0
2
0
... | ... |
@@ -8,356 +8,358 @@ |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 | 38 |
/// \tparam V The value type used for flow amounts, capacity bounds |
39 | 39 |
/// and supply values. By default it is \c int. |
40 | 40 |
/// \tparam C The value type used for costs and potentials. |
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
53 | 53 |
/// |
54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
/// \addtogroup min_cost_flow_algs |
62 | 62 |
/// @{ |
63 | 63 |
|
64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow". It is an efficient dual |
70 | 70 |
/// solution method. |
71 | 71 |
/// |
72 | 72 |
/// Most of the parameters of the problem (except for the digraph) |
73 | 73 |
/// can be given using separate functions, and the algorithm can be |
74 | 74 |
/// executed using the \ref run() function. If some parameters are not |
75 | 75 |
/// specified, then default values will be used. |
76 | 76 |
/// |
77 | 77 |
/// \tparam GR The digraph type the algorithm runs on. |
78 | 78 |
/// \tparam V The value type used for flow amounts, capacity bounds |
79 | 79 |
/// and supply values in the algorithm. By default it is \c int. |
80 | 80 |
/// \tparam C The value type used for costs and potentials in the |
81 | 81 |
/// algorithm. By default it is the same as \c V. |
82 | 82 |
/// |
83 | 83 |
/// \warning Both value types must be signed and all input data must |
84 | 84 |
/// be integer. |
85 | 85 |
/// \warning This algorithm does not support negative costs for such |
86 | 86 |
/// arcs that have infinite upper bound. |
87 | 87 |
#ifdef DOXYGEN |
88 | 88 |
template <typename GR, typename V, typename C, typename TR> |
89 | 89 |
#else |
90 | 90 |
template < typename GR, typename V = int, typename C = V, |
91 | 91 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
92 | 92 |
#endif |
93 | 93 |
class CapacityScaling |
94 | 94 |
{ |
95 | 95 |
public: |
96 | 96 |
|
97 | 97 |
/// The type of the digraph |
98 | 98 |
typedef typename TR::Digraph Digraph; |
99 | 99 |
/// The type of the flow amounts, capacity bounds and supply values |
100 | 100 |
typedef typename TR::Value Value; |
101 | 101 |
/// The type of the arc costs |
102 | 102 |
typedef typename TR::Cost Cost; |
103 | 103 |
|
104 | 104 |
/// The type of the heap used for internal Dijkstra computations |
105 | 105 |
typedef typename TR::Heap Heap; |
106 | 106 |
|
107 | 107 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
108 | 108 |
typedef TR Traits; |
109 | 109 |
|
110 | 110 |
public: |
111 | 111 |
|
112 | 112 |
/// \brief Problem type constants for the \c run() function. |
113 | 113 |
/// |
114 | 114 |
/// Enum type containing the problem type constants that can be |
115 | 115 |
/// returned by the \ref run() function of the algorithm. |
116 | 116 |
enum ProblemType { |
117 | 117 |
/// The problem has no feasible solution (flow). |
118 | 118 |
INFEASIBLE, |
119 | 119 |
/// The problem has optimal solution (i.e. it is feasible and |
120 | 120 |
/// bounded), and the algorithm has found optimal flow and node |
121 | 121 |
/// potentials (primal and dual solutions). |
122 | 122 |
OPTIMAL, |
123 | 123 |
/// The digraph contains an arc of negative cost and infinite |
124 | 124 |
/// upper bound. It means that the objective function is unbounded |
125 | 125 |
/// on that arc, however note that it could actually be bounded |
126 | 126 |
/// over the feasible flows, but this algroithm cannot handle |
127 | 127 |
/// these cases. |
128 | 128 |
UNBOUNDED |
129 | 129 |
}; |
130 | 130 |
|
131 | 131 |
private: |
132 | 132 |
|
133 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
134 | 134 |
|
135 | 135 |
typedef std::vector<int> IntVector; |
136 |
typedef std::vector< |
|
136 |
typedef std::vector<char> BoolVector; |
|
137 | 137 |
typedef std::vector<Value> ValueVector; |
138 | 138 |
typedef std::vector<Cost> CostVector; |
139 | 139 |
|
140 | 140 |
private: |
141 | 141 |
|
142 | 142 |
// Data related to the underlying digraph |
143 | 143 |
const GR &_graph; |
144 | 144 |
int _node_num; |
145 | 145 |
int _arc_num; |
146 | 146 |
int _res_arc_num; |
147 | 147 |
int _root; |
148 | 148 |
|
149 | 149 |
// Parameters of the problem |
150 | 150 |
bool _have_lower; |
151 | 151 |
Value _sum_supply; |
152 | 152 |
|
153 | 153 |
// Data structures for storing the digraph |
154 | 154 |
IntNodeMap _node_id; |
155 | 155 |
IntArcMap _arc_idf; |
156 | 156 |
IntArcMap _arc_idb; |
157 | 157 |
IntVector _first_out; |
158 | 158 |
BoolVector _forward; |
159 | 159 |
IntVector _source; |
160 | 160 |
IntVector _target; |
161 | 161 |
IntVector _reverse; |
162 | 162 |
|
163 | 163 |
