... | ... |
@@ -482,204 +482,211 @@ |
482 | 482 |
/// The paramters can be specified using functions \ref lowerMap(), |
483 | 483 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
484 | 484 |
/// For example, |
485 | 485 |
/// \code |
486 | 486 |
/// CostScaling<ListDigraph> cs(graph); |
487 | 487 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
488 | 488 |
/// .supplyMap(sup).run(); |
489 | 489 |
/// \endcode |
490 | 490 |
/// |
491 | 491 |
/// This function can be called more than once. All the given parameters |
492 | 492 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
493 | 493 |
/// is used, thus only the modified parameters have to be set again. |
494 | 494 |
/// If the underlying digraph was also modified after the construction |
495 | 495 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
496 | 496 |
/// function must be called. |
497 | 497 |
/// |
498 | 498 |
/// \param method The internal method that will be used in the |
499 | 499 |
/// algorithm. For more information, see \ref Method. |
500 | 500 |
/// \param factor The cost scaling factor. It must be larger than one. |
501 | 501 |
/// |
502 | 502 |
/// \return \c INFEASIBLE if no feasible flow exists, |
503 | 503 |
/// \n \c OPTIMAL if the problem has optimal solution |
504 | 504 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
505 | 505 |
/// optimal flow and node potentials (primal and dual solutions), |
506 | 506 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
507 | 507 |
/// and infinite upper bound. It means that the objective function |
508 | 508 |
/// is unbounded on that arc, however, note that it could actually be |
509 | 509 |
/// bounded over the feasible flows, but this algroithm cannot handle |
510 | 510 |
/// these cases. |
511 | 511 |
/// |
512 | 512 |
/// \see ProblemType, Method |
513 | 513 |
/// \see resetParams(), reset() |
514 | 514 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
515 | 515 |
_alpha = factor; |
516 | 516 |
ProblemType pt = init(); |
517 | 517 |
if (pt != OPTIMAL) return pt; |
518 | 518 |
start(method); |
519 | 519 |
return OPTIMAL; |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
/// \brief Reset all the parameters that have been given before. |
523 | 523 |
/// |
524 | 524 |
/// This function resets all the paramaters that have been given |
525 | 525 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
526 | 526 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
527 | 527 |
/// |
528 | 528 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
529 | 529 |
/// parameters are kept for the next \ref run() call, unless |
530 | 530 |
/// \ref resetParams() or \ref reset() is used. |
531 | 531 |
/// If the underlying digraph was also modified after the construction |
532 | 532 |
/// of the class or the last \ref reset() call, then the \ref reset() |
533 | 533 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
534 | 534 |
/// |
535 | 535 |
/// For example, |
536 | 536 |
/// \code |
537 | 537 |
/// CostScaling<ListDigraph> cs(graph); |
538 | 538 |
/// |
539 | 539 |
/// // First run |
540 | 540 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
541 | 541 |
/// .supplyMap(sup).run(); |
542 | 542 |
/// |
543 | 543 |
/// // Run again with modified cost map (resetParams() is not called, |
544 | 544 |
/// // so only the cost map have to be set again) |
545 | 545 |
/// cost[e] += 100; |
546 | 546 |
/// cs.costMap(cost).run(); |
547 | 547 |
/// |
548 | 548 |
/// // Run again from scratch using resetParams() |
