| ... | ... |
@@ -387,541 +387,545 @@ |
| 387 | 387 |
return *_level; |
| 388 | 388 |
} |
| 389 | 389 |
|
| 390 | 390 |
/// \brief Sets the tolerance used by the algorithm. |
| 391 | 391 |
/// |
| 392 | 392 |
/// Sets the tolerance object used by the algorithm. |
| 393 | 393 |
/// \return <tt>(*this)</tt> |
| 394 | 394 |
Preflow& tolerance(const Tolerance& tolerance) {
|
| 395 | 395 |
_tolerance = tolerance; |
| 396 | 396 |
return *this; |
| 397 | 397 |
} |
| 398 | 398 |
|
| 399 | 399 |
/// \brief Returns a const reference to the tolerance. |
| 400 | 400 |
/// |
| 401 | 401 |
/// Returns a const reference to the tolerance object used by |
| 402 | 402 |
/// the algorithm. |
| 403 | 403 |
const Tolerance& tolerance() const {
|
| 404 | 404 |
return _tolerance; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
/// \name Execution Control |
| 408 | 408 |
/// The simplest way to execute the preflow algorithm is to use |
| 409 | 409 |
/// \ref run() or \ref runMinCut().\n |
| 410 | 410 |
/// If you need better control on the initial solution or the execution, |
| 411 | 411 |
/// you have to call one of the \ref init() functions first, then |
| 412 | 412 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 413 | 413 |
|
| 414 | 414 |
///@{
|
| 415 | 415 |
|
| 416 | 416 |
/// \brief Initializes the internal data structures. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Initializes the internal data structures and sets the initial |
| 419 | 419 |
/// flow to zero on each arc. |
| 420 | 420 |
void init() {
|
| 421 | 421 |
createStructures(); |
| 422 | 422 |
|
| 423 | 423 |
_phase = true; |
| 424 | 424 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 425 | 425 |
(*_excess)[n] = 0; |
| 426 | 426 |
} |
| 427 | 427 |
|
| 428 | 428 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 429 | 429 |
_flow->set(e, 0); |
| 430 | 430 |
} |
| 431 | 431 |
|
| 432 | 432 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 433 | 433 |
|
| 434 | 434 |
_level->initStart(); |
| 435 | 435 |
_level->initAddItem(_target); |
| 436 | 436 |
|
| 437 | 437 |
std::vector<Node> queue; |
| 438 | 438 |
reached[_source] = true; |
| 439 | 439 |
|
| 440 | 440 |
queue.push_back(_target); |
| 441 | 441 |
reached[_target] = true; |
| 442 | 442 |
while (!queue.empty()) {
|
| 443 | 443 |
_level->initNewLevel(); |
| 444 | 444 |
std::vector<Node> nqueue; |
| 445 | 445 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 446 | 446 |
Node n = queue[i]; |
| 447 | 447 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 448 | 448 |
Node u = _graph.source(e); |
| 449 | 449 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 450 | 450 |
reached[u] = true; |
| 451 | 451 |
_level->initAddItem(u); |
| 452 | 452 |
nqueue.push_back(u); |
| 453 | 453 |
} |
| 454 | 454 |
} |
| 455 | 455 |
} |
| 456 | 456 |
queue.swap(nqueue); |
| 457 | 457 |
} |
| 458 | 458 |
_level->initFinish(); |
| 459 | 459 |
|
| 460 | 460 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 461 | 461 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 462 | 462 |
Node u = _graph.target(e); |
| 463 | 463 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 464 | 464 |