// Node and arc data |
164 | 164 |
ValueVector _lower; |
165 | 165 |
ValueVector _upper; |
166 | 166 |
CostVector _cost; |
167 | 167 |
ValueVector _supply; |
168 | 168 |
|
169 | 169 |
ValueVector _res_cap; |
170 | 170 |
CostVector _pi; |
171 | 171 |
ValueVector _excess; |
172 | 172 |
IntVector _excess_nodes; |
173 | 173 |
IntVector _deficit_nodes; |
174 | 174 |
|
175 | 175 |
Value _delta; |
176 | 176 |
int _factor; |
177 | 177 |
IntVector _pred; |
178 | 178 |
|
179 | 179 |
public: |
180 | 180 |
|
181 | 181 |
/// \brief Constant for infinite upper bounds (capacities). |
182 | 182 |
/// |
183 | 183 |
/// Constant for infinite upper bounds (capacities). |
184 | 184 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
185 | 185 |
/// \c std::numeric_limits<Value>::max() otherwise. |
186 | 186 |
const Value INF; |
187 | 187 |
|
188 | 188 |
private: |
189 | 189 |
|
190 | 190 |
// Special implementation of the Dijkstra algorithm for finding |
191 | 191 |
// shortest paths in the residual network of the digraph with |
192 | 192 |
// respect to the reduced arc costs and modifying the node |
193 | 193 |
// potentials according to the found distance labels. |
194 | 194 |
class ResidualDijkstra |
195 | 195 |
{ |
196 | 196 |
private: |
197 | 197 |
|
198 | 198 |
int _node_num; |
199 |
bool _geq; |
|
199 | 200 |
const IntVector &_first_out; |
200 | 201 |
const IntVector &_target; |
201 | 202 |
const CostVector &_cost; |
202 | 203 |
const ValueVector &_res_cap; |
203 | 204 |
const ValueVector &_excess; |
204 | 205 |
CostVector &_pi; |
205 | 206 |
IntVector &_pred; |
206 | 207 |
|
207 | 208 |
IntVector _proc_nodes; |
208 | 209 |
CostVector _dist; |
209 | 210 |
|
210 | 211 |
public: |
211 | 212 |
|
212 | 213 |
ResidualDijkstra(CapacityScaling& cs) : |
213 |
_node_num(cs._node_num), _first_out(cs._first_out), |
|
214 |
_target(cs._target), _cost(cs._cost), _res_cap(cs._res_cap), |
|
215 |
_excess(cs._excess), _pi(cs._pi), _pred(cs._pred), |
|
216 |
_dist(cs._node_num) |
|
214 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
|
215 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
|
216 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
|
217 |
_pred(cs._pred), _dist(cs._node_num) |
|
217 | 218 |
{} |
218 | 219 |
|
219 | 220 |
int run(int s, Value delta = 1) { |
220 | 221 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
221 | 222 |
Heap heap(heap_cross_ref); |
222 | 223 |
heap.push(s, 0); |
223 | 224 |
_pred[s] = -1; |
224 | 225 |
_proc_nodes.clear(); |
225 | 226 |
|
226 | 227 |
// Process nodes |
227 | 228 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
228 | 229 |
int u = heap.top(), v; |
229 | 230 |
Cost d = heap.prio() + _pi[u], dn; |
230 | 231 |
_dist[u] = heap.prio(); |
231 | 232 |
_proc_nodes.push_back(u); |
232 | 233 |
heap.pop(); |
233 | 234 |
|
234 | 235 |
// Traverse outgoing residual arcs |
235 |
|
|
236 |
int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1; |
|
237 |
for (int a = _first_out[u]; a != last_out; ++a) { |
|
236 | 238 |
if (_res_cap[a] < delta) continue; |
237 | 239 |
v = _target[a]; |
238 | 240 |
switch (heap.state(v)) { |
239 | 241 |
case Heap::PRE_HEAP: |
240 | 242 |
heap.push(v, d + _cost[a] - _pi[v]); |
241 | 243 |
_pred[v] = a; |
242 | 244 |
break; |
243 | 245 |
case Heap::IN_HEAP: |
244 | 246 |
dn = d + _cost[a] - _pi[v]; |
245 | 247 |
if (dn < heap[v]) { |
246 | 248 |
heap.decrease(v, dn); |
247 | 249 |
_pred[v] = a; |
248 | 250 |
} |
249 | 251 |
break; |
250 | 252 |
case Heap::POST_HEAP: |
251 | 253 |
break; |
252 | 254 |
} |
253 | 255 |
} |
254 | 256 |
} |
255 | 257 |
if (heap.empty()) return -1; |
256 | 258 |
|
257 | 259 |
// Update potentials of processed nodes |
258 | 260 |
int t = heap.top(); |
259 | 261 |
Cost dt = heap.prio(); |
260 | 262 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) { |
261 | 263 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt; |
262 | 264 |
} |
263 | 265 |
|
264 | 266 |
return t; |
265 | 267 |
} |
266 | 268 |
|
267 | 269 |
}; //class ResidualDijkstra |
268 | 270 |
|
269 | 271 |
public: |
270 | 272 |
|
271 | 273 |
/// \name Named Template Parameters |
272 | 274 |
/// @{ |
273 | 275 |
|
274 | 276 |
template <typename T> |
275 | 277 |
struct SetHeapTraits : public Traits { |
276 | 278 |
typedef T Heap; |
277 | 279 |
}; |
278 | 280 |
|
279 | 281 |
/// \brief \ref named-templ-param "Named parameter" for setting |
280 | 282 |
/// \c Heap type. |
281 | 283 |
/// |
282 | 284 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
283 | 285 |
/// type, which is used for internal Dijkstra computations. |
284 | 286 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