549 | 549 |
/// // (the lower bounds will be set to zero on all arcs) |
550 | 550 |
/// cs.resetParams(); |
551 | 551 |
/// cs.upperMap(capacity).costMap(cost) |
552 | 552 |
/// .supplyMap(sup).run(); |
553 | 553 |
/// \endcode |
554 | 554 |
/// |
555 | 555 |
/// \return <tt>(*this)</tt> |
556 | 556 |
/// |
557 | 557 |
/// \see reset(), run() |
558 | 558 |
CostScaling& resetParams() { |
559 | 559 |
for (int i = 0; i != _res_node_num; ++i) { |
560 | 560 |
_supply[i] = 0; |
561 | 561 |
} |
562 | 562 |
int limit = _first_out[_root]; |
563 | 563 |
for (int j = 0; j != limit; ++j) { |
564 | 564 |
_lower[j] = 0; |
565 | 565 |
_upper[j] = INF; |
566 | 566 |
_scost[j] = _forward[j] ? 1 : -1; |
567 | 567 |
} |
568 | 568 |
for (int j = limit; j != _res_arc_num; ++j) { |
569 | 569 |
_lower[j] = 0; |
570 | 570 |
_upper[j] = INF; |
571 | 571 |
_scost[j] = 0; |
572 | 572 |
_scost[_reverse[j]] = 0; |
573 | 573 |
} |
574 | 574 |
_have_lower = false; |
575 | 575 |
return *this; |
576 | 576 |
} |
577 | 577 |
|
578 |
/// \brief Reset all the parameters |
|
578 |
/// \brief Reset the internal data structures and all the parameters |
|
579 |
/// that have been given before. |
|
579 | 580 |
/// |
580 |
/// This function resets all the paramaters that have been given |
|
581 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
582 |
/// |
|
581 |
/// This function resets the internal data structures and all the |
|
582 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
583 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
583 | 584 |
/// |
584 |
/// It is useful for multiple run() calls. If this function is not |
|
585 |
/// used, all the parameters given before are kept for the next |
|
586 |
/// \ref run() call. |
|
587 |
/// However, the underlying digraph must not be modified after this |
|
588 |
/// |
|
585 |
/// It is useful for multiple \ref run() calls. By default, all the given |
|
586 |
/// parameters are kept for the next \ref run() call, unless |
|
587 |
/// \ref resetParams() or \ref reset() is used. |
|
588 |
/// If the underlying digraph was also modified after the construction |
|
589 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
590 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
591 |
/// |
|
592 |
/// See \ref resetParams() for examples. |
|
593 |
/// |
|
589 | 594 |
/// \return <tt>(*this)</tt> |
595 |
/// |
|
596 |
/// \see resetParams(), run() |
|
590 | 597 |
CostScaling& reset() { |
591 | 598 |
// Resize vectors |
592 | 599 |
_node_num = countNodes(_graph); |
593 | 600 |
_arc_num = countArcs(_graph); |
594 | 601 |
_res_node_num = _node_num + 1; |
595 | 602 |
_res_arc_num = 2 * (_arc_num + _node_num); |
596 | 603 |
_root = _node_num; |
597 | 604 |
|
598 | 605 |
_first_out.resize(_res_node_num + 1); |
599 | 606 |
_forward.resize(_res_arc_num); |
600 | 607 |
_source.resize(_res_arc_num); |
601 | 608 |
_target.resize(_res_arc_num); |
602 | 609 |
_reverse.resize(_res_arc_num); |
603 | 610 |
|
604 | 611 |
_lower.resize(_res_arc_num); |
605 | 612 |
_upper.resize(_res_arc_num); |
606 | 613 |
_scost.resize(_res_arc_num); |
607 | 614 |
_supply.resize(_res_node_num); |
608 | 615 |
|
609 | 616 |
_res_cap.resize(_res_arc_num); |
610 | 617 |
_cost.resize(_res_arc_num); |
611 | 618 |
_pi.resize(_res_node_num); |
612 | 619 |
_excess.resize(_res_node_num); |
613 | 620 |
_next_out.resize(_res_node_num); |
614 | 621 |
|
615 | 622 |
_arc_vec.reserve(_res_arc_num); |
616 | 623 |
_cost_vec.reserve(_res_arc_num); |
617 | 624 |
|
618 | 625 |
