
126 126
      /// on that arc, however, note that it could actually be bounded
127 127
      /// over the feasible flows, but this algroithm cannot handle
128 128
      /// these cases.
129 129
      UNBOUNDED
130 130
    };
131 131
  
132 132
  private:
133 133

	
134 134
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
135 135

	
136 136
    typedef std::vector<int> IntVector;
137
    typedef std::vector<char> BoolVector;
138 137
    typedef std::vector<Value> ValueVector;
139 138
    typedef std::vector<Cost> CostVector;
139
    typedef std::vector<char> BoolVector;
140
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
140 141

	
141 142
  private:
142 143

	
143 144
    // Data related to the underlying digraph
144 145
    const GR &_graph;
145 146
    int _node_num;
146 147
    int _arc_num;
147 148
    int _res_arc_num;
148 149
    int _root;
149 150

	
150 151
    // Parameters of the problem
151 152
    bool _have_lower;
152 153
    Value _sum_supply;
153 154

	
154 155
    // Data structures for storing the digraph
155 156
    IntNodeMap _node_id;
156 157
    IntArcMap _arc_idf;
157 158
    IntArcMap _arc_idb;
158 159
    IntVector _first_out;
159 160
    BoolVector _forward;
160 161
    IntVector _source;
161 162
    IntVector _target;
162 163
    IntVector _reverse;
163 164

	
164 165
    // Node and arc data
165 166
    ValueVector _lower;
166 167
    ValueVector _upper;
167 168
    CostVector _cost;
168 169
    ValueVector _supply;
169 170

	
170 171
    ValueVector _res_cap;
171 172
    CostVector _pi;
172 173
    ValueVector _excess;
173 174
    IntVector _excess_nodes;
174 175
    IntVector _deficit_nodes;
175 176

	
176 177
    Value _delta;
177 178
    int _factor;
178 179
    IntVector _pred;
179 180

	
180 181
  public:
181 182
  
182 183
    /// \brief Constant for infinite upper bounds (capacities).
183 184
    ///
184 185
    /// Constant for infinite upper bounds (capacities).
185 186
    /// It is \c std::numeric_limits<Value>::infinity() if available,
186 187
    /// \c std::numeric_limits<Value>::max() otherwise.
187 188
    const Value INF;
188 189

	
189 190
  private:
190 191

	
191 192
    // Special implementation of the Dijkstra algorithm for finding
192 193
    // shortest paths in the residual network of the digraph with
193 194
    // respect to the reduced arc costs and modifying the node
194 195
    // potentials according to the found distance labels.
195 196
    class ResidualDijkstra
196 197
    {
197 198
    private:
198 199

	
199 200
      int _node_num;
200 201
      bool _geq;
201 202
      const IntVector &_first_out;
202 203
      const IntVector &_target;
203 204
      const CostVector &_cost;
204 205
      const ValueVector &_res_cap;
205 206
      const ValueVector &_excess;
206 207
      CostVector &_pi;
207 208
      IntVector &_pred;
208 209
      
209 210
      IntVector _proc_nodes;
210 211
      CostVector _dist;
211 212
      
212 213
    public:
213 214

	
214 215
      ResidualDijkstra(CapacityScaling& cs) :
215 216
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
216 217
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
217 218
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
218 219
        _pred(cs._pred), _dist(cs._node_num)
219 220
      {}
220 221

	
221 222
      int run(int s, Value delta = 1) {
222 223
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
223 224
        Heap heap(heap_cross_ref);
224 225
        heap.push(s, 0);
225 226
        _pred[s] = -1;
226 227
        _proc_nodes.clear();
227 228

	
228 229
        // Process nodes
229 230
        while (!heap.empty() && _excess[heap.top()] > -delta) {
230 231
          int u = heap.top(), v;
231 232
          Cost d = heap.prio() + _pi[u], dn;
232 233
          _dist[u] = heap.prio();
233 234
          _proc_nodes.push_back(u);
234 235
          heap.pop();
235 236

	
236 237
          // Traverse outgoing residual arcs
237 238
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
238 239
          for (int a = _first_out[u]; a != last_out; ++a) {
239 240
            if (_res_cap[a] < delta) continue;
240 241
            v = _target[a];
241 242
            switch (heap.state(v)) {
242 243
              case Heap::PRE_HEAP:
243 244
                heap.push(v, d + _cost[a] - _pi[v]);
244 245
                _pred[v] = a;
245 246
                break;
246 247
              case Heap::IN_HEAP:
247 248
                dn = d + _cost[a] - _pi[v];
248 249
                if (dn < heap[v]) {
249 250
                  heap.decrease(v, dn);
250 251
                  _pred[v] = a;
251 252
                }
252 253
                break;
253 254
              case Heap::POST_HEAP:
254 255
                break;
255 256
            }
256 257
          }
257 258
        }
258 259
        if (heap.empty()) return -1;
259 260

	
260 261
        // Update potentials of processed nodes
261 262
        int t = heap.top();
262 263
        Cost dt = heap.prio();
263 264
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
264 265
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
265 266
        }
266 267

	
267 268
        return t;
268 269
      }
269 270

	
270 271
    }; //class ResidualDijkstra
271 272

	
272 273
  public:
273 274

	
274 275
    /// \name Named Template Parameters
275 276
    /// @{
276 277

	
277 278
    template <typename T>
278 279
    struct SetHeapTraits : public Traits {
279 280
      typedef T Heap;
280 281
    };
281 282

	
282 283
    /// \brief \ref named-templ-param "Named parameter" for setting
283 284
    /// \c Heap type.
284 285
    ///
285 286
    /// \ref named-templ-param "Named parameter" for setting \c Heap
286 287
    /// type, which is used for internal Dijkstra computations.
287 288
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
288 289
    /// its priority type must be \c Cost and its cross reference type
289 290
    /// must be \ref RangeMap "RangeMap<int>".
290 291
    template <typename T>
291 292
    struct SetHeap
292 293
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
293 294
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
294 295
    };
295 296

	
296 297
    /// @}
297 298

	
298 299
  public:
299 300

	
300 301
    /// \brief Constructor.
301 302
    ///
302 303
    /// The constructor of the class.
303 304
    ///
304 305
    /// \param graph The digraph the algorithm runs on.
305 306
    CapacityScaling(const GR& graph) :
306 307
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
307 308
      INF(std::numeric_limits<Value>::has_infinity ?
308 309
          std::numeric_limits<Value>::infinity() :
309 310
          std::numeric_limits<Value>::max())
310 311
    {
311 312
      // Check the number types
312 313
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
313 314
        "The flow type of CapacityScaling must be signed");
314 315
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
315 316
        "The cost type of CapacityScaling must be signed");
316 317

	
317 318
      // Resize vectors
318 319
      _node_num = countNodes(_graph);
319 320
      _arc_num = countArcs(_graph);
320 321
      _res_arc_num = 2 * (_arc_num + _node_num);
321 322
      _root = _node_num;
322 323
      ++_node_num;
323 324

	
324 325
      _first_out.resize(_node_num + 1);
325 326
      _forward.resize(_res_arc_num);
326 327
      _source.resize(_res_arc_num);
327 328
      _target.resize(_res_arc_num);
328 329
      _reverse.resize(_res_arc_num);
329 330

	
330 331
      _lower.resize(_res_arc_num);
331 332
      _upper.resize(_res_arc_num);
... ...
@@ -575,377 +576,377 @@
575 576
    /// \return <tt>(*this)</tt>
576 577
    CapacityScaling& reset() {
577 578
      for (int i = 0; i != _node_num; ++i) {
578 579
        _supply[i] = 0;
579 580
      }
580 581
      for (int j = 0; j != _res_arc_num; ++j) {
581 582
        _lower[j] = 0;
582 583
        _upper[j] = INF;
583 584
        _cost[j] = _forward[j] ? 1 : -1;
584 585
      }
585 586
      _have_lower = false;
586 587
      return *this;
587 588
    }
588 589

	
589 590
    /// @}
590 591

	
591 592
    /// \name Query Functions
592 593
    /// The results of the algorithm can be obtained using these
593 594
    /// functions.\n
594 595
    /// The \ref run() function must be called before using them.
595 596

	
596 597
    /// @{
597 598

	
598 599
    /// \brief Return the total cost of the found flow.
599 600
    ///
600 601
    /// This function returns the total cost of the found flow.
601 602
    /// Its complexity is O(e).
602 603
    ///
603 604
    /// \note The return type of the function can be specified as a
604 605
    /// template parameter. For example,
605 606
    /// \code
606 607
    ///   cs.totalCost<double>();
607 608
    /// \endcode
608 609
    /// It is useful if the total cost cannot be stored in the \c Cost
609 610
    /// type of the algorithm, which is the default return type of the
610 611
    /// function.
611 612
    ///
612 613
    /// \pre \ref run() must be called before using this function.
613 614
    template <typename Number>
614 615
    Number totalCost() const {
615 616
      Number c = 0;
616 617
      for (ArcIt a(_graph); a != INVALID; ++a) {
617 618
        int i = _arc_idb[a];
618 619
        c += static_cast<Number>(_res_cap[i]) *
619 620
             (-static_cast<Number>(_cost[i]));
620 621
      }
621 622
      return c;
622 623
    }
623 624

	
624 625
#ifndef DOXYGEN
625 626
    Cost totalCost() const {
626 627
      return totalCost<Cost>();
627 628
    }
628 629
#endif
629 630

	
630 631
    /// \brief Return the flow on the given arc.
631 632
    ///
632 633
    /// This function returns the flow on the given arc.
633 634
    ///
634 635
    /// \pre \ref run() must be called before using this function.
635 636
    Value flow(const Arc& a) const {
636 637
      return _res_cap[_arc_idb[a]];
637 638
    }
638 639

	
639 640
    /// \brief Return the flow map (the primal solution).
640 641
    ///
641 642
    /// This function copies the flow value on each arc into the given
642 643
    /// map. The \c Value type of the algorithm must be convertible to
643 644
    /// the \c Value type of the map.
644 645
    ///
645 646
    /// \pre \ref run() must be called before using this function.
646 647
    template <typename FlowMap>
647 648
    void flowMap(FlowMap &map) const {
648 649
      for (ArcIt a(_graph); a != INVALID; ++a) {
649 650
        map.set(a, _res_cap[_arc_idb[a]]);
650 651
      }
651 652
    }
652 653

	
653 654
    /// \brief Return the potential (dual value) of the given node.
654 655
    ///
655 656
    /// This function returns the potential (dual value) of the
656 657
    /// given node.
657 658
    ///
658 659
    /// \pre \ref run() must be called before using this function.
659 660
    Cost potential(const Node& n) const {
660 661
      return _pi[_node_id[n]];
661 662
    }
662 663

	
663 664
    /// \brief Return the potential map (the dual solution).
664 665
    ///
665 666
    /// This function copies the potential (dual value) of each node
666 667
    /// into the given map.
667 668
    /// The \c Cost type of the algorithm must be convertible to the
668 669
    /// \c Value type of the map.
669 670
    ///
670 671
    /// \pre \ref run() must be called before using this function.
671 672
    template <typename PotentialMap>
672 673
    void potentialMap(PotentialMap &map) const {
673 674
      for (NodeIt n(_graph); n != INVALID; ++n) {
674 675
        map.set(n, _pi[_node_id[n]]);
675 676
      }
676 677
    }
677 678

	
678 679
    /// @}
679 680

	
680 681
  private:
681 682

	
682 683
    // Initialize the algorithm
683 684
    ProblemType init() {
684 685
      if (_node_num <= 1) return INFEASIBLE;
685 686

	
686 687
      // Check the sum of supply values
687 688
      _sum_supply = 0;
688 689
      for (int i = 0; i != _root; ++i) {
689 690
        _sum_supply += _supply[i];
690 691
      }
691 692
      if (_sum_supply > 0) return INFEASIBLE;
692 693
      
693 694
      // Initialize vectors
694 695
      for (int i = 0; i != _root; ++i) {
695 696
        _pi[i] = 0;
696 697
        _excess[i] = _supply[i];
697 698
      }
698 699

	
699 700
      // Remove non-zero lower bounds
700 701
      const Value MAX = std::numeric_limits<Value>::max();
701 702
      int last_out;
702 703
      if (_have_lower) {
703 704
        for (int i = 0; i != _root; ++i) {
704 705
          last_out = _first_out[i+1];
705 706
          for (int j = _first_out[i]; j != last_out; ++j) {
706 707
            if (_forward[j]) {
707 708
              Value c = _lower[j];
708 709
              if (c >= 0) {
709 710
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
710 711
              } else {
711 712
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
712 713
              }
713 714
              _excess[i] -= c;
714 715
              _excess[_target[j]] += c;
715 716
            } else {
716 717
              _res_cap[j] = 0;
717 718
            }
718 719
          }
719 720
        }
720 721
      } else {
721 722
        for (int j = 0; j != _res_arc_num; ++j) {
722 723
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
723 724
        }
724 725
      }
725 726

	
726 727
      // Handle negative costs
727 728
      for (int i = 0; i != _root; ++i) {
728 729
        last_out = _first_out[i+1] - 1;
729 730
        for (int j = _first_out[i]; j != last_out; ++j) {
730 731
          Value rc = _res_cap[j];
731 732
          if (_cost[j] < 0 && rc > 0) {
732 733
            if (rc >= MAX) return UNBOUNDED;
733 734
            _excess[i] -= rc;
734 735
            _excess[_target[j]] += rc;
735 736
            _res_cap[j] = 0;
736 737
            _res_cap[_reverse[j]] += rc;
737 738
          }
738 739
        }
739 740
      }
740 741
      
741 742
      // Handle GEQ supply type
742 743
      if (_sum_supply < 0) {
743 744
        _pi[_root] = 0;
744 745
        _excess[_root] = -_sum_supply;
745 746
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
746 747
          int ra = _reverse[a];
747 748
          _res_cap[a] = -_sum_supply + 1;
748 749
          _res_cap[ra] = 0;
749 750
          _cost[a] = 0;
750 751
          _cost[ra] = 0;
751 752
        }
752 753
      } else {
753 754
        _pi[_root] = 0;
754 755
        _excess[_root] = 0;
755 756
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
756 757
          int ra = _reverse[a];
757 758
          _res_cap[a] = 1;
758 759
          _res_cap[ra] = 0;
759 760
          _cost[a] = 0;
760 761
          _cost[ra] = 0;
761 762
        }
762 763
      }
763 764

	
764 765
      // Initialize delta value
765 766
      if (_factor > 1) {
766 767
        // With scaling
767
        Value max_sup = 0, max_dem = 0;
768
        for (int i = 0; i != _node_num; ++i) {
768
        Value max_sup = 0, max_dem = 0, max_cap = 0;
769
        for (int i = 0; i != _root; ++i) {
769 770
          Value ex = _excess[i];
770 771
          if ( ex > max_sup) max_sup =  ex;
771 772
          if (-ex > max_dem) max_dem = -ex;
773
          int last_out = _first_out[i+1] - 1;
774
          for (int j = _first_out[i]; j != last_out; ++j) {
775
            if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
772 776
        }
773
        Value max_cap = 0;
774
        for (int j = 0; j != _res_arc_num; ++j) {
775
          if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
776 777
        }
777 778
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
778 779
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
779 780
      } else {
780 781
        // Without scaling
781 782
        _delta = 1;
782 783
      }
783 784

	
784 785
      return OPTIMAL;
785 786
    }
786 787

	
787 788
    ProblemType start() {
788 789
      // Execute the algorithm
789 790
      ProblemType pt;
790 791
      if (_delta > 1)
791 792
        pt = startWithScaling();
792 793
      else
793 794
        pt = startWithoutScaling();
794 795

	
795 796
      // Handle non-zero lower bounds
796 797
      if (_have_lower) {
797 798
        int limit = _first_out[_root];
798 799
        for (int j = 0; j != limit; ++j) {
799 800
          if (!_forward[j]) _res_cap[j] += _lower[j];
800 801
        }
801 802
      }
802 803

	
803 804
      // Shift potentials if necessary
804 805
      Cost pr = _pi[_root];
805 806
      if (_sum_supply < 0 || pr > 0) {
806 807
        for (int i = 0; i != _node_num; ++i) {
807 808
          _pi[i] -= pr;
808 809
        }        
809 810
      }
810 811
      
811 812
      return pt;
812 813
    }
813 814

	
814 815
    // Execute the capacity scaling algorithm
815 816
    ProblemType startWithScaling() {
816 817
      // Perform capacity scaling phases
817 818
      int s, t;
818 819
      ResidualDijkstra _dijkstra(*this);
819 820
      while (true) {
820 821
        // Saturate all arcs not satisfying the optimality condition
821 822
        int last_out;
822 823
        for (int u = 0; u != _node_num; ++u) {
823 824
          last_out = _sum_supply < 0 ?
824 825
            _first_out[u+1] : _first_out[u+1] - 1;
825 826
          for (int a = _first_out[u]; a != last_out; ++a) {
826 827
            int v = _target[a];
827 828
            Cost c = _cost[a] + _pi[u] - _pi[v];
828 829
            Value rc = _res_cap[a];
829 830
            if (c < 0 && rc >= _delta) {
830 831
              _excess[u] -= rc;
831 832
              _excess[v] += rc;
832 833
              _res_cap[a] = 0;
833 834
              _res_cap[_reverse[a]] += rc;
834 835
            }
835 836
          }
836 837
        }
837 838

	
838 839
        // Find excess nodes and deficit nodes
839 840
        _excess_nodes.clear();
840 841
        _deficit_nodes.clear();
841 842
        for (int u = 0; u != _node_num; ++u) {
842 843
          Value ex = _excess[u];
843 844
          if (ex >=  _delta) _excess_nodes.push_back(u);
844 845
          if (ex <= -_delta) _deficit_nodes.push_back(u);
845 846
        }
846 847
        int next_node = 0, next_def_node = 0;
847 848

	
848 849
        // Find augmenting shortest paths
849 850
        while (next_node < int(_excess_nodes.size())) {
850 851
          // Check deficit nodes
851 852
          if (_delta > 1) {
852 853
            bool delta_deficit = false;
853 854
            for ( ; next_def_node < int(_deficit_nodes.size());
854 855
                    ++next_def_node ) {
855 856
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
856 857
                delta_deficit = true;
857 858
                break;
858 859
              }
859 860
            }
860 861
            if (!delta_deficit) break;
861 862
          }
862 863

