gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 1 1
merge default
1 file changed with 982 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_ELEVATOR_H
20
#define LEMON_ELEVATOR_H
21

	
22
///\ingroup auxdat
23
///\file
24
///\brief Elevator class
25
///
26
///Elevator class implements an efficient data structure
27
///for labeling items in push-relabel type algorithms.
28
///
29

	
30
#include <lemon/bits/traits.h>
31

	
32
namespace lemon {
33

	
34
  ///Class for handling "labels" in push-relabel type algorithms.
35

	
36
  ///A class for handling "labels" in push-relabel type algorithms.
37
  ///
38
  ///\ingroup auxdat
39
  ///Using this class you can assign "labels" (nonnegative integer numbers)
40
  ///to the edges or nodes of a graph, manipulate and query them through
41
  ///operations typically arising in "push-relabel" type algorithms.
42
  ///
43
  ///Each item is either \em active or not, and you can also choose a
44
  ///highest level active item.
45
  ///
46
  ///\sa LinkedElevator
47
  ///
48
  ///\param Graph Type of the underlying graph.
49
  ///\param Item Type of the items the data is assigned to (Graph::Node,
50
  ///Graph::Arc, Graph::Edge).
51
  template<class Graph, class Item>
52
  class Elevator
53
  {
54
  public:
55

	
56
    typedef Item Key;
57
    typedef int Value;
58

	
59
  private:
60

	
61
    typedef Item *Vit;
62
    typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
63
    typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
64

	
65
    const Graph &_g;
66
    int _max_level;
67
    int _item_num;
68
    VitMap _where;
69
    IntMap _level;
70
    std::vector<Item> _items;
71
    std::vector<Vit> _first;
72
    std::vector<Vit> _last_active;
73

	
74
    int _highest_active;
75

	
76
    void copy(Item i, Vit p)
77
    {
78
      _where.set(*p=i,p);
79
    }
80
    void copy(Vit s, Vit p)
81
    {
82
      if(s!=p)
83
        {
84
          Item i=*s;
85
          *p=i;
86
          _where.set(i,p);
87
        }
88
    }
89
    void swap(Vit i, Vit j)
90
    {
91
      Item ti=*i;
92
      Vit ct = _where[ti];
93
      _where.set(ti,_where[*i=*j]);
94
      _where.set(*j,ct);
95
      *j=ti;
96
    }
97

	
98
  public:
99

	
100
    ///Constructor with given maximum level.
101

	
102
    ///Constructor with given maximum level.
103
    ///
104
    ///\param graph The underlying graph.
105
    ///\param max_level The maximum allowed level.
106
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
107
    Elevator(const Graph &graph,int max_level) :
108
      _g(graph),
109
      _max_level(max_level),
110
      _item_num(_max_level),
111
      _where(graph),
112
      _level(graph,0),
113
      _items(_max_level),
114
      _first(_max_level+2),
115
      _last_active(_max_level+2),
116
      _highest_active(-1) {}
117
    ///Constructor.
118

	
119
    ///Constructor.
120
    ///
121
    ///\param graph The underlying graph.
122
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
123
    ///where \c max_level is equal to the number of labeled items in the graph.
124
    Elevator(const Graph &graph) :
125
      _g(graph),
126
      _max_level(countItems<Graph, Item>(graph)),
127
      _item_num(_max_level),
128
      _where(graph),
129
      _level(graph,0),
130
      _items(_max_level),
131
      _first(_max_level+2),
132
      _last_active(_max_level+2),
133
      _highest_active(-1)
134
    {
135
    }
136

	
137
    ///Activate item \c i.
138

	
139
    ///Activate item \c i.
140
    ///\pre Item \c i shouldn't be active before.
141
    void activate(Item i)
142
    {
143
      const int l=_level[i];
144
      swap(_where[i],++_last_active[l]);
145
      if(l>_highest_active) _highest_active=l;
146
    }
147