// Copy the graph |
619 | 626 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
620 | 627 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
621 | 628 |
_node_id[n] = i; |
622 | 629 |
} |
623 | 630 |
i = 0; |
624 | 631 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
625 | 632 |
_first_out[i] = j; |
626 | 633 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
627 | 634 |
_arc_idf[a] = j; |
628 | 635 |
_forward[j] = true; |
629 | 636 |
_source[j] = i; |
630 | 637 |
_target[j] = _node_id[_graph.runningNode(a)]; |
631 | 638 |
} |
632 | 639 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
633 | 640 |
_arc_idb[a] = j; |
634 | 641 |
_forward[j] = false; |
635 | 642 |
_source[j] = i; |
636 | 643 |
_target[j] = _node_id[_graph.runningNode(a)]; |
637 | 644 |
} |
638 | 645 |
_forward[j] = false; |
639 | 646 |
_source[j] = i; |
640 | 647 |
_target[j] = _root; |
641 | 648 |
_reverse[j] = k; |
642 | 649 |
_forward[k] = true; |
643 | 650 |
_source[k] = _root; |
644 | 651 |
_target[k] = i; |
645 | 652 |
_reverse[k] = j; |
646 | 653 |
++j; ++k; |
647 | 654 |
} |
648 | 655 |
_first_out[i] = j; |
649 | 656 |
_first_out[_res_node_num] = k; |
650 | 657 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
651 | 658 |
int fi = _arc_idf[a]; |
652 | 659 |
int bi = _arc_idb[a]; |
653 | 660 |
_reverse[fi] = bi; |
654 | 661 |
_reverse[bi] = fi; |
655 | 662 |
} |
656 | 663 |
|
657 | 664 |
// Reset parameters |
658 | 665 |
resetParams(); |
659 | 666 |
return *this; |
660 | 667 |
} |
661 | 668 |
|
662 | 669 |
/// @} |
663 | 670 |
|
664 | 671 |
/// \name Query Functions |
665 | 672 |
/// The results of the algorithm can be obtained using these |
666 | 673 |
/// functions.\n |
667 | 674 |
/// The \ref run() function must be called before using them. |
668 | 675 |
|
669 | 676 |
/// @{ |
670 | 677 |
|
671 | 678 |
/// \brief Return the total cost of the found flow. |
672 | 679 |
/// |
673 | 680 |
/// This function returns the total cost of the found flow. |
674 | 681 |
/// Its complexity is O(e). |
675 | 682 |
/// |
676 | 683 |
/// \note The return type of the function can be specified as a |
677 | 684 |
/// template parameter. For example, |
678 | 685 |
/// \code |
679 | 686 |
/// cs.totalCost<double>(); |
680 | 687 |
/// \endcode |
681 | 688 |
/// It is useful if the total cost cannot be stored in the \c Cost |
682 | 689 |
/// type of the algorithm, which is the default return type of the |
683 | 690 |
/// function. |
684 | 691 |
/// |
685 | 692 |
/// \pre \ref run() must be called before using this function. |
... | ... |
@@ -797,364 +804,369 @@ |
797 | 804 |
} |
798 | 805 |
} |
799 | 806 |
} |
800 | 807 |
} |
801 | 808 |
Value ex, max_cap = 0; |
802 | 809 |
for (int i = 0; i != _res_node_num; ++i) { |
803 | 810 |
ex = _excess[i]; |
804 | 811 |
_excess[i] = 0; |
805 | 812 |
if (ex < 0) max_cap -= ex; |
806 | 813 |
} |
807 | 814 |
for (int j = 0; j != _res_arc_num; ++j) { |
808 | 815 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
809 | 816 |
} |
810 | 817 |
|
811 | 818 |
// Initialize the large cost vector and the epsilon parameter |
812 | 819 |
_epsilon = 0; |
813 | 820 |
LargeCost lc; |
814 | 821 |
for (int i = 0; i != _root; ++i) { |
815 | 822 |
last_out = _first_out[i+1]; |
816 | 823 |
for (int j = _first_out[i]; j != last_out; ++j) { |
817 | 824 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
818 | 825 |
_cost[j] = lc; |
819 | 826 |
if (lc > _epsilon) _epsilon = lc; |
820 | 827 |
} |
821 | 828 |
} |
822 | 829 |
_epsilon /= _alpha; |
823 | 830 |
