... | ... |
@@ -575,18 +575,25 @@ |
575 | 575 |
return *this; |
576 | 576 |
} |
577 | 577 |
|
578 |
/// \brief Reset all the parameters |
|
578 |
/// \brief Reset the internal data structures and all the parameters |
|
579 |
/// that have been given before. |
|
579 | 580 |
/// |
580 |
/// This function resets all the paramaters that have been given |
|
581 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
582 |
/// |
|
581 |
/// This function resets the internal data structures and all the |
|
582 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
583 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
583 | 584 |
/// |
584 |
/// It is useful for multiple run() calls. If this function is not |
|
585 |
/// used, all the parameters given before are kept for the next |
|
586 |
/// \ref run() call. |
|
587 |
/// However, the underlying digraph must not be modified after this |
|
588 |
/// |
|
585 |
/// It is useful for multiple \ref run() calls. By default, all the given |
|
586 |
/// parameters are kept for the next \ref run() call, unless |
|
587 |
/// \ref resetParams() or \ref reset() is used. |
|
588 |
/// If the underlying digraph was also modified after the construction |
|
589 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
590 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
591 |
/// |
|
592 |
/// See \ref resetParams() for examples. |
|
593 |
/// |
|
589 | 594 |
/// \return <tt>(*this)</tt> |
595 |
/// |
|
596 |
/// \see resetParams(), run() |
|
590 | 597 |
CostScaling& reset() { |
591 | 598 |
// Resize vectors |
592 | 599 |
_node_num = countNodes(_graph); |
... | ... |
@@ -890,14 +897,6 @@ |
890 | 897 |
} |
891 | 898 |
} |
892 | 899 |
|
893 |
return OPTIMAL; |
|
894 |
} |
|
895 |
|
|
896 |
// Execute the algorithm and transform the results |
|
897 |
void start(Method method) { |
|
898 |
// Maximum path length for partial augment |
|
899 |
const int MAX_PATH_LENGTH = 4; |
|
900 |
|
|
901 | 900 |
// Initialize data structures for buckets |
902 | 901 |
_max_rank = _alpha * _res_node_num; |
903 | 902 |
_buckets.resize(_max_rank); |
... | ... |
@@ -905,7 +904,13 @@ |
905 | 904 |
_bucket_prev.resize(_res_node_num + 1); |
906 | 905 |
_rank.resize(_res_node_num + 1); |
907 | 906 |
|
908 |
|
|
907 |
return OPTIMAL; |
|
908 |
} |
|
909 |
|
|
910 |
// Execute the algorithm and transform the results |
|
911 |
void start(Method method) { |
|
912 |
const int MAX_PARTIAL_PATH_LENGTH = 4; |
|
913 |
|
|
909 | 914 |
switch (method) { |
910 | 915 |
case PUSH: |
911 | 916 |
startPush(); |
... | ... |
@@ -914,7 +919,7 @@ |
914 | 919 |
startAugment(_res_node_num - 1); |
915 | 920 |
break; |
916 | 921 |
case PARTIAL_AUGMENT: |
917 |
startAugment( |
|
922 |
startAugment(MAX_PARTIAL_PATH_LENGTH); |
|
918 | 923 |
break; |
919 | 924 |
} |
920 | 925 |
|
... | ... |
@@ -951,9 +956,10 @@ |
951 | 956 |
int last_out = _first_out[u+1]; |
952 | 957 |
LargeCost pi_u = _pi[u]; |
953 | 958 |
for (int a = _first_out[u]; a != last_out; ++a) { |