	
148
    ///Deactivate item \c i.
149

	
150
    ///Deactivate item \c i.
151
    ///\pre Item \c i must be active before.
152
    void deactivate(Item i)
153
    {
154
      swap(_where[i],_last_active[_level[i]]--);
155
      while(_highest_active>=0 &&
156
            _last_active[_highest_active]<_first[_highest_active])
157
        _highest_active--;
158
    }
159

	
160
    ///Query whether item \c i is active
161
    bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
162

	
163
    ///Return the level of item \c i.
164
    int operator[](Item i) const { return _level[i]; }
165

	
166
    ///Return the number of items on level \c l.
167
    int onLevel(int l) const
168
    {
169
      return _first[l+1]-_first[l];
170
    }
171
    ///Return true if level \c l is empty.
172
    bool emptyLevel(int l) const
173
    {
174
      return _first[l+1]-_first[l]==0;
175
    }
176
    ///Return the number of items above level \c l.
177
    int aboveLevel(int l) const
178
    {
179
      return _first[_max_level+1]-_first[l+1];
180
    }
181
    ///Return the number of active items on level \c l.
182
    int activesOnLevel(int l) const
183
    {
184
      return _last_active[l]-_first[l]+1;
185
    }
186
    ///Return true if there is no active item on level \c l.
187
    bool activeFree(int l) const
188
    {
189
      return _last_active[l]<_first[l];
190
    }
191
    ///Return the maximum allowed level.
192
    int maxLevel() const
193
    {
194
      return _max_level;
195
    }
196

	
197
    ///\name Highest Active Item
198
    ///Functions for working with the highest level
199
    ///active item.
200

	
201
    ///@{
202

	
203
    ///Return a highest level active item.
204

	
205
    ///Return a highest level active item or INVALID if there is no active
206
    ///item.
207
    Item highestActive() const
208
    {
209
      return _highest_active>=0?*_last_active[_highest_active]:INVALID;
210
    }
211

	
212
    ///Return the highest active level.
213

	
214
    ///Return the level of the highest active item or -1 if there is no active
215
    ///item.
216
    int highestActiveLevel() const
217
    {
218
      return _highest_active;
219
    }
220

	
221
    ///Lift the highest active item by one.
222

	
223
    ///Lift the item returned by highestActive() by one.
224
    ///
225
    void liftHighestActive()
226
    {
227
      Item it = *_last_active[_highest_active];
228
      _level.set(it,_level[it]+1);
229
      swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
230
      --_first[++_highest_active];
231
    }
232

	
233
    ///Lift the highest active item to the given level.
234

	
235
    ///Lift the item returned by highestActive() to level \c new_level.
236
    ///
237
    ///\warning \c new_level must be strictly higher
238
    ///than the current level.
239
    ///
240
    void liftHighestActive(int new_level)
241
    {
242
      const Item li = *_last_active[_highest_active];
243

	
244
      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
245
      for(int l=_highest_active+1;l<new_level;l++)
246
        {
247
          copy(--_first[l+1],_first[l]);
248
          --_last_active[l];
249
        }
250
      copy(li,_first[new_level]);
251
      _level.set(li,new_level);
252
      _highest_active=new_level;
253
    }
254

	
255
    ///Lift the highest active item to the top level.
256

	
257
    ///Lift the item returned by highestActive() to the top level and
258
    ///deactivate it.
259
    void liftHighestActiveToTop()
260
    {
261
      const Item li = *_last_active[_highest_active];
262

	
263
      copy(--_first[_highest_active+1],_last_active[_highest_active]--);
264
      for(int l=_highest_active+1;l<_max_level;l++)
265
        {
266
          copy(--_first[l+1],_first[l]);
267
          --_last_active[l];
268
        }
269
      copy(li,_first[_max_level]);
270
      --_last_active[_max_level];
271
      _level.set(li,_max_level);
272

	
273
      while(_highest_active>=0 &&
274
            _last_active[_highest_active]<_first[_highest_active])
275
        _highest_active--;
276
    }
277

