gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Small fix in the doc (#179)
0 2 0
default
2 files changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 2048 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_HARTMANN_ORLIN_H
20 20
#define LEMON_HARTMANN_ORLIN_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of HartmannOrlin algorithm.
37 37
  ///
38 38
  /// Default traits class of HartmannOrlin algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct HartmannOrlinDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72
    /// and it must have an \c addBack() function.
72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100 100
  /// a directed cycle of minimum mean length (cost) in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
103 103
  /// it applies an efficient early termination scheme.
104 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
105 105
  ///
106 106
  /// \tparam GR The type of the digraph the algorithm runs on.
107 107
  /// \tparam LEN The type of the length map. The default
108 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 109
#ifdef DOXYGEN
110 110
  template <typename GR, typename LEN, typename TR>
111 111
#else
112 112
  template < typename GR,
113 113
             typename LEN = typename GR::template ArcMap<int>,
114 114
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
115 115
#endif
116 116
  class HartmannOrlin
117 117
  {
118 118
  public:
119 119

	
120 120
    /// The type of the digraph
121 121
    typedef typename TR::Digraph Digraph;
122 122
    /// The type of the length map
123 123
    typedef typename TR::LengthMap LengthMap;
124 124
    /// The type of the arc lengths
125 125
    typedef typename TR::Value Value;
126 126

	
127 127
    /// \brief The large value type
128 128
    ///
129 129
    /// The large value type used for internal computations.
130 130
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
131 131
    /// it is \c long \c long if the \c Value type is integer,
132 132
    /// otherwise it is \c double.
133 133
    typedef typename TR::LargeValue LargeValue;
134 134

	
135 135
    /// The tolerance type
136 136
    typedef typename TR::Tolerance Tolerance;
137 137

	
138 138
    /// \brief The path type of the found cycles
139 139
    ///
140 140
    /// The path type of the found cycles.
141 141
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
142 142
    /// it is \ref lemon::Path "Path<Digraph>".
143 143
    typedef typename TR::Path Path;
144 144

	
145 145
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
146 146
    typedef TR Traits;
147 147

	
148 148
  private:
149 149

	
150 150
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
151 151

	
152 152
    // Data sturcture for path data
153 153
    struct PathData
154 154
    {
155 155
      LargeValue dist;
156 156
      Arc pred;
157 157
      PathData(LargeValue d, Arc p = INVALID) :
158 158
        dist(d), pred(p) {}
159 159
    };
160 160

	
161 161
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
162 162
      PathDataNodeMap;
163 163

	
164 164
  private:
165 165

	
166 166
    // The digraph the algorithm runs on
167 167
    const Digraph &_gr;
168 168
    // The length of the arcs
169 169
    const LengthMap &_length;
170 170

	
171 171
    // Data for storing the strongly connected components
172 172
    int _comp_num;
173 173
    typename Digraph::template NodeMap<int> _comp;
174 174
    std::vector<std::vector<Node> > _comp_nodes;
175 175
    std::vector<Node>* _nodes;
176 176
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
177 177

	
178 178
    // Data for the found cycles
179 179
    bool _curr_found, _best_found;
180 180
    LargeValue _curr_length, _best_length;
181 181
    int _curr_size, _best_size;
182 182
    Node _curr_node, _best_node;
183 183
    int _curr_level, _best_level;
184 184

	
185 185
    Path *_cycle_path;
186 186
    bool _local_path;
187 187

	
188 188
    // Node map for storing path data
189 189
    PathDataNodeMap _data;
190 190
    // The processed nodes in the last round
191 191
    std::vector<Node> _process;
192 192

	
193 193
    Tolerance _tolerance;
194 194

	
195 195
    // Infinite constant
196 196
    const LargeValue INF;
197 197

	
198 198
  public:
199 199

	
200 200
    /// \name Named Template Parameters
201 201
    /// @{
202 202

	
203 203
    template <typename T>
204 204
    struct SetLargeValueTraits : public Traits {
205 205
      typedef T LargeValue;
206 206
      typedef lemon::Tolerance<T> Tolerance;
207 207
    };
208 208

	
209 209
    /// \brief \ref named-templ-param "Named parameter" for setting
210 210
    /// \c LargeValue type.
211 211
    ///
212 212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
213 213
    /// type. It is used for internal computations in the algorithm.
214 214
    template <typename T>
215 215
    struct SetLargeValue
216 216
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
217 217
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
218 218
    };
219 219

	
220 220
    template <typename T>
221 221
    struct SetPathTraits : public Traits {
222 222
      typedef T Path;
223 223
    };
224 224

	
225 225
    /// \brief \ref named-templ-param "Named parameter" for setting
226 226
    /// \c %Path type.
227 227
    ///
228 228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
229 229
    /// type of the found cycles.
230 230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
231 231
    /// and it must have an \c addFront() function.
232 232
    template <typename T>
233 233
    struct SetPath
234 234
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
235 235
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
236 236
    };
237 237