	
863 864
          // Run Dijkstra in the residual network
864 865
          s = _excess_nodes[next_node];
865 866
          if ((t = _dijkstra.run(s, _delta)) == -1) {
866 867
            if (_delta > 1) {
867 868
              ++next_node;
868 869
              continue;
869 870
            }
870 871
            return INFEASIBLE;
871 872
          }
872 873

	
873 874
          // Augment along a shortest path from s to t
874 875
          Value d = std::min(_excess[s], -_excess[t]);
875 876
          int u = t;
876 877
          int a;
877 878
          if (d > _delta) {
878 879
            while ((a = _pred[u]) != -1) {
879 880
              if (_res_cap[a] < d) d = _res_cap[a];
880 881
              u = _source[a];
881 882
            }
882 883
          }
883 884
          u = t;
884 885
          while ((a = _pred[u]) != -1) {
885 886
            _res_cap[a] -= d;
886 887
            _res_cap[_reverse[a]] += d;
887 888
            u = _source[a];
888 889
          }
889 890
          _excess[s] -= d;
890 891
          _excess[t] += d;
891 892

	
892 893
          if (_excess[s] < _delta) ++next_node;
893 894
        }
894 895

	
895 896
        if (_delta == 1) break;
896 897
        _delta = _delta <= _factor ? 1 : _delta / _factor;
897 898
      }
898 899

	
899 900
      return OPTIMAL;
900 901
    }
901 902

	
902 903
    // Execute the successive shortest path algorithm
903 904
    ProblemType startWithoutScaling() {
904 905
      // Find excess nodes
905 906
      _excess_nodes.clear();
906 907
      for (int i = 0; i != _node_num; ++i) {
907 908
        if (_excess[i] > 0) _excess_nodes.push_back(i);
908 909
      }
909 910
      if (_excess_nodes.size() == 0) return OPTIMAL;
910 911
      int next_node = 0;
911 912

	
912 913
      // Find shortest paths
913 914
      int s, t;
914 915
      ResidualDijkstra _dijkstra(*this);
915 916
      while ( _excess[_excess_nodes[next_node]] > 0 ||
916 917
              ++next_node < int(_excess_nodes.size()) )
917 918
      {
918 919
        // Run Dijkstra in the residual network
919 920
        s = _excess_nodes[next_node];
920 921
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
921 922

	
922 923
        // Augment along a shortest path from s to t
923 924
        Value d = std::min(_excess[s], -_excess[t]);
924 925
        int u = t;
925 926
        int a;
926 927
        if (d > 1) {
927 928
          while ((a = _pred[u]) != -1) {
928 929
            if (_res_cap[a] < d) d = _res_cap[a];
929 930
            u = _source[a];
930 931
          }
931 932
        }
932 933
        u = t;
933 934
        while ((a = _pred[u]) != -1) {
934 935
          _res_cap[a] -= d;
935 936
          _res_cap[_reverse[a]] += d;
936 937
          u = _source[a];
937 938
        }
938 939
        _excess[s] -= d;
939 940
        _excess[t] += d;
940 941
      }
941 942

	
942 943
      return OPTIMAL;
943 944
    }
944 945

	
945 946
  }; //class CapacityScaling
946 947

	
947 948
  ///@}
948 949

	
949 950
} //namespace lemon
950 951

	
951 952
#endif //LEMON_CAPACITY_SCALING_H
Show white space 384 line context
... ...
@@ -8,459 +8,467 @@
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COST_SCALING_H
20 20
#define LEMON_COST_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <deque>
28 28
#include <limits>
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/circulation.h>
35 35
#include <lemon/bellman_ford.h>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Default traits class of CostScaling algorithm.
40 40
  ///
41 41
  /// Default traits class of CostScaling algorithm.
42 42
  /// \tparam GR Digraph type.
43 43
  /// \tparam V The number type used for flow amounts, capacity bounds
44 44
  /// and supply values. By default it is \c int.
45 45
  /// \tparam C The number type used for costs and potentials.
46 46
  /// By default it is the same as \c V.
47 47
#ifdef DOXYGEN
48 48
  template <typename GR, typename V = int, typename C = V>
49 49
#else
50 50
  template < typename GR, typename V = int, typename C = V,
51 51
             bool integer = std::numeric_limits<C>::is_integer >
52 52
#endif
53 53
  struct CostScalingDefaultTraits
54 54
  {
55 55
    /// The type of the digraph
56 56
    typedef GR Digraph;
57 57
    /// The type of the flow amounts, capacity bounds and supply values
58 58
    typedef V Value;
59 59
    /// The type of the arc costs
60 60
    typedef C Cost;
61 61

	
62 62
    /// \brief The large cost type used for internal computations
63 63
    ///
64 64
    /// The large cost type used for internal computations.
65 65
    /// It is \c long \c long if the \c Cost type is integer,
66 66
    /// otherwise it is \c double.
67 67
    /// \c Cost must be convertible to \c LargeCost.
68 68
    typedef double LargeCost;
69 69
  };
70 70

	
71 71
  // Default traits class for integer cost types
72 72
  template <typename GR, typename V, typename C>
73 73
  struct CostScalingDefaultTraits<GR, V, C, true>
74 74
  {
75 75
    typedef GR Digraph;
76 76
    typedef V Value;
77 77
    typedef C Cost;
78 78
#ifdef LEMON_HAVE_LONG_LONG
79 79
    typedef long long LargeCost;
80 80
#else
81 81
    typedef long LargeCost;
82 82
#endif
83 83
  };
84 84

	
85 85

	
86 86
  /// \addtogroup min_cost_flow_algs
87 87
  /// @{
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient. 
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100 100
  /// Most of the parameters of the problem (except for the digraph)
101 101
  /// can be given using separate functions, and the algorithm can be
102 102
  /// executed using the \ref run() function. If some parameters are not
103 103
  /// specified, then default values will be used.
104 104
  ///
105 105
  /// \tparam GR The digraph type the algorithm runs on.
106 106
  /// \tparam V The number type used for flow amounts, capacity bounds
107 107
  /// and supply values in the algorithm. By default it is \c int.
108 108
  /// \tparam C The number type used for costs and potentials in the
109 109
  /// algorithm. By default it is the same as \c V.
110 110
  ///
111 111
  /// \warning Both number types must be signed and all input data must
112 112
  /// be integer.
113 113
  /// \warning This algorithm does not support negative costs for such
114 114
  /// arcs that have infinite upper bound.
115 115
  ///
116 116
  /// \note %CostScaling provides three different internal methods,
117 117
  /// from which the most efficient one is used by default.
118 118
  /// For more information, see \ref Method.
119 119
#ifdef DOXYGEN
120 120
  template <typename GR, typename V, typename C, typename TR>
121 121
#else
122 122
  template < typename GR, typename V = int, typename C = V,
123 123
             typename TR = CostScalingDefaultTraits<GR, V, C> >
124 124
#endif
125 125
  class CostScaling
126 126
  {
127 127
  public:
128 128

	
129 129
    /// The type of the digraph
130 130
    typedef typename TR::Digraph Digraph;
131 131
    /// The type of the flow amounts, capacity bounds and supply values
132 132
    typedef typename TR::Value Value;
133 133
    /// The type of the arc costs
134 134
    typedef typename TR::Cost Cost;
135 135

	
136 136
    /// \brief The large cost type
137 137
    ///
138 138
    /// The large cost type used for internal computations.
139 139
    /// Using the \ref CostScalingDefaultTraits "default traits class",
140 140
    /// it is \c long \c long if the \c Cost type is integer,
141 141
    /// otherwise it is \c double.
142 142
    typedef typename TR::LargeCost LargeCost;
143 143

	
144 144
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
145 145
    typedef TR Traits;
146 146

	
147 147
  public:
148 148

	
149 149
    /// \brief Problem type constants for the \c run() function.
150 150
    ///
151 151
    /// Enum type containing the problem type constants that can be
152 152
    /// returned by the \ref run() function of the algorithm.
153 153
    enum ProblemType {
154 154
      /// The problem has no feasible solution (flow).
155 155
      INFEASIBLE,
156 156
      /// The problem has optimal solution (i.e. it is feasible and
157 157
      /// bounded), and the algorithm has found optimal flow and node
158 158
      /// potentials (primal and dual solutions).
159 159
      OPTIMAL,
160 160
      /// The digraph contains an arc of negative cost and infinite
161 161
      /// upper bound. It means that the objective function is unbounded
162 162
      /// on that arc, however, note that it could actually be bounded
163 163
      /// over the feasible flows, but this algroithm cannot handle
164 164
      /// these cases.
165 165
      UNBOUNDED
166 166
    };
167 167

	
168 168
    /// \brief Constants for selecting the internal method.
169 169
    ///
170 170
    /// Enum type containing constants for selecting the internal method
171 171
    /// for the \ref run() function.
172 172
    ///
173 173
    /// \ref CostScaling provides three internal methods that differ mainly
174 174
    /// in their base operations, which are used in conjunction with the
175 175
    /// relabel operation.
176 176
    /// By default, the so called \ref PARTIAL_AUGMENT
177 177
    /// "Partial Augment-Relabel" method is used, which proved to be
178 178
    /// the most efficient and the most robust on various test inputs.
179 179
    /// However, the other methods can be selected using the \ref run()
180 180
    /// function with the proper parameter.
181 181
    enum Method {
182 182
      /// Local push operations are used, i.e. flow is moved only on one
183 183
      /// admissible arc at once.
184 184
      PUSH,
185 185
      /// Augment operations are used, i.e. flow is moved on admissible
186 186
      /// paths from a node with excess to a node with deficit.
187 187
      AUGMENT,
188 188
      /// Partial augment operations are used, i.e. flow is moved on 
189 189
      /// admissible paths started from a node with excess, but the
190 190
      /// lengths of these paths are limited. This method can be viewed
191 191
      /// as a combined version of the previous two operations.
192 192
      PARTIAL_AUGMENT
193 193
    };
194 194

	
195 195
  private:
196 196

	
197 197
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
198 198

	
199 199
    typedef std::vector<int> IntVector;
200
    typedef std::vector<char> BoolVector;
201 200
    typedef std::vector<Value> ValueVector;
202 201
    typedef std::vector<Cost> CostVector;
203 202
    typedef std::vector<LargeCost> LargeCostVector;
203
    typedef std::vector<char> BoolVector;
204
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
204 205

	
205 206
  private:
206 207
  
207 208
    template <typename KT, typename VT>
208 209
    class StaticVectorMap {
209 210
    public:
210 211
      typedef KT Key;
211 212
      typedef VT Value;
212 213
      
213 214
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
214 215
      
215 216
      const Value& operator[](const Key& key) const {
216 217
        return _v[StaticDigraph::id(key)];
217 218
      }
218 219

	
219 220
      Value& operator[](const Key& key) {
220 221
        return _v[StaticDigraph::id(key)];
221 222
      }
222 223
      
223 224
      void set(const Key& key, const Value& val) {
224 225
        _v[StaticDigraph::id(key)] = val;
225 226
      }
226 227

	
227 228
    private:
228 229
      std::vector<Value>& _v;
229 230
    };
230 231

	
231 232
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
232 233
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
233 234

	
234 235
  private:
235 236

	
236 237
    // Data related to the underlying digraph
237 238
    const GR &_graph;
238 239
    int _node_num;
239 240
    int _arc_num;
240 241
    int _res_node_num;
241 242
    int _res_arc_num;
242 243
    int _root;
243 244

	
244 245
    // Parameters of the problem
245 246
    bool _have_lower;
246 247
    Value _sum_supply;
248
    int _sup_node_num;
247 249

	
248 250
    // Data structures for storing the digraph
249 251
    IntNodeMap _node_id;
250 252
    IntArcMap _arc_idf;
251 253
    IntArcMap _arc_idb;
252 254
    IntVector _first_out;
253 255
    BoolVector _forward;
254 256
    IntVector _source;
255 257
    IntVector _target;
256 258
    IntVector _reverse;
257 259

	
258 260
    // Node and arc data
259 261
    ValueVector _lower;
260 262
    ValueVector _upper;
261 263
    CostVector _scost;
262 264
    ValueVector _supply;
263 265

	
264 266
    ValueVector _res_cap;
265 267
    LargeCostVector _cost;
266 268
    LargeCostVector _pi;
267 269
    ValueVector _excess;
268 270
    IntVector _next_out;
269 271
    std::deque<int> _active_nodes;
270 272

	
271 273
    // Data for scaling
272 274
    LargeCost _epsilon;
273 275
    int _alpha;
274 276

	
277
    IntVector _buckets;
278
    IntVector _bucket_next;
279
    IntVector _bucket_prev;
280
    IntVector _rank;
281
    int _max_rank;
282
  
275 283
    // Data for a StaticDigraph structure
276 284
    typedef std::pair<int, int> IntPair;
277 285
    StaticDigraph _sgr;
278 286
    std::vector<IntPair> _arc_vec;
279 287
    std::vector<LargeCost> _cost_vec;
280 288
    LargeCostArcMap _cost_map;
281 289
    LargeCostNodeMap _pi_map;
282 290
  
283 291
  public:
284 292
  
285 293
    /// \brief Constant for infinite upper bounds (capacities).
286 294
    ///
287 295
    /// Constant for infinite upper bounds (capacities).
288 296
    /// It is \c std::numeric_limits<Value>::infinity() if available,
289 297
    /// \c std::numeric_limits<Value>::max() otherwise.
290 298
    const Value INF;
291 299

	
292 300
  public:
293 301

	
294 302
    /// \name Named Template Parameters
295 303
    /// @{
296 304

	
297 305
    template <typename T>
298 306
    struct SetLargeCostTraits : public Traits {
299 307
      typedef T LargeCost;
300 308
    };
301 309

	
302 310
    /// \brief \ref named-templ-param "Named parameter" for setting
303 311
    /// \c LargeCost type.
304 312
    ///
305 313
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
306 314
    /// type, which is used for internal computations in the algorithm.
307 315
    /// \c Cost must be convertible to \c LargeCost.
308 316
    template <typename T>
309 317
    struct SetLargeCost
310 318
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
311 319
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
312 320
    };
313 321

	
314 322
    /// @}
315 323

	
316 324
  public:
317 325

	
318 326
    /// \brief Constructor.
319 327
    ///
320 328
    /// The constructor of the class.
321 329
    ///
322 330
    /// \param graph The digraph the algorithm runs on.
323 331
    CostScaling(const GR& graph) :
324 332
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
325 333
      _cost_map(_cost_vec), _pi_map(_pi),
326 334
      INF(std::numeric_limits<Value>::has_infinity ?
327 335
          std::numeric_limits<Value>::infinity() :
328 336
          std::numeric_limits<Value>::max())
329 337
    {
330 338
      // Check the number types
331 339
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
332 340
        "The flow type of CostScaling must be signed");
333 341
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
334 342
        "The cost type of CostScaling must be signed");
335 343

	
336 344
      // Resize vectors
337 345
      _node_num = countNodes(_graph);
338 346
      _arc_num = countArcs(_graph);
339 347
      _res_node_num = _node_num + 1;
340 348
      _res_arc_num = 2 * (_arc_num + _node_num);
341 349
      _root = _node_num;
342 350

	
343 351
      _first_out.resize(_res_node_num + 1);
344 352
      _forward.resize(_res_arc_num);
345 353
      _source.resize(_res_arc_num);
346 354
      _target.resize(_res_arc_num);
347 355
      _reverse.resize(_res_arc_num);
348 356

	
349 357
      _lower.resize(_res_arc_num);
350 358
      _upper.resize(_res_arc_num);
351 359
      _scost.resize(_res_arc_num);
352 360
      _supply.resize(_res_node_num);
353 361
      
354 362
      _res_cap.resize(_res_arc_num);
355 363
      _cost.resize(_res_arc_num);
356 364
      _pi.resize(_res_node_num);
357 365
      _excess.resize(_res_node_num);
358 366
      _next_out.resize(_res_node_num);
359 367

	
360 368
      _arc_vec.reserve(_res_arc_num);
361 369
      _cost_vec.reserve(_res_arc_num);
362 370

	
363 371
      // Copy the graph
364 372
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
365 373
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
366 374
        _node_id[n] = i;
367 375
      }
368 376
      i = 0;
369 377
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
370 378
        _first_out[i] = j;
371 379
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
372 380
          _arc_idf[a] = j;
373 381
          _forward[j] = true;
374 382
          _source[j] = i;
375 383
          _target[j] = _node_id[_graph.runningNode(a)];
376 384
        }
377 385
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
378 386
          _arc_idb[a] = j;
379 387
          _forward[j] = false;
380 388
          _source[j] = i;
381 389
          _target[j] = _node_id[_graph.runningNode(a)];
382 390
        }
383 391
        _forward[j] = false;
384 392
        _source[j] = i;
385 393
        _target[j] = _root;
386 394
        _reverse[j] = k;
387 395
        _forward[k] = true;
388 396
        _source[k] = _root;
389 397
        _target[k] = i;
390 398
        _reverse[k] = j;
391 399
        ++j; ++k;
392 400
      }
393 401
      _first_out[i] = j;
394 402
      _first_out[_res_node_num] = k;
395 403
      for (ArcIt a(_graph); a != INVALID; ++a) {
396 404
        int fi = _arc_idf[a];
397 405
        int bi = _arc_idb[a];
398 406
        _reverse[fi] = bi;
399 407
        _reverse[bi] = fi;
400 408
      }
401 409
      
402 410
      // Reset parameters
403 411
      reset();
404 412
    }
405 413

	
406 414
    /// \name Parameters
407 415
    /// The parameters of the algorithm can be specified using these
408 416
    /// functions.
409 417