|
824 | 831 |
// Initialize maps for Circulation and remove non-zero lower bounds |
825 | 832 |
ConstMap<Arc, Value> low(0); |
826 | 833 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
827 | 834 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
828 | 835 |
ValueArcMap cap(_graph), flow(_graph); |
829 | 836 |
ValueNodeMap sup(_graph); |
830 | 837 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
831 | 838 |
sup[n] = _supply[_node_id[n]]; |
832 | 839 |
} |
833 | 840 |
if (_have_lower) { |
834 | 841 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
835 | 842 |
int j = _arc_idf[a]; |
836 | 843 |
Value c = _lower[j]; |
837 | 844 |
cap[a] = _upper[j] - c; |
838 | 845 |
sup[_graph.source(a)] -= c; |
839 | 846 |
sup[_graph.target(a)] += c; |
840 | 847 |
} |
841 | 848 |
} else { |
842 | 849 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
843 | 850 |
cap[a] = _upper[_arc_idf[a]]; |
844 | 851 |
} |
845 | 852 |
} |
846 | 853 |
|
847 | 854 |
_sup_node_num = 0; |
848 | 855 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
849 | 856 |
if (sup[n] > 0) ++_sup_node_num; |
850 | 857 |
} |
851 | 858 |
|
852 | 859 |
// Find a feasible flow using Circulation |
853 | 860 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
854 | 861 |
circ(_graph, low, cap, sup); |
855 | 862 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
856 | 863 |
|
857 | 864 |
// Set residual capacities and handle GEQ supply type |
858 | 865 |
if (_sum_supply < 0) { |
859 | 866 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
860 | 867 |
Value fa = flow[a]; |
861 | 868 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
862 | 869 |
_res_cap[_arc_idb[a]] = fa; |
863 | 870 |
sup[_graph.source(a)] -= fa; |
864 | 871 |
sup[_graph.target(a)] += fa; |
865 | 872 |
} |
866 | 873 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
867 | 874 |
_excess[_node_id[n]] = sup[n]; |
868 | 875 |
} |
869 | 876 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
870 | 877 |
int u = _target[a]; |
871 | 878 |
int ra = _reverse[a]; |
872 | 879 |
_res_cap[a] = -_sum_supply + 1; |
873 | 880 |
_res_cap[ra] = -_excess[u]; |
874 | 881 |
_cost[a] = 0; |
875 | 882 |
_cost[ra] = 0; |
876 | 883 |
_excess[u] = 0; |
877 | 884 |
} |
878 | 885 |
} else { |
879 | 886 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
880 | 887 |
Value fa = flow[a]; |
881 | 888 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
882 | 889 |
_res_cap[_arc_idb[a]] = fa; |
883 | 890 |
} |
884 | 891 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
885 | 892 |
int ra = _reverse[a]; |
886 | 893 |
_res_cap[a] = 0; |
887 | 894 |
_res_cap[ra] = 0; |
888 | 895 |
_cost[a] = 0; |
889 | 896 |
_cost[ra] = 0; |
890 | 897 |
} |
891 | 898 |
} |
892 | 899 |
|
893 |
return OPTIMAL; |
|
894 |
} |
|
895 |
|
|
896 |
// Execute the algorithm and transform the results |
|
897 |
void start(Method method) { |
|
898 |
// Maximum path length for partial augment |
|
899 |
const int MAX_PATH_LENGTH = 4; |
|
900 |
|
|
901 | 900 |
// Initialize data structures for buckets |
902 | 901 |
_max_rank = _alpha * _res_node_num; |
903 | 902 |
_buckets.resize(_max_rank); |
904 | 903 |
_bucket_next.resize(_res_node_num + 1); |
905 | 904 |
_bucket_prev.resize(_res_node_num + 1); |
906 | 905 |
_rank.resize(_res_node_num + 1); |
907 | 906 |
|
908 |
|
|
907 |
return OPTIMAL; |
|
908 |
} |
|
909 |
|
|
910 |
// Execute the algorithm and transform the results |
|
911 |
void start(Method method) { |
|
912 |
const int MAX_PARTIAL_PATH_LENGTH = 4; |