	
238 238
    /// @}
239 239

	
240 240
  public:
241 241

	
242 242
    /// \brief Constructor.
243 243
    ///
244 244
    /// The constructor of the class.
245 245
    ///
246 246
    /// \param digraph The digraph the algorithm runs on.
247 247
    /// \param length The lengths (costs) of the arcs.
248 248
    HartmannOrlin( const Digraph &digraph,
249 249
                   const LengthMap &length ) :
250 250
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
251 251
      _best_found(false), _best_length(0), _best_size(1),
252 252
      _cycle_path(NULL), _local_path(false), _data(digraph),
253 253
      INF(std::numeric_limits<LargeValue>::has_infinity ?
254 254
          std::numeric_limits<LargeValue>::infinity() :
255 255
          std::numeric_limits<LargeValue>::max())
256 256
    {}
257 257

	
258 258
    /// Destructor.
259 259
    ~HartmannOrlin() {
260 260
      if (_local_path) delete _cycle_path;
261 261
    }
262 262

	
263 263
    /// \brief Set the path structure for storing the found cycle.
264 264
    ///
265 265
    /// This function sets an external path structure for storing the
266 266
    /// found cycle.
267 267
    ///
268 268
    /// If you don't call this function before calling \ref run() or
269 269
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
270 270
    /// structure. The destuctor deallocates this automatically
271 271
    /// allocated object, of course.
272 272
    ///
273 273
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
274 274
    /// "addFront()" function of the given path structure.
275 275
    ///
276 276
    /// \return <tt>(*this)</tt>
277 277
    HartmannOrlin& cycle(Path &path) {
278 278
      if (_local_path) {
279 279
        delete _cycle_path;
280 280
        _local_path = false;
281 281
      }
282 282
      _cycle_path = &path;
283 283
      return *this;
284 284
    }
285 285

	
286 286
    /// \brief Set the tolerance used by the algorithm.
287 287
    ///
288 288
    /// This function sets the tolerance object used by the algorithm.
289 289
    ///
290 290
    /// \return <tt>(*this)</tt>
291 291
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
292 292
      _tolerance = tolerance;
293 293
      return *this;
294 294
    }
295 295

	
296 296
    /// \brief Return a const reference to the tolerance.
297 297
    ///
298 298
    /// This function returns a const reference to the tolerance object
299 299
    /// used by the algorithm.
300 300
    const Tolerance& tolerance() const {
301 301
      return _tolerance;
302 302
    }
303 303

	
304 304
    /// \name Execution control
305 305
    /// The simplest way to execute the algorithm is to call the \ref run()
306 306
    /// function.\n
307 307
    /// If you only need the minimum mean length, you may call
308 308
    /// \ref findMinMean().
309 309

	
310 310
    /// @{
311 311

	
312 312
    /// \brief Run the algorithm.
313 313
    ///
314 314
    /// This function runs the algorithm.
315 315
    /// It can be called more than once (e.g. if the underlying digraph
316 316
    /// and/or the arc lengths have been modified).
317 317
    ///
318 318
    /// \return \c true if a directed cycle exists in the digraph.
319 319
    ///
320 320
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
321 321
    /// \code
322 322
    ///   return mmc.findMinMean() && mmc.findCycle();
323 323
    /// \endcode
324 324
    bool run() {
325 325
      return findMinMean() && findCycle();
326 326
    }
327 327

	
328 328
    /// \brief Find the minimum cycle mean.
329 329
    ///
330 330
    /// This function finds the minimum mean length of the directed
331 331
    /// cycles in the digraph.
332 332
    ///
333 333
    /// \return \c true if a directed cycle exists in the digraph.
334 334
    bool findMinMean() {
335 335
      // Initialization and find strongly connected components
336 336
      init();
337 337
      findComponents();
338 338
      
339 339
      // Find the minimum cycle mean in the components
340 340
      for (int comp = 0; comp < _comp_num; ++comp) {
341 341
        if (!initComponent(comp)) continue;
342 342
        processRounds();
343 343
        
344 344
        // Update the best cycle (global minimum mean cycle)
345 345
        if ( _curr_found && (!_best_found || 
346 346
             _curr_length * _best_size < _best_length * _curr_size) ) {
347 347
          _best_found = true;
348 348
          _best_length = _curr_length;
349 349
          _best_size = _curr_size;
350 350
          _best_node = _curr_node;
351 351
          _best_level = _curr_level;
352 352
        }
353 353
      }
354 354
      return _best_found;
355 355
    }
356 356