_flow->set(e, (*_capacity)[e]); |
| 465 | 465 |
(*_excess)[u] += (*_capacity)[e]; |
| 466 | 466 |
if (u != _target && !_level->active(u)) {
|
| 467 | 467 |
_level->activate(u); |
| 468 | 468 |
} |
| 469 | 469 |
} |
| 470 | 470 |
} |
| 471 | 471 |
} |
| 472 | 472 |
|
| 473 | 473 |
/// \brief Initializes the internal data structures using the |
| 474 | 474 |
/// given flow map. |
| 475 | 475 |
/// |
| 476 | 476 |
/// Initializes the internal data structures and sets the initial |
| 477 | 477 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 478 | 478 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 479 | 479 |
/// source node the incoming flow should greater or equal to the |
| 480 | 480 |
/// outgoing flow. |
| 481 | 481 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 482 | 482 |
template <typename FlowMap> |
| 483 | 483 |
bool init(const FlowMap& flowMap) {
|
| 484 | 484 |
createStructures(); |
| 485 | 485 |
|
| 486 | 486 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 487 | 487 |
_flow->set(e, flowMap[e]); |
| 488 | 488 |
} |
| 489 | 489 |
|
| 490 | 490 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 491 | 491 |
Value excess = 0; |
| 492 | 492 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 493 | 493 |
excess += (*_flow)[e]; |
| 494 | 494 |
} |
| 495 | 495 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 496 | 496 |
excess -= (*_flow)[e]; |
| 497 | 497 |
} |
| 498 | 498 |
if (excess < 0 && n != _source) return false; |
| 499 | 499 |
(*_excess)[n] = excess; |
| 500 | 500 |
} |
| 501 | 501 |
|
| 502 | 502 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 503 | 503 |
|
| 504 | 504 |
_level->initStart(); |
| 505 | 505 |
_level->initAddItem(_target); |
| 506 | 506 |
|
| 507 | 507 |
std::vector<Node> queue; |
| 508 | 508 |
reached[_source] = true; |
| 509 | 509 |
|
| 510 | 510 |
queue.push_back(_target); |
| 511 | 511 |
reached[_target] = true; |
| 512 | 512 |
while (!queue.empty()) {
|
| 513 | 513 |
_level->initNewLevel(); |
| 514 | 514 |
std::vector<Node> nqueue; |
| 515 | 515 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 516 | 516 |
Node n = queue[i]; |
| 517 | 517 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 518 | 518 |
Node u = _graph.source(e); |
| 519 | 519 |
if (!reached[u] && |
| 520 | 520 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 521 | 521 |
reached[u] = true; |
| 522 | 522 |
_level->initAddItem(u); |
| 523 | 523 |
nqueue.push_back(u); |
| 524 | 524 |
} |
| 525 | 525 |
} |
| 526 | 526 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 527 | 527 |
Node v = _graph.target(e); |
| 528 | 528 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 529 | 529 |
reached[v] = true; |
| 530 | 530 |
_level->initAddItem(v); |
| 531 | 531 |
nqueue.push_back(v); |
| 532 | 532 |
} |
| 533 | 533 |
} |
| 534 | 534 |
} |
| 535 | 535 |
queue.swap(nqueue); |
| 536 | 536 |
} |
| 537 | 537 |
_level->initFinish(); |
| 538 | 538 |
|
| 539 | 539 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 540 | 540 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 541 | 541 |
if (_tolerance.positive(rem)) {