285 | 287 |
/// its priority type must be \c Cost and its cross reference type |
286 | 288 |
/// must be \ref RangeMap "RangeMap<int>". |
287 | 289 |
template <typename T> |
288 | 290 |
struct SetHeap |
289 | 291 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
290 | 292 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
291 | 293 |
}; |
292 | 294 |
|
293 | 295 |
/// @} |
294 | 296 |
|
295 | 297 |
public: |
296 | 298 |
|
297 | 299 |
/// \brief Constructor. |
298 | 300 |
/// |
299 | 301 |
/// The constructor of the class. |
300 | 302 |
/// |
301 | 303 |
/// \param graph The digraph the algorithm runs on. |
302 | 304 |
CapacityScaling(const GR& graph) : |
303 | 305 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
304 | 306 |
INF(std::numeric_limits<Value>::has_infinity ? |
305 | 307 |
std::numeric_limits<Value>::infinity() : |
306 | 308 |
std::numeric_limits<Value>::max()) |
307 | 309 |
{ |
308 | 310 |
// Check the value types |
309 | 311 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
310 | 312 |
"The flow type of CapacityScaling must be signed"); |
311 | 313 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
312 | 314 |
"The cost type of CapacityScaling must be signed"); |
313 | 315 |
|
314 | 316 |
// Resize vectors |
315 | 317 |
_node_num = countNodes(_graph); |
316 | 318 |
_arc_num = countArcs(_graph); |
317 | 319 |
_res_arc_num = 2 * (_arc_num + _node_num); |
318 | 320 |
_root = _node_num; |
319 | 321 |
++_node_num; |
320 | 322 |
|
321 | 323 |
_first_out.resize(_node_num + 1); |
322 | 324 |
_forward.resize(_res_arc_num); |
323 | 325 |
_source.resize(_res_arc_num); |
324 | 326 |
_target.resize(_res_arc_num); |
325 | 327 |
_reverse.resize(_res_arc_num); |
326 | 328 |
|
327 | 329 |
_lower.resize(_res_arc_num); |
328 | 330 |
_upper.resize(_res_arc_num); |
329 | 331 |
_cost.resize(_res_arc_num); |
330 | 332 |
_supply.resize(_node_num); |
331 | 333 |
|
332 | 334 |
_res_cap.resize(_res_arc_num); |
333 | 335 |
_pi.resize(_node_num); |
334 | 336 |
_excess.resize(_node_num); |
335 | 337 |
_pred.resize(_node_num); |
336 | 338 |
|
337 | 339 |
// Copy the graph |
338 | 340 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
339 | 341 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
340 | 342 |
_node_id[n] = i; |
341 | 343 |
} |
342 | 344 |
i = 0; |
343 | 345 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
344 | 346 |
_first_out[i] = j; |
345 | 347 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
346 | 348 |
_arc_idf[a] = j; |
347 | 349 |
_forward[j] = true; |
348 | 350 |
_source[j] = i; |
349 | 351 |
_target[j] = _node_id[_graph.runningNode(a)]; |
350 | 352 |
} |
351 | 353 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
352 | 354 |
_arc_idb[a] = j; |
353 | 355 |
_forward[j] = false; |
354 | 356 |
_source[j] = i; |
355 | 357 |
_target[j] = _node_id[_graph.runningNode(a)]; |
356 | 358 |
} |
357 | 359 |
_forward[j] = false; |
358 | 360 |
_source[j] = i; |
359 | 361 |
_target[j] = _root; |
360 | 362 |
_reverse[j] = k; |
361 | 363 |
_forward[k] = true; |
362 | 364 |
_source[k] = _root; |
363 | 365 |
_target[k] = i; |
... | ... |
@@ -562,380 +564,387 @@ |
562 | 564 |
/// cost[e] += 100; |
563 | 565 |
/// cs.costMap(cost).run(); |
564 | 566 |
/// |
565 | 567 |
/// // Run again from scratch using reset() |
566 | 568 |
/// // (the lower bounds will be set to zero on all arcs) |
567 | 569 |
/// cs.reset(); |
568 | 570 |
/// cs.upperMap(capacity).costMap(cost) |
569 | 571 |
/// .supplyMap(sup).run(); |
570 | 572 |
/// \endcode |
571 | 573 |
/// |
572 | 574 |
/// \return <tt>(*this)</tt> |
573 | 575 |
CapacityScaling& reset() { |
574 | 576 |
for (int i = 0; i != _node_num; ++i) { |
575 | 577 |
_supply[i] = 0; |
576 | 578 |
} |
577 | 579 |
for (int j = 0; j != _res_arc_num; ++j) { |
578 | 580 |
_lower[j] = 0; |
579 | 581 |
_upper[j] = INF; |
580 | 582 |
_cost[j] = _forward[j] ? 1 : -1; |
581 | 583 |
} |
582 | 584 |
_have_lower = false; |
583 | 585 |
return *this; |
584 | 586 |
} |
585 | 587 |
|
586 | 588 |
/// @} |
587 | 589 |
|
588 | 590 |
/// \name Query Functions |
589 | 591 |
/// The results of the algorithm can be obtained using these |
590 | 592 |
/// functions.\n |
591 | 593 |
/// The \ref run() function must be called before using them. |
592 | 594 |
|
593 | 595 |
/// @{ |
594 | 596 |
|
595 | 597 |
/// \brief Return the total cost of the found flow. |
596 | 598 |
/// |
597 | 599 |
/// This function returns the total cost of the found flow. |
598 | 600 |
/// Its complexity is O(e). |
599 | 601 |
/// |
600 | 602 |
/// \note The return type of the function can be specified as a |
601 | 603 |