	
357 357
    /// \brief Find a minimum mean directed cycle.
358 358
    ///
359 359
    /// This function finds a directed cycle of minimum mean length
360 360
    /// in the digraph using the data computed by findMinMean().
361 361
    ///
362 362
    /// \return \c true if a directed cycle exists in the digraph.
363 363
    ///
364 364
    /// \pre \ref findMinMean() must be called before using this function.
365 365
    bool findCycle() {
366 366
      if (!_best_found) return false;
367 367
      IntNodeMap reached(_gr, -1);
368 368
      int r = _best_level + 1;
369 369
      Node u = _best_node;
370 370
      while (reached[u] < 0) {
371 371
        reached[u] = --r;
372 372
        u = _gr.source(_data[u][r].pred);
373 373
      }
374 374
      r = reached[u];
375 375
      Arc e = _data[u][r].pred;
376 376
      _cycle_path->addFront(e);
377 377
      _best_length = _length[e];
378 378
      _best_size = 1;
379 379
      Node v;
380 380
      while ((v = _gr.source(e)) != u) {
381 381
        e = _data[v][--r].pred;
382 382
        _cycle_path->addFront(e);
383 383
        _best_length += _length[e];
384 384
        ++_best_size;
385 385
      }
386 386
      return true;
387 387
    }
388 388

	
389 389
    /// @}
390 390

	
391 391
    /// \name Query Functions
392 392
    /// The results of the algorithm can be obtained using these
393 393
    /// functions.\n
394 394
    /// The algorithm should be executed before using them.
395 395

	
396 396
    /// @{
397 397

	
398 398
    /// \brief Return the total length of the found cycle.
399 399
    ///
400 400
    /// This function returns the total length of the found cycle.
401 401
    ///
402 402
    /// \pre \ref run() or \ref findMinMean() must be called before
403 403
    /// using this function.
404 404
    LargeValue cycleLength() const {
405 405
      return _best_length;
406 406
    }
407 407

	
408 408
    /// \brief Return the number of arcs on the found cycle.
409 409
    ///
410 410
    /// This function returns the number of arcs on the found cycle.
411 411
    ///
412 412
    /// \pre \ref run() or \ref findMinMean() must be called before
413 413
    /// using this function.
414 414
    int cycleArcNum() const {
415 415
      return _best_size;
416 416
    }
417 417

	
418 418
    /// \brief Return the mean length of the found cycle.
419 419
    ///
420 420
    /// This function returns the mean length of the found cycle.
421 421
    ///
422 422
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
423 423
    /// following code.
424 424
    /// \code
425 425
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
426 426
    /// \endcode
427 427
    ///
428 428
    /// \pre \ref run() or \ref findMinMean() must be called before
429 429
    /// using this function.
430 430
    double cycleMean() const {
431 431
      return static_cast<double>(_best_length) / _best_size;
432 432
    }
433 433

	
434 434
    /// \brief Return the found cycle.
435 435
    ///
436 436
    /// This function returns a const reference to the path structure
437 437
    /// storing the found cycle.
438 438
    ///
439 439
    /// \pre \ref run() or \ref findCycle() must be called before using
440 440
    /// this function.
441 441
    const Path& cycle() const {
442 442
      return *_cycle_path;
443 443
    }
444 444

	
445 445
    ///@}
446 446

	
447 447
  private:
448 448

	
449 449
    // Initialization
450 450
    void init() {
451 451
      if (!_cycle_path) {
452 452
        _local_path = true;
453 453
        _cycle_path = new Path;
454 454
      }
455 455
      _cycle_path->clear();
456 456
      _best_found = false;
457 457
      _best_length = 0;
458 458
      _best_size = 1;
459 459
      _cycle_path->clear();
460 460
      for (NodeIt u(_gr); u != INVALID; ++u)
461 461
        _data[u].clear();
462 462
    }
463 463

	
464 464
    // Find strongly connected components and initialize _comp_nodes
465 465
    // and _out_arcs
466 466
    void findComponents() {
467 467
      _comp_num = stronglyConnectedComponents(_gr, _comp);
468 468
      _comp_nodes.resize(_comp_num);
469 469
      if (_comp_num == 1) {
470 470
        _comp_nodes[0].clear();
471 471
        for (NodeIt n(_gr); n != INVALID; ++n) {
472 472
          _comp_nodes[0].push_back(n);
473 473
          _out_arcs[n].clear();
474 474
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
475 475
            _out_arcs[n].push_back(a);
476 476
          }
477 477
        }
478 478
      } else {
479 479
        for (int i = 0; i < _comp_num; ++i)
480 480
          _comp_nodes[i].clear();
481 481
        for (NodeIt n(_gr); n != INVALID; ++n) {
482 482
          int k = _comp[n];
483 483
          _comp_nodes[k].push_back(n);
484 484
          _out_arcs[n].clear();
485 485
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
486 486
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
487 487
          }
488 488
        }
489 489
      }
490 490
    }
491 491

	
492 492
    // Initialize path data for the current component
493 493
    bool initComponent(int comp) {
494 494
      _nodes = &(_comp_nodes[comp]);
495 495
      int n = _nodes->size();
496 496
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
497 497
        return false;
498 498
      }      
499 499
      for (int i = 0; i < n; ++i) {
500 500
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
501 501
      }
502 502
      return true;
503 503
    }
504 504