|
| 542 | 542 |
Node u = _graph.target(e); |
| 543 | 543 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 544 | 544 |
_flow->set(e, (*_capacity)[e]); |
| 545 | 545 |
(*_excess)[u] += rem; |
| 546 | 546 |
if (u != _target && !_level->active(u)) {
|
| 547 | 547 |
_level->activate(u); |
| 548 | 548 |
} |
| 549 | 549 |
} |
| 550 | 550 |
} |
| 551 | 551 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 552 | 552 |
Value rem = (*_flow)[e]; |
| 553 | 553 |
if (_tolerance.positive(rem)) {
|
| 554 | 554 |
Node v = _graph.source(e); |
| 555 | 555 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 556 | 556 |
_flow->set(e, 0); |
| 557 | 557 |
(*_excess)[v] += rem; |
| 558 | 558 |
if (v != _target && !_level->active(v)) {
|
| 559 | 559 |
_level->activate(v); |
| 560 | 560 |
} |
| 561 | 561 |
} |
| 562 | 562 |
} |
| 563 | 563 |
return true; |
| 564 | 564 |
} |
| 565 | 565 |
|
| 566 | 566 |
/// \brief Starts the first phase of the preflow algorithm. |
| 567 | 567 |
/// |
| 568 | 568 |
/// The preflow algorithm consists of two phases, this method runs |
| 569 | 569 |
/// the first phase. After the first phase the maximum flow value |
| 570 | 570 |
/// and a minimum value cut can already be computed, although a |
| 571 | 571 |
/// maximum flow is not yet obtained. So after calling this method |
| 572 | 572 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 573 | 573 |
/// minCut() returns a minimum cut. |
| 574 | 574 |
/// \pre One of the \ref init() functions must be called before |
| 575 | 575 |
/// using this function. |
| 576 | 576 |
void startFirstPhase() {
|
| 577 | 577 |
_phase = true; |
| 578 | 578 |
|
| 579 |
Node n = _level->highestActive(); |
|
| 580 |
int level = _level->highestActiveLevel(); |
|
| 581 |
while ( |
|
| 579 |
while (true) {
|
|
| 582 | 580 |
int num = _node_num; |
| 583 | 581 |
|
| 584 |
|
|
| 582 |
Node n = INVALID; |
|
| 583 |
int level = -1; |
|
| 584 |
|
|
| 585 |
while (num > 0) {
|
|
| 586 |
n = _level->highestActive(); |
|
| 587 |
if (n == INVALID) goto first_phase_done; |
|
| 588 |
level = _level->highestActiveLevel(); |
|
| 589 |
--num; |
|
| 590 |
|
|
| 585 | 591 |
Value excess = (*_excess)[n]; |
| 586 | 592 |
int new_level = _level->maxLevel(); |
| 587 | 593 |
|
| 588 | 594 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 589 | 595 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 590 | 596 |
if (!_tolerance.positive(rem)) continue; |
| 591 | 597 |
Node v = _graph.target(e); |
| 592 | 598 |
if ((*_level)[v] < level) {
|
| 593 | 599 |
if (!_level->active(v) && v != _target) {
|
| 594 | 600 |
_level->activate(v); |
| 595 | 601 |
} |
| 596 | 602 |
if (!_tolerance.less(rem, excess)) {
|
| 597 | 603 |
_flow->set(e, (*_flow)[e] + excess); |
| 598 | 604 |
(*_excess)[v] += excess; |
| 599 | 605 |
excess = 0; |
| 600 | 606 |
goto no_more_push_1; |
| 601 | 607 |
} else {
|
| 602 | 608 |
excess -= rem; |
| 603 | 609 |
(*_excess)[v] += rem; |
| 604 | 610 |
_flow->set(e, (*_capacity)[e]); |
| 605 | 611 |
} |
| 606 | 612 |
} else if (new_level > (*_level)[v]) {
|
| 607 | 613 |
new_level = (*_level)[v]; |
| 608 | 614 |
} |
| 609 | 615 |