	
278
    ///@}
279

	
280
    ///\name Active Item on Certain Level
281
    ///Functions for working with the active items.
282

	
283
    ///@{
284

	
285
    ///Return an active item on level \c l.
286

	
287
    ///Return an active item on level \c l or \ref INVALID if there is no such
288
    ///an item. (\c l must be from the range [0...\c max_level].
289
    Item activeOn(int l) const
290
    {
291
      return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
292
    }
293

	
294
    ///Lift the active item returned by \c activeOn(level) by one.
295

	
296
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
297
    ///by one.
298
    Item liftActiveOn(int level)
299
    {
300
      Item it =*_last_active[level];
301
      _level.set(it,_level[it]+1);
302
      swap(_last_active[level]--, --_first[level+1]);
303
      if (level+1>_highest_active) ++_highest_active;
304
    }
305

	
306
    ///Lift the active item returned by \c activeOn(level) to the given level.
307

	
308
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
309
    ///to the given level.
310
    void liftActiveOn(int level, int new_level)
311
    {
312
      const Item ai = *_last_active[level];
313

	
314
      copy(--_first[level+1], _last_active[level]--);
315
      for(int l=level+1;l<new_level;l++)
316
        {
317
          copy(_last_active[l],_first[l]);
318
          copy(--_first[l+1], _last_active[l]--);
319
        }
320
      copy(ai,_first[new_level]);
321
      _level.set(ai,new_level);
322
      if (new_level>_highest_active) _highest_active=new_level;
323
    }
324

	
325
    ///Lift the active item returned by \c activeOn(level) to the top level.
326

	
327
    ///Lift the active item returned by \ref activeOn() "activeOn(level)"
328
    ///to the top level and deactivate it.
329
    void liftActiveToTop(int level)
330
    {
331
      const Item ai = *_last_active[level];
332

	
333
      copy(--_first[level+1],_last_active[level]--);
334
      for(int l=level+1;l<_max_level;l++)
335
        {
336
          copy(_last_active[l],_first[l]);
337
          copy(--_first[l+1], _last_active[l]--);
338
        }
339
      copy(ai,_first[_max_level]);
340
      --_last_active[_max_level];
341
      _level.set(ai,_max_level);
342

	
343
      if (_highest_active==level) {
344
        while(_highest_active>=0 &&
345
              _last_active[_highest_active]<_first[_highest_active])
346
          _highest_active--;
347
      }
348
    }
349

	
350
    ///@}
351

	
352
    ///Lift an active item to a higher level.
353

	
354
    ///Lift an active item to a higher level.
355
    ///\param i The item to be lifted. It must be active.
356
    ///\param new_level The new level of \c i. It must be strictly higher
357
    ///than the current level.
358
    ///
359
    void lift(Item i, int new_level)
360
    {
361
      const int lo = _level[i];
362
      const Vit w = _where[i];
363

	
364
      copy(_last_active[lo],w);
365
      copy(--_first[lo+1],_last_active[lo]--);
366
      for(int l=lo+1;l<new_level;l++)
367
        {
368
          copy(_last_active[l],_first[l]);
369
          copy(--_first[l+1],_last_active[l]--);
370
        }
371
      copy(i,_first[new_level]);
372
      _level.set(i,new_level);
373
      if(new_level>_highest_active) _highest_active=new_level;
374
    }
375

	
376
    ///Move an inactive item to the top but one level (in a dirty way).
377

	
378
    ///This function moves an inactive item from the top level to the top
379
    ///but one level (in a dirty way).
380
    ///\warning It makes the underlying datastructure corrupt, so use it
381
    ///only if you really know what it is for.
382
    ///\pre The item is on the top level.
383
    void dirtyTopButOne(Item i) {
384
      _level.set(i,_max_level - 1);
385
    }
386