	
505 505
    // Process all rounds of computing path data for the current component.
506 506
    // _data[v][k] is the length of a shortest directed walk from the root
507 507
    // node to node v containing exactly k arcs.
508 508
    void processRounds() {
509 509
      Node start = (*_nodes)[0];
510 510
      _data[start][0] = PathData(0);
511 511
      _process.clear();
512 512
      _process.push_back(start);
513 513

	
514 514
      int k, n = _nodes->size();
515 515
      int next_check = 4;
516 516
      bool terminate = false;
517 517
      for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
518 518
        processNextBuildRound(k);
519 519
        if (k == next_check || k == n) {
520 520
          terminate = checkTermination(k);
521 521
          next_check = next_check * 3 / 2;
522 522
        }
523 523
      }
524 524
      for ( ; k <= n && !terminate; ++k) {
525 525
        processNextFullRound(k);
526 526
        if (k == next_check || k == n) {
527 527
          terminate = checkTermination(k);
528 528
          next_check = next_check * 3 / 2;
529 529
        }
530 530
      }
531 531
    }
532 532

	
533 533
    // Process one round and rebuild _process
534 534
    void processNextBuildRound(int k) {
535 535
      std::vector<Node> next;
536 536
      Node u, v;
537 537
      Arc e;
538 538
      LargeValue d;
539 539
      for (int i = 0; i < int(_process.size()); ++i) {
540 540
        u = _process[i];
541 541
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
542 542
          e = _out_arcs[u][j];
543 543
          v = _gr.target(e);
544 544
          d = _data[u][k-1].dist + _length[e];
545 545
          if (_tolerance.less(d, _data[v][k].dist)) {
546 546
            if (_data[v][k].dist == INF) next.push_back(v);
547 547
            _data[v][k] = PathData(d, e);
548 548
          }
549 549
        }
550 550
      }
551 551
      _process.swap(next);
552 552
    }
553 553

	
554 554
    // Process one round using _nodes instead of _process
555 555
    void processNextFullRound(int k) {
556 556
      Node u, v;
557 557
      Arc e;
558 558
      LargeValue d;
559 559
      for (int i = 0; i < int(_nodes->size()); ++i) {
560 560
        u = (*_nodes)[i];
561 561
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
562 562
          e = _out_arcs[u][j];
563 563
          v = _gr.target(e);
564 564
          d = _data[u][k-1].dist + _length[e];
565 565
          if (_tolerance.less(d, _data[v][k].dist)) {
566 566
            _data[v][k] = PathData(d, e);
567 567
          }
568 568
        }
569 569
      }
570 570
    }
571 571
    
572 572
    // Check early termination
573 573
    bool checkTermination(int k) {
574 574
      typedef std::pair<int, int> Pair;
575 575
      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
576 576
      typename GR::template NodeMap<LargeValue> pi(_gr);
577 577
      int n = _nodes->size();
578 578
      LargeValue length;
579 579
      int size;
580 580
      Node u;
581 581
      
582 582
      // Search for cycles that are already found
583 583
      _curr_found = false;
584 584
      for (int i = 0; i < n; ++i) {
585 585
        u = (*_nodes)[i];
586 586
        if (_data[u][k].dist == INF) continue;
587 587
        for (int j = k; j >= 0; --j) {
588 588
          if (level[u].first == i && level[u].second > 0) {
589 589
            // A cycle is found
590 590
            length = _data[u][level[u].second].dist - _data[u][j].dist;
591 591
            size = level[u].second - j;
592 592
            if (!_curr_found || length * _curr_size < _curr_length * size) {
593 593
              _curr_length = length;
594 594
              _curr_size = size;
595 595
              _curr_node = u;
596 596
              _curr_level = level[u].second;
597 597
              _curr_found = true;
598 598
            }
599 599
          }
600 600
          level[u] = Pair(i, j);
601 601
          u = _gr.source(_data[u][j].pred);
602 602
        }
603 603
      }
604 604

	
605 605
      // If at least one cycle is found, check the optimality condition
606 606
      LargeValue d;
607 607
      if (_curr_found && k < n) {
608 608
        // Find node potentials
609 609
        for (int i = 0; i < n; ++i) {
610 610
          u = (*_nodes)[i];
611 611
          pi[u] = INF;
612 612
          for (int j = 0; j <= k; ++j) {
613 613
            if (_data[u][j].dist < INF) {
614 614
              d = _data[u][j].dist * _curr_size - j * _curr_length;
615 615
              if (_tolerance.less(d, pi[u])) pi[u] = d;
616 616
            }
617 617
          }
618 618
        }
619 619

	
620 620
        // Check the optimality condition for all arcs
621 621
        bool done = true;
622 622
        for (ArcIt a(_gr); a != INVALID; ++a) {
623 623
          if (_tolerance.less(_length[a] * _curr_size - _curr_length,
624 624
                              pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
625 625
            done = false;
626 626
            break;
627 627
          }
628 628
        }
629 629
        return done;
630 630
      }
631 631
      return (k == n);
632 632
    }
633 633