	
410 418
    /// @{
411 419

	
412 420
    /// \brief Set the lower bounds on the arcs.
413 421
    ///
414 422
    /// This function sets the lower bounds on the arcs.
415 423
    /// If it is not used before calling \ref run(), the lower bounds
416 424
    /// will be set to zero on all arcs.
417 425
    ///
418 426
    /// \param map An arc map storing the lower bounds.
419 427
    /// Its \c Value type must be convertible to the \c Value type
420 428
    /// of the algorithm.
421 429
    ///
422 430
    /// \return <tt>(*this)</tt>
423 431
    template <typename LowerMap>
424 432
    CostScaling& lowerMap(const LowerMap& map) {
425 433
      _have_lower = true;
426 434
      for (ArcIt a(_graph); a != INVALID; ++a) {
427 435
        _lower[_arc_idf[a]] = map[a];
428 436
        _lower[_arc_idb[a]] = map[a];
429 437
      }
430 438
      return *this;
431 439
    }
432 440

	
433 441
    /// \brief Set the upper bounds (capacities) on the arcs.
434 442
    ///
435 443
    /// This function sets the upper bounds (capacities) on the arcs.
436 444
    /// If it is not used before calling \ref run(), the upper bounds
437 445
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
438 446
    /// unbounded from above).
439 447
    ///
440 448
    /// \param map An arc map storing the upper bounds.
441 449
    /// Its \c Value type must be convertible to the \c Value type
442 450
    /// of the algorithm.
443 451
    ///
444 452
    /// \return <tt>(*this)</tt>
445 453
    template<typename UpperMap>
446 454
    CostScaling& upperMap(const UpperMap& map) {
447 455
      for (ArcIt a(_graph); a != INVALID; ++a) {
448 456
        _upper[_arc_idf[a]] = map[a];
449 457
      }
450 458
      return *this;
451 459
    }
452 460

	
453 461
    /// \brief Set the costs of the arcs.
454 462
    ///
455 463
    /// This function sets the costs of the arcs.
456 464
    /// If it is not used before calling \ref run(), the costs
457 465
    /// will be set to \c 1 on all arcs.
458 466
    ///
459 467
    /// \param map An arc map storing the costs.
460 468
    /// Its \c Value type must be convertible to the \c Cost type
461 469
    /// of the algorithm.
462 470
    ///
463 471
    /// \return <tt>(*this)</tt>
464 472
    template<typename CostMap>
465 473
    CostScaling& costMap(const CostMap& map) {
466 474
      for (ArcIt a(_graph); a != INVALID; ++a) {
... ...
@@ -613,558 +621,666 @@
613 621
        _scost[j] = 0;
614 622
        _scost[_reverse[j]] = 0;
615 623
      }      
616 624
      _have_lower = false;
617 625
      return *this;
618 626
    }
619 627

	
620 628
    /// @}
621 629

	
622 630
    /// \name Query Functions
623 631
    /// The results of the algorithm can be obtained using these
624 632
    /// functions.\n
625 633
    /// The \ref run() function must be called before using them.
626 634

	
627 635
    /// @{
628 636

	
629 637
    /// \brief Return the total cost of the found flow.
630 638
    ///
631 639
    /// This function returns the total cost of the found flow.
632 640
    /// Its complexity is O(e).
633 641
    ///
634 642
    /// \note The return type of the function can be specified as a
635 643
    /// template parameter. For example,
636 644
    /// \code
637 645
    ///   cs.totalCost<double>();
638 646
    /// \endcode
639 647
    /// It is useful if the total cost cannot be stored in the \c Cost
640 648
    /// type of the algorithm, which is the default return type of the
641 649
    /// function.
642 650
    ///
643 651
    /// \pre \ref run() must be called before using this function.
644 652
    template <typename Number>
645 653
    Number totalCost() const {
646 654
      Number c = 0;
647 655
      for (ArcIt a(_graph); a != INVALID; ++a) {
648 656
        int i = _arc_idb[a];
649 657
        c += static_cast<Number>(_res_cap[i]) *
650 658
             (-static_cast<Number>(_scost[i]));
651 659
      }
652 660
      return c;
653 661
    }
654 662

	
655 663
#ifndef DOXYGEN
656 664
    Cost totalCost() const {
657 665
      return totalCost<Cost>();
658 666
    }
659 667
#endif
660 668

	
661 669
    /// \brief Return the flow on the given arc.
662 670
    ///
663 671
    /// This function returns the flow on the given arc.
664 672
    ///
665 673
    /// \pre \ref run() must be called before using this function.
666 674
    Value flow(const Arc& a) const {
667 675
      return _res_cap[_arc_idb[a]];
668 676
    }
669 677

	
670 678
    /// \brief Return the flow map (the primal solution).
671 679
    ///
672 680
    /// This function copies the flow value on each arc into the given
673 681
    /// map. The \c Value type of the algorithm must be convertible to
674 682
    /// the \c Value type of the map.
675 683
    ///
676 684
    /// \pre \ref run() must be called before using this function.
677 685
    template <typename FlowMap>
678 686
    void flowMap(FlowMap &map) const {
679 687
      for (ArcIt a(_graph); a != INVALID; ++a) {
680 688
        map.set(a, _res_cap[_arc_idb[a]]);
681 689
      }
682 690
    }
683 691

	
684 692
    /// \brief Return the potential (dual value) of the given node.
685 693
    ///
686 694
    /// This function returns the potential (dual value) of the
687 695
    /// given node.
688 696
    ///
689 697
    /// \pre \ref run() must be called before using this function.
690 698
    Cost potential(const Node& n) const {
691 699
      return static_cast<Cost>(_pi[_node_id[n]]);
692 700
    }
693 701

	
694 702
    /// \brief Return the potential map (the dual solution).
695 703
    ///
696 704
    /// This function copies the potential (dual value) of each node
697 705
    /// into the given map.
698 706
    /// The \c Cost type of the algorithm must be convertible to the
699 707
    /// \c Value type of the map.
700 708
    ///
701 709
    /// \pre \ref run() must be called before using this function.
702 710
    template <typename PotentialMap>
703 711
    void potentialMap(PotentialMap &map) const {
704 712
      for (NodeIt n(_graph); n != INVALID; ++n) {
705 713
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
706 714
      }
707 715
    }
708 716

	
709 717
    /// @}
710 718

	
711 719
  private:
712 720

	
713 721
    // Initialize the algorithm
714 722
    ProblemType init() {
715 723
      if (_res_node_num <= 1) return INFEASIBLE;
716 724

	
717 725
      // Check the sum of supply values
718 726
      _sum_supply = 0;
719 727
      for (int i = 0; i != _root; ++i) {
720 728
        _sum_supply += _supply[i];
721 729
      }
722 730
      if (_sum_supply > 0) return INFEASIBLE;
723 731
      
724 732

	
725 733
      // Initialize vectors
726 734
      for (int i = 0; i != _res_node_num; ++i) {
727 735
        _pi[i] = 0;
728 736
        _excess[i] = _supply[i];
729 737
      }
730 738
      
731 739
      // Remove infinite upper bounds and check negative arcs
732 740
      const Value MAX = std::numeric_limits<Value>::max();
733 741
      int last_out;
734 742
      if (_have_lower) {
735 743
        for (int i = 0; i != _root; ++i) {
736 744
          last_out = _first_out[i+1];
737 745
          for (int j = _first_out[i]; j != last_out; ++j) {
738 746
            if (_forward[j]) {
739 747
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
740 748
              if (c >= MAX) return UNBOUNDED;
741 749
              _excess[i] -= c;
742 750
              _excess[_target[j]] += c;
743 751
            }
744 752
          }
745 753
        }
746 754
      } else {
747 755
        for (int i = 0; i != _root; ++i) {
748 756
          last_out = _first_out[i+1];
749 757
          for (int j = _first_out[i]; j != last_out; ++j) {
750 758
            if (_forward[j] && _scost[j] < 0) {
751 759
              Value c = _upper[j];
752 760
              if (c >= MAX) return UNBOUNDED;
753 761
              _excess[i] -= c;
754 762
              _excess[_target[j]] += c;
755 763
            }
756 764
          }
757 765
        }
758 766
      }
759 767
      Value ex, max_cap = 0;
760 768
      for (int i = 0; i != _res_node_num; ++i) {
761 769
        ex = _excess[i];
762 770
        _excess[i] = 0;
763 771
        if (ex < 0) max_cap -= ex;
764 772
      }
765 773
      for (int j = 0; j != _res_arc_num; ++j) {
766 774
        if (_upper[j] >= MAX) _upper[j] = max_cap;
767 775
      }
768 776

	
769 777
      // Initialize the large cost vector and the epsilon parameter
770 778
      _epsilon = 0;
771 779
      LargeCost lc;
772 780
      for (int i = 0; i != _root; ++i) {
773 781
        last_out = _first_out[i+1];
774 782
        for (int j = _first_out[i]; j != last_out; ++j) {
775 783
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
776 784
          _cost[j] = lc;
777 785
          if (lc > _epsilon) _epsilon = lc;
778 786
        }
779 787
      }
780 788
      _epsilon /= _alpha;
781 789

	
782 790
      // Initialize maps for Circulation and remove non-zero lower bounds
783 791
      ConstMap<Arc, Value> low(0);
784 792
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
785 793
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
786 794
      ValueArcMap cap(_graph), flow(_graph);
787 795
      ValueNodeMap sup(_graph);
788 796
      for (NodeIt n(_graph); n != INVALID; ++n) {
789 797
        sup[n] = _supply[_node_id[n]];
790 798
      }
791 799
      if (_have_lower) {
792 800
        for (ArcIt a(_graph); a != INVALID; ++a) {
793 801
          int j = _arc_idf[a];
794 802
          Value c = _lower[j];
795 803
          cap[a] = _upper[j] - c;
796 804
          sup[_graph.source(a)] -= c;
797 805
          sup[_graph.target(a)] += c;
798 806
        }
799 807
      } else {
800 808
        for (ArcIt a(_graph); a != INVALID; ++a) {
801 809
          cap[a] = _upper[_arc_idf[a]];
802 810
        }
803 811
      }
804 812

	
813
      _sup_node_num = 0;
814
      for (NodeIt n(_graph); n != INVALID; ++n) {
815
        if (sup[n] > 0) ++_sup_node_num;
816
      }
817

	
805 818
      // Find a feasible flow using Circulation
806 819
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
807 820
        circ(_graph, low, cap, sup);
808 821
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
809 822

	
810 823
      // Set residual capacities and handle GEQ supply type
811 824
      if (_sum_supply < 0) {
812 825
        for (ArcIt a(_graph); a != INVALID; ++a) {
813 826
          Value fa = flow[a];
814 827
          _res_cap[_arc_idf[a]] = cap[a] - fa;
815 828
          _res_cap[_arc_idb[a]] = fa;
816 829
          sup[_graph.source(a)] -= fa;
817 830
          sup[_graph.target(a)] += fa;
818 831
        }
819 832
        for (NodeIt n(_graph); n != INVALID; ++n) {
820 833
          _excess[_node_id[n]] = sup[n];
821 834
        }
822 835
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
823 836
          int u = _target[a];
824 837
          int ra = _reverse[a];
825 838
          _res_cap[a] = -_sum_supply + 1;
826 839
          _res_cap[ra] = -_excess[u];
827 840
          _cost[a] = 0;
828 841
          _cost[ra] = 0;
829 842
          _excess[u] = 0;
830 843
        }
831 844
      } else {
832 845
        for (ArcIt a(_graph); a != INVALID; ++a) {
833 846
          Value fa = flow[a];
834 847
          _res_cap[_arc_idf[a]] = cap[a] - fa;
835 848
          _res_cap[_arc_idb[a]] = fa;
836 849
        }
837 850
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
838 851
          int ra = _reverse[a];
839
          _res_cap[a] = 1;
852
          _res_cap[a] = 0;
840 853
          _res_cap[ra] = 0;
841 854
          _cost[a] = 0;
842 855
          _cost[ra] = 0;
843 856
        }
844 857
      }
845 858
      
846 859
      return OPTIMAL;
847 860
    }
848 861

	
849 862
    // Execute the algorithm and transform the results
850 863
    void start(Method method) {
851 864
      // Maximum path length for partial augment
852 865
      const int MAX_PATH_LENGTH = 4;
853 866
      
867
      // Initialize data structures for buckets      
868
      _max_rank = _alpha * _res_node_num;
869
      _buckets.resize(_max_rank);
870
      _bucket_next.resize(_res_node_num + 1);
871
      _bucket_prev.resize(_res_node_num + 1);
872
      _rank.resize(_res_node_num + 1);
873
  
854 874
      // Execute the algorithm
855 875
      switch (method) {
856 876
        case PUSH:
857 877
          startPush();
858 878
          break;
859 879
        case AUGMENT:
860 880
          startAugment();
861 881
          break;
862 882
        case PARTIAL_AUGMENT:
863 883
          startAugment(MAX_PATH_LENGTH);
864 884
          break;
865 885
      }
866 886

	
867 887
      // Compute node potentials for the original costs
868 888
      _arc_vec.clear();
869 889
      _cost_vec.clear();
870 890
      for (int j = 0; j != _res_arc_num; ++j) {
871 891
        if (_res_cap[j] > 0) {
872 892
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
873 893
          _cost_vec.push_back(_scost[j]);
874 894
        }
875 895
      }
876 896
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
877 897

	
878 898
      typename BellmanFord<StaticDigraph, LargeCostArcMap>
879 899
        ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
880 900
      bf.distMap(_pi_map);
881 901
      bf.init(0);
882 902
      bf.start();
883 903

	
884 904
      // Handle non-zero lower bounds
885 905
      if (_have_lower) {
886 906
        int limit = _first_out[_root];
887 907
        for (int j = 0; j != limit; ++j) {
888 908
          if (!_forward[j]) _res_cap[j] += _lower[j];
889 909
        }
890 910
      }
891 911
    }
892 912

	
893
    /// Execute the algorithm performing augment and relabel operations
894
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
895
      // Paramters for heuristics
896
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
897
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
898

	
899
      // Perform cost scaling phases
900
      IntVector pred_arc(_res_node_num);
901
      std::vector<int> path_nodes;
902
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
903
                                        1 : _epsilon / _alpha )
904
      {
905
        // "Early Termination" heuristic: use Bellman-Ford algorithm
906
        // to check if the current flow is optimal
907
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
908
          _arc_vec.clear();
909
          _cost_vec.clear();
910
          for (int j = 0; j != _res_arc_num; ++j) {
911
            if (_res_cap[j] > 0) {
912
              _arc_vec.push_back(IntPair(_source[j], _target[j]));
913
              _cost_vec.push_back(_cost[j] + 1);
914
            }
915
          }
916
          _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
917

	
918
          BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
919
          bf.init(0);
920
          bool done = false;
921
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
922
          for (int i = 0; i < K && !done; ++i)
923
            done = bf.processNextWeakRound();
924
          if (done) break;
925
        }
926

	
913
    // Initialize a cost scaling phase
914
    void initPhase() {
927 915
        // Saturate arcs not satisfying the optimality condition
928
        for (int a = 0; a != _res_arc_num; ++a) {
929
          if (_res_cap[a] > 0 &&
930
              _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
916
      for (int u = 0; u != _res_node_num; ++u) {
917
        int last_out = _first_out[u+1];
918
        LargeCost pi_u = _pi[u];
919
        for (int a = _first_out[u]; a != last_out; ++a) {
920
          int v = _target[a];
921
          if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
931 922
            Value delta = _res_cap[a];
932
            _excess[_source[a]] -= delta;
933
            _excess[_target[a]] += delta;
923
            _excess[u] -= delta;
924
            _excess[v] += delta;
934 925
            _res_cap[a] = 0;
935 926
            _res_cap[_reverse[a]] += delta;
936 927
          }
937 928
        }
929
      }
938 930
        
939 931
        // Find active nodes (i.e. nodes with positive excess)
940 932
        for (int u = 0; u != _res_node_num; ++u) {
941 933
          if (_excess[u] > 0) _active_nodes.push_back(u);
942 934
        }
943 935

	
944 936
        // Initialize the next arcs
945 937
        for (int u = 0; u != _res_node_num; ++u) {
946 938
          _next_out[u] = _first_out[u];
947 939
        }
940
    }
941
    
942
    // Early termination heuristic
943
    bool earlyTermination() {
944
      const double EARLY_TERM_FACTOR = 3.0;
945

	
946
      // Build a static residual graph
947
      _arc_vec.clear();
948
      _cost_vec.clear();
949
      for (int j = 0; j != _res_arc_num; ++j) {
950
        if (_res_cap[j] > 0) {
951
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
952
          _cost_vec.push_back(_cost[j] + 1);
953
        }
954
      }
955
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
956

	
957
      // Run Bellman-Ford algorithm to check if the current flow is optimal
958
      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
959
      bf.init(0);
960
      bool done = false;
961
      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
962
      for (int i = 0; i < K && !done; ++i) {
963
        done = bf.processNextWeakRound();
964
      }
965
      return done;
966
    }
967

	
968
    // Global potential update heuristic
969
    void globalUpdate() {
970
      int bucket_end = _root + 1;
971
    
972
      // Initialize buckets
973
      for (int r = 0; r != _max_rank; ++r) {
974
        _buckets[r] = bucket_end;
975
      }
976
      Value total_excess = 0;
977
      for (int i = 0; i != _res_node_num; ++i) {
978
        if (_excess[i] < 0) {
979
          _rank[i] = 0;
980
          _bucket_next[i] = _buckets[0];
981
          _bucket_prev[_buckets[0]] = i;
982
          _buckets[0] = i;
983
        } else {
984
          total_excess += _excess[i];
985
          _rank[i] = _max_rank;
986
        }
987
      }
988
      if (total_excess == 0) return;
989

	
990
      // Search the buckets
991
      int r = 0;
992
      for ( ; r != _max_rank; ++r) {
993
        while (_buckets[r] != bucket_end) {
994
          // Remove the first node from the current bucket
995
          int u = _buckets[r];
996
          _buckets[r] = _bucket_next[u];
997
          