/// template parameter. For example, |
602 | 604 |
/// \code |
603 | 605 |
/// cs.totalCost<double>(); |
604 | 606 |
/// \endcode |
605 | 607 |
/// It is useful if the total cost cannot be stored in the \c Cost |
606 | 608 |
/// type of the algorithm, which is the default return type of the |
607 | 609 |
/// function. |
608 | 610 |
/// |
609 | 611 |
/// \pre \ref run() must be called before using this function. |
610 | 612 |
template <typename Number> |
611 | 613 |
Number totalCost() const { |
612 | 614 |
Number c = 0; |
613 | 615 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
614 | 616 |
int i = _arc_idb[a]; |
615 | 617 |
c += static_cast<Number>(_res_cap[i]) * |
616 | 618 |
(-static_cast<Number>(_cost[i])); |
617 | 619 |
} |
618 | 620 |
return c; |
619 | 621 |
} |
620 | 622 |
|
621 | 623 |
#ifndef DOXYGEN |
622 | 624 |
Cost totalCost() const { |
623 | 625 |
return totalCost<Cost>(); |
624 | 626 |
} |
625 | 627 |
#endif |
626 | 628 |
|
627 | 629 |
/// \brief Return the flow on the given arc. |
628 | 630 |
/// |
629 | 631 |
/// This function returns the flow on the given arc. |
630 | 632 |
/// |
631 | 633 |
/// \pre \ref run() must be called before using this function. |
632 | 634 |
Value flow(const Arc& a) const { |
633 | 635 |
return _res_cap[_arc_idb[a]]; |
634 | 636 |
} |
635 | 637 |
|
636 | 638 |
/// \brief Return the flow map (the primal solution). |
637 | 639 |
/// |
638 | 640 |
/// This function copies the flow value on each arc into the given |
639 | 641 |
/// map. The \c Value type of the algorithm must be convertible to |
640 | 642 |
/// the \c Value type of the map. |
641 | 643 |
/// |
642 | 644 |
/// \pre \ref run() must be called before using this function. |
643 | 645 |
template <typename FlowMap> |
644 | 646 |
void flowMap(FlowMap &map) const { |
645 | 647 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
646 | 648 |
map.set(a, _res_cap[_arc_idb[a]]); |
647 | 649 |
} |
648 | 650 |
} |
649 | 651 |
|
650 | 652 |
/// \brief Return the potential (dual value) of the given node. |
651 | 653 |
/// |
652 | 654 |
/// This function returns the potential (dual value) of the |
653 | 655 |
/// given node. |
654 | 656 |
/// |
655 | 657 |
/// \pre \ref run() must be called before using this function. |
656 | 658 |
Cost potential(const Node& n) const { |
657 | 659 |
return _pi[_node_id[n]]; |
658 | 660 |
} |
659 | 661 |
|
660 | 662 |
/// \brief Return the potential map (the dual solution). |
661 | 663 |
/// |
662 | 664 |
/// This function copies the potential (dual value) of each node |
663 | 665 |
/// into the given map. |
664 | 666 |
/// The \c Cost type of the algorithm must be convertible to the |
665 | 667 |
/// \c Value type of the map. |
666 | 668 |
/// |
667 | 669 |
/// \pre \ref run() must be called before using this function. |
668 | 670 |
template <typename PotentialMap> |
669 | 671 |
void potentialMap(PotentialMap &map) const { |
670 | 672 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
671 | 673 |
map.set(n, _pi[_node_id[n]]); |
672 | 674 |
} |
673 | 675 |
} |
674 | 676 |
|
675 | 677 |
/// @} |
676 | 678 |
|
677 | 679 |
private: |
678 | 680 |
|
679 | 681 |
// Initialize the algorithm |
680 | 682 |
ProblemType init() { |
681 | 683 |
if (_node_num == 0) return INFEASIBLE; |
682 | 684 |
|
683 | 685 |
// Check the sum of supply values |
684 | 686 |
_sum_supply = 0; |
685 | 687 |
for (int i = 0; i != _root; ++i) { |
686 | 688 |
_sum_supply += _supply[i]; |
687 | 689 |
} |
688 | 690 |
if (_sum_supply > 0) return INFEASIBLE; |
689 | 691 |
|
690 |
// Initialize |
|
692 |
// Initialize vectors |
|
691 | 693 |
for (int i = 0; i != _root; ++i) { |
692 | 694 |
_pi[i] = 0; |
693 | 695 |
_excess[i] = _supply[i]; |
694 | 696 |
} |
695 | 697 |
|
696 | 698 |
// Remove non-zero lower bounds |
699 |
const Value MAX = std::numeric_limits<Value>::max(); |
|
700 |
int last_out; |
|
697 | 701 |
if (_have_lower) { |
698 | 702 |
for (int i = 0; i != _root; ++i) { |
699 |
|
|
703 |
last_out = _first_out[i+1]; |
|
704 |
for (int j = _first_out[i]; j != last_out; ++j) { |
|
700 | 705 |
if (_forward[j]) { |
701 | 706 |
Value c = _lower[j]; |
702 | 707 |
if (c >= 0) { |
703 |
_res_cap[j] = _upper[j] < |
|
708 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
|
704 | 709 |
} else { |
705 |
_res_cap[j] = _upper[j] < |
|
710 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
|
706 | 711 |
} |
707 | 712 |
_excess[i] -= c; |
708 | 713 |
_excess[_target[j]] += c; |
709 | 714 |
} else { |
710 | 715 |
_res_cap[j] = 0; |
711 | 716 |
} |
712 | 717 |
} |
713 | 718 |
} |
714 | 719 |
} else { |
715 | 720 |
for (int j = 0; j != _res_arc_num; ++j) { |