	
634 634
  }; //class HartmannOrlin
635 635

	
636 636
  ///@}
637 637

	
638 638
} //namespace lemon
639 639

	
640 640
#endif //LEMON_HARTMANN_ORLIN_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_KARP_H
20 20
#define LEMON_KARP_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Karp's algorithm for finding a minimum mean cycle.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \brief Default traits class of Karp algorithm.
37 37
  ///
38 38
  /// Default traits class of Karp algorithm.
39 39
  /// \tparam GR The type of the digraph.
40 40
  /// \tparam LEN The type of the length map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43 43
  template <typename GR, typename LEN>
44 44
#else
45 45
  template <typename GR, typename LEN,
46 46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
47 47
#endif
48 48
  struct KarpDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52 52
    /// The type of the length map
53 53
    typedef LEN LengthMap;
54 54
    /// The type of the arc lengths
55 55
    typedef typename LengthMap::Value Value;
56 56

	
57 57
    /// \brief The large value type used for internal computations
58 58
    ///
59 59
    /// The large value type used for internal computations.
60 60
    /// It is \c long \c long if the \c Value type is integer,
61 61
    /// otherwise it is \c double.
62 62
    /// \c Value must be convertible to \c LargeValue.
63 63
    typedef double LargeValue;
64 64

	
65 65
    /// The tolerance type used for internal computations
66 66
    typedef lemon::Tolerance<LargeValue> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72
    /// and it must have an \c addBack() function.
72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76 76
  // Default traits class for integer value types
77 77
  template <typename GR, typename LEN>
78 78
  struct KarpDefaultTraits<GR, LEN, true>
79 79
  {
80 80
    typedef GR Digraph;
81 81
    typedef LEN LengthMap;
82 82
    typedef typename LengthMap::Value Value;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84 84
    typedef long long LargeValue;
85 85
#else
86 86
    typedef long LargeValue;
87 87
#endif
88 88
    typedef lemon::Tolerance<LargeValue> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100 100
  /// cycle of minimum mean length (cost) in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
103 103
  ///
104 104
  /// \tparam GR The type of the digraph the algorithm runs on.
105 105
  /// \tparam LEN The type of the length map. The default
106 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
107 107
#ifdef DOXYGEN
108 108
  template <typename GR, typename LEN, typename TR>
109 109
#else
110 110
  template < typename GR,
111 111
             typename LEN = typename GR::template ArcMap<int>,
112 112
             typename TR = KarpDefaultTraits<GR, LEN> >
113 113
#endif
114 114
  class Karp
115 115
  {
116 116
  public:
117 117

	
118 118
    /// The type of the digraph
119 119
    typedef typename TR::Digraph Digraph;
120 120
    /// The type of the length map
121 121
    typedef typename TR::LengthMap LengthMap;
122 122
    /// The type of the arc lengths
123 123
    typedef typename TR::Value Value;
124 124

	
125 125
    /// \brief The large value type
126 126
    ///
127 127
    /// The large value type used for internal computations.
128 128
    /// Using the \ref KarpDefaultTraits "default traits class",
129 129
    /// it is \c long \c long if the \c Value type is integer,
130 130
    /// otherwise it is \c double.
131 131
    typedef typename TR::LargeValue LargeValue;
132 132

	
133 133
    /// The tolerance type
134 134
    typedef typename TR::Tolerance Tolerance;
135 135

	
136 136
    /// \brief The path type of the found cycles
137 137
    ///
138 138
    /// The path type of the found cycles.
139 139
    /// Using the \ref KarpDefaultTraits "default traits class",
140 140
    /// it is \ref lemon::Path "Path<Digraph>".
141 141
    typedef typename TR::Path Path;
142 142

	
143 143
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
144 144
    typedef TR Traits;
145 145

	
146 146
  private:
147 147

	
148 148
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
149 149

	
150 150
    // Data sturcture for path data
151 151
    struct PathData
152 152
    {
153 153
      LargeValue dist;
154 154
      Arc pred;
155 155
      PathData(LargeValue d, Arc p = INVALID) :
156 156
        dist(d), pred(p) {}
157 157
    };
158 158

	
159 159
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
160 160
      PathDataNodeMap;
161 161

	
162 162
  private:
163 163

	
164 164
    // The digraph the algorithm runs on
165 165
    const Digraph &_gr;
166 166
    // The length of the arcs
167 167
    const LengthMap &_length;
168 168

	
169 169
    // Data for storing the strongly connected components
170 170
    int _comp_num;
171 171
    typename Digraph::template NodeMap<int> _comp;
172 172
    std::vector<std::vector<Node> > _comp_nodes;
173 173
    std::vector<Node>* _nodes;
174 174
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
175 175

	
176 176
    // Data for the found cycle
177 177
    LargeValue _cycle_length;
178 178
    int _cycle_size;
179 179
    Node _cycle_node;
180 180