} |
| 610 | 616 |
|
| 611 | 617 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 612 | 618 |
Value rem = (*_flow)[e]; |
| 613 | 619 |
if (!_tolerance.positive(rem)) continue; |
| 614 | 620 |
Node v = _graph.source(e); |
| 615 | 621 |
if ((*_level)[v] < level) {
|
| 616 | 622 |
if (!_level->active(v) && v != _target) {
|
| 617 | 623 |
_level->activate(v); |
| 618 | 624 |
} |
| 619 | 625 |
if (!_tolerance.less(rem, excess)) {
|
| 620 | 626 |
_flow->set(e, (*_flow)[e] - excess); |
| 621 | 627 |
(*_excess)[v] += excess; |
| 622 | 628 |
excess = 0; |
| 623 | 629 |
goto no_more_push_1; |
| 624 | 630 |
} else {
|
| 625 | 631 |
excess -= rem; |
| 626 | 632 |
(*_excess)[v] += rem; |
| 627 | 633 |
_flow->set(e, 0); |
| 628 | 634 |
} |
| 629 | 635 |
} else if (new_level > (*_level)[v]) {
|
| 630 | 636 |
new_level = (*_level)[v]; |
| 631 | 637 |
} |
| 632 | 638 |
} |
| 633 | 639 |
|
| 634 | 640 |
no_more_push_1: |
| 635 | 641 |
|
| 636 | 642 |
(*_excess)[n] = excess; |
| 637 | 643 |
|
| 638 | 644 |
if (excess != 0) {
|
| 639 | 645 |
if (new_level + 1 < _level->maxLevel()) {
|
| 640 | 646 |
_level->liftHighestActive(new_level + 1); |
| 641 | 647 |
} else {
|
| 642 | 648 |
_level->liftHighestActiveToTop(); |
| 643 | 649 |
} |
| 644 | 650 |
if (_level->emptyLevel(level)) {
|
| 645 | 651 |
_level->liftToTop(level); |
| 646 | 652 |
} |
| 647 | 653 |
} else {
|
| 648 | 654 |
_level->deactivate(n); |
| 649 | 655 |
} |
| 650 |
|
|
| 651 |
n = _level->highestActive(); |
|
| 652 |
level = _level->highestActiveLevel(); |
|
| 653 |
--num; |
|
| 654 | 656 |
} |
| 655 | 657 |
|
| 656 | 658 |
num = _node_num * 20; |
| 657 |
while (num > 0 |
|
| 659 |
while (num > 0) {
|
|
| 660 |
while (level >= 0 && _level->activeFree(level)) {
|
|
| 661 |
--level; |
|
| 662 |
} |
|
| 663 |
if (level == -1) {
|
|
| 664 |
n = _level->highestActive(); |
|
| 665 |
level = _level->highestActiveLevel(); |
|
| 666 |
if (n == INVALID) goto first_phase_done; |
|
| 667 |
} else {
|
|
| 668 |
n = _level->activeOn(level); |
|
| 669 |
} |
|
| 670 |
--num; |
|
| 671 |
|
|
| 658 | 672 |
Value excess = (*_excess)[n]; |
| 659 | 673 |
int new_level = _level->maxLevel(); |
| 660 | 674 |
|
| 661 | 675 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 662 | 676 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 663 | 677 |
if (!_tolerance.positive(rem)) continue; |
| 664 | 678 |
Node v = _graph.target(e); |
| 665 | 679 |
if ((*_level)[v] < level) {
|
| 666 | 680 |
if (!_level->active(v) && v != _target) {
|
| 667 | 681 |
_level->activate(v); |
| 668 | 682 |
} |
| 669 | 683 |
if (!_tolerance.less(rem, excess)) {
|
| 670 | 684 |
_flow->set(e, (*_flow)[e] + excess); |
| 671 | 685 |
(*_excess)[v] += excess; |
| 672 | 686 |
excess = 0; |
| 673 | 687 |
goto no_more_push_2; |
| 674 | 688 |
} else {
|
| 675 | 689 |
excess -= rem; |
| 676 | 690 |
(*_excess)[v] += rem; |
| 677 | 691 |
_flow->set(e, (*_capacity)[e]); |
| 678 | 692 |
} |
| 679 | 693 |
} else if (new_level > (*_level)[v]) {
|
| 680 | 694 |
new_level = (*_level)[v]; |
| 681 | 695 |
} |
| 682 | 696 |
} |
| 683 | 697 |
|
| 684 | 698 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 685 | 699 |