|
913 |
|
|
909 | 914 |
switch (method) { |
910 | 915 |
case PUSH: |
911 | 916 |
startPush(); |
912 | 917 |
break; |
913 | 918 |
case AUGMENT: |
914 | 919 |
startAugment(_res_node_num - 1); |
915 | 920 |
break; |
916 | 921 |
case PARTIAL_AUGMENT: |
917 |
startAugment( |
|
922 |
startAugment(MAX_PARTIAL_PATH_LENGTH); |
|
918 | 923 |
break; |
919 | 924 |
} |
920 | 925 |
|
921 | 926 |
// Compute node potentials for the original costs |
922 | 927 |
_arc_vec.clear(); |
923 | 928 |
_cost_vec.clear(); |
924 | 929 |
for (int j = 0; j != _res_arc_num; ++j) { |
925 | 930 |
if (_res_cap[j] > 0) { |
926 | 931 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
927 | 932 |
_cost_vec.push_back(_scost[j]); |
928 | 933 |
} |
929 | 934 |
} |
930 | 935 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
931 | 936 |
|
932 | 937 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
933 | 938 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
934 | 939 |
bf.distMap(_pi_map); |
935 | 940 |
bf.init(0); |
936 | 941 |
bf.start(); |
937 | 942 |
|
938 | 943 |
// Handle non-zero lower bounds |
939 | 944 |
if (_have_lower) { |
940 | 945 |
int limit = _first_out[_root]; |
941 | 946 |
for (int j = 0; j != limit; ++j) { |
942 | 947 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
943 | 948 |
} |
944 | 949 |
} |
945 | 950 |
} |
946 | 951 |
|
947 | 952 |
// Initialize a cost scaling phase |
948 | 953 |
void initPhase() { |
949 | 954 |
// Saturate arcs not satisfying the optimality condition |
950 | 955 |
for (int u = 0; u != _res_node_num; ++u) { |
951 | 956 |
int last_out = _first_out[u+1]; |
952 | 957 |
LargeCost pi_u = _pi[u]; |
953 | 958 |
for (int a = _first_out[u]; a != last_out; ++a) { |
954 |
int v = _target[a]; |
|
955 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
|
956 |
Value delta = _res_cap[a]; |
|
957 |
_excess[u] -= delta; |
|
958 |
_excess[v] += delta; |
|
959 |
_res_cap[a] = 0; |
|
960 |
_res_cap |
|
959 |
Value delta = _res_cap[a]; |
|
960 |
if (delta > 0) { |
|
961 |
int v = _target[a]; |
|
962 |
if (_cost[a] + pi_u - _pi[v] < 0) { |
|
963 |
_excess[u] -= delta; |
|
964 |
_excess[v] += delta; |
|
965 |
_res_cap[a] = 0; |
|
966 |
_res_cap[_reverse[a]] += delta; |
|
967 |
} |
|
961 | 968 |
} |
962 | 969 |
} |
963 | 970 |
} |
964 | 971 |
|
965 | 972 |
// Find active nodes (i.e. nodes with positive excess) |
966 | 973 |
for (int u = 0; u != _res_node_num; ++u) { |
967 | 974 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
968 | 975 |
} |
969 | 976 |
|
970 | 977 |
// Initialize the next arcs |
971 | 978 |
for (int u = 0; u != _res_node_num; ++u) { |
972 | 979 |
_next_out[u] = _first_out[u]; |
973 | 980 |
} |
974 | 981 |
} |
975 | 982 |
|
976 | 983 |
// Early termination heuristic |
977 | 984 |
bool earlyTermination() { |
978 | 985 |
const double EARLY_TERM_FACTOR = 3.0; |
979 | 986 |
|
980 | 987 |
// Build a static residual graph |
981 | 988 |
_arc_vec.clear(); |
982 | 989 |
_cost_vec.clear(); |
983 | 990 |
for (int j = 0; j != _res_arc_num; ++j) { |
984 | 991 |
if (_res_cap[j] > 0) { |
985 | 992 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
986 | 993 |
_cost_vec.push_back(_cost[j] + 1); |
987 | 994 |
} |
988 | 995 |
} |
989 | 996 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
990 | 997 |
|
991 | 998 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
992 | 999 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
993 | 1000 |
bf.init(0); |
994 | 1001 |
bool done = false; |
995 | 1002 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