	
181 181
    Path *_cycle_path;
182 182
    bool _local_path;
183 183

	
184 184
    // Node map for storing path data
185 185
    PathDataNodeMap _data;
186 186
    // The processed nodes in the last round
187 187
    std::vector<Node> _process;
188 188

	
189 189
    Tolerance _tolerance;
190 190
    
191 191
    // Infinite constant
192 192
    const LargeValue INF;
193 193

	
194 194
  public:
195 195

	
196 196
    /// \name Named Template Parameters
197 197
    /// @{
198 198

	
199 199
    template <typename T>
200 200
    struct SetLargeValueTraits : public Traits {
201 201
      typedef T LargeValue;
202 202
      typedef lemon::Tolerance<T> Tolerance;
203 203
    };
204 204

	
205 205
    /// \brief \ref named-templ-param "Named parameter" for setting
206 206
    /// \c LargeValue type.
207 207
    ///
208 208
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
209 209
    /// type. It is used for internal computations in the algorithm.
210 210
    template <typename T>
211 211
    struct SetLargeValue
212 212
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
213 213
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
214 214
    };
215 215

	
216 216
    template <typename T>
217 217
    struct SetPathTraits : public Traits {
218 218
      typedef T Path;
219 219
    };
220 220

	
221 221
    /// \brief \ref named-templ-param "Named parameter" for setting
222 222
    /// \c %Path type.
223 223
    ///
224 224
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
225 225
    /// type of the found cycles.
226 226
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
227 227
    /// and it must have an \c addFront() function.
228 228
    template <typename T>
229 229
    struct SetPath
230 230
      : public Karp<GR, LEN, SetPathTraits<T> > {
231 231
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
232 232
    };
233 233

	
234 234
    /// @}
235 235

	
236 236
  public:
237 237

	
238 238
    /// \brief Constructor.
239 239
    ///
240 240
    /// The constructor of the class.
241 241
    ///
242 242
    /// \param digraph The digraph the algorithm runs on.
243 243
    /// \param length The lengths (costs) of the arcs.
244 244
    Karp( const Digraph &digraph,
245 245
          const LengthMap &length ) :
246 246
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
247 247
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
248 248
      _cycle_path(NULL), _local_path(false), _data(digraph),
249 249
      INF(std::numeric_limits<LargeValue>::has_infinity ?
250 250
          std::numeric_limits<LargeValue>::infinity() :
251 251
          std::numeric_limits<LargeValue>::max())
252 252
    {}
253 253

	
254 254
    /// Destructor.
255 255
    ~Karp() {
256 256
      if (_local_path) delete _cycle_path;
257 257
    }
258 258

	
259 259
    /// \brief Set the path structure for storing the found cycle.
260 260
    ///
261 261
    /// This function sets an external path structure for storing the
262 262
    /// found cycle.
263 263
    ///
264 264
    /// If you don't call this function before calling \ref run() or
265 265
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
266 266
    /// structure. The destuctor deallocates this automatically
267 267
    /// allocated object, of course.
268 268
    ///
269 269
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
270 270
    /// "addFront()" function of the given path structure.
271 271
    ///
272 272
    /// \return <tt>(*this)</tt>
273 273
    Karp& cycle(Path &path) {
274 274
      if (_local_path) {
275 275
        delete _cycle_path;
276 276
        _local_path = false;
277 277
      }
278 278
      _cycle_path = &path;
279 279
      return *this;
280 280
    }
281 281

	
282 282
    /// \brief Set the tolerance used by the algorithm.
283 283
    ///
284 284
    /// This function sets the tolerance object used by the algorithm.
285 285
    ///
286 286
    /// \return <tt>(*this)</tt>
287 287
    Karp& tolerance(const Tolerance& tolerance) {
288 288
      _tolerance = tolerance;
289 289
      return *this;
290 290
    }
291 291

	
292 292
    /// \brief Return a const reference to the tolerance.
293 293
    ///
294 294
    /// This function returns a const reference to the tolerance object
295 295
    /// used by the algorithm.
296 296
    const Tolerance& tolerance() const {
297 297
      return _tolerance;
298 298
    }
299 299

	
300 300
    /// \name Execution control
301 301
    /// The simplest way to execute the algorithm is to call the \ref run()
302 302
    /// function.\n
303 303
    /// If you only need the minimum mean length, you may call
304 304
    /// \ref findMinMean().
305 305

	
306 306
    /// @{
307 307

	
308 308
    /// \brief Run the algorithm.
309 309
    ///
310 310
    /// This function runs the algorithm.
311 311
    /// It can be called more than once (e.g. if the underlying digraph
312 312
    /// and/or the arc lengths have been modified).
313 313
    ///
314 314
    /// \return \c true if a directed cycle exists in the digraph.
315 315
    ///
316 316
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
317 317
    /// \code
318 318
    ///   return mmc.findMinMean() && mmc.findCycle();
319 319
    /// \endcode
320 320
    bool run() {
321 321
      return findMinMean() && findCycle();
322 322
    }
323 323