716 | 721 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
717 | 722 |
} |
718 | 723 |
} |
719 | 724 |
|
720 | 725 |
// Handle negative costs |
721 |
for (int u = 0; u != _root; ++u) { |
|
722 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
|
723 |
Value rc = _res_cap[a]; |
|
724 |
if (_cost[a] < 0 && rc > 0) { |
|
725 |
if (rc == INF) return UNBOUNDED; |
|
726 |
_excess[u] -= rc; |
|
727 |
_excess[_target[a]] += rc; |
|
728 |
_res_cap[a] = 0; |
|
729 |
|
|
726 |
for (int i = 0; i != _root; ++i) { |
|
727 |
last_out = _first_out[i+1] - 1; |
|
728 |
for (int j = _first_out[i]; j != last_out; ++j) { |
|
729 |
Value rc = _res_cap[j]; |
|
730 |
if (_cost[j] < 0 && rc > 0) { |
|
731 |
if (rc >= MAX) return UNBOUNDED; |
|
732 |
_excess[i] -= rc; |
|
733 |
_excess[_target[j]] += rc; |
|
734 |
_res_cap[j] = 0; |
|
735 |
_res_cap[_reverse[j]] += rc; |
|
730 | 736 |
} |
731 | 737 |
} |
732 | 738 |
} |
733 | 739 |
|
734 | 740 |
// Handle GEQ supply type |
735 | 741 |
if (_sum_supply < 0) { |
736 | 742 |
_pi[_root] = 0; |
737 | 743 |
_excess[_root] = -_sum_supply; |
738 | 744 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
739 |
int u = _target[a]; |
|
740 |
if (_excess[u] < 0) { |
|
741 |
_res_cap[a] = -_excess[u] + 1; |
|
742 |
} else { |
|
743 |
_res_cap[a] = 1; |
|
744 |
} |
|
745 |
|
|
745 |
int ra = _reverse[a]; |
|
746 |
_res_cap[a] = -_sum_supply + 1; |
|
747 |
_res_cap[ra] = 0; |
|
746 | 748 |
_cost[a] = 0; |
747 |
_cost[ |
|
749 |
_cost[ra] = 0; |
|
748 | 750 |
} |
749 | 751 |
} else { |
750 | 752 |
_pi[_root] = 0; |
751 | 753 |
_excess[_root] = 0; |
752 | 754 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
755 |
int ra = _reverse[a]; |
|
753 | 756 |
_res_cap[a] = 1; |
754 |
_res_cap[ |
|
757 |
_res_cap[ra] = 0; |
|
755 | 758 |
_cost[a] = 0; |
756 |
_cost[ |
|
759 |
_cost[ra] = 0; |
|
757 | 760 |
} |
758 | 761 |
} |
759 | 762 |
|
760 | 763 |
// Initialize delta value |
761 | 764 |
if (_factor > 1) { |
762 | 765 |
// With scaling |
763 | 766 |
Value max_sup = 0, max_dem = 0; |
764 | 767 |
for (int i = 0; i != _node_num; ++i) { |
765 |
if ( _excess[i] > max_sup) max_sup = _excess[i]; |
|
766 |
if (-_excess[i] > max_dem) max_dem = -_excess[i]; |
|
768 |
Value ex = _excess[i]; |
|
769 |
if ( ex > max_sup) max_sup = ex; |
|
770 |
if (-ex > max_dem) max_dem = -ex; |
|
767 | 771 |
} |
768 | 772 |
Value max_cap = 0; |
769 | 773 |
for (int j = 0; j != _res_arc_num; ++j) { |
770 | 774 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
771 | 775 |
} |
772 | 776 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
773 | 777 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
774 | 778 |
} else { |
775 | 779 |
// Without scaling |
776 | 780 |
_delta = 1; |
777 | 781 |
} |
778 | 782 |
|
779 | 783 |
return OPTIMAL; |
780 | 784 |
} |
781 | 785 |
|
782 | 786 |
ProblemType start() { |
783 | 787 |
// Execute the algorithm |
784 | 788 |
ProblemType pt; |
785 | 789 |
if (_delta > 1) |
786 | 790 |
pt = startWithScaling(); |
787 | 791 |
else |
788 | 792 |
pt = startWithoutScaling(); |
789 | 793 |
|
790 | 794 |
// Handle non-zero lower bounds |
791 | 795 |
if (_have_lower) { |
792 |
|
|
796 |
int limit = _first_out[_root]; |
|
797 |
for (int j = 0; j != limit; ++j) { |
|
793 | 798 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
794 | 799 |
} |
795 | 800 |
} |
796 | 801 |
|
797 | 802 |
// Shift potentials if necessary |
798 | 803 |
Cost pr = _pi[_root]; |
799 | 804 |
if (_sum_supply < 0 || pr > 0) { |
800 | 805 |
for (int i = 0; i != _node_num; ++i) { |
801 | 806 |
_pi[i] -= pr; |
802 | 807 |
} |
803 | 808 |
} |
804 | 809 |
|
805 | 810 |
return pt; |
806 | 811 |
} |
807 | 812 |
|
808 | 813 |
// Execute the capacity scaling algorithm |
809 | 814 |
ProblemType startWithScaling() { |
810 | 815 |
// Perform capacity scaling phases |
811 | 816 |
int s, t; |
812 | 817 |
ResidualDijkstra _dijkstra(*this); |
813 | 818 |
while (true) { |
814 | 819 |
// Saturate all arcs not satisfying the optimality condition |
820 |
int last_out; |
|
815 | 821 |
for (int u = 0; u != _node_num; ++u) { |
816 |
|
|
822 |
last_out = _sum_supply < 0 ? |
|
823 |
_first_out[u+1] : _first_out[u+1] - 1; |
|
824 |
for (int a = _first_out[u]; a != last_out; ++a) { |
|
817 | 825 |
int v = _target[a]; |
818 | 826 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
819 | 827 |
Value rc = _res_cap[a]; |
820 | 828 |
if (c < 0 && rc >= _delta) { |
821 | 829 |
_excess[u] -= rc; |
822 | 830 |
_excess[v] += rc; |
823 | 831 |
_res_cap[a] = 0; |
824 | 832 |
_res_cap[_reverse[a]] += rc; |
825 | 833 |
} |
826 | 834 |
} |
827 | 835 |
} |
828 | 836 |
|
829 | 837 |