	
387
    ///Lift all items on and above the given level to the top level.
388

	
389
    ///This function lifts all items on and above level \c l to the top
390
    ///level and deactivates them.
391
    void liftToTop(int l)
392
    {
393
      const Vit f=_first[l];
394
      const Vit tl=_first[_max_level];
395
      for(Vit i=f;i!=tl;++i)
396
        _level.set(*i,_max_level);
397
      for(int i=l;i<=_max_level;i++)
398
        {
399
          _first[i]=f;
400
          _last_active[i]=f-1;
401
        }
402
      for(_highest_active=l-1;
403
          _highest_active>=0 &&
404
            _last_active[_highest_active]<_first[_highest_active];
405
          _highest_active--) ;
406
    }
407

	
408
  private:
409
    int _init_lev;
410
    Vit _init_num;
411

	
412
  public:
413

	
414
    ///\name Initialization
415
    ///Using these functions you can initialize the levels of the items.
416
    ///\n
417
    ///The initialization must be started with calling \c initStart().
418
    ///Then the items should be listed level by level starting with the
419
    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
420
    ///Finally \c initFinish() must be called.
421
    ///The items not listed are put on the highest level.
422
    ///@{
423

	
424
    ///Start the initialization process.
425
    void initStart()
426
    {
427
      _init_lev=0;
428
      _init_num=&_items[0];
429
      _first[0]=&_items[0];
430
      _last_active[0]=&_items[0]-1;
431
      Vit n=&_items[0];
432
      for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
433
        {
434
          *n=i;
435
          _where.set(i,n);
436
          _level.set(i,_max_level);
437
          ++n;
438
        }
439
    }
440

	
441
    ///Add an item to the current level.
442
    void initAddItem(Item i)
443
    {
444
      swap(_where[i],_init_num);
445
      _level.set(i,_init_lev);
446
      ++_init_num;
447
    }
448

	
449
    ///Start a new level.
450

	
451
    ///Start a new level.
452
    ///It shouldn't be used before the items on level 0 are listed.
453
    void initNewLevel()
454
    {
455
      _init_lev++;
456
      _first[_init_lev]=_init_num;
457
      _last_active[_init_lev]=_init_num-1;
458
    }
459

	
460
    ///Finalize the initialization process.
461
    void initFinish()
462
    {
463
      for(_init_lev++;_init_lev<=_max_level;_init_lev++)
464
        {
465
          _first[_init_lev]=_init_num;
466
          _last_active[_init_lev]=_init_num-1;
467
        }
468
      _first[_max_level+1]=&_items[0]+_item_num;
469
      _last_active[_max_level+1]=&_items[0]+_item_num-1;
470
      _highest_active = -1;
471
    }
472

	
473
    ///@}
474

	
475
  };
476

	
477
  ///Class for handling "labels" in push-relabel type algorithms.
478

	
479
  ///A class for handling "labels" in push-relabel type algorithms.
480
  ///
481
  ///\ingroup auxdat
482
  ///Using this class you can assign "labels" (nonnegative integer numbers)
483
  ///to the edges or nodes of a graph, manipulate and query them through
484
  ///operations typically arising in "push-relabel" type algorithms.
485
  ///
486
  ///Each item is either \em active or not, and you can also choose a
487
  ///highest level active item.
488
  ///
489
  ///\sa Elevator
490
  ///
491
  ///\param Graph Type of the underlying graph.
492
  ///\param Item Type of the items the data is assigned to (Graph::Node,
493
  ///Graph::Arc, Graph::Edge).
494
  template <class Graph, class Item>
495
  class LinkedElevator {
496
  public:
497

	
498
    typedef Item Key;
499
    typedef int Value;
500

	
501
  private:
502

	
503
    typedef typename ItemSetTraits<Graph,Item>::
504
    template Map<Item>::Type ItemMap;
505
    typedef typename ItemSetTraits<Graph,Item>::
506
    template Map<int>::Type IntMap;
507
    typedef typename ItemSetTraits<Graph,Item>::
508
    template Map<bool>::Type BoolMap;
509