Value rem = (*_flow)[e]; |
| 686 | 700 |
if (!_tolerance.positive(rem)) continue; |
| 687 | 701 |
Node v = _graph.source(e); |
| 688 | 702 |
if ((*_level)[v] < level) {
|
| 689 | 703 |
if (!_level->active(v) && v != _target) {
|
| 690 | 704 |
_level->activate(v); |
| 691 | 705 |
} |
| 692 | 706 |
if (!_tolerance.less(rem, excess)) {
|
| 693 | 707 |
_flow->set(e, (*_flow)[e] - excess); |
| 694 | 708 |
(*_excess)[v] += excess; |
| 695 | 709 |
excess = 0; |
| 696 | 710 |
goto no_more_push_2; |
| 697 | 711 |
} else {
|
| 698 | 712 |
excess -= rem; |
| 699 | 713 |
(*_excess)[v] += rem; |
| 700 | 714 |
_flow->set(e, 0); |
| 701 | 715 |
} |
| 702 | 716 |
} else if (new_level > (*_level)[v]) {
|
| 703 | 717 |
new_level = (*_level)[v]; |
| 704 | 718 |
} |
| 705 | 719 |
} |
| 706 | 720 |
|
| 707 | 721 |
no_more_push_2: |
| 708 | 722 |
|
| 709 | 723 |
(*_excess)[n] = excess; |
| 710 | 724 |
|
| 711 | 725 |
if (excess != 0) {
|
| 712 | 726 |
if (new_level + 1 < _level->maxLevel()) {
|
| 713 | 727 |
_level->liftActiveOn(level, new_level + 1); |
| 714 | 728 |
} else {
|
| 715 | 729 |
_level->liftActiveToTop(level); |
| 716 | 730 |
} |
| 717 | 731 |
if (_level->emptyLevel(level)) {
|
| 718 | 732 |
_level->liftToTop(level); |
| 719 | 733 |
} |
| 720 | 734 |
} else {
|
| 721 | 735 |
_level->deactivate(n); |
| 722 | 736 |
} |
| 723 |
|
|
| 724 |
while (level >= 0 && _level->activeFree(level)) {
|
|
| 725 |
--level; |
|
| 726 | 737 |
} |
| 727 |
if (level == -1) {
|
|
| 728 |
n = _level->highestActive(); |
|
| 729 |
level = _level->highestActiveLevel(); |
|
| 730 |
} else {
|
|
| 731 |
n = _level->activeOn(level); |
|
| 732 | 738 |
} |
| 733 |
--num; |
|
| 734 |
} |
|
| 735 |
|
|
| 739 |
first_phase_done:; |
|
| 736 | 740 |
} |
| 737 | 741 |
|
| 738 | 742 |
/// \brief Starts the second phase of the preflow algorithm. |
| 739 | 743 |
/// |
| 740 | 744 |
/// The preflow algorithm consists of two phases, this method runs |
| 741 | 745 |
/// the second phase. After calling one of the \ref init() functions |
| 742 | 746 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
| 743 | 747 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
| 744 | 748 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
| 745 | 749 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
| 746 | 750 |
/// must be called before using this function. |
| 747 | 751 |
void startSecondPhase() {
|
| 748 | 752 |
_phase = false; |
| 749 | 753 |
|
| 750 | 754 |
typename Digraph::template NodeMap<bool> reached(_graph); |
| 751 | 755 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 752 | 756 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
| 753 | 757 |
} |
| 754 | 758 |
|
| 755 | 759 |
_level->initStart(); |
| 756 | 760 |
_level->initAddItem(_source); |
| 757 | 761 |
|
| 758 | 762 |
std::vector<Node> queue; |
| 759 | 763 |
queue.push_back(_source); |
| 760 | 764 |
reached[_source] = true; |
| 761 | 765 |
|
| 762 | 766 |
while (!queue.empty()) {
|
| 763 | 767 |
_level->initNewLevel(); |
| 764 | 768 |
std::vector<Node> nqueue; |
| 765 | 769 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 766 | 770 |