// Find excess nodes and deficit nodes |
830 | 838 |
_excess_nodes.clear(); |
831 | 839 |
_deficit_nodes.clear(); |
832 | 840 |
for (int u = 0; u != _node_num; ++u) { |
833 |
if (_excess[u] >= _delta) _excess_nodes.push_back(u); |
|
834 |
if (_excess[u] <= -_delta) _deficit_nodes.push_back(u); |
|
841 |
Value ex = _excess[u]; |
|
842 |
if (ex >= _delta) _excess_nodes.push_back(u); |
|
843 |
if (ex <= -_delta) _deficit_nodes.push_back(u); |
|
835 | 844 |
} |
836 | 845 |
int next_node = 0, next_def_node = 0; |
837 | 846 |
|
838 | 847 |
// Find augmenting shortest paths |
839 | 848 |
while (next_node < int(_excess_nodes.size())) { |
840 | 849 |
// Check deficit nodes |
841 | 850 |
if (_delta > 1) { |
842 | 851 |
bool delta_deficit = false; |
843 | 852 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
844 | 853 |
++next_def_node ) { |
845 | 854 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) { |
846 | 855 |
delta_deficit = true; |
847 | 856 |
break; |
848 | 857 |
} |
849 | 858 |
} |
850 | 859 |
if (!delta_deficit) break; |
851 | 860 |
} |
852 | 861 |
|
853 | 862 |
// Run Dijkstra in the residual network |
854 | 863 |
s = _excess_nodes[next_node]; |
855 | 864 |
if ((t = _dijkstra.run(s, _delta)) == -1) { |
856 | 865 |
if (_delta > 1) { |
857 | 866 |
++next_node; |
858 | 867 |
continue; |
859 | 868 |
} |
860 | 869 |
return INFEASIBLE; |
861 | 870 |
} |
862 | 871 |
|
863 | 872 |
// Augment along a shortest path from s to t |
864 | 873 |
Value d = std::min(_excess[s], -_excess[t]); |
865 | 874 |
int u = t; |
866 | 875 |
int a; |
867 | 876 |
if (d > _delta) { |
868 | 877 |
while ((a = _pred[u]) != -1) { |
869 | 878 |
if (_res_cap[a] < d) d = _res_cap[a]; |
870 | 879 |
u = _source[a]; |
871 | 880 |
} |
872 | 881 |
} |
873 | 882 |
u = t; |
874 | 883 |
while ((a = _pred[u]) != -1) { |
875 | 884 |
_res_cap[a] -= d; |
876 | 885 |
_res_cap[_reverse[a]] += d; |
877 | 886 |
u = _source[a]; |
878 | 887 |
} |
879 | 888 |
_excess[s] -= d; |
880 | 889 |
_excess[t] += d; |
881 | 890 |
|
882 | 891 |
if (_excess[s] < _delta) ++next_node; |
883 | 892 |
} |
884 | 893 |
|
885 | 894 |
if (_delta == 1) break; |
886 | 895 |
_delta = _delta <= _factor ? 1 : _delta / _factor; |
887 | 896 |
} |
888 | 897 |
|
889 | 898 |
return OPTIMAL; |
890 | 899 |
} |
891 | 900 |
|
892 | 901 |
// Execute the successive shortest path algorithm |
893 | 902 |
ProblemType startWithoutScaling() { |
894 | 903 |
// Find excess nodes |
895 | 904 |
_excess_nodes.clear(); |
896 | 905 |
for (int i = 0; i != _node_num; ++i) { |
897 | 906 |
if (_excess[i] > 0) _excess_nodes.push_back(i); |
898 | 907 |
} |
899 | 908 |
if (_excess_nodes.size() == 0) return OPTIMAL; |
900 | 909 |
int next_node = 0; |
901 | 910 |
|
902 | 911 |
// Find shortest paths |
903 | 912 |
int s, t; |
904 | 913 |
ResidualDijkstra _dijkstra(*this); |
905 | 914 |
while ( _excess[_excess_nodes[next_node]] > 0 || |
906 | 915 |
++next_node < int(_excess_nodes.size()) ) |
907 | 916 |
{ |
908 | 917 |
// Run Dijkstra in the residual network |
909 | 918 |
s = _excess_nodes[next_node]; |
910 | 919 |
if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE; |
911 | 920 |
|
912 | 921 |
// Augment along a shortest path from s to t |
913 | 922 |
Value d = std::min(_excess[s], -_excess[t]); |
914 | 923 |
int u = t; |
915 | 924 |
int a; |
916 | 925 |
if (d > 1) { |
917 | 926 |
while ((a = _pred[u]) != -1) { |
918 | 927 |
if (_res_cap[a] < d) d = _res_cap[a]; |
919 | 928 |
u = _source[a]; |
920 | 929 |
} |
921 | 930 |
} |
922 | 931 |
u = t; |
923 | 932 |
while ((a = _pred[u]) != -1) { |
924 | 933 |
_res_cap[a] -= d; |
925 | 934 |
_res_cap[_reverse[a]] += d; |
926 | 935 |
u = _source[a]; |
927 | 936 |
} |
928 | 937 |
_excess[s] -= d; |
929 | 938 |
_excess[t] += d; |
930 | 939 |
} |
931 | 940 |
|
932 | 941 |
return OPTIMAL; |
933 | 942 |
} |
934 | 943 |
|
935 | 944 |
}; //class CapacityScaling |
936 | 945 |
|
937 | 946 |
///@} |
938 | 947 |
|
939 | 948 |
} //namespace lemon |
940 | 949 |
|
941 | 950 |
#endif //LEMON_CAPACITY_SCALING_H |
... | ... |
@@ -39,726 +39,728 @@ |
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a specialized version of the linear programming |
47 | 47 |
/// simplex method directly for the minimum cost flow problem. |
48 | 48 |
/// It is one of the most efficient solution methods. |
49 | 49 |
/// |
50 | 50 |
/// In general this class is the fastest implementation available |
51 | 51 |
/// in LEMON for the minimum cost flow problem. |
52 | 52 |
/// Moreover it supports both directions of the supply/demand inequality |
53 | 53 |
/// constraints. For more information, see \ref SupplyType. |