	
510
    const Graph &_graph;
511
    int _max_level;
512
    int _item_num;
513
    std::vector<Item> _first, _last;
514
    ItemMap _prev, _next;
515
    int _highest_active;
516
    IntMap _level;
517
    BoolMap _active;
518

	
519
  public:
520
    ///Constructor with given maximum level.
521

	
522
    ///Constructor with given maximum level.
523
    ///
524
    ///\param graph The underlying graph.
525
    ///\param max_level The maximum allowed level.
526
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>.
527
    LinkedElevator(const Graph& graph, int max_level)
528
      : _graph(graph), _max_level(max_level), _item_num(_max_level),
529
        _first(_max_level + 1), _last(_max_level + 1),
530
        _prev(graph), _next(graph),
531
        _highest_active(-1), _level(graph), _active(graph) {}
532

	
533
    ///Constructor.
534

	
535
    ///Constructor.
536
    ///
537
    ///\param graph The underlying graph.
538
    ///Set the range of the possible labels to <tt>[0..max_level]</tt>,
539
    ///where \c max_level is equal to the number of labeled items in the graph.
540
    LinkedElevator(const Graph& graph)
541
      : _graph(graph), _max_level(countItems<Graph, Item>(graph)),
542
        _item_num(_max_level),
543
        _first(_max_level + 1), _last(_max_level + 1),
544
        _prev(graph, INVALID), _next(graph, INVALID),
545
        _highest_active(-1), _level(graph), _active(graph) {}
546

	
547

	
548
    ///Activate item \c i.
549

	
550
    ///Activate item \c i.
551
    ///\pre Item \c i shouldn't be active before.
552
    void activate(Item i) {
553
      _active.set(i, true);
554

	
555
      int level = _level[i];
556
      if (level > _highest_active) {
557
        _highest_active = level;
558
      }
559

	
560
      if (_prev[i] == INVALID || _active[_prev[i]]) return;
561
      //unlace
562
      _next.set(_prev[i], _next[i]);
563
      if (_next[i] != INVALID) {
564
        _prev.set(_next[i], _prev[i]);
565
      } else {
566
        _last[level] = _prev[i];
567
      }
568
      //lace
569
      _next.set(i, _first[level]);
570
      _prev.set(_first[level], i);
571
      _prev.set(i, INVALID);
572
      _first[level] = i;
573

	
574
    }
575

	
576
    ///Deactivate item \c i.
577

	
578
    ///Deactivate item \c i.
579
    ///\pre Item \c i must be active before.
580
    void deactivate(Item i) {
581
      _active.set(i, false);
582
      int level = _level[i];
583

	
584
      if (_next[i] == INVALID || !_active[_next[i]])
585
        goto find_highest_level;
586

	
587
      //unlace
588
      _prev.set(_next[i], _prev[i]);
589
      if (_prev[i] != INVALID) {
590
        _next.set(_prev[i], _next[i]);
591
      } else {
592
        _first[_level[i]] = _next[i];
593
      }
594
      //lace
595
      _prev.set(i, _last[level]);
596
      _next.set(_last[level], i);
597
      _next.set(i, INVALID);
598
      _last[level] = i;
599

	
600
    find_highest_level:
601
      if (level == _highest_active) {
602
        while (_highest_active >= 0 && activeFree(_highest_active))
603
          --_highest_active;
604
      }
605
    }
606

	
607
    ///Query whether item \c i is active
608
    bool active(Item i) const { return _active[i]; }
609

	
610
    ///Return the level of item \c i.
611
    int operator[](Item i) const { return _level[i]; }
612

	
613
    ///Return the number of items on level \c l.
614
    int onLevel(int l) const {
615
      int num = 0;
616
      Item n = _first[l];
617
      while (n != INVALID) {
618
        ++num;
619
        n = _next[n];
620
      }
621
      return num;
622
    }
623

	
624
    ///Return true if the level is empty.
625
    bool emptyLevel(int l) const {
626
      return _first[l] == INVALID;
627
    }
628