	
324 324
    /// \brief Find the minimum cycle mean.
325 325
    ///
326 326
    /// This function finds the minimum mean length of the directed
327 327
    /// cycles in the digraph.
328 328
    ///
329 329
    /// \return \c true if a directed cycle exists in the digraph.
330 330
    bool findMinMean() {
331 331
      // Initialization and find strongly connected components
332 332
      init();
333 333
      findComponents();
334 334
      
335 335
      // Find the minimum cycle mean in the components
336 336
      for (int comp = 0; comp < _comp_num; ++comp) {
337 337
        if (!initComponent(comp)) continue;
338 338
        processRounds();
339 339
        updateMinMean();
340 340
      }
341 341
      return (_cycle_node != INVALID);
342 342
    }
343 343

	
344 344
    /// \brief Find a minimum mean directed cycle.
345 345
    ///
346 346
    /// This function finds a directed cycle of minimum mean length
347 347
    /// in the digraph using the data computed by findMinMean().
348 348
    ///
349 349
    /// \return \c true if a directed cycle exists in the digraph.
350 350
    ///
351 351
    /// \pre \ref findMinMean() must be called before using this function.
352 352
    bool findCycle() {
353 353
      if (_cycle_node == INVALID) return false;
354 354
      IntNodeMap reached(_gr, -1);
355 355
      int r = _data[_cycle_node].size();
356 356
      Node u = _cycle_node;
357 357
      while (reached[u] < 0) {
358 358
        reached[u] = --r;
359 359
        u = _gr.source(_data[u][r].pred);
360 360
      }
361 361
      r = reached[u];
362 362
      Arc e = _data[u][r].pred;
363 363
      _cycle_path->addFront(e);
364 364
      _cycle_length = _length[e];
365 365
      _cycle_size = 1;
366 366
      Node v;
367 367
      while ((v = _gr.source(e)) != u) {
368 368
        e = _data[v][--r].pred;
369 369
        _cycle_path->addFront(e);
370 370
        _cycle_length += _length[e];
371 371
        ++_cycle_size;
372 372
      }
373 373
      return true;
374 374
    }
375 375

	
376 376
    /// @}
377 377

	
378 378
    /// \name Query Functions
379 379
    /// The results of the algorithm can be obtained using these
380 380
    /// functions.\n
381 381
    /// The algorithm should be executed before using them.
382 382

	
383 383
    /// @{
384 384

	
385 385
    /// \brief Return the total length of the found cycle.
386 386
    ///
387 387
    /// This function returns the total length of the found cycle.
388 388
    ///
389 389
    /// \pre \ref run() or \ref findMinMean() must be called before
390 390
    /// using this function.
391 391
    LargeValue cycleLength() const {
392 392
      return _cycle_length;
393 393
    }
394 394

	
395 395
    /// \brief Return the number of arcs on the found cycle.
396 396
    ///
397 397
    /// This function returns the number of arcs on the found cycle.
398 398
    ///
399 399
    /// \pre \ref run() or \ref findMinMean() must be called before
400 400
    /// using this function.
401 401
    int cycleArcNum() const {
402 402
      return _cycle_size;
403 403
    }
404 404

	
405 405
    /// \brief Return the mean length of the found cycle.
406 406
    ///
407 407
    /// This function returns the mean length of the found cycle.
408 408
    ///
409 409
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
410 410
    /// following code.
411 411
    /// \code
412 412
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
413 413
    /// \endcode
414 414
    ///
415 415
    /// \pre \ref run() or \ref findMinMean() must be called before
416 416
    /// using this function.
417 417
    double cycleMean() const {
418 418
      return static_cast<double>(_cycle_length) / _cycle_size;
419 419
    }
420 420

	
421 421
    /// \brief Return the found cycle.
422 422
    ///
423 423
    /// This function returns a const reference to the path structure
424 424
    /// storing the found cycle.
425 425
    ///
426 426
    /// \pre \ref run() or \ref findCycle() must be called before using
427 427
    /// this function.
428 428
    const Path& cycle() const {
429 429
      return *_cycle_path;
430 430
    }
431 431

	
432 432
    ///@}
433 433

	
434 434
  private:
435 435

	
436 436
    // Initialization
437 437
    void init() {
438 438
      if (!_cycle_path) {
439 439
        _local_path = true;
440 440
        _cycle_path = new Path;
441 441
      }
442 442
      _cycle_path->clear();
443 443
      _cycle_length = 0;
444 444
      _cycle_size = 1;
445 445
      _cycle_node = INVALID;
446 446
      for (NodeIt u(_gr); u != INVALID; ++u)
447 447
        _data[u].clear();
448 448
    }
449 449