Node n = queue[i]; |
| 767 | 771 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 768 | 772 |
Node v = _graph.target(e); |
| 769 | 773 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 770 | 774 |
reached[v] = true; |
| 771 | 775 |
_level->initAddItem(v); |
| 772 | 776 |
nqueue.push_back(v); |
| 773 | 777 |
} |
| 774 | 778 |
} |
| 775 | 779 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 776 | 780 |
Node u = _graph.source(e); |
| 777 | 781 |
if (!reached[u] && |
| 778 | 782 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 779 | 783 |
reached[u] = true; |
| 780 | 784 |
_level->initAddItem(u); |
| 781 | 785 |
nqueue.push_back(u); |
| 782 | 786 |
} |
| 783 | 787 |
} |
| 784 | 788 |
} |
| 785 | 789 |
queue.swap(nqueue); |
| 786 | 790 |
} |
| 787 | 791 |
_level->initFinish(); |
| 788 | 792 |
|
| 789 | 793 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 790 | 794 |
if (!reached[n]) {
|
| 791 | 795 |
_level->dirtyTopButOne(n); |
| 792 | 796 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 793 | 797 |
_level->activate(n); |
| 794 | 798 |
} |
| 795 | 799 |
} |
| 796 | 800 |
|
| 797 | 801 |
Node n; |
| 798 | 802 |
while ((n = _level->highestActive()) != INVALID) {
|
| 799 | 803 |
Value excess = (*_excess)[n]; |
| 800 | 804 |
int level = _level->highestActiveLevel(); |
| 801 | 805 |
int new_level = _level->maxLevel(); |
| 802 | 806 |
|
| 803 | 807 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 804 | 808 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 805 | 809 |
if (!_tolerance.positive(rem)) continue; |
| 806 | 810 |
Node v = _graph.target(e); |
| 807 | 811 |
if ((*_level)[v] < level) {
|
| 808 | 812 |
if (!_level->active(v) && v != _source) {
|
| 809 | 813 |
_level->activate(v); |
| 810 | 814 |
} |
| 811 | 815 |
if (!_tolerance.less(rem, excess)) {
|
| 812 | 816 |
_flow->set(e, (*_flow)[e] + excess); |
| 813 | 817 |
(*_excess)[v] += excess; |
| 814 | 818 |
excess = 0; |
| 815 | 819 |
goto no_more_push; |
| 816 | 820 |
} else {
|
| 817 | 821 |
excess -= rem; |
| 818 | 822 |
(*_excess)[v] += rem; |
| 819 | 823 |
_flow->set(e, (*_capacity)[e]); |
| 820 | 824 |
} |
| 821 | 825 |
} else if (new_level > (*_level)[v]) {
|
| 822 | 826 |
new_level = (*_level)[v]; |
| 823 | 827 |
} |
| 824 | 828 |
} |
| 825 | 829 |
|
| 826 | 830 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 827 | 831 |
Value rem = (*_flow)[e]; |
| 828 | 832 |
if (!_tolerance.positive(rem)) continue; |
| 829 | 833 |
Node v = _graph.source(e); |
| 830 | 834 |
if ((*_level)[v] < level) {
|
| 831 | 835 |
if (!_level->active(v) && v != _source) {
|
| 832 | 836 |
_level->activate(v); |
| 833 | 837 |
} |
| 834 | 838 |
if (!_tolerance.less(rem, excess)) {
|
| 835 | 839 |
_flow->set(e, (*_flow)[e] - excess); |
| 836 | 840 |
(*_excess)[v] += excess; |
| 837 | 841 |
excess = 0; |
| 838 | 842 |
goto no_more_push; |
| 839 | 843 |
} else {
|
| 840 | 844 |
excess -= rem; |
| 841 | 845 |
(*_excess)[v] += rem; |
| 842 | 846 |
_flow->set(e, 0); |
| 843 | 847 |
} |
| 844 | 848 |
} else if (new_level > (*_level)[v]) {
|
| 845 | 849 |
new_level = (*_level)[v]; |
| 846 | 850 |