998
          // Search the incomming arcs of u
999
          LargeCost pi_u = _pi[u];
1000
          int last_out = _first_out[u+1];
1001
          for (int a = _first_out[u]; a != last_out; ++a) {
1002
            int ra = _reverse[a];
1003
            if (_res_cap[ra] > 0) {
1004
              int v = _source[ra];
1005
              int old_rank_v = _rank[v];
1006
              if (r < old_rank_v) {
1007
                // Compute the new rank of v
1008
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1009
                int new_rank_v = old_rank_v;
1010
                if (nrc < LargeCost(_max_rank))
1011
                  new_rank_v = r + 1 + int(nrc);
1012
                  
1013
                // Change the rank of v
1014
                if (new_rank_v < old_rank_v) {
1015
                  _rank[v] = new_rank_v;
1016
                  _next_out[v] = _first_out[v];
1017
                  
1018
                  // Remove v from its old bucket
1019
                  if (old_rank_v < _max_rank) {
1020
                    if (_buckets[old_rank_v] == v) {
1021
                      _buckets[old_rank_v] = _bucket_next[v];
1022
                    } else {
1023
                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1024
                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1025
                    }
1026
                  }
1027
                  
1028
                  // Insert v to its new bucket
1029
                  _bucket_next[v] = _buckets[new_rank_v];
1030
                  _bucket_prev[_buckets[new_rank_v]] = v;
1031
                  _buckets[new_rank_v] = v;
1032
                }
1033
              }
1034
            }
1035
          }
1036

	
1037
          // Finish search if there are no more active nodes
1038
          if (_excess[u] > 0) {
1039
            total_excess -= _excess[u];
1040
            if (total_excess <= 0) break;
1041
          }
1042
        }
1043
        if (total_excess <= 0) break;
1044
      }
1045
      
1046
      // Relabel nodes
1047
      for (int u = 0; u != _res_node_num; ++u) {
1048
        int k = std::min(_rank[u], r);
1049
        if (k > 0) {
1050
          _pi[u] -= _epsilon * k;
1051
          _next_out[u] = _first_out[u];
1052
        }
1053
      }
1054
    }
1055

	
1056
    /// Execute the algorithm performing augment and relabel operations
1057
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
1058
      // Paramters for heuristics
1059
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1060
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1061

	
1062
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1063
        (_res_node_num + _sup_node_num * _sup_node_num));
1064
      int next_update_limit = global_update_freq;
1065
      
1066
      int relabel_cnt = 0;
1067
      
1068
      // Perform cost scaling phases
1069
      std::vector<int> path;
1070
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1071
                                        1 : _epsilon / _alpha )
1072
      {
1073
        // Early termination heuristic
1074
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1075
          if (earlyTermination()) break;
1076
        }
1077
        
1078
        // Initialize current phase
1079
        initPhase();
948 1080

	
949 1081
        // Perform partial augment and relabel operations
950 1082
        while (true) {
951 1083
          // Select an active node (FIFO selection)
952 1084
          while (_active_nodes.size() > 0 &&
953 1085
                 _excess[_active_nodes.front()] <= 0) {
954 1086
            _active_nodes.pop_front();
955 1087
          }
956 1088
          if (_active_nodes.size() == 0) break;
957 1089
          int start = _active_nodes.front();
958
          path_nodes.clear();
959
          path_nodes.push_back(start);
960 1090

	
961 1091
          // Find an augmenting path from the start node
1092
          path.clear();
962 1093
          int tip = start;
963
          while (_excess[tip] >= 0 &&
964
                 int(path_nodes.size()) <= max_length) {
1094
          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
965 1095
            int u;
966
            LargeCost min_red_cost, rc;
967
            int last_out = _sum_supply < 0 ?
968
              _first_out[tip+1] : _first_out[tip+1] - 1;
1096
            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1097
            int last_out = _first_out[tip+1];
969 1098
            for (int a = _next_out[tip]; a != last_out; ++a) {
970
              if (_res_cap[a] > 0 &&
971
                  _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
972 1099
                u = _target[a];
973
                pred_arc[u] = a;
1100
              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1101
                path.push_back(a);
974 1102
                _next_out[tip] = a;
975 1103
                tip = u;
976
                path_nodes.push_back(tip);
977 1104
                goto next_step;
978 1105
              }
979 1106
            }
980 1107

	
981 1108
            // Relabel tip node
982
            min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
1109
            min_red_cost = std::numeric_limits<LargeCost>::max();
1110
            if (tip != start) {
1111
              int ra = _reverse[path.back()];
1112
              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1113
            }
983 1114
            for (int a = _first_out[tip]; a != last_out; ++a) {
984
              rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
1115
              rc = _cost[a] + pi_tip - _pi[_target[a]];
985 1116
              if (_res_cap[a] > 0 && rc < min_red_cost) {
986 1117
                min_red_cost = rc;
987 1118
              }
988 1119
            }
989 1120
            _pi[tip] -= min_red_cost + _epsilon;
990

	
991
            // Reset the next arc of tip
992 1121
            _next_out[tip] = _first_out[tip];
1122
            ++relabel_cnt;
993 1123

	
994 1124
            // Step back
995 1125
            if (tip != start) {
996
              path_nodes.pop_back();
997
              tip = path_nodes.back();
1126
              tip = _source[path.back()];
1127
              path.pop_back();
998 1128
            }
999 1129

	
1000 1130
          next_step: ;
1001 1131
          }
1002 1132

	
1003 1133
          // Augment along the found path (as much flow as possible)
1004 1134
          Value delta;
1005
          int u, v = path_nodes.front(), pa;
1006
          for (int i = 1; i < int(path_nodes.size()); ++i) {
1135
          int pa, u, v = start;
1136
          for (int i = 0; i != int(path.size()); ++i) {
1137
            pa = path[i];
1007 1138
            u = v;
1008
            v = path_nodes[i];
1009
            pa = pred_arc[v];
1139
            v = _target[pa];
1010 1140
            delta = std::min(_res_cap[pa], _excess[u]);
1011 1141
            _res_cap[pa] -= delta;
1012 1142
            _res_cap[_reverse[pa]] += delta;
1013 1143
            _excess[u] -= delta;
1014 1144
            _excess[v] += delta;
1015 1145
            if (_excess[v] > 0 && _excess[v] <= delta)
1016 1146
              _active_nodes.push_back(v);
1017 1147
          }
1148

	
1149
          // Global update heuristic
1150
          if (relabel_cnt >= next_update_limit) {
1151
            globalUpdate();
1152
            next_update_limit += global_update_freq;
1153
          }
1018 1154
        }
1019 1155
      }
1020 1156
    }
1021 1157

	
1022 1158
    /// Execute the algorithm performing push and relabel operations
1023 1159
    void startPush() {
1024 1160
      // Paramters for heuristics
1025
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
1026
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
1161
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1162
      const double GLOBAL_UPDATE_FACTOR = 2.0;
1163

	
1164
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1165
        (_res_node_num + _sup_node_num * _sup_node_num));
1166
      int next_update_limit = global_update_freq;
1167

	
1168
      int relabel_cnt = 0;
1027 1169

	
1028 1170
      // Perform cost scaling phases
1029 1171
      BoolVector hyper(_res_node_num, false);
1172
      LargeCostVector hyper_cost(_res_node_num);
1030 1173
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1031 1174
                                        1 : _epsilon / _alpha )
1032 1175
      {
1033
        // "Early Termination" heuristic: use Bellman-Ford algorithm
1034
        // to check if the current flow is optimal
1035
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
1036
          _arc_vec.clear();
1037
          _cost_vec.clear();
1038
          for (int j = 0; j != _res_arc_num; ++j) {
1039
            if (_res_cap[j] > 0) {
1040
              _arc_vec.push_back(IntPair(_source[j], _target[j]));
1041
              _cost_vec.push_back(_cost[j] + 1);
1042
            }
1043
          }
1044
          _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
1045

	
1046
          BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
1047
          bf.init(0);
1048
          bool done = false;
1049
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
1050
          for (int i = 0; i < K && !done; ++i)
1051
            done = bf.processNextWeakRound();
1052
          if (done) break;
1176
        // Early termination heuristic
1177
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1178
          if (earlyTermination()) break;
1053 1179
        }
1054 1180

	
1055
        // Saturate arcs not satisfying the optimality condition
1056
        for (int a = 0; a != _res_arc_num; ++a) {
1057
          if (_res_cap[a] > 0 &&
1058
              _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
1059
            Value delta = _res_cap[a];
1060
            _excess[_source[a]] -= delta;
1061
            _excess[_target[a]] += delta;
1062
            _res_cap[a] = 0;
1063
            _res_cap[_reverse[a]] += delta;
1064
          }
1065
        }
1066

	
1067
        // Find active nodes (i.e. nodes with positive excess)
1068
        for (int u = 0; u != _res_node_num; ++u) {
1069
          if (_excess[u] > 0) _active_nodes.push_back(u);
1070
        }
1071

	
1072
        // Initialize the next arcs
1073
        for (int u = 0; u != _res_node_num; ++u) {
1074
          _next_out[u] = _first_out[u];
1075
        }
1181
        // Initialize current phase
1182
        initPhase();
1076 1183

	
1077 1184
        // Perform push and relabel operations
1078 1185
        while (_active_nodes.size() > 0) {
1079
          LargeCost min_red_cost, rc;
1186
          LargeCost min_red_cost, rc, pi_n;
1080 1187
          Value delta;
1081 1188
          int n, t, a, last_out = _res_arc_num;
1082 1189

	
1190
        next_node:
1083 1191
          // Select an active node (FIFO selection)
1084
        next_node:
1085 1192
          n = _active_nodes.front();
1086
          last_out = _sum_supply < 0 ?
1087
            _first_out[n+1] : _first_out[n+1] - 1;
1193
          last_out = _first_out[n+1];
1194
          pi_n = _pi[n];
1088 1195

	
1089 1196
          // Perform push operations if there are admissible arcs
1090 1197
          if (_excess[n] > 0) {
1091 1198
            for (a = _next_out[n]; a != last_out; ++a) {
1092 1199
              if (_res_cap[a] > 0 &&
1093
                  _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
1200
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1094 1201
                delta = std::min(_res_cap[a], _excess[n]);
1095 1202
                t = _target[a];
1096 1203

	
1097 1204
                // Push-look-ahead heuristic
1098 1205
                Value ahead = -_excess[t];
1099
                int last_out_t = _sum_supply < 0 ?
1100
                  _first_out[t+1] : _first_out[t+1] - 1;
1206
                int last_out_t = _first_out[t+1];
1207
                LargeCost pi_t = _pi[t];
1101 1208
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1102 1209
                  if (_res_cap[ta] > 0 && 
1103
                      _cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0)
1210
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1104 1211
                    ahead += _res_cap[ta];
1105 1212
                  if (ahead >= delta) break;
1106 1213
                }
1107 1214
                if (ahead < 0) ahead = 0;
1108 1215

	
1109 1216
                // Push flow along the arc
1110
                if (ahead < delta) {
1217
                if (ahead < delta && !hyper[t]) {
1111 1218
                  _res_cap[a] -= ahead;
1112 1219
                  _res_cap[_reverse[a]] += ahead;
1113 1220
                  _excess[n] -= ahead;
1114 1221
                  _excess[t] += ahead;
1115 1222
                  _active_nodes.push_front(t);
1116 1223
                  hyper[t] = true;
1224
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
1117 1225
                  _next_out[n] = a;
1118 1226
                  goto next_node;
1119 1227
                } else {
1120 1228
                  _res_cap[a] -= delta;
1121 1229
                  _res_cap[_reverse[a]] += delta;
1122 1230
                  _excess[n] -= delta;
1123 1231
                  _excess[t] += delta;
1124 1232
                  if (_excess[t] > 0 && _excess[t] <= delta)
1125 1233
                    _active_nodes.push_back(t);
1126 1234
                }
1127 1235

	
1128 1236
                if (_excess[n] == 0) {
1129 1237
                  _next_out[n] = a;
1130 1238
                  goto remove_nodes;
1131 1239
                }
1132 1240
              }
1133 1241
            }
1134 1242
            _next_out[n] = a;
1135 1243
          }
1136 1244

	
1137 1245
          // Relabel the node if it is still active (or hyper)
1138 1246
          if (_excess[n] > 0 || hyper[n]) {
1139
            min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
1247
             min_red_cost = hyper[n] ? -hyper_cost[n] :
1248
               std::numeric_limits<LargeCost>::max();
1140 1249
            for (int a = _first_out[n]; a != last_out; ++a) {
1141
              rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
1250
              rc = _cost[a] + pi_n - _pi[_target[a]];
1142 1251
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1143 1252
                min_red_cost = rc;
1144 1253
              }
1145 1254
            }
1146 1255
            _pi[n] -= min_red_cost + _epsilon;
1256
            _next_out[n] = _first_out[n];
1147 1257
            hyper[n] = false;
1148

	
1149
            // Reset the next arc
1150
            _next_out[n] = _first_out[n];
1258
            ++relabel_cnt;
1151 1259
          }
1152 1260
        
1153 1261
          // Remove nodes that are not active nor hyper
1154 1262
        remove_nodes:
1155 1263
          while ( _active_nodes.size() > 0 &&
1156 1264
                  _excess[_active_nodes.front()] <= 0 &&
1157 1265
                  !hyper[_active_nodes.front()] ) {
1158 1266
            _active_nodes.pop_front();
1159 1267
          }
1268
          
1269
          // Global update heuristic
1270
          if (relabel_cnt >= next_update_limit) {
1271
            globalUpdate();
1272
            for (int u = 0; u != _res_node_num; ++u)
1273
              hyper[u] = false;
1274
            next_update_limit += global_update_freq;
1275
          }
1160 1276
        }
1161 1277
      }
1162 1278
    }
1163 1279

	
1164 1280
  }; //class CostScaling
1165 1281

	
1166 1282
  ///@}
1167 1283

	
1168 1284
} //namespace lemon
1169 1285

	
1170 1286
#endif //LEMON_COST_SCALING_H
Show white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CYCLE_CANCELING_H
20 20
#define LEMON_CYCLE_CANCELING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <limits>
28 28

	
29 29
#include <lemon/core.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/adaptors.h>
35 35
#include <lemon/circulation.h>
36 36
#include <lemon/bellman_ford.h>
37 37
#include <lemon/howard.h>
38 38

	
39 39
namespace lemon {
40 40

	
41 41
  /// \addtogroup min_cost_flow_algs
42 42
  /// @{
43 43

	
44 44
  /// \brief Implementation of cycle-canceling algorithms for
45 45
  /// finding a \ref min_cost_flow "minimum cost flow".
46 46
  ///
47 47
  /// \ref CycleCanceling implements three different cycle-canceling
48 48
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
49 49
  /// \ref amo93networkflows, \ref klein67primal,
50 50
  /// \ref goldberg89cyclecanceling.
51 51
  /// The most efficent one (both theoretically and practically)
52 52
  /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
53 53
  /// thus it is the default method.
54 54
  /// It is strongly polynomial, but in practice, it is typically much
55 55
  /// slower than the scaling algorithms and NetworkSimplex.
56 56
  ///
57 57
  /// Most of the parameters of the problem (except for the digraph)
58 58
  /// can be given using separate functions, and the algorithm can be
59 59
  /// executed using the \ref run() function. If some parameters are not
60 60
  /// specified, then default values will be used.
61 61
  ///
62 62
  /// \tparam GR The digraph type the algorithm runs on.
63 63
  /// \tparam V The number type used for flow amounts, capacity bounds
64 64
  /// and supply values in the algorithm. By default, it is \c int.
65 65
  /// \tparam C The number type used for costs and potentials in the
66 66
  /// algorithm. By default, it is the same as \c V.
67 67
  ///
68 68
  /// \warning Both number types must be signed and all input data must
69 69
  /// be integer.
70 70
  /// \warning This algorithm does not support negative costs for such
71 71
  /// arcs that have infinite upper bound.
72 72
  ///
73 73
  /// \note For more information about the three available methods,
74 74
  /// see \ref Method.
75 75
#ifdef DOXYGEN
76 76
  template <typename GR, typename V, typename C>
77 77
#else
78 78
  template <typename GR, typename V = int, typename C = V>
79 79
#endif
80 80
  class CycleCanceling
81 81
  {
82 82
  public:
83 83

	
84 84
    /// The type of the digraph
85 85
    typedef GR Digraph;
86 86
    /// The type of the flow amounts, capacity bounds and supply values
87 87
    typedef V Value;
88 88
    /// The type of the arc costs
89 89
    typedef C Cost;
90 90

	
91 91
  public:
92 92

	
93 93
    /// \brief Problem type constants for the \c run() function.
94 94
    ///
95 95
    /// Enum type containing the problem type constants that can be
96 96
    /// returned by the \ref run() function of the algorithm.
97 97
    enum ProblemType {
98 98
      /// The problem has no feasible solution (flow).
99 99
      INFEASIBLE,
100 100
      /// The problem has optimal solution (i.e. it is feasible and
101 101
      /// bounded), and the algorithm has found optimal flow and node
102 102
      /// potentials (primal and dual solutions).
103 103
      OPTIMAL,
104 104
      /// The digraph contains an arc of negative cost and infinite
105 105
      /// upper bound. It means that the objective function is unbounded
106 106
      /// on that arc, however, note that it could actually be bounded
107 107
      /// over the feasible flows, but this algroithm cannot handle
108 108
      /// these cases.
109 109
      UNBOUNDED
110 110
    };
111 111

	
112 112
    /// \brief Constants for selecting the used method.
113 113
    ///
114 114
    /// Enum type containing constants for selecting the used method
115 115
    /// for the \ref run() function.
116 116
    ///
117 117
    /// \ref CycleCanceling provides three different cycle-canceling
118 118
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
119 119
    /// is used, which proved to be the most efficient and the most robust
120 120
    /// on various test inputs.
121 121
    /// However, the other methods can be selected using the \ref run()
122 122
    /// function with the proper parameter.
123 123
    enum Method {
124 124
      /// A simple cycle-canceling method, which uses the
125 125
      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
126 126
      /// number for detecting negative cycles in the residual network.
127 127
      SIMPLE_CYCLE_CANCELING,
128 128
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
129 129
      /// well-known strongly polynomial method
130 130
      /// \ref goldberg89cyclecanceling. It improves along a
131 131
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
132 132
      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
133 133
      MINIMUM_MEAN_CYCLE_CANCELING,
134 134
      /// The "Cancel And Tighten" algorithm, which can be viewed as an
135 135
      /// improved version of the previous method
136 136
      /// \ref goldberg89cyclecanceling.
137 137
      /// It is faster both in theory and in practice, its running time
138 138
      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
139 139
      CANCEL_AND_TIGHTEN
140 140
    };
141 141