	
450 450
    // Find strongly connected components and initialize _comp_nodes
451 451
    // and _out_arcs
452 452
    void findComponents() {
453 453
      _comp_num = stronglyConnectedComponents(_gr, _comp);
454 454
      _comp_nodes.resize(_comp_num);
455 455
      if (_comp_num == 1) {
456 456
        _comp_nodes[0].clear();
457 457
        for (NodeIt n(_gr); n != INVALID; ++n) {
458 458
          _comp_nodes[0].push_back(n);
459 459
          _out_arcs[n].clear();
460 460
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
461 461
            _out_arcs[n].push_back(a);
462 462
          }
463 463
        }
464 464
      } else {
465 465
        for (int i = 0; i < _comp_num; ++i)
466 466
          _comp_nodes[i].clear();
467 467
        for (NodeIt n(_gr); n != INVALID; ++n) {
468 468
          int k = _comp[n];
469 469
          _comp_nodes[k].push_back(n);
470 470
          _out_arcs[n].clear();
471 471
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
472 472
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
473 473
          }
474 474
        }
475 475
      }
476 476
    }
477 477

	
478 478
    // Initialize path data for the current component
479 479
    bool initComponent(int comp) {
480 480
      _nodes = &(_comp_nodes[comp]);
481 481
      int n = _nodes->size();
482 482
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
483 483
        return false;
484 484
      }      
485 485
      for (int i = 0; i < n; ++i) {
486 486
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
487 487
      }
488 488
      return true;
489 489
    }
490 490

	
491 491
    // Process all rounds of computing path data for the current component.
492 492
    // _data[v][k] is the length of a shortest directed walk from the root
493 493
    // node to node v containing exactly k arcs.
494 494
    void processRounds() {
495 495
      Node start = (*_nodes)[0];
496 496
      _data[start][0] = PathData(0);
497 497
      _process.clear();
498 498
      _process.push_back(start);
499 499

	
500 500
      int k, n = _nodes->size();
501 501
      for (k = 1; k <= n && int(_process.size()) < n; ++k) {
502 502
        processNextBuildRound(k);
503 503
      }
504 504
      for ( ; k <= n; ++k) {
505 505
        processNextFullRound(k);
506 506
      }
507 507
    }
508 508

	
509 509
    // Process one round and rebuild _process
510 510
    void processNextBuildRound(int k) {
511 511
      std::vector<Node> next;
512 512
      Node u, v;
513 513
      Arc e;
514 514
      LargeValue d;
515 515
      for (int i = 0; i < int(_process.size()); ++i) {
516 516
        u = _process[i];
517 517
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
518 518
          e = _out_arcs[u][j];
519 519
          v = _gr.target(e);
520 520
          d = _data[u][k-1].dist + _length[e];
521 521
          if (_tolerance.less(d, _data[v][k].dist)) {
522 522
            if (_data[v][k].dist == INF) next.push_back(v);
523 523
            _data[v][k] = PathData(d, e);
524 524
          }
525 525
        }
526 526
      }
527 527
      _process.swap(next);
528 528
    }
529 529

	
530 530
    // Process one round using _nodes instead of _process
531 531
    void processNextFullRound(int k) {
532 532
      Node u, v;
533 533
      Arc e;
534 534
      LargeValue d;
535 535
      for (int i = 0; i < int(_nodes->size()); ++i) {
536 536
        u = (*_nodes)[i];
537 537
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
538 538
          e = _out_arcs[u][j];
539 539
          v = _gr.target(e);
540 540
          d = _data[u][k-1].dist + _length[e];
541 541
          if (_tolerance.less(d, _data[v][k].dist)) {
542 542
            _data[v][k] = PathData(d, e);
543 543
          }
544 544
        }
545 545
      }
546 546
    }
547 547

	
548 548
    // Update the minimum cycle mean
549 549
    void updateMinMean() {
550 550
      int n = _nodes->size();
551 551
      for (int i = 0; i < n; ++i) {
552 552
        Node u = (*_nodes)[i];
553 553
        if (_data[u][n].dist == INF) continue;
554 554
        LargeValue length, max_length = 0;
555 555
        int size, max_size = 1;
556 556
        bool found_curr = false;
557 557
        for (int k = 0; k < n; ++k) {
558 558
          if (_data[u][k].dist == INF) continue;
559 559
          length = _data[u][n].dist - _data[u][k].dist;
560 560
          size = n - k;
561 561
          if (!found_curr || length * max_size > max_length * size) {
562 562
            found_curr = true;
563 563
            max_length = length;
564 564
            max_size = size;
565 565
          }
566 566
        }
567 567
        if ( found_curr && (_cycle_node == INVALID ||
568 568
             max_length * _cycle_size < _cycle_length * max_size) ) {
569 569
          _cycle_length = max_length;
570 570
          _cycle_size = max_size;
571 571
          _cycle_node = u;
572 572
        }
573 573
      }
574 574
    }
575 575

	
576 576
  }; //class Karp
577 577

	
578 578
  ///@}
579 579

	
580 580
} //namespace lemon
581 581

	
582 582
#endif //LEMON_KARP_H
0 comments (0 inline)