	
629
    ///Return the number of items above level \c l.
630
    int aboveLevel(int l) const {
631
      int num = 0;
632
      for (int level = l + 1; level < _max_level; ++level)
633
        num += onLevel(level);
634
      return num;
635
    }
636

	
637
    ///Return the number of active items on level \c l.
638
    int activesOnLevel(int l) const {
639
      int num = 0;
640
      Item n = _first[l];
641
      while (n != INVALID && _active[n]) {
642
        ++num;
643
        n = _next[n];
644
      }
645
      return num;
646
    }
647

	
648
    ///Return true if there is no active item on level \c l.
649
    bool activeFree(int l) const {
650
      return _first[l] == INVALID || !_active[_first[l]];
651
    }
652

	
653
    ///Return the maximum allowed level.
654
    int maxLevel() const {
655
      return _max_level;
656
    }
657

	
658
    ///\name Highest Active Item
659
    ///Functions for working with the highest level
660
    ///active item.
661

	
662
    ///@{
663

	
664
    ///Return a highest level active item.
665

	
666
    ///Return a highest level active item or INVALID if there is no active
667
    ///item.
668
    Item highestActive() const {
669
      return _highest_active >= 0 ? _first[_highest_active] : INVALID;
670
    }
671

	
672
    ///Return the highest active level.
673

	
674
    ///Return the level of the highest active item or -1 if there is no active
675
    ///item.
676
    int highestActiveLevel() const {
677
      return _highest_active;
678
    }
679

	
680
    ///Lift the highest active item by one.
681

	
682
    ///Lift the item returned by highestActive() by one.
683
    ///
684
    void liftHighestActive() {
685
      Item i = _first[_highest_active];
686
      if (_next[i] != INVALID) {
687
        _prev.set(_next[i], INVALID);
688
        _first[_highest_active] = _next[i];
689
      } else {
690
        _first[_highest_active] = INVALID;
691
        _last[_highest_active] = INVALID;
692
      }
693
      _level.set(i, ++_highest_active);
694
      if (_first[_highest_active] == INVALID) {
695
        _first[_highest_active] = i;
696
        _last[_highest_active] = i;
697
        _prev.set(i, INVALID);
698
        _next.set(i, INVALID);
699
      } else {
700
        _prev.set(_first[_highest_active], i);
701
        _next.set(i, _first[_highest_active]);
702
        _first[_highest_active] = i;
703
      }
704
    }
705

	
706
    ///Lift the highest active item to the given level.
707

	
708
    ///Lift the item returned by highestActive() to level \c new_level.
709
    ///
710
    ///\warning \c new_level must be strictly higher
711
    ///than the current level.
712
    ///
713
    void liftHighestActive(int new_level) {
714
      Item i = _first[_highest_active];
715
      if (_next[i] != INVALID) {
716
        _prev.set(_next[i], INVALID);
717
        _first[_highest_active] = _next[i];
718
      } else {
719
        _first[_highest_active] = INVALID;
720
        _last[_highest_active] = INVALID;
721
      }
722
      _level.set(i, _highest_active = new_level);
723
      if (_first[_highest_active] == INVALID) {
724
        _first[_highest_active] = _last[_highest_active] = i;
725
        _prev.set(i, INVALID);
726
        _next.set(i, INVALID);
727
      } else {
728
        _prev.set(_first[_highest_active], i);
729
        _next.set(i, _first[_highest_active]);
730
        _first[_highest_active] = i;
731
      }
732
    }
733

	
734
    ///Lift the highest active item to the top level.
735

	
736
    ///Lift the item returned by highestActive() to the top level and
737
    ///deactivate it.
738
    void liftHighestActiveToTop() {
739
      Item i = _first[_highest_active];
740
      _level.set(i, _max_level);
741
      if (_next[i] != INVALID) {
742
        _prev.set(_next[i], INVALID);
743
        _first[_highest_active] = _next[i];
744
      } else {
745
        _first[_highest_active] = INVALID;
746
        _last[_highest_active] = INVALID;
747
      }
748
      while (_highest_active >= 0 && activeFree(_highest_active))
749
        --_highest_active;
750
    }
751