	
142 142
  private:
143 143

	
144 144
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
145 145
    
146 146
    typedef std::vector<int> IntVector;
147
    typedef std::vector<char> CharVector;
148 147
    typedef std::vector<double> DoubleVector;
149 148
    typedef std::vector<Value> ValueVector;
150 149
    typedef std::vector<Cost> CostVector;
150
    typedef std::vector<char> BoolVector;
151
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
151 152

	
152 153
  private:
153 154
  
154 155
    template <typename KT, typename VT>
155 156
    class StaticVectorMap {
156 157
    public:
157 158
      typedef KT Key;
158 159
      typedef VT Value;
159 160
      
160 161
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
161 162
      
162 163
      const Value& operator[](const Key& key) const {
163 164
        return _v[StaticDigraph::id(key)];
164 165
      }
165 166

	
166 167
      Value& operator[](const Key& key) {
167 168
        return _v[StaticDigraph::id(key)];
168 169
      }
169 170
      
170 171
      void set(const Key& key, const Value& val) {
171 172
        _v[StaticDigraph::id(key)] = val;
172 173
      }
173 174

	
174 175
    private:
175 176
      std::vector<Value>& _v;
176 177
    };
177 178

	
178 179
    typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
179 180
    typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
180 181

	
181 182
  private:
182 183

	
183 184

	
184 185
    // Data related to the underlying digraph
185 186
    const GR &_graph;
186 187
    int _node_num;
187 188
    int _arc_num;
188 189
    int _res_node_num;
189 190
    int _res_arc_num;
190 191
    int _root;
191 192

	
192 193
    // Parameters of the problem
193 194
    bool _have_lower;
194 195
    Value _sum_supply;
195 196

	
196 197
    // Data structures for storing the digraph
197 198
    IntNodeMap _node_id;
198 199
    IntArcMap _arc_idf;
199 200
    IntArcMap _arc_idb;
200 201
    IntVector _first_out;
201
    CharVector _forward;
202
    BoolVector _forward;
202 203
    IntVector _source;
203 204
    IntVector _target;
204 205
    IntVector _reverse;
205 206

	
206 207
    // Node and arc data
207 208
    ValueVector _lower;
208 209
    ValueVector _upper;
209 210
    CostVector _cost;
210 211
    ValueVector _supply;
211 212

	
212 213
    ValueVector _res_cap;
213 214
    CostVector _pi;
214 215

	
215 216
    // Data for a StaticDigraph structure
216 217
    typedef std::pair<int, int> IntPair;
217 218
    StaticDigraph _sgr;
218 219
    std::vector<IntPair> _arc_vec;
219 220
    std::vector<Cost> _cost_vec;
220 221
    IntVector _id_vec;
221 222
    CostArcMap _cost_map;
222 223
    CostNodeMap _pi_map;
223 224
  
224 225
  public:
225 226
  
226 227
    /// \brief Constant for infinite upper bounds (capacities).
227 228
    ///
228 229
    /// Constant for infinite upper bounds (capacities).
229 230
    /// It is \c std::numeric_limits<Value>::infinity() if available,
230 231
    /// \c std::numeric_limits<Value>::max() otherwise.
231 232
    const Value INF;
232 233

	
233 234
  public:
234 235

	
235 236
    /// \brief Constructor.
236 237
    ///
237 238
    /// The constructor of the class.
238 239
    ///
239 240
    /// \param graph The digraph the algorithm runs on.
240 241
    CycleCanceling(const GR& graph) :
241 242
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
242 243
      _cost_map(_cost_vec), _pi_map(_pi),
243 244
      INF(std::numeric_limits<Value>::has_infinity ?
244 245
          std::numeric_limits<Value>::infinity() :
245 246
          std::numeric_limits<Value>::max())
246 247
    {
247 248
      // Check the number types
248 249
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
249 250
        "The flow type of CycleCanceling must be signed");
250 251
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
251 252
        "The cost type of CycleCanceling must be signed");
252 253

	
253 254
      // Resize vectors
254 255
      _node_num = countNodes(_graph);
255 256
      _arc_num = countArcs(_graph);
256 257
      _res_node_num = _node_num + 1;
257 258
      _res_arc_num = 2 * (_arc_num + _node_num);
258 259
      _root = _node_num;
259 260

	
260 261
      _first_out.resize(_res_node_num + 1);
261 262
      _forward.resize(_res_arc_num);
262 263
      _source.resize(_res_arc_num);
263 264
      _target.resize(_res_arc_num);
264 265
      _reverse.resize(_res_arc_num);
265 266

	
266 267
      _lower.resize(_res_arc_num);
267 268
      _upper.resize(_res_arc_num);
268 269
      _cost.resize(_res_arc_num);
269 270
      _supply.resize(_res_node_num);
270 271
      
271 272
      _res_cap.resize(_res_arc_num);
272 273
      _pi.resize(_res_node_num);
273 274

	
274 275
      _arc_vec.reserve(_res_arc_num);
275 276
      _cost_vec.reserve(_res_arc_num);
276 277
      _id_vec.reserve(_res_arc_num);
277 278

	
278 279
      // Copy the graph
279 280
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
280 281
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
281 282
        _node_id[n] = i;
282 283
      }
283 284
      i = 0;
284 285
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
285 286
        _first_out[i] = j;
286 287
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
287 288
          _arc_idf[a] = j;
288 289
          _forward[j] = true;
289 290
          _source[j] = i;
290 291
          _target[j] = _node_id[_graph.runningNode(a)];
291 292
        }
292 293
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
293 294
          _arc_idb[a] = j;
294 295
          _forward[j] = false;
295 296
          _source[j] = i;
296 297
          _target[j] = _node_id[_graph.runningNode(a)];
297 298
        }
298 299
        _forward[j] = false;
299 300
        _source[j] = i;
300 301
        _target[j] = _root;
301 302
        _reverse[j] = k;
302 303
        _forward[k] = true;
303 304
        _source[k] = _root;
304 305
        _target[k] = i;
305 306
        _reverse[k] = j;
306 307
        ++j; ++k;
307 308
      }
308 309
      _first_out[i] = j;
309 310
      _first_out[_res_node_num] = k;
310 311
      for (ArcIt a(_graph); a != INVALID; ++a) {
311 312
        int fi = _arc_idf[a];
312 313
        int bi = _arc_idb[a];
313 314
        _reverse[fi] = bi;
314 315
        _reverse[bi] = fi;
315 316
      }
316 317
      
317 318
      // Reset parameters
318 319
      reset();
319 320
    }
320 321

	
321 322
    /// \name Parameters
322 323
    /// The parameters of the algorithm can be specified using these
323 324
    /// functions.
324 325

	
325 326
    /// @{
326 327

	
327 328
    /// \brief Set the lower bounds on the arcs.
328 329
    ///
329 330
    /// This function sets the lower bounds on the arcs.
330 331
    /// If it is not used before calling \ref run(), the lower bounds
331 332
    /// will be set to zero on all arcs.
332 333
    ///
333 334
    /// \param map An arc map storing the lower bounds.
334 335
    /// Its \c Value type must be convertible to the \c Value type
335 336
    /// of the algorithm.
336 337
    ///
337 338
    /// \return <tt>(*this)</tt>
338 339
    template <typename LowerMap>
339 340
    CycleCanceling& lowerMap(const LowerMap& map) {
340 341
      _have_lower = true;
341 342
      for (ArcIt a(_graph); a != INVALID; ++a) {
342 343
        _lower[_arc_idf[a]] = map[a];
343 344
        _lower[_arc_idb[a]] = map[a];
344 345
      }
345 346
      return *this;
346 347
    }
347 348

	
348 349
    /// \brief Set the upper bounds (capacities) on the arcs.
349 350
    ///
350 351
    /// This function sets the upper bounds (capacities) on the arcs.
351 352
    /// If it is not used before calling \ref run(), the upper bounds
352 353
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
353 354
    /// unbounded from above).
354 355
    ///
355 356
    /// \param map An arc map storing the upper bounds.
356 357
    /// Its \c Value type must be convertible to the \c Value type
357 358
    /// of the algorithm.
358 359
    ///
359 360
    /// \return <tt>(*this)</tt>
360 361
    template<typename UpperMap>
361 362
    CycleCanceling& upperMap(const UpperMap& map) {
362 363
      for (ArcIt a(_graph); a != INVALID; ++a) {
363 364
        _upper[_arc_idf[a]] = map[a];
364 365
      }
365 366
      return *this;
366 367
    }
367 368

	
368 369
    /// \brief Set the costs of the arcs.
369 370
    ///
370 371
    /// This function sets the costs of the arcs.
371 372
    /// If it is not used before calling \ref run(), the costs
372 373
    /// will be set to \c 1 on all arcs.
373 374
    ///
374 375
    /// \param map An arc map storing the costs.
375 376
    /// Its \c Value type must be convertible to the \c Cost type
376 377
    /// of the algorithm.
377 378
    ///
378 379
    /// \return <tt>(*this)</tt>
379 380
    template<typename CostMap>
380 381
    CycleCanceling& costMap(const CostMap& map) {
381 382
      for (ArcIt a(_graph); a != INVALID; ++a) {
382 383
        _cost[_arc_idf[a]] =  map[a];
383 384
        _cost[_arc_idb[a]] = -map[a];
384 385
      }
385 386
      return *this;
386 387
    }
387 388

	
388 389
    /// \brief Set the supply values of the nodes.
389 390
    ///
390 391
    /// This function sets the supply values of the nodes.
391 392
    /// If neither this function nor \ref stSupply() is used before
392 393
    /// calling \ref run(), the supply of each node will be set to zero.
393 394
    ///
... ...
@@ -744,386 +745,386 @@
744 745
      return OPTIMAL;
745 746
    }
746 747
    
747 748
    // Build a StaticDigraph structure containing the current
748 749
    // residual network
749 750
    void buildResidualNetwork() {
750 751
      _arc_vec.clear();
751 752
      _cost_vec.clear();
752 753
      _id_vec.clear();
753 754
      for (int j = 0; j != _res_arc_num; ++j) {
754 755
        if (_res_cap[j] > 0) {
755 756
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
756 757
          _cost_vec.push_back(_cost[j]);
757 758
          _id_vec.push_back(j);
758 759
        }
759 760
      }
760 761
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
761 762
    }
762 763

	
763 764
    // Execute the algorithm and transform the results
764 765
    void start(Method method) {
765 766
      // Execute the algorithm
766 767
      switch (method) {
767 768
        case SIMPLE_CYCLE_CANCELING:
768 769
          startSimpleCycleCanceling();
769 770
          break;
770 771
        case MINIMUM_MEAN_CYCLE_CANCELING:
771 772
          startMinMeanCycleCanceling();
772 773
          break;
773 774
        case CANCEL_AND_TIGHTEN:
774 775
          startCancelAndTighten();
775 776
          break;
776 777
      }
777 778

	
778 779
      // Compute node potentials
779 780
      if (method != SIMPLE_CYCLE_CANCELING) {
780 781
        buildResidualNetwork();
781 782
        typename BellmanFord<StaticDigraph, CostArcMap>
782 783
          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
783 784
        bf.distMap(_pi_map);
784 785
        bf.init(0);
785 786
        bf.start();
786 787
      }
787 788

	
788 789
      // Handle non-zero lower bounds
789 790
      if (_have_lower) {
790 791
        int limit = _first_out[_root];
791 792
        for (int j = 0; j != limit; ++j) {
792 793
          if (!_forward[j]) _res_cap[j] += _lower[j];
793 794
        }
794 795
      }
795 796
    }
796 797

	
797 798
    // Execute the "Simple Cycle Canceling" method
798 799
    void startSimpleCycleCanceling() {
799 800
      // Constants for computing the iteration limits
800 801
      const int BF_FIRST_LIMIT  = 2;
801 802
      const double BF_LIMIT_FACTOR = 1.5;
802 803
      
803 804
      typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
804 805
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
805 806
      typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
806 807
      typedef typename BellmanFord<ResDigraph, CostArcMap>
807 808
        ::template SetDistMap<CostNodeMap>
808 809
        ::template SetPredMap<PredMap>::Create BF;
809 810
      
810 811
      // Build the residual network
811 812
      _arc_vec.clear();
812 813
      _cost_vec.clear();
813 814
      for (int j = 0; j != _res_arc_num; ++j) {
814 815
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
815 816
        _cost_vec.push_back(_cost[j]);
816 817
      }
817 818
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
818 819

	
819 820
      FilterMap filter_map(_res_cap);
820 821
      ResDigraph rgr(_sgr, filter_map);
821 822
      std::vector<int> cycle;
822 823
      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
823 824
      PredMap pred_map(pred);
824 825
      BF bf(rgr, _cost_map);
825 826
      bf.distMap(_pi_map).predMap(pred_map);
826 827

	
827 828
      int length_bound = BF_FIRST_LIMIT;
828 829
      bool optimal = false;
829 830
      while (!optimal) {
830 831
        bf.init(0);
831 832
        int iter_num = 0;
832 833
        bool cycle_found = false;
833 834
        while (!cycle_found) {
834 835
          // Perform some iterations of the Bellman-Ford algorithm
835 836
          int curr_iter_num = iter_num + length_bound <= _node_num ?
836 837
            length_bound : _node_num - iter_num;
837 838
          iter_num += curr_iter_num;
838 839
          int real_iter_num = curr_iter_num;
839 840
          for (int i = 0; i < curr_iter_num; ++i) {
840 841
            if (bf.processNextWeakRound()) {
841 842
              real_iter_num = i;
842 843
              break;
843 844
            }
844 845
          }
845 846
          if (real_iter_num < curr_iter_num) {
846 847
            // Optimal flow is found
847 848
            optimal = true;
848 849
            break;
849 850
          } else {
850 851
            // Search for node disjoint negative cycles
851 852
            std::vector<int> state(_res_node_num, 0);
852 853
            int id = 0;
853 854
            for (int u = 0; u != _res_node_num; ++u) {
854 855
              if (state[u] != 0) continue;
855 856
              ++id;
856 857
              int v = u;
857 858
              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
858 859
                   -1 : rgr.id(rgr.source(pred[v]))) {
859 860
                state[v] = id;
860 861
              }
861 862
              if (v != -1 && state[v] == id) {
862 863
                // A negative cycle is found
863 864
                cycle_found = true;
864 865
                cycle.clear();
865 866
                StaticDigraph::Arc a = pred[v];
866 867
                Value d, delta = _res_cap[rgr.id(a)];
867 868
                cycle.push_back(rgr.id(a));
868 869
                while (rgr.id(rgr.source(a)) != v) {
869 870
                  a = pred_map[rgr.source(a)];
870 871
                  d = _res_cap[rgr.id(a)];
871 872
                  if (d < delta) delta = d;
872 873
                  cycle.push_back(rgr.id(a));
873 874
                }
874 875

	
875 876
                // Augment along the cycle
876 877
                for (int i = 0; i < int(cycle.size()); ++i) {
877 878
                  int j = cycle[i];
878 879
                  _res_cap[j] -= delta;
879 880
                  _res_cap[_reverse[j]] += delta;
880 881
                }
881 882
              }
882 883
            }
883 884
          }
884 885

	
885 886
          // Increase iteration limit if no cycle is found
886 887
          if (!cycle_found) {
887 888
            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
888 889
          }
889 890
        }
890 891
      }
891 892
    }
892 893

	
893 894
    // Execute the "Minimum Mean Cycle Canceling" method
894 895
    void startMinMeanCycleCanceling() {
895 896
      typedef SimplePath<StaticDigraph> SPath;
896 897
      typedef typename SPath::ArcIt SPathArcIt;
897 898
      typedef typename Howard<StaticDigraph, CostArcMap>
898 899
        ::template SetPath<SPath>::Create MMC;
899 900
      
900 901
      SPath cycle;
901 902
      MMC mmc(_sgr, _cost_map);
902 903
      mmc.cycle(cycle);
903 904
      buildResidualNetwork();
904 905
      while (mmc.findMinMean() && mmc.cycleLength() < 0) {
905 906
        // Find the cycle
906 907
        mmc.findCycle();
907 908

	
908 909
        // Compute delta value
909 910
        Value delta = INF;
910 911
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
911 912
          Value d = _res_cap[_id_vec[_sgr.id(a)]];
912 913
          if (d < delta) delta = d;
913 914
        }
914 915

	
915 916
        // Augment along the cycle
916 917
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
917 918
          int j = _id_vec[_sgr.id(a)];
918 919
          _res_cap[j] -= delta;
919 920
          _res_cap[_reverse[j]] += delta;
920 921
        }
921 922

	
922 923
        // Rebuild the residual network        
923 924
        buildResidualNetwork();
924 925
      }
925 926
    }
926 927

	
927 928
    // Execute the "Cancel And Tighten" method
928 929
    void startCancelAndTighten() {
929 930
      // Constants for the min mean cycle computations
930 931
      const double LIMIT_FACTOR = 1.0;
931 932
      const int MIN_LIMIT = 5;
932 933

	
933 934
      // Contruct auxiliary data vectors
934 935
      DoubleVector pi(_res_node_num, 0.0);
935 936
      IntVector level(_res_node_num);
936
      CharVector reached(_res_node_num);
937
      CharVector processed(_res_node_num);
937
      BoolVector reached(_res_node_num);
938
      BoolVector processed(_res_node_num);
938 939
      IntVector pred_node(_res_node_num);
939 940
      IntVector pred_arc(_res_node_num);
940 941
      std::vector<int> stack(_res_node_num);
941 942
      std::vector<int> proc_vector(_res_node_num);
942 943

	
943 944
      // Initialize epsilon
944 945
      double epsilon = 0;
945 946
      for (int a = 0; a != _res_arc_num; ++a) {
946 947
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
947 948
          epsilon = -_cost[a];
948 949
      }
949 950