959 |
Value delta = _res_cap[a]; |
|
960 |
if (delta > 0) { |
|
954 | 961 |
int v = _target[a]; |
955 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
|
956 |
Value delta = _res_cap[a]; |
|
962 |
if (_cost[a] + pi_u - _pi[v] < 0) { |
|
957 | 963 |
_excess[u] -= delta; |
958 | 964 |
_excess[v] += delta; |
959 | 965 |
_res_cap[a] = 0; |
... | ... |
@@ -961,6 +967,7 @@ |
961 | 967 |
} |
962 | 968 |
} |
963 | 969 |
} |
970 |
} |
|
964 | 971 |
|
965 | 972 |
// Find active nodes (i.e. nodes with positive excess) |
966 | 973 |
for (int u = 0; u != _res_node_num; ++u) { |
... | ... |
@@ -1001,25 +1008,27 @@ |
1001 | 1008 |
|
1002 | 1009 |
// Global potential update heuristic |
1003 | 1010 |
void globalUpdate() { |
1004 |
int bucket_end = _root + 1; |
|
1011 |
const int bucket_end = _root + 1; |
|
1005 | 1012 |
|
1006 | 1013 |
// Initialize buckets |
1007 | 1014 |
for (int r = 0; r != _max_rank; ++r) { |
1008 | 1015 |
_buckets[r] = bucket_end; |
1009 | 1016 |
} |
1010 | 1017 |
Value total_excess = 0; |
1018 |
int b0 = bucket_end; |
|
1011 | 1019 |
for (int i = 0; i != _res_node_num; ++i) { |
1012 | 1020 |
if (_excess[i] < 0) { |
1013 | 1021 |
_rank[i] = 0; |
1014 |
_bucket_next[i] = _buckets[0]; |
|
1015 |
_bucket_prev[_buckets[0]] = i; |
|
1016 |
|
|
1022 |
_bucket_next[i] = b0; |
|
1023 |
_bucket_prev[b0] = i; |
|
1024 |
b0 = i; |
|
1017 | 1025 |
} else { |
1018 | 1026 |
total_excess += _excess[i]; |
1019 | 1027 |
_rank[i] = _max_rank; |
1020 | 1028 |
} |
1021 | 1029 |
} |
1022 | 1030 |
if (total_excess == 0) return; |
1031 |
_buckets[0] = b0; |
|
1023 | 1032 |
|
1024 | 1033 |
// Search the buckets |
1025 | 1034 |
int r = 0; |
... | ... |
@@ -1041,8 +1050,9 @@ |
1041 | 1050 |
// Compute the new rank of v |
1042 | 1051 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1043 | 1052 |
int new_rank_v = old_rank_v; |
1044 |
if (nrc < LargeCost(_max_rank)) |
|
1045 |
new_rank_v = r + 1 + int(nrc); |
|
1053 |
if (nrc < LargeCost(_max_rank)) { |
|
1054 |
new_rank_v = r + 1 + static_cast<int>(nrc); |
|
1055 |
} |
|
1046 | 1056 |
|
1047 | 1057 |
// Change the rank of v |
1048 | 1058 |
if (new_rank_v < old_rank_v) { |
... | ... |
@@ -1054,14 +1064,16 @@ |
1054 | 1064 |
if (_buckets[old_rank_v] == v) { |
1055 | 1065 |
_buckets[old_rank_v] = _bucket_next[v]; |
1056 | 1066 |
} else { |
1057 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
1058 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
1067 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
|
1068 |
_bucket_next[pv] = nv; |
|
1069 |
_bucket_prev[nv] = pv; |
|
1059 | 1070 |
} |
1060 | 1071 |
} |
1061 | 1072 |
|
1062 |
// Insert v to its new bucket |
|
1063 |
_bucket_next[v] = _buckets[new_rank_v]; |
|
1064 |
|
|
1073 |
// Insert v into its new bucket |
|
1074 |
int nv = _buckets[new_rank_v]; |
|
1075 |
_bucket_next[v] = nv; |
|
1076 |
_bucket_prev[nv] = v; |
|
1065 | 1077 |
_buckets[new_rank_v] = v; |
1066 | 1078 |
} |
1067 | 1079 |
} |
0 comments (0 inline)