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The value type used for flow amounts, capacity bounds |
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 | 63 |
/// \tparam C The value type used for costs and potentials in the |
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 | 66 |
/// \warning Both value types must be signed and all input data must |
67 | 67 |
/// be integer. |
68 | 68 |
/// |
69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 70 |
/// implementations, from which the most efficient one is used |
71 | 71 |
/// by default. For more information, see \ref PivotRule. |
72 | 72 |
template <typename GR, typename V = int, typename C = V> |
73 | 73 |
class NetworkSimplex |
74 | 74 |
{ |
75 | 75 |
public: |
76 | 76 |
|
77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 78 |
typedef V Value; |
79 | 79 |
/// The type of the arc costs |
80 | 80 |
typedef C Cost; |
81 | 81 |
|
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// \brief Problem type constants for the \c run() function. |
85 | 85 |
/// |
86 | 86 |
/// Enum type containing the problem type constants that can be |
87 | 87 |
/// returned by the \ref run() function of the algorithm. |
88 | 88 |
enum ProblemType { |
89 | 89 |
/// The problem has no feasible solution (flow). |
90 | 90 |
INFEASIBLE, |
91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 93 |
/// potentials (primal and dual solutions). |
94 | 94 |
OPTIMAL, |
95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
96 | 96 |
/// there is a directed cycle having negative total cost and |
97 | 97 |
/// infinite upper bound. |
98 | 98 |
UNBOUNDED |
99 | 99 |
}; |
100 | 100 |
|
101 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
102 | 102 |
/// |
103 | 103 |
/// Enum type containing constants for selecting the supply type, |
104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 106 |
/// |
107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 108 |
/// selected using \ref supplyType(). |
109 | 109 |
/// The equality form is a special case of both supply types. |
110 | 110 |
enum SupplyType { |
111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 112 |
/// supply/demand constraints in the definition of the problem. |
113 | 113 |
GEQ, |
114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
115 | 115 |
/// supply/demand constraints in the definition of the problem. |
116 | 116 |
LEQ |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 | 129 |
/// test inputs according to our benchmark tests. |
130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
131 | 131 |
/// function with the proper parameter. |
132 | 132 |
enum PivotRule { |
133 | 133 |
|
134 | 134 |
/// The \e First \e Eligible pivot rule. |
135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 136 |
/// in every iteration. |
137 | 137 |
FIRST_ELIGIBLE, |
138 | 138 |
|
139 | 139 |
/// The \e Best \e Eligible pivot rule. |
140 | 140 |
/// The best eligible arc is selected in every iteration. |
141 | 141 |
BEST_ELIGIBLE, |
142 | 142 |
|
143 | 143 |
/// The \e Block \e Search pivot rule. |
144 | 144 |
/// A specified number of arcs are examined in every iteration |
145 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
146 | 146 |
/// from this block. |
147 | 147 |
BLOCK_SEARCH, |
148 | 148 |
|
149 | 149 |
/// The \e Candidate \e List pivot rule. |
150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
152 | 152 |
/// the best eligible arc is selected from this list. |
153 | 153 |
CANDIDATE_LIST, |
154 | 154 |
|
155 | 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
156 | 156 |
/// It is a modified version of the Candidate List method. |
157 | 157 |
/// It keeps only the several best eligible arcs from the former |
158 | 158 |
/// candidate list and extends this list in every iteration. |
159 | 159 |
ALTERING_LIST |
160 | 160 |
}; |
161 | 161 |
|
162 | 162 |
private: |
163 | 163 |
|
164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 165 |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 |
typedef std::vector< |
|
167 |
typedef std::vector<char> CharVector; |
|
168 | 168 |
typedef std::vector<Value> ValueVector; |
169 | 169 |
typedef std::vector<Cost> CostVector; |
170 | 170 |
|
171 | 171 |
// State constants for arcs |
172 | 172 |
enum ArcStateEnum { |
173 | 173 |
STATE_UPPER = -1, |
174 | 174 |
STATE_TREE = 0, |
175 | 175 |
STATE_LOWER = 1 |
176 | 176 |
}; |
177 | 177 |
|
178 | 178 |
private: |
179 | 179 |
|
180 | 180 |
// Data related to the underlying digraph |
181 | 181 |
const GR &_graph; |
182 | 182 |
int _node_num; |
183 | 183 |
int _arc_num; |
184 | 184 |
int _all_arc_num; |
185 | 185 |
int _search_arc_num; |