	
950 951
      // Start phases
951 952
      Tolerance<double> tol;
952 953
      tol.epsilon(1e-6);
953 954
      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
954 955
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
955 956
      int iter = limit;
956 957
      while (epsilon * _res_node_num >= 1) {
957 958
        // Find and cancel cycles in the admissible network using DFS
958 959
        for (int u = 0; u != _res_node_num; ++u) {
959 960
          reached[u] = false;
960 961
          processed[u] = false;
961 962
        }
962 963
        int stack_head = -1;
963 964
        int proc_head = -1;
964 965
        for (int start = 0; start != _res_node_num; ++start) {
965 966
          if (reached[start]) continue;
966 967

	
967 968
          // New start node
968 969
          reached[start] = true;
969 970
          pred_arc[start] = -1;
970 971
          pred_node[start] = -1;
971 972

	
972 973
          // Find the first admissible outgoing arc
973 974
          double p = pi[start];
974 975
          int a = _first_out[start];
975 976
          int last_out = _first_out[start+1];
976 977
          for (; a != last_out && (_res_cap[a] == 0 ||
977 978
               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
978 979
          if (a == last_out) {
979 980
            processed[start] = true;
980 981
            proc_vector[++proc_head] = start;
981 982
            continue;
982 983
          }
983 984
          stack[++stack_head] = a;
984 985

	
985 986
          while (stack_head >= 0) {
986 987
            int sa = stack[stack_head];
987 988
            int u = _source[sa];
988 989
            int v = _target[sa];
989 990

	
990 991
            if (!reached[v]) {
991 992
              // A new node is reached
992 993
              reached[v] = true;
993 994
              pred_node[v] = u;
994 995
              pred_arc[v] = sa;
995 996
              p = pi[v];
996 997
              a = _first_out[v];
997 998
              last_out = _first_out[v+1];
998 999
              for (; a != last_out && (_res_cap[a] == 0 ||
999 1000
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1000 1001
              stack[++stack_head] = a == last_out ? -1 : a;
1001 1002
            } else {
1002 1003
              if (!processed[v]) {
1003 1004
                // A cycle is found
1004 1005
                int n, w = u;
1005 1006
                Value d, delta = _res_cap[sa];
1006 1007
                for (n = u; n != v; n = pred_node[n]) {
1007 1008
                  d = _res_cap[pred_arc[n]];
1008 1009
                  if (d <= delta) {
1009 1010
                    delta = d;
1010 1011
                    w = pred_node[n];
1011 1012
                  }
1012 1013
                }
1013 1014

	
1014 1015
                // Augment along the cycle
1015 1016
                _res_cap[sa] -= delta;
1016 1017
                _res_cap[_reverse[sa]] += delta;
1017 1018
                for (n = u; n != v; n = pred_node[n]) {
1018 1019
                  int pa = pred_arc[n];
1019 1020
                  _res_cap[pa] -= delta;
1020 1021
                  _res_cap[_reverse[pa]] += delta;
1021 1022
                }
1022 1023
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
1023 1024
                  --stack_head;
1024 1025
                  reached[n] = false;
1025 1026
                }
1026 1027
                u = w;
1027 1028
              }
1028 1029
              v = u;
1029 1030

	
1030 1031
              // Find the next admissible outgoing arc
1031 1032
              p = pi[v];
1032 1033
              a = stack[stack_head] + 1;
1033 1034
              last_out = _first_out[v+1];
1034 1035
              for (; a != last_out && (_res_cap[a] == 0 ||
1035 1036
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1036 1037
              stack[stack_head] = a == last_out ? -1 : a;
1037 1038
            }
1038 1039

	
1039 1040
            while (stack_head >= 0 && stack[stack_head] == -1) {
1040 1041
              processed[v] = true;
1041 1042
              proc_vector[++proc_head] = v;
1042 1043
              if (--stack_head >= 0) {
1043 1044
                // Find the next admissible outgoing arc
1044 1045
                v = _source[stack[stack_head]];
1045 1046
                p = pi[v];
1046 1047
                a = stack[stack_head] + 1;
1047 1048
                last_out = _first_out[v+1];
1048 1049
                for (; a != last_out && (_res_cap[a] == 0 ||
1049 1050
                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
1050 1051
                stack[stack_head] = a == last_out ? -1 : a;
1051 1052
              }
1052 1053
            }
1053 1054
          }
1054 1055
        }
1055 1056

	
1056 1057
        // Tighten potentials and epsilon
1057 1058
        if (--iter > 0) {
1058 1059
          for (int u = 0; u != _res_node_num; ++u) {
1059 1060
            level[u] = 0;
1060 1061
          }
1061 1062
          for (int i = proc_head; i > 0; --i) {
1062 1063
            int u = proc_vector[i];
1063 1064
            double p = pi[u];
1064 1065
            int l = level[u] + 1;
1065 1066
            int last_out = _first_out[u+1];
1066 1067
            for (int a = _first_out[u]; a != last_out; ++a) {
1067 1068
              int v = _target[a];
1068 1069
              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
1069 1070
                  l > level[v]) level[v] = l;
1070 1071
            }
1071 1072
          }
1072 1073

	
1073 1074
          // Modify potentials
1074 1075
          double q = std::numeric_limits<double>::max();
1075 1076
          for (int u = 0; u != _res_node_num; ++u) {
1076 1077
            int lu = level[u];
1077 1078
            double p, pu = pi[u];
1078 1079
            int last_out = _first_out[u+1];
1079 1080
            for (int a = _first_out[u]; a != last_out; ++a) {
1080 1081
              if (_res_cap[a] == 0) continue;
1081 1082
              int v = _target[a];
1082 1083
              int ld = lu - level[v];
1083 1084
              if (ld > 0) {
1084 1085
                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
1085 1086
                if (p < q) q = p;
1086 1087
              }
1087 1088
            }
1088 1089
          }
1089 1090
          for (int u = 0; u != _res_node_num; ++u) {
1090 1091
            pi[u] -= q * level[u];
1091 1092
          }
1092 1093

	
1093 1094
          // Modify epsilon
1094 1095
          epsilon = 0;
1095 1096
          for (int u = 0; u != _res_node_num; ++u) {
1096 1097
            double curr, pu = pi[u];
1097 1098
            int last_out = _first_out[u+1];
1098 1099
            for (int a = _first_out[u]; a != last_out; ++a) {
1099 1100
              if (_res_cap[a] == 0) continue;
1100 1101
              curr = _cost[a] + pu - pi[_target[a]];
1101 1102
              if (-curr > epsilon) epsilon = -curr;
1102 1103
            }
1103 1104
          }
1104 1105
        } else {
1105 1106
          typedef Howard<StaticDigraph, CostArcMap> MMC;
1106 1107
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
1107 1108
            ::template SetDistMap<CostNodeMap>::Create BF;
1108 1109

	
1109 1110
          // Set epsilon to the minimum cycle mean
1110 1111
          buildResidualNetwork();
1111 1112
          MMC mmc(_sgr, _cost_map);
1112 1113
          mmc.findMinMean();
1113 1114
          epsilon = -mmc.cycleMean();
1114 1115
          Cost cycle_cost = mmc.cycleLength();
1115 1116
          int cycle_size = mmc.cycleArcNum();
1116 1117
          
1117 1118
          // Compute feasible potentials for the current epsilon
1118 1119
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
1119 1120
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1120 1121
          }
1121 1122
          BF bf(_sgr, _cost_map);
1122 1123
          bf.distMap(_pi_map);
1123 1124
          bf.init(0);
1124 1125
          bf.start();
1125 1126
          for (int u = 0; u != _res_node_num; ++u) {
1126 1127
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1127 1128
          }
1128 1129
        
1129 1130
          iter = limit;
Show white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <algorithm>
30 30

	
31 31
#include <lemon/core.h>
32 32
#include <lemon/math.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup min_cost_flow_algs
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 43
  /// for finding a \ref min_cost_flow "minimum cost flow"
44 44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
45 45
  /// \ref kellyoneill91netsimplex.
46 46
  /// This algorithm is a highly efficient specialized version of the
47 47
  /// linear programming simplex method directly for the minimum cost
48 48
  /// flow problem.
49 49
  ///
50 50
  /// In general, %NetworkSimplex is the fastest implementation available
51 51
  /// in LEMON for this problem.
52 52
  /// Moreover, it supports both directions of the supply/demand inequality
53 53
  /// constraints. For more information, see \ref SupplyType.
54 54
  ///
55 55
  /// Most of the parameters of the problem (except for the digraph)
56 56
  /// can be given using separate functions, and the algorithm can be
57 57
  /// executed using the \ref run() function. If some parameters are not
58 58
  /// specified, then default values will be used.
59 59
  ///
60 60
  /// \tparam GR The digraph type the algorithm runs on.
61 61
  /// \tparam V The number type used for flow amounts, capacity bounds
62 62
  /// and supply values in the algorithm. By default, it is \c int.
63 63
  /// \tparam C The number type used for costs and potentials in the
64 64
  /// algorithm. By default, it is the same as \c V.
65 65
  ///
66 66
  /// \warning Both number types must be signed and all input data must
67 67
  /// be integer.
68 68
  ///
69 69
  /// \note %NetworkSimplex provides five different pivot rule
70 70
  /// implementations, from which the most efficient one is used
71 71
  /// by default. For more information, see \ref PivotRule.
72 72
  template <typename GR, typename V = int, typename C = V>
73 73
  class NetworkSimplex
74 74
  {
75 75
  public:
76 76

	
77 77
    /// The type of the flow amounts, capacity bounds and supply values
78 78
    typedef V Value;
79 79
    /// The type of the arc costs
80 80
    typedef C Cost;
81 81

	
82 82
  public:
83 83

	
84 84
    /// \brief Problem type constants for the \c run() function.
85 85
    ///
86 86
    /// Enum type containing the problem type constants that can be
87 87
    /// returned by the \ref run() function of the algorithm.
88 88
    enum ProblemType {
89 89
      /// The problem has no feasible solution (flow).
90 90
      INFEASIBLE,
91 91
      /// The problem has optimal solution (i.e. it is feasible and
92 92
      /// bounded), and the algorithm has found optimal flow and node
93 93
      /// potentials (primal and dual solutions).
94 94
      OPTIMAL,
95 95
      /// The objective function of the problem is unbounded, i.e.
96 96
      /// there is a directed cycle having negative total cost and
97 97
      /// infinite upper bound.
98 98
      UNBOUNDED
99 99
    };
100 100
    
101 101
    /// \brief Constants for selecting the type of the supply constraints.
102 102
    ///
103 103
    /// Enum type containing constants for selecting the supply type,
104 104
    /// i.e. the direction of the inequalities in the supply/demand
105 105
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
106 106
    ///
107 107
    /// The default supply type is \c GEQ, the \c LEQ type can be
108 108
    /// selected using \ref supplyType().
109 109
    /// The equality form is a special case of both supply types.
110 110
    enum SupplyType {
111 111
      /// This option means that there are <em>"greater or equal"</em>
112 112
      /// supply/demand constraints in the definition of the problem.
113 113
      GEQ,
114 114
      /// This option means that there are <em>"less or equal"</em>
115 115
      /// supply/demand constraints in the definition of the problem.
116 116
      LEQ
117 117
    };
118 118
    
119 119
    /// \brief Constants for selecting the pivot rule.
120 120
    ///
121 121
    /// Enum type containing constants for selecting the pivot rule for
122 122
    /// the \ref run() function.
123 123
    ///
124 124
    /// \ref NetworkSimplex provides five different pivot rule
125 125
    /// implementations that significantly affect the running time
126 126
    /// of the algorithm.
127 127
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
128 128
    /// proved to be the most efficient and the most robust on various
129 129
    /// test inputs.
130 130
    /// However, another pivot rule can be selected using the \ref run()
131 131
    /// function with the proper parameter.
132 132
    enum PivotRule {
133 133

	
134 134
      /// The \e First \e Eligible pivot rule.
135 135
      /// The next eligible arc is selected in a wraparound fashion
136 136
      /// in every iteration.
137 137
      FIRST_ELIGIBLE,
138 138

	
139 139
      /// The \e Best \e Eligible pivot rule.
140 140
      /// The best eligible arc is selected in every iteration.
141 141
      BEST_ELIGIBLE,
142 142

	
143 143
      /// The \e Block \e Search pivot rule.
144 144
      /// A specified number of arcs are examined in every iteration
145 145
      /// in a wraparound fashion and the best eligible arc is selected
146 146
      /// from this block.
147 147
      BLOCK_SEARCH,
148 148

	
149 149
      /// The \e Candidate \e List pivot rule.
150 150
      /// In a major iteration a candidate list is built from eligible arcs
151 151
      /// in a wraparound fashion and in the following minor iterations
152 152
      /// the best eligible arc is selected from this list.
153 153
      CANDIDATE_LIST,
154 154

	
155 155
      /// The \e Altering \e Candidate \e List pivot rule.
156 156
      /// It is a modified version of the Candidate List method.
157 157
      /// It keeps only the several best eligible arcs from the former
158 158
      /// candidate list and extends this list in every iteration.
159 159
      ALTERING_LIST
160 160
    };
161 161
    
162 162
  private:
163 163

	
164 164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
165 165

	
166 166
    typedef std::vector<int> IntVector;
167
    typedef std::vector<char> CharVector;
168 167
    typedef std::vector<Value> ValueVector;
169 168
    typedef std::vector<Cost> CostVector;
169
    typedef std::vector<char> BoolVector;
170
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
170 171

	
171 172
    // State constants for arcs
172 173
    enum ArcStateEnum {
173 174
      STATE_UPPER = -1,
174 175
      STATE_TREE  =  0,
175 176
      STATE_LOWER =  1
176 177
    };
177 178

	
178 179
  private:
179 180

	
180 181
    // Data related to the underlying digraph
181 182
    const GR &_graph;
182 183
    int _node_num;
183 184
    int _arc_num;
184 185
    int _all_arc_num;
185 186
    int _search_arc_num;
186 187

	
187 188
    // Parameters of the problem
188 189
    bool _have_lower;
189 190
    SupplyType _stype;
190 191
    Value _sum_supply;
191 192

	
192 193
    // Data structures for storing the digraph
193 194
    IntNodeMap _node_id;
194 195
    IntArcMap _arc_id;
195 196
    IntVector _source;
196 197
    IntVector _target;
197 198

	
198 199
    // Node and arc data
199 200
    ValueVector _lower;
200 201
    ValueVector _upper;
201 202
    ValueVector _cap;
202 203
    CostVector _cost;
203 204
    ValueVector _supply;
204 205
    ValueVector _flow;
205 206
    CostVector _pi;
206 207

	
207 208
    // Data for storing the spanning tree structure
208 209
    IntVector _parent;
209 210
    IntVector _pred;
210 211
    IntVector _thread;
211 212
    IntVector _rev_thread;
212 213
    IntVector _succ_num;
213 214
    IntVector _last_succ;
214 215
    IntVector _dirty_revs;
215
    CharVector _forward;
216
    CharVector _state;
216
    BoolVector _forward;
217
    BoolVector _state;
217 218
    int _root;
218 219

	
219 220
    // Temporary data used in the current pivot iteration
220 221
    int in_arc, join, u_in, v_in, u_out, v_out;
221 222
    int first, second, right, last;
222 223
    int stem, par_stem, new_stem;
223 224
    Value delta;
224 225
    
225 226
    const Value MAX;
226 227

	
227 228
  public:
228 229
  
229 230
    /// \brief Constant for infinite upper bounds (capacities).
230 231
    ///
231 232
    /// Constant for infinite upper bounds (capacities).
232 233
    /// It is \c std::numeric_limits<Value>::infinity() if available,
233 234
    /// \c std::numeric_limits<Value>::max() otherwise.
234 235
    const Value INF;
235 236

	
236 237
  private:
237 238

	
238 239
    // Implementation of the First Eligible pivot rule
239 240
    class FirstEligiblePivotRule
240 241
    {
241 242
    private:
242 243

	
243 244
      // References to the NetworkSimplex class
244 245
      const IntVector  &_source;
245 246
      const IntVector  &_target;
246 247
      const CostVector &_cost;
247
      const CharVector &_state;
248
      const BoolVector &_state;
248 249
      const CostVector &_pi;
249 250
      int &_in_arc;
250 251
      int _search_arc_num;
251 252

	
252 253
      // Pivot rule data
253 254
      int _next_arc;
254 255

	
255 256
    public:
256 257

	
257 258
      // Constructor
258 259
      FirstEligiblePivotRule(NetworkSimplex &ns) :
259 260
        _source(ns._source), _target(ns._target),
260 261
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
261 262
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
262 263
        _next_arc(0)
263 264
      {}
264 265

	
265 266
      // Find next entering arc
266 267
      bool findEnteringArc() {
267 268
        Cost c;
268
        for (int e = _next_arc; e < _search_arc_num; ++e) {
269
        for (int e = _next_arc; e != _search_arc_num; ++e) {
269 270
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
270 271
          if (c < 0) {
271 272
            _in_arc = e;
272 273
            _next_arc = e + 1;
273 274
            return true;
274 275
          }
275 276
        }
276
        for (int e = 0; e < _next_arc; ++e) {
277
        for (int e = 0; e != _next_arc; ++e) {
277 278
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
278 279
          if (c < 0) {
279 280
            _in_arc = e;
280 281
            _next_arc = e + 1;
281 282
            return true;
282 283
          }
283 284
        }
284 285
        return false;
285 286
      }
286 287

	
287 288
    }; //class FirstEligiblePivotRule
288 289

	
289 290

	
290 291
    // Implementation of the Best Eligible pivot rule
291 292
    class BestEligiblePivotRule
292 293
    {
293 294
    private:
294 295

	
295 296
      // References to the NetworkSimplex class
296 297
      const IntVector  &_source;
297 298
      const IntVector  &_target;
298 299
      const CostVector &_cost;
299
      const CharVector &_state;
300
      const BoolVector &_state;
300 301
      const CostVector &_pi;
301 302
      int &_in_arc;
302 303
      int _search_arc_num;
303 304