	
752
    ///@}
753

	
754
    ///\name Active Item on Certain Level
755
    ///Functions for working with the active items.
756

	
757
    ///@{
758

	
759
    ///Return an active item on level \c l.
760

	
761
    ///Return an active item on level \c l or \ref INVALID if there is no such
762
    ///an item. (\c l must be from the range [0...\c max_level].
763
    Item activeOn(int l) const
764
    {
765
      return _active[_first[l]] ? _first[l] : INVALID;
766
    }
767

	
768
    ///Lift the active item returned by \c activeOn(l) by one.
769

	
770
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
771
    ///by one.
772
    Item liftActiveOn(int l)
773
    {
774
      Item i = _first[l];
775
      if (_next[i] != INVALID) {
776
        _prev.set(_next[i], INVALID);
777
        _first[l] = _next[i];
778
      } else {
779
        _first[l] = INVALID;
780
        _last[l] = INVALID;
781
      }
782
      _level.set(i, ++l);
783
      if (_first[l] == INVALID) {
784
        _first[l] = _last[l] = i;
785
        _prev.set(i, INVALID);
786
        _next.set(i, INVALID);
787
      } else {
788
        _prev.set(_first[l], i);
789
        _next.set(i, _first[l]);
790
        _first[l] = i;
791
      }
792
      if (_highest_active < l) {
793
        _highest_active = l;
794
      }
795
    }
796

	
797
    ///Lift the active item returned by \c activeOn(l) to the given level.
798

	
799
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
800
    ///to the given level.
801
    void liftActiveOn(int l, int new_level)
802
    {
803
      Item i = _first[l];
804
      if (_next[i] != INVALID) {
805
        _prev.set(_next[i], INVALID);
806
        _first[l] = _next[i];
807
      } else {
808
        _first[l] = INVALID;
809
        _last[l] = INVALID;
810
      }
811
      _level.set(i, l = new_level);
812
      if (_first[l] == INVALID) {
813
        _first[l] = _last[l] = i;
814
        _prev.set(i, INVALID);
815
        _next.set(i, INVALID);
816
      } else {
817
        _prev.set(_first[l], i);
818
        _next.set(i, _first[l]);
819
        _first[l] = i;
820
      }
821
      if (_highest_active < l) {
822
        _highest_active = l;
823
      }
824
    }
825

	
826
    ///Lift the active item returned by \c activeOn(l) to the top level.
827

	
828
    ///Lift the active item returned by \ref activeOn() "activeOn(l)"
829
    ///to the top level and deactivate it.
830
    void liftActiveToTop(int l)
831
    {
832
      Item i = _first[l];
833
      if (_next[i] != INVALID) {
834
        _prev.set(_next[i], INVALID);
835
        _first[l] = _next[i];
836
      } else {
837
        _first[l] = INVALID;
838
        _last[l] = INVALID;
839
      }
840
      _level.set(i, _max_level);
841
      if (l == _highest_active) {
842
        while (_highest_active >= 0 && activeFree(_highest_active))
843
          --_highest_active;
844
      }
845
    }
846

	
847
    ///@}
848

	
849
    /// \brief Lift an active item to a higher level.
850
    ///
851
    /// Lift an active item to a higher level.
852
    /// \param i The item to be lifted. It must be active.
853
    /// \param new_level The new level of \c i. It must be strictly higher
854
    /// than the current level.
855
    ///
856
    void lift(Item i, int new_level) {
857
      if (_next[i] != INVALID) {
858
        _prev.set(_next[i], _prev[i]);
859
      } else {
860
        _last[new_level] = _prev[i];
861
      }
862
      if (_prev[i] != INVALID) {
863
        _next.set(_prev[i], _next[i]);
864
      } else {
865
        _first[new_level] = _next[i];
866
      }
867
      _level.set(i, new_level);
868
      if (_first[new_level] == INVALID) {
869
        _first[new_level] = _last[new_level] = i;
870
        _prev.set(i, INVALID);
871
        _next.set(i, INVALID);
872
      } else {
873
        _prev.set(_first[new_level], i);
874
        _next.set(i, _first[new_level]);
875
        _first[new_level] = i;
876
      }
877
      if (_highest_active < new_level) {
878
        _highest_active = new_level;
879
      }
880
    }
881