} |
| 847 | 851 |
} |
| 848 | 852 |
|
| 849 | 853 |
no_more_push: |
| 850 | 854 |
|
| 851 | 855 |
(*_excess)[n] = excess; |
| 852 | 856 |
|
| 853 | 857 |
if (excess != 0) {
|
| 854 | 858 |
if (new_level + 1 < _level->maxLevel()) {
|
| 855 | 859 |
_level->liftHighestActive(new_level + 1); |
| 856 | 860 |
} else {
|
| 857 | 861 |
// Calculation error |
| 858 | 862 |
_level->liftHighestActiveToTop(); |
| 859 | 863 |
} |
| 860 | 864 |
if (_level->emptyLevel(level)) {
|
| 861 | 865 |
// Calculation error |
| 862 | 866 |
_level->liftToTop(level); |
| 863 | 867 |
} |
| 864 | 868 |
} else {
|
| 865 | 869 |
_level->deactivate(n); |
| 866 | 870 |
} |
| 867 | 871 |
|
| 868 | 872 |
} |
| 869 | 873 |
} |
| 870 | 874 |
|
| 871 | 875 |
/// \brief Runs the preflow algorithm. |
| 872 | 876 |
/// |
| 873 | 877 |
/// Runs the preflow algorithm. |
| 874 | 878 |
/// \note pf.run() is just a shortcut of the following code. |
| 875 | 879 |
/// \code |
| 876 | 880 |
/// pf.init(); |
| 877 | 881 |
/// pf.startFirstPhase(); |
| 878 | 882 |
/// pf.startSecondPhase(); |
| 879 | 883 |
/// \endcode |
| 880 | 884 |
void run() {
|
| 881 | 885 |
init(); |
| 882 | 886 |
startFirstPhase(); |
| 883 | 887 |
startSecondPhase(); |
| 884 | 888 |
} |
| 885 | 889 |
|
| 886 | 890 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
| 887 | 891 |
/// |
| 888 | 892 |
/// Runs the preflow algorithm to compute the minimum cut. |
| 889 | 893 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
| 890 | 894 |
/// \code |
| 891 | 895 |
/// pf.init(); |
| 892 | 896 |
/// pf.startFirstPhase(); |
| 893 | 897 |
/// \endcode |
| 894 | 898 |
void runMinCut() {
|
| 895 | 899 |
init(); |
| 896 | 900 |
startFirstPhase(); |
| 897 | 901 |
} |
| 898 | 902 |
|
| 899 | 903 |
/// @} |
| 900 | 904 |
|
| 901 | 905 |
/// \name Query Functions |
| 902 | 906 |
/// The results of the preflow algorithm can be obtained using these |
| 903 | 907 |
/// functions.\n |
| 904 | 908 |
/// Either one of the \ref run() "run*()" functions or one of the |
| 905 | 909 |
/// \ref startFirstPhase() "start*()" functions should be called |
| 906 | 910 |
/// before using them. |
| 907 | 911 |
|
| 908 | 912 |
///@{
|
| 909 | 913 |
|
| 910 | 914 |
/// \brief Returns the value of the maximum flow. |
| 911 | 915 |
/// |
| 912 | 916 |
/// Returns the value of the maximum flow by returning the excess |
| 913 | 917 |
/// of the target node. This value equals to the value of |
| 914 | 918 |
/// the maximum flow already after the first phase of the algorithm. |
| 915 | 919 |
/// |
| 916 | 920 |
/// \pre Either \ref run() or \ref init() must be called before |
| 917 | 921 |
/// using this function. |
| 918 | 922 |
Value flowValue() const {
|
| 919 | 923 |
return (*_excess)[_target]; |
| 920 | 924 |
} |
| 921 | 925 |
|
| 922 | 926 |
/// \brief Returns the flow value on the given arc. |
| 923 | 927 |
/// |
| 924 | 928 |
/// Returns the flow value on the given arc. This method can |
| 925 | 929 |
/// be called after the second phase of the algorithm. |
| 926 | 930 |
/// |
| 927 | 931 |
/// \pre Either \ref run() or \ref init() must be called before |
0 comments (0 inline)