	
304 305
    public:
305 306

	
306 307
      // Constructor
307 308
      BestEligiblePivotRule(NetworkSimplex &ns) :
308 309
        _source(ns._source), _target(ns._target),
309 310
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
310 311
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
311 312
      {}
312 313

	
313 314
      // Find next entering arc
314 315
      bool findEnteringArc() {
315 316
        Cost c, min = 0;
316
        for (int e = 0; e < _search_arc_num; ++e) {
317
        for (int e = 0; e != _search_arc_num; ++e) {
317 318
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
318 319
          if (c < min) {
319 320
            min = c;
320 321
            _in_arc = e;
321 322
          }
322 323
        }
323 324
        return min < 0;
324 325
      }
325 326

	
326 327
    }; //class BestEligiblePivotRule
327 328

	
328 329

	
329 330
    // Implementation of the Block Search pivot rule
330 331
    class BlockSearchPivotRule
331 332
    {
332 333
    private:
333 334

	
334 335
      // References to the NetworkSimplex class
335 336
      const IntVector  &_source;
336 337
      const IntVector  &_target;
337 338
      const CostVector &_cost;
338
      const CharVector &_state;
339
      const BoolVector &_state;
339 340
      const CostVector &_pi;
340 341
      int &_in_arc;
341 342
      int _search_arc_num;
342 343

	
343 344
      // Pivot rule data
344 345
      int _block_size;
345 346
      int _next_arc;
346 347

	
347 348
    public:
348 349

	
349 350
      // Constructor
350 351
      BlockSearchPivotRule(NetworkSimplex &ns) :
351 352
        _source(ns._source), _target(ns._target),
352 353
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
353 354
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
354 355
        _next_arc(0)
355 356
      {
356 357
        // The main parameters of the pivot rule
357
        const double BLOCK_SIZE_FACTOR = 0.5;
358
        const double BLOCK_SIZE_FACTOR = 1.0;
358 359
        const int MIN_BLOCK_SIZE = 10;
359 360

	
360 361
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
361 362
                                    std::sqrt(double(_search_arc_num))),
362 363
                                MIN_BLOCK_SIZE );
363 364
      }
364 365

	
365 366
      // Find next entering arc
366 367
      bool findEnteringArc() {
367 368
        Cost c, min = 0;
368 369
        int cnt = _block_size;
369 370
        int e;
370
        for (e = _next_arc; e < _search_arc_num; ++e) {
371
        for (e = _next_arc; e != _search_arc_num; ++e) {
371 372
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
372 373
          if (c < min) {
373 374
            min = c;
374 375
            _in_arc = e;
375 376
          }
376 377
          if (--cnt == 0) {
377 378
            if (min < 0) goto search_end;
378 379
            cnt = _block_size;
379 380
          }
380 381
        }
381
        for (e = 0; e < _next_arc; ++e) {
382
        for (e = 0; e != _next_arc; ++e) {
382 383
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
383 384
          if (c < min) {
384 385
            min = c;
385 386
            _in_arc = e;
386 387
          }
387 388
          if (--cnt == 0) {
388 389
            if (min < 0) goto search_end;
389 390
            cnt = _block_size;
390 391
          }
391 392
        }
392 393
        if (min >= 0) return false;
393 394

	
394 395
      search_end:
395 396
        _next_arc = e;
396 397
        return true;
397 398
      }
398 399

	
399 400
    }; //class BlockSearchPivotRule
400 401

	
401 402

	
402 403
    // Implementation of the Candidate List pivot rule
403 404
    class CandidateListPivotRule
404 405
    {
405 406
    private:
406 407

	
407 408
      // References to the NetworkSimplex class
408 409
      const IntVector  &_source;
409 410
      const IntVector  &_target;
410 411
      const CostVector &_cost;
411
      const CharVector &_state;
412
      const BoolVector &_state;
412 413
      const CostVector &_pi;
413 414
      int &_in_arc;
414 415
      int _search_arc_num;
415 416

	
416 417
      // Pivot rule data
417 418
      IntVector _candidates;
418 419
      int _list_length, _minor_limit;
419 420
      int _curr_length, _minor_count;
420 421
      int _next_arc;
421 422

	
422 423
    public:
423 424

	
424 425
      /// Constructor
425 426
      CandidateListPivotRule(NetworkSimplex &ns) :
426 427
        _source(ns._source), _target(ns._target),
427 428
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
428 429
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
429 430
        _next_arc(0)
430 431
      {
431 432
        // The main parameters of the pivot rule
432 433
        const double LIST_LENGTH_FACTOR = 0.25;
433 434
        const int MIN_LIST_LENGTH = 10;
434 435
        const double MINOR_LIMIT_FACTOR = 0.1;
435 436
        const int MIN_MINOR_LIMIT = 3;
436 437

	
437 438
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
438 439
                                     std::sqrt(double(_search_arc_num))),
439 440
                                 MIN_LIST_LENGTH );
440 441
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
441 442
                                 MIN_MINOR_LIMIT );
442 443
        _curr_length = _minor_count = 0;
443 444
        _candidates.resize(_list_length);
444 445
      }
445 446

	
446 447
      /// Find next entering arc
447 448
      bool findEnteringArc() {
448 449
        Cost min, c;
449 450
        int e;
450 451
        if (_curr_length > 0 && _minor_count < _minor_limit) {
451 452
          // Minor iteration: select the best eligible arc from the
452 453
          // current candidate list
453 454
          ++_minor_count;
454 455
          min = 0;
455 456
          for (int i = 0; i < _curr_length; ++i) {
456 457
            e = _candidates[i];
457 458
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
458 459
            if (c < min) {
459 460
              min = c;
460 461
              _in_arc = e;
461 462
            }
462 463
            else if (c >= 0) {
463 464
              _candidates[i--] = _candidates[--_curr_length];
464 465
            }
465 466
          }
466 467
          if (min < 0) return true;
467 468
        }
468 469

	
469 470
        // Major iteration: build a new candidate list
470 471
        min = 0;
471 472
        _curr_length = 0;
472
        for (e = _next_arc; e < _search_arc_num; ++e) {
473
        for (e = _next_arc; e != _search_arc_num; ++e) {
473 474
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
474 475
          if (c < 0) {
475 476
            _candidates[_curr_length++] = e;
476 477
            if (c < min) {
477 478
              min = c;
478 479
              _in_arc = e;
479 480
            }
480 481
            if (_curr_length == _list_length) goto search_end;
481 482
          }
482 483
        }
483
        for (e = 0; e < _next_arc; ++e) {
484
        for (e = 0; e != _next_arc; ++e) {
484 485
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
485 486
          if (c < 0) {
486 487
            _candidates[_curr_length++] = e;
487 488
            if (c < min) {
488 489
              min = c;
489 490
              _in_arc = e;
490 491
            }
491 492
            if (_curr_length == _list_length) goto search_end;
492 493
          }
493 494
        }
494 495
        if (_curr_length == 0) return false;
495 496
      
496 497
      search_end:        
497 498
        _minor_count = 1;
498 499
        _next_arc = e;
499 500
        return true;
500 501
      }
501 502

	
502 503
    }; //class CandidateListPivotRule
503 504

	
504 505

	
505 506
    // Implementation of the Altering Candidate List pivot rule
506 507
    class AlteringListPivotRule
507 508
    {
508 509
    private:
509 510

	
510 511
      // References to the NetworkSimplex class
511 512
      const IntVector  &_source;
512 513
      const IntVector  &_target;
513 514
      const CostVector &_cost;
514
      const CharVector &_state;
515
      const BoolVector &_state;
515 516
      const CostVector &_pi;
516 517
      int &_in_arc;
517 518
      int _search_arc_num;
518 519

	
519 520
      // Pivot rule data
520 521
      int _block_size, _head_length, _curr_length;
521 522
      int _next_arc;
522 523
      IntVector _candidates;
523 524
      CostVector _cand_cost;
524 525

	
525 526
      // Functor class to compare arcs during sort of the candidate list
526 527
      class SortFunc
527 528
      {
528 529
      private:
529 530
        const CostVector &_map;
530 531
      public:
531 532
        SortFunc(const CostVector &map) : _map(map) {}
532 533
        bool operator()(int left, int right) {
533 534
          return _map[left] > _map[right];
534 535
        }
535 536
      };
536 537

	
537 538
      SortFunc _sort_func;
538 539

	
539 540
    public:
540 541

	
541 542
      // Constructor
542 543
      AlteringListPivotRule(NetworkSimplex &ns) :
543 544
        _source(ns._source), _target(ns._target),
544 545
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
545 546
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
546 547
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
547 548
      {
548 549
        // The main parameters of the pivot rule
549 550
        const double BLOCK_SIZE_FACTOR = 1.0;
550 551
        const int MIN_BLOCK_SIZE = 10;
551 552
        const double HEAD_LENGTH_FACTOR = 0.1;
552 553
        const int MIN_HEAD_LENGTH = 3;
553 554

	
554 555
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
555 556
                                    std::sqrt(double(_search_arc_num))),
556 557
                                MIN_BLOCK_SIZE );
557 558
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
558 559
                                 MIN_HEAD_LENGTH );
559 560
        _candidates.resize(_head_length + _block_size);
560 561
        _curr_length = 0;
561 562
      }
562 563

	
563 564
      // Find next entering arc
564 565
      bool findEnteringArc() {
565 566
        // Check the current candidate list
566 567
        int e;
567
        for (int i = 0; i < _curr_length; ++i) {
568
        for (int i = 0; i != _curr_length; ++i) {
568 569
          e = _candidates[i];
569 570
          _cand_cost[e] = _state[e] *
570 571
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
571 572
          if (_cand_cost[e] >= 0) {
572 573
            _candidates[i--] = _candidates[--_curr_length];
573 574
          }
574 575
        }
575 576

	
576 577
        // Extend the list
577 578
        int cnt = _block_size;
578 579
        int limit = _head_length;
579 580

	
580
        for (e = _next_arc; e < _search_arc_num; ++e) {
581
        for (e = _next_arc; e != _search_arc_num; ++e) {
581 582
          _cand_cost[e] = _state[e] *
582 583
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
583 584
          if (_cand_cost[e] < 0) {
584 585
            _candidates[_curr_length++] = e;
585 586
          }
586 587
          if (--cnt == 0) {
587 588
            if (_curr_length > limit) goto search_end;
588 589
            limit = 0;
589 590
            cnt = _block_size;
590 591
          }
591 592
        }
592
        for (e = 0; e < _next_arc; ++e) {
593
        for (e = 0; e != _next_arc; ++e) {
593 594
          _cand_cost[e] = _state[e] *
594 595
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
595 596
          if (_cand_cost[e] < 0) {
596 597
            _candidates[_curr_length++] = e;
597 598
          }
598 599
          if (--cnt == 0) {
599 600
            if (_curr_length > limit) goto search_end;
600 601
            limit = 0;
601 602
            cnt = _block_size;
602 603
          }
603 604
        }
604 605
        if (_curr_length == 0) return false;
605 606
        
606 607
      search_end:
607 608

	
608 609
        // Make heap of the candidate list (approximating a partial sort)
609 610
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
610 611
                   _sort_func );
611 612

	
612 613
        // Pop the first element of the heap
613 614
        _in_arc = _candidates[0];
614 615
        _next_arc = e;
615 616
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
616 617
                  _sort_func );
617 618
        _curr_length = std::min(_head_length, _curr_length - 1);
618 619
        return true;
619 620
      }
620 621

	
621 622
    }; //class AlteringListPivotRule
622 623

	
623 624
  public:
624 625

	
625 626
    /// \brief Constructor.
626 627
    ///
627 628
    /// The constructor of the class.
628 629
    ///
629 630
    /// \param graph The digraph the algorithm runs on.
630 631
    /// \param arc_mixing Indicate if the arcs have to be stored in a
631 632
    /// mixed order in the internal data structure. 
632 633
    /// In special cases, it could lead to better overall performance,
633 634
    /// but it is usually slower. Therefore it is disabled by default.
634 635
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
635 636
      _graph(graph), _node_id(graph), _arc_id(graph),
636 637
      MAX(std::numeric_limits<Value>::max()),
637 638
      INF(std::numeric_limits<Value>::has_infinity ?
638 639
          std::numeric_limits<Value>::infinity() : MAX)
639 640
    {
640 641
      // Check the number types
641 642
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
642 643
        "The flow type of NetworkSimplex must be signed");
643 644
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
644 645
        "The cost type of NetworkSimplex must be signed");
645 646
        
646 647
      // Resize vectors
647 648
      _node_num = countNodes(_graph);
648 649
      _arc_num = countArcs(_graph);
649 650
      int all_node_num = _node_num + 1;
650 651
      int max_arc_num = _arc_num + 2 * _node_num;
651 652

	
652 653
      _source.resize(max_arc_num);
653 654
      _target.resize(max_arc_num);
654 655

	
655 656
      _lower.resize(_arc_num);
656 657
      _upper.resize(_arc_num);
657 658
      _cap.resize(max_arc_num);
658 659
      _cost.resize(max_arc_num);
659 660
      _supply.resize(all_node_num);
660 661
      _flow.resize(max_arc_num);
661 662
      _pi.resize(all_node_num);
662 663

	
663 664
      _parent.resize(all_node_num);
664 665
      _pred.resize(all_node_num);
665 666
      _forward.resize(all_node_num);
666 667
      _thread.resize(all_node_num);
667 668
      _rev_thread.resize(all_node_num);
668 669
      _succ_num.resize(all_node_num);
669 670
      _last_succ.resize(all_node_num);
670 671
      _state.resize(max_arc_num);
671 672

	
672 673
      // Copy the graph
673 674
      int i = 0;
674 675
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
675 676
        _node_id[n] = i;
676 677
      }
677 678
      if (arc_mixing) {
678 679
        // Store the arcs in a mixed order
679 680
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
680 681
        int i = 0, j = 0;
681 682
        for (ArcIt a(_graph); a != INVALID; ++a) {
682 683
          _arc_id[a] = i;
683 684
          _source[i] = _node_id[_graph.source(a)];
684 685
          _target[i] = _node_id[_graph.target(a)];
685 686
          if ((i += k) >= _arc_num) i = ++j;
686 687
        }
687 688
      } else {
688 689
        // Store the arcs in the original order
689 690
        int i = 0;
690 691
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
691 692
          _arc_id[a] = i;
692 693
          _source[i] = _node_id[_graph.source(a)];
693 694
          _target[i] = _node_id[_graph.target(a)];
694 695
        }
695 696
      }
696 697
      
697 698
      // Reset parameters
698 699
      reset();
699 700
    }
700 701

	
701 702
    /// \name Parameters
702 703
    /// The parameters of the algorithm can be specified using these
703 704
    /// functions.
704 705

	
705 706
    /// @{
706 707

	
707 708
    /// \brief Set the lower bounds on the arcs.
708 709
    ///
709 710
    /// This function sets the lower bounds on the arcs.
710 711
    /// If it is not used before calling \ref run(), the lower bounds
711 712
    /// will be set to zero on all arcs.
712 713
    ///
713 714
    /// \param map An arc map storing the lower bounds.
714 715
    /// Its \c Value type must be convertible to the \c Value type
715 716
    /// of the algorithm.
716 717
    ///
717 718
    /// \return <tt>(*this)</tt>
718 719
    template <typename LowerMap>
719 720
    NetworkSimplex& lowerMap(const LowerMap& map) {
720 721
      _have_lower = true;
721 722
      for (ArcIt a(_graph); a != INVALID; ++a) {
722 723
        _lower[_arc_id[a]] = map[a];
723 724
      }
724 725
      return *this;
725 726
    }
726 727

	
727 728
    /// \brief Set the upper bounds (capacities) on the arcs.
728 729
    ///
729 730
    /// This function sets the upper bounds (capacities) on the arcs.
730 731
    /// If it is not used before calling \ref run(), the upper bounds
731 732
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
732 733
    /// unbounded from above).
733 734
    ///
734 735
    /// \param map An arc map storing the upper bounds.
735 736
    /// Its \c Value type must be convertible to the \c Value type
736 737
    /// of the algorithm.
737 738
    ///
738 739
    /// \return <tt>(*this)</tt>
739 740
    template<typename UpperMap>
740 741
    NetworkSimplex& upperMap(const UpperMap& map) {
741 742
      for (ArcIt a(_graph); a != INVALID; ++a) {
742 743
        _upper[_arc_id[a]] = map[a];
743 744
      }
744 745
      return *this;
745 746
    }
746 747

	
747 748
    /// \brief Set the costs of the arcs.
748 749
    ///
749 750
    /// This function sets the costs of the arcs.
750 751
    /// If it is not used before calling \ref run(), the costs
751 752
    /// will be set to \c 1 on all arcs.
752 753
    ///
753 754
    /// \param map An arc map storing the costs.
754 755
    /// Its \c Value type must be convertible to the \c Cost type
755 756
    /// of the algorithm.
756 757
    ///
757 758
    /// \return <tt>(*this)</tt>
758 759
    template<typename CostMap>
759 760
    NetworkSimplex& costMap(const CostMap& map) {
760 761
      for (ArcIt a(_graph); a != INVALID; ++a) {
761 762
        _cost[_arc_id[a]] = map[a];
762 763
      }
763 764
      return *this;
764 765
    }
765 766

	
766 767
    /// \brief Set the supply values of the nodes.
767 768
    ///
768 769
    /// This function sets the supply values of the nodes.
769 770
    /// If neither this function nor \ref stSupply() is used before
770 771
    /// calling \ref run(), the supply of each node will be set to zero.
771 772
    ///
772 773
    /// \param map A node map storing the supply values.
773 774
    /// Its \c Value type must be convertible to the \c Value type
774 775
    /// of the algorithm.
775 776
    ///
776 777
    /// \return <tt>(*this)</tt>
777 778
    template<typename SupplyMap>
778 779
    NetworkSimplex& supplyMap(const SupplyMap& map) {
779 780
      for (NodeIt n(_graph); n != INVALID; ++n) {
780 781
        _supply[_node_id[n]] = map[n];
781 782
      }
782 783
      return *this;
783 784
    }
784 785