996 | 1003 |
for (int i = 0; i < K && !done; ++i) { |
997 | 1004 |
done = bf.processNextWeakRound(); |
998 | 1005 |
} |
999 | 1006 |
return done; |
1000 | 1007 |
} |
1001 | 1008 |
|
1002 | 1009 |
// Global potential update heuristic |
1003 | 1010 |
void globalUpdate() { |
1004 |
int bucket_end = _root + 1; |
|
1011 |
const int bucket_end = _root + 1; |
|
1005 | 1012 |
|
1006 | 1013 |
// Initialize buckets |
1007 | 1014 |
for (int r = 0; r != _max_rank; ++r) { |
1008 | 1015 |
_buckets[r] = bucket_end; |
1009 | 1016 |
} |
1010 | 1017 |
Value total_excess = 0; |
1018 |
int b0 = bucket_end; |
|
1011 | 1019 |
for (int i = 0; i != _res_node_num; ++i) { |
1012 | 1020 |
if (_excess[i] < 0) { |
1013 | 1021 |
_rank[i] = 0; |
1014 |
_bucket_next[i] = _buckets[0]; |
|
1015 |
_bucket_prev[_buckets[0]] = i; |
|
1016 |
|
|
1022 |
_bucket_next[i] = b0; |
|
1023 |
_bucket_prev[b0] = i; |
|
1024 |
b0 = i; |
|
1017 | 1025 |
} else { |
1018 | 1026 |
total_excess += _excess[i]; |
1019 | 1027 |
_rank[i] = _max_rank; |
1020 | 1028 |
} |
1021 | 1029 |
} |
1022 | 1030 |
if (total_excess == 0) return; |
1031 |
_buckets[0] = b0; |
|
1023 | 1032 |
|
1024 | 1033 |
// Search the buckets |
1025 | 1034 |
int r = 0; |
1026 | 1035 |
for ( ; r != _max_rank; ++r) { |
1027 | 1036 |
while (_buckets[r] != bucket_end) { |
1028 | 1037 |
// Remove the first node from the current bucket |
1029 | 1038 |
int u = _buckets[r]; |
1030 | 1039 |
_buckets[r] = _bucket_next[u]; |
1031 | 1040 |
|
1032 | 1041 |
// Search the incomming arcs of u |
1033 | 1042 |
LargeCost pi_u = _pi[u]; |
1034 | 1043 |
int last_out = _first_out[u+1]; |
1035 | 1044 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1036 | 1045 |
int ra = _reverse[a]; |
1037 | 1046 |
if (_res_cap[ra] > 0) { |
1038 | 1047 |
int v = _source[ra]; |
1039 | 1048 |
int old_rank_v = _rank[v]; |
1040 | 1049 |
if (r < old_rank_v) { |
1041 | 1050 |
// Compute the new rank of v |
1042 | 1051 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1043 | 1052 |
int new_rank_v = old_rank_v; |
1044 |
if (nrc < LargeCost(_max_rank)) |
|
1045 |
new_rank_v = r + 1 + int(nrc); |
|
1053 |
if (nrc < LargeCost(_max_rank)) { |
|
1054 |
new_rank_v = r + 1 + static_cast<int>(nrc); |
|
1055 |
} |
|
1046 | 1056 |
|
1047 | 1057 |
// Change the rank of v |
1048 | 1058 |
if (new_rank_v < old_rank_v) { |
1049 | 1059 |
_rank[v] = new_rank_v; |
1050 | 1060 |
_next_out[v] = _first_out[v]; |
1051 | 1061 |
|
1052 | 1062 |
// Remove v from its old bucket |
1053 | 1063 |
if (old_rank_v < _max_rank) { |
1054 | 1064 |
if (_buckets[old_rank_v] == v) { |
1055 | 1065 |
_buckets[old_rank_v] = _bucket_next[v]; |
1056 | 1066 |
} else { |
1057 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
1058 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
1067 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
|
1068 |
_bucket_next[pv] = nv; |
|
1069 |
_bucket_prev[nv] = pv; |
|
1059 | 1070 |
} |
1060 | 1071 |
} |
1061 | 1072 |
|
1062 |
// Insert v to its new bucket |
|
1063 |
_bucket_next[v] = _buckets[new_rank_v]; |
|
1064 |
|
|
1073 |
// Insert v into its new bucket |
|
1074 |
int nv = _buckets[new_rank_v]; |
|
1075 |
_bucket_next[v] = nv; |
|
1076 |
_bucket_prev[nv] = v; |
|
1065 | 1077 |
_buckets[new_rank_v] = v; |
1066 | 1078 |
} |
1067 | 1079 |
} |
1068 | 1080 |
} |
1069 | 1081 |
} |
1070 | 1082 |
|
1071 | 1083 |
// Finish search if there are no more active nodes |
1072 | 1084 |
if (_excess[u] > 0) { |
1073 | 1085 |
total_excess -= _excess[u]; |