	
882
    ///Move an inactive item to the top but one level (in a dirty way).
883

	
884
    ///This function moves an inactive item from the top level to the top
885
    ///but one level (in a dirty way).
886
    ///\warning It makes the underlying datastructure corrupt, so use it
887
    ///only if you really know what it is for.
888
    ///\pre The item is on the top level.
889
    void dirtyTopButOne(Item i) {
890
      _level.set(i, _max_level - 1);
891
    }
892

	
893
    ///Lift all items on and above the given level to the top level.
894

	
895
    ///This function lifts all items on and above level \c l to the top
896
    ///level and deactivates them.
897
    void liftToTop(int l)  {
898
      for (int i = l + 1; _first[i] != INVALID; ++i) {
899
        Item n = _first[i];
900
        while (n != INVALID) {
901
          _level.set(n, _max_level);
902
          n = _next[n];
903
        }
904
        _first[i] = INVALID;
905
        _last[i] = INVALID;
906
      }
907
      if (_highest_active > l - 1) {
908
        _highest_active = l - 1;
909
        while (_highest_active >= 0 && activeFree(_highest_active))
910
          --_highest_active;
911
      }
912
    }
913

	
914
  private:
915

	
916
    int _init_level;
917

	
918
  public:
919

	
920
    ///\name Initialization
921
    ///Using these functions you can initialize the levels of the items.
922
    ///\n
923
    ///The initialization must be started with calling \c initStart().
924
    ///Then the items should be listed level by level starting with the
925
    ///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
926
    ///Finally \c initFinish() must be called.
927
    ///The items not listed are put on the highest level.
928
    ///@{
929

	
930
    ///Start the initialization process.
931
    void initStart() {
932

	
933
      for (int i = 0; i <= _max_level; ++i) {
934
        _first[i] = _last[i] = INVALID;
935
      }
936
      _init_level = 0;
937
      for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph);
938
          i != INVALID; ++i) {
939
        _level.set(i, _max_level);
940
        _active.set(i, false);
941
      }
942
    }
943

	
944
    ///Add an item to the current level.
945
    void initAddItem(Item i) {
946
      _level.set(i, _init_level);
947
      if (_last[_init_level] == INVALID) {
948
        _first[_init_level] = i;
949
        _last[_init_level] = i;
950
        _prev.set(i, INVALID);
951
        _next.set(i, INVALID);
952
      } else {
953
        _prev.set(i, _last[_init_level]);
954
        _next.set(i, INVALID);
955
        _next.set(_last[_init_level], i);
956
        _last[_init_level] = i;
957
      }
958
    }
959

	
960
    ///Start a new level.
961

	
962
    ///Start a new level.
963
    ///It shouldn't be used before the items on level 0 are listed.
964
    void initNewLevel() {
965
      ++_init_level;
966
    }
967

	
968
    ///Finalize the initialization process.
969
    void initFinish() {
970
      _highest_active = -1;
971
    }
972

	
973
    ///@}
974

	
975
  };
976

	
977

	
978
} //END OF NAMESPACE LEMON
979

	
980
#endif
981

	
Ignore white space 4 line context
... ...
@@ -28,4 +28,5 @@
28 28
        lemon/dijkstra.h \
29 29
        lemon/dim2.h \
30
	lemon/elevator.h \
30 31
	lemon/error.h \
31 32
	lemon/full_graph.h \
0 comments (0 inline)