	
... ...
@@ -1139,349 +1140,446 @@
1139 1140
      else {
1140 1141
        // GEQ supply constraints
1141 1142
        _search_arc_num = _arc_num + _node_num;
1142 1143
        int f = _arc_num + _node_num;
1143 1144
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1144 1145
          _parent[u] = _root;
1145 1146
          _thread[u] = u + 1;
1146 1147
          _rev_thread[u + 1] = u;
1147 1148
          _succ_num[u] = 1;
1148 1149
          _last_succ[u] = u;
1149 1150
          if (_supply[u] <= 0) {
1150 1151
            _forward[u] = false;
1151 1152
            _pi[u] = 0;
1152 1153
            _pred[u] = e;
1153 1154
            _source[e] = _root;
1154 1155
            _target[e] = u;
1155 1156
            _cap[e] = INF;
1156 1157
            _flow[e] = -_supply[u];
1157 1158
            _cost[e] = 0;
1158 1159
            _state[e] = STATE_TREE;
1159 1160
          } else {
1160 1161
            _forward[u] = true;
1161 1162
            _pi[u] = -ART_COST;
1162 1163
            _pred[u] = f;
1163 1164
            _source[f] = u;
1164 1165
            _target[f] = _root;
1165 1166
            _cap[f] = INF;
1166 1167
            _flow[f] = _supply[u];
1167 1168
            _state[f] = STATE_TREE;
1168 1169
            _cost[f] = ART_COST;
1169 1170
            _source[e] = _root;
1170 1171
            _target[e] = u;
1171 1172
            _cap[e] = INF;
1172 1173
            _flow[e] = 0;
1173 1174
            _cost[e] = 0;
1174 1175
            _state[e] = STATE_LOWER;
1175 1176
            ++f;
1176 1177
          }
1177 1178
        }
1178 1179
        _all_arc_num = f;
1179 1180
      }
1180 1181

	
1181 1182
      return true;
1182 1183
    }
1183 1184

	
1184 1185
    // Find the join node
1185 1186
    void findJoinNode() {
1186 1187
      int u = _source[in_arc];
1187 1188
      int v = _target[in_arc];
1188 1189
      while (u != v) {
1189 1190
        if (_succ_num[u] < _succ_num[v]) {
1190 1191
          u = _parent[u];
1191 1192
        } else {
1192 1193
          v = _parent[v];
1193 1194
        }
1194 1195
      }
1195 1196
      join = u;
1196 1197
    }
1197 1198

	
1198 1199
    // Find the leaving arc of the cycle and returns true if the
1199 1200
    // leaving arc is not the same as the entering arc
1200 1201
    bool findLeavingArc() {
1201 1202
      // Initialize first and second nodes according to the direction
1202 1203
      // of the cycle
1203 1204
      if (_state[in_arc] == STATE_LOWER) {
1204 1205
        first  = _source[in_arc];
1205 1206
        second = _target[in_arc];
1206 1207
      } else {
1207 1208
        first  = _target[in_arc];
1208 1209
        second = _source[in_arc];
1209 1210
      }
1210 1211
      delta = _cap[in_arc];
1211 1212
      int result = 0;
1212 1213
      Value d;
1213 1214
      int e;
1214 1215

	
1215 1216
      // Search the cycle along the path form the first node to the root
1216 1217
      for (int u = first; u != join; u = _parent[u]) {
1217 1218
        e = _pred[u];
1218 1219
        d = _forward[u] ?
1219 1220
          _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
1220 1221
        if (d < delta) {
1221 1222
          delta = d;
1222 1223
          u_out = u;
1223 1224
          result = 1;
1224 1225
        }
1225 1226
      }
1226 1227
      // Search the cycle along the path form the second node to the root
1227 1228
      for (int u = second; u != join; u = _parent[u]) {
1228 1229
        e = _pred[u];
1229 1230
        d = _forward[u] ? 
1230 1231
          (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
1231 1232
        if (d <= delta) {
1232 1233
          delta = d;
1233 1234
          u_out = u;
1234 1235
          result = 2;
1235 1236
        }
1236 1237
      }
1237 1238

	
1238 1239
      if (result == 1) {
1239 1240
        u_in = first;
1240 1241
        v_in = second;
1241 1242
      } else {
1242 1243
        u_in = second;
1243 1244
        v_in = first;
1244 1245
      }
1245 1246
      return result != 0;
1246 1247
    }
1247 1248

	
1248 1249
    // Change _flow and _state vectors
1249 1250
    void changeFlow(bool change) {
1250 1251
      // Augment along the cycle
1251 1252
      if (delta > 0) {
1252 1253
        Value val = _state[in_arc] * delta;
1253 1254
        _flow[in_arc] += val;
1254 1255
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1255 1256
          _flow[_pred[u]] += _forward[u] ? -val : val;
1256 1257
        }
1257 1258
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1258 1259
          _flow[_pred[u]] += _forward[u] ? val : -val;
1259 1260
        }
1260 1261
      }
1261 1262
      // Update the state of the entering and leaving arcs
1262 1263
      if (change) {
1263 1264
        _state[in_arc] = STATE_TREE;
1264 1265
        _state[_pred[u_out]] =
1265 1266
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1266 1267
      } else {
1267 1268
        _state[in_arc] = -_state[in_arc];
1268 1269
      }
1269 1270
    }
1270 1271

	
1271 1272
    // Update the tree structure
1272 1273
    void updateTreeStructure() {
1273 1274
      int u, w;
1274 1275
      int old_rev_thread = _rev_thread[u_out];
1275 1276
      int old_succ_num = _succ_num[u_out];
1276 1277
      int old_last_succ = _last_succ[u_out];
1277 1278
      v_out = _parent[u_out];
1278 1279

	
1279 1280
      u = _last_succ[u_in];  // the last successor of u_in
1280 1281
      right = _thread[u];    // the node after it
1281 1282

	
1282 1283
      // Handle the case when old_rev_thread equals to v_in
1283 1284
      // (it also means that join and v_out coincide)
1284 1285
      if (old_rev_thread == v_in) {
1285 1286
        last = _thread[_last_succ[u_out]];
1286 1287
      } else {
1287 1288
        last = _thread[v_in];
1288 1289
      }
1289 1290

	
1290 1291
      // Update _thread and _parent along the stem nodes (i.e. the nodes
1291 1292
      // between u_in and u_out, whose parent have to be changed)
1292 1293
      _thread[v_in] = stem = u_in;
1293 1294
      _dirty_revs.clear();
1294 1295
      _dirty_revs.push_back(v_in);
1295 1296
      par_stem = v_in;
1296 1297
      while (stem != u_out) {
1297 1298
        // Insert the next stem node into the thread list
1298 1299
        new_stem = _parent[stem];
1299 1300
        _thread[u] = new_stem;
1300 1301
        _dirty_revs.push_back(u);
1301 1302

	
1302 1303
        // Remove the subtree of stem from the thread list
1303 1304
        w = _rev_thread[stem];
1304 1305
        _thread[w] = right;
1305 1306
        _rev_thread[right] = w;
1306 1307

	
1307 1308
        // Change the parent node and shift stem nodes
1308 1309
        _parent[stem] = par_stem;
1309 1310
        par_stem = stem;
1310 1311
        stem = new_stem;
1311 1312

	
1312 1313
        // Update u and right
1313 1314
        u = _last_succ[stem] == _last_succ[par_stem] ?
1314 1315
          _rev_thread[par_stem] : _last_succ[stem];
1315 1316
        right = _thread[u];
1316 1317
      }
1317 1318
      _parent[u_out] = par_stem;
1318 1319
      _thread[u] = last;
1319 1320
      _rev_thread[last] = u;
1320 1321
      _last_succ[u_out] = u;
1321 1322

	
1322 1323
      // Remove the subtree of u_out from the thread list except for
1323 1324
      // the case when old_rev_thread equals to v_in
1324 1325
      // (it also means that join and v_out coincide)
1325 1326
      if (old_rev_thread != v_in) {
1326 1327
        _thread[old_rev_thread] = right;
1327 1328
        _rev_thread[right] = old_rev_thread;
1328 1329
      }
1329 1330

	
1330 1331
      // Update _rev_thread using the new _thread values
1331
      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1332
      for (int i = 0; i != int(_dirty_revs.size()); ++i) {
1332 1333
        u = _dirty_revs[i];
1333 1334
        _rev_thread[_thread[u]] = u;
1334 1335
      }
1335 1336

	
1336 1337
      // Update _pred, _forward, _last_succ and _succ_num for the
1337 1338
      // stem nodes from u_out to u_in
1338 1339
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1339 1340
      u = u_out;
1340 1341
      while (u != u_in) {
1341 1342
        w = _parent[u];
1342 1343
        _pred[u] = _pred[w];
1343 1344
        _forward[u] = !_forward[w];
1344 1345
        tmp_sc += _succ_num[u] - _succ_num[w];
1345 1346
        _succ_num[u] = tmp_sc;
1346 1347
        _last_succ[w] = tmp_ls;
1347 1348
        u = w;
1348 1349
      }
1349 1350
      _pred[u_in] = in_arc;
1350 1351
      _forward[u_in] = (u_in == _source[in_arc]);
1351 1352
      _succ_num[u_in] = old_succ_num;
1352 1353

	
1353 1354
      // Set limits for updating _last_succ form v_in and v_out
1354 1355
      // towards the root
1355 1356
      int up_limit_in = -1;
1356 1357
      int up_limit_out = -1;
1357 1358
      if (_last_succ[join] == v_in) {
1358 1359
        up_limit_out = join;
1359 1360
      } else {
1360 1361
        up_limit_in = join;
1361 1362
      }
1362 1363

	
1363 1364
      // Update _last_succ from v_in towards the root
1364 1365
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1365 1366
           u = _parent[u]) {
1366 1367
        _last_succ[u] = _last_succ[u_out];
1367 1368
      }
1368 1369
      // Update _last_succ from v_out towards the root
1369 1370
      if (join != old_rev_thread && v_in != old_rev_thread) {
1370 1371
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1371 1372
             u = _parent[u]) {
1372 1373
          _last_succ[u] = old_rev_thread;
1373 1374
        }
1374 1375
      } else {
1375 1376
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1376 1377
             u = _parent[u]) {
1377 1378
          _last_succ[u] = _last_succ[u_out];
1378 1379
        }
1379 1380
      }
1380 1381

	
1381 1382
      // Update _succ_num from v_in to join
1382 1383
      for (u = v_in; u != join; u = _parent[u]) {
1383 1384
        _succ_num[u] += old_succ_num;
1384 1385
      }
1385 1386
      // Update _succ_num from v_out to join
1386 1387
      for (u = v_out; u != join; u = _parent[u]) {
1387 1388
        _succ_num[u] -= old_succ_num;
1388 1389
      }
1389 1390
    }
1390 1391

	
1391 1392
    // Update potentials
1392 1393
    void updatePotential() {
1393 1394
      Cost sigma = _forward[u_in] ?
1394 1395
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1395 1396
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1396 1397
      // Update potentials in the subtree, which has been moved
1397 1398
      int end = _thread[_last_succ[u_in]];
1398 1399
      for (int u = u_in; u != end; u = _thread[u]) {
1399 1400
        _pi[u] += sigma;
1400 1401
      }
1401 1402
    }
1402 1403

	
1404
    // Heuristic initial pivots
1405
    bool initialPivots() {
1406
      Value curr, total = 0;
1407
      std::vector<Node> supply_nodes, demand_nodes;
1408
      for (NodeIt u(_graph); u != INVALID; ++u) {
1409
        curr = _supply[_node_id[u]];
1410
        if (curr > 0) {
1411
          total += curr;
1412
          supply_nodes.push_back(u);
1413
        }
1414
        else if (curr < 0) {
1415
          demand_nodes.push_back(u);
1416
        }
1417
      }
1418
      if (_sum_supply > 0) total -= _sum_supply;
1419
      if (total <= 0) return true;
1420

	
1421
      IntVector arc_vector;
1422
      if (_sum_supply >= 0) {
1423
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
1424
          // Perform a reverse graph search from the sink to the source
1425
          typename GR::template NodeMap<bool> reached(_graph, false);
1426
          Node s = supply_nodes[0], t = demand_nodes[0];
1427
          std::vector<Node> stack;
1428
          reached[t] = true;
1429
          stack.push_back(t);
1430
          while (!stack.empty()) {
1431
            Node u, v = stack.back();
1432
            stack.pop_back();
1433
            if (v == s) break;
1434
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
1435
              if (reached[u = _graph.source(a)]) continue;
1436
              int j = _arc_id[a];
1437
              if (_cap[j] >= total) {
1438
                arc_vector.push_back(j);
1439
                reached[u] = true;
1440
                stack.push_back(u);
1441
              }
1442
            }
1443
          }
1444
        } else {
1445
          // Find the min. cost incomming arc for each demand node
1446
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
1447
            Node v = demand_nodes[i];
1448
            Cost c, min_cost = std::numeric_limits<Cost>::max();
1449
            Arc min_arc = INVALID;
1450
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
1451
              c = _cost[_arc_id[a]];
1452
              if (c < min_cost) {
1453
                min_cost = c;
1454
                min_arc = a;
1455
              }
1456
            }
1457
            if (min_arc != INVALID) {
1458
              arc_vector.push_back(_arc_id[min_arc]);
1459
            }
1460
          }
1461
        }
1462
      } else {
1463
        // Find the min. cost outgoing arc for each supply node
1464
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
1465
          Node u = supply_nodes[i];
1466
          Cost c, min_cost = std::numeric_limits<Cost>::max();
1467
          Arc min_arc = INVALID;
1468
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
1469
            c = _cost[_arc_id[a]];
1470
            if (c < min_cost) {
1471
              min_cost = c;
1472
              min_arc = a;
1473
            }
1474
          }
1475
          if (min_arc != INVALID) {
1476
            arc_vector.push_back(_arc_id[min_arc]);
1477
          }
1478
        }
1479
      }
1480

	
1481
      // Perform heuristic initial pivots
1482
      for (int i = 0; i != int(arc_vector.size()); ++i) {
1483
        in_arc = arc_vector[i];
1484
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
1485
            _pi[_target[in_arc]]) >= 0) continue;
1486
        findJoinNode();
1487
        bool change = findLeavingArc();
1488
        if (delta >= MAX) return false;
1489
        changeFlow(change);
1490
        if (change) {
1491
          updateTreeStructure();
1492
          updatePotential();
1493
        }
1494
      }
1495
      return true;
1496
    }
1497

	
1403 1498
    // Execute the algorithm
1404 1499
    ProblemType start(PivotRule pivot_rule) {
1405 1500
      // Select the pivot rule implementation
1406 1501
      switch (pivot_rule) {
1407 1502
        case FIRST_ELIGIBLE:
1408 1503
          return start<FirstEligiblePivotRule>();
1409 1504
        case BEST_ELIGIBLE:
1410 1505
          return start<BestEligiblePivotRule>();
1411 1506
        case BLOCK_SEARCH:
1412 1507
          return start<BlockSearchPivotRule>();
1413 1508
        case CANDIDATE_LIST:
1414 1509
          return start<CandidateListPivotRule>();
1415 1510
        case ALTERING_LIST:
1416 1511
          return start<AlteringListPivotRule>();
1417 1512
      }
1418 1513
      return INFEASIBLE; // avoid warning
1419 1514
    }
1420 1515

	
1421 1516
    template <typename PivotRuleImpl>
1422 1517
    ProblemType start() {
1423 1518
      PivotRuleImpl pivot(*this);
1424 1519

	
1520
      // Perform heuristic initial pivots
1521
      if (!initialPivots()) return UNBOUNDED;
1522

	
1425 1523
      // Execute the Network Simplex algorithm
1426 1524
      while (pivot.findEnteringArc()) {
1427 1525
        findJoinNode();
1428 1526
        bool change = findLeavingArc();
1429 1527
        if (delta >= MAX) return UNBOUNDED;
1430 1528
        changeFlow(change);
1431 1529
        if (change) {
1432 1530
          updateTreeStructure();
1433 1531
          updatePotential();
1434 1532
        }
1435 1533
      }
1436 1534
      
1437 1535
      // Check feasibility
1438 1536
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1439 1537
        if (_flow[e] != 0) return INFEASIBLE;
1440 1538
      }
1441 1539

	
1442 1540
      // Transform the solution and the supply map to the original form
1443 1541
      if (_have_lower) {
1444 1542
        for (int i = 0; i != _arc_num; ++i) {
1445 1543
          Value c = _lower[i];
1446 1544
          if (c != 0) {
1447 1545
            _flow[i] += c;
1448 1546
            _supply[_source[i]] += c;
1449 1547
            _supply[_target[i]] -= c;
1450 1548
          }
1451 1549
        }
1452 1550
      }
1453 1551
      
1454 1552
      // Shift potentials to meet the requirements of the GEQ/LEQ type
1455 1553
      // optimality conditions
1456 1554
      if (_sum_supply == 0) {
1457 1555
        if (_stype == GEQ) {
1458 1556
          Cost max_pot = std::numeric_limits<Cost>::min();
1459 1557
          for (int i = 0; i != _node_num; ++i) {
1460 1558
            if (_pi[i] > max_pot) max_pot = _pi[i];
1461 1559
          }
1462 1560
          if (max_pot > 0) {
1463 1561
            for (int i = 0; i != _node_num; ++i)
1464 1562
              _pi[i] -= max_pot;
1465 1563
          }
1466 1564
        } else {
1467 1565
          Cost min_pot = std::numeric_limits<Cost>::max();
1468 1566
          for (int i = 0; i != _node_num; ++i) {
1469 1567
            if (_pi[i] < min_pot) min_pot = _pi[i];
1470 1568
          }
1471 1569
          if (min_pot < 0) {
1472 1570
            for (int i = 0; i != _node_num; ++i)
1473 1571
              _pi[i] -= min_pot;
1474 1572
          }
1475 1573
        }
1476 1574
      }
1477 1575

	
1478 1576
      return OPTIMAL;
1479 1577
    }
1480 1578

	
1481 1579
  }; //class NetworkSimplex
1482 1580

	
1483 1581
  ///@}
1484 1582

	
1485 1583
} //namespace lemon
1486 1584

	
1487 1585
#endif //LEMON_NETWORK_SIMPLEX_H
0 comments (0 inline)