1074 | 1086 |
if (total_excess <= 0) break; |
1075 | 1087 |
} |
1076 | 1088 |
} |
1077 | 1089 |
if (total_excess <= 0) break; |
1078 | 1090 |
} |
1079 | 1091 |
|
1080 | 1092 |
// Relabel nodes |
1081 | 1093 |
for (int u = 0; u != _res_node_num; ++u) { |
1082 | 1094 |
int k = std::min(_rank[u], r); |
1083 | 1095 |
if (k > 0) { |
1084 | 1096 |
_pi[u] -= _epsilon * k; |
1085 | 1097 |
_next_out[u] = _first_out[u]; |
1086 | 1098 |
} |
1087 | 1099 |
} |
1088 | 1100 |
} |
1089 | 1101 |
|
1090 | 1102 |
/// Execute the algorithm performing augment and relabel operations |
1091 | 1103 |
void startAugment(int max_length) { |
1092 | 1104 |
// Paramters for heuristics |
1093 | 1105 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1094 | 1106 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
1095 | 1107 |
|
1096 | 1108 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1097 | 1109 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1098 | 1110 |
int next_update_limit = global_update_freq; |
1099 | 1111 |
|
1100 | 1112 |
int relabel_cnt = 0; |
1101 | 1113 |
|
1102 | 1114 |
// Perform cost scaling phases |
1103 | 1115 |
std::vector<int> path; |
1104 | 1116 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1105 | 1117 |
1 : _epsilon / _alpha ) |
1106 | 1118 |
{ |
1107 | 1119 |
// Early termination heuristic |
1108 | 1120 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1109 | 1121 |
if (earlyTermination()) break; |
1110 | 1122 |
} |
1111 | 1123 |
|
1112 | 1124 |
// Initialize current phase |
1113 | 1125 |
initPhase(); |
1114 | 1126 |
|
1115 | 1127 |
// Perform partial augment and relabel operations |
1116 | 1128 |
while (true) { |
1117 | 1129 |
// Select an active node (FIFO selection) |
1118 | 1130 |
while (_active_nodes.size() > 0 && |
1119 | 1131 |
_excess[_active_nodes.front()] <= 0) { |
1120 | 1132 |
_active_nodes.pop_front(); |
1121 | 1133 |
} |
1122 | 1134 |
if (_active_nodes.size() == 0) break; |
1123 | 1135 |
int start = _active_nodes.front(); |
1124 | 1136 |
|
1125 | 1137 |
// Find an augmenting path from the start node |
1126 | 1138 |
path.clear(); |
1127 | 1139 |
int tip = start; |
1128 | 1140 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) { |
1129 | 1141 |
int u; |
1130 | 1142 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
1131 | 1143 |
int last_out = _first_out[tip+1]; |
1132 | 1144 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
1133 | 1145 |
u = _target[a]; |
1134 | 1146 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { |
1135 | 1147 |
path.push_back(a); |
1136 | 1148 |
_next_out[tip] = a; |
1137 | 1149 |
tip = u; |
1138 | 1150 |
goto next_step; |
1139 | 1151 |
} |
1140 | 1152 |
} |
1141 | 1153 |
|
1142 | 1154 |
// Relabel tip node |
1143 | 1155 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
1144 | 1156 |
if (tip != start) { |
1145 | 1157 |
int ra = _reverse[path.back()]; |
1146 | 1158 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
1147 | 1159 |
} |
1148 | 1160 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
1149 | 1161 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1150 | 1162 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1151 | 1163 |
min_red_cost = rc; |
1152 | 1164 |
} |
1153 | 1165 |
} |
1154 | 1166 |
_pi[tip] -= min_red_cost + _epsilon; |
1155 | 1167 |
_next_out[tip] = _first_out[tip]; |
1156 | 1168 |
++relabel_cnt; |
1157 | 1169 |
|
1158 | 1170 |
// Step back |
1159 | 1171 |
if (tip != start) { |
1160 | 1172 |
tip = _source[path.back()]; |
0 comments (0 inline)