186 | 186 |
|
187 | 187 |
// Parameters of the problem |
188 | 188 |
bool _have_lower; |
189 | 189 |
SupplyType _stype; |
190 | 190 |
Value _sum_supply; |
191 | 191 |
|
192 | 192 |
// Data structures for storing the digraph |
193 | 193 |
IntNodeMap _node_id; |
194 | 194 |
IntArcMap _arc_id; |
195 | 195 |
IntVector _source; |
196 | 196 |
IntVector _target; |
197 | 197 |
|
198 | 198 |
// Node and arc data |
199 | 199 |
ValueVector _lower; |
200 | 200 |
ValueVector _upper; |
201 | 201 |
ValueVector _cap; |
202 | 202 |
CostVector _cost; |
203 | 203 |
ValueVector _supply; |
204 | 204 |
ValueVector _flow; |
205 | 205 |
CostVector _pi; |
206 | 206 |
|
207 | 207 |
// Data for storing the spanning tree structure |
208 | 208 |
IntVector _parent; |
209 | 209 |
IntVector _pred; |
210 | 210 |
IntVector _thread; |
211 | 211 |
IntVector _rev_thread; |
212 | 212 |
IntVector _succ_num; |
213 | 213 |
IntVector _last_succ; |
214 | 214 |
IntVector _dirty_revs; |
215 |
BoolVector _forward; |
|
216 |
IntVector _state; |
|
215 |
CharVector _forward; |
|
216 |
CharVector _state; |
|
217 | 217 |
int _root; |
218 | 218 |
|
219 | 219 |
// Temporary data used in the current pivot iteration |
220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
221 | 221 |
int first, second, right, last; |
222 | 222 |
int stem, par_stem, new_stem; |
223 | 223 |
Value delta; |
224 |
|
|
225 |
const Value MAX; |
|
224 | 226 |
|
225 | 227 |
public: |
226 | 228 |
|
227 | 229 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 230 |
/// |
229 | 231 |
/// Constant for infinite upper bounds (capacities). |
230 | 232 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 233 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 234 |
const Value INF; |
233 | 235 |
|
234 | 236 |
private: |
235 | 237 |
|
236 | 238 |
// Implementation of the First Eligible pivot rule |
237 | 239 |
class FirstEligiblePivotRule |
238 | 240 |
{ |
239 | 241 |
private: |
240 | 242 |
|
241 | 243 |
// References to the NetworkSimplex class |
242 | 244 |
const IntVector &_source; |
243 | 245 |
const IntVector &_target; |
244 | 246 |
const CostVector &_cost; |
245 |
const |
|
247 |
const CharVector &_state; |
|
246 | 248 |
const CostVector &_pi; |
247 | 249 |
int &_in_arc; |
248 | 250 |
int _search_arc_num; |
249 | 251 |
|
250 | 252 |
// Pivot rule data |
251 | 253 |
int _next_arc; |
252 | 254 |
|
253 | 255 |
public: |
254 | 256 |
|
255 | 257 |
// Constructor |
256 | 258 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
257 | 259 |
_source(ns._source), _target(ns._target), |
258 | 260 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
259 | 261 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
260 | 262 |
_next_arc(0) |
261 | 263 |
{} |
262 | 264 |
|
263 | 265 |
// Find next entering arc |
264 | 266 |
bool findEnteringArc() { |
265 | 267 |
Cost c; |
266 | 268 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
267 | 269 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
268 | 270 |
if (c < 0) { |
269 | 271 |
_in_arc = e; |
270 | 272 |
_next_arc = e + 1; |
271 | 273 |
return true; |
272 | 274 |
} |
273 | 275 |
} |
274 | 276 |
for (int e = 0; e < _next_arc; ++e) { |
275 | 277 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
276 | 278 |
if (c < 0) { |
277 | 279 |
_in_arc = e; |
278 | 280 |
_next_arc = e + 1; |
279 | 281 |
return true; |
280 | 282 |
} |
281 | 283 |
} |
282 | 284 |
return false; |
283 | 285 |
} |
284 | 286 |
|
285 | 287 |
}; //class FirstEligiblePivotRule |
286 | 288 |
|
287 | 289 |
|
288 | 290 |
// Implementation of the Best Eligible pivot rule |
289 | 291 |
class BestEligiblePivotRule |
290 | 292 |
{ |
291 | 293 |
private: |
292 | 294 |
|
293 | 295 |
// References to the NetworkSimplex class |
294 | 296 |
const IntVector &_source; |
295 | 297 |
const IntVector &_target; |
296 | 298 |
const CostVector &_cost; |
297 |
const |
|
299 |
const CharVector &_state; |
|
298 | 300 |
const CostVector &_pi; |
299 | 301 |
int &_in_arc; |
300 | 302 |
int _search_arc_num; |
301 | 303 |
|
302 | 304 |
public: |
303 | 305 |
|
304 | 306 |
// Constructor |
305 | 307 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
306 | 308 |
_source(ns._source), _target(ns._target), |
307 | 309 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
308 | 310 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
309 | 311 |
{} |
310 | 312 |
|
311 | 313 |
// Find next entering arc |
312 | 314 |
bool findEnteringArc() { |
313 | 315 |
Cost c, min = 0; |
314 | 316 |
for (int e = 0; e < _search_arc_num; ++e) { |
315 | 317 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
316 | 318 |
if (c < min) { |
317 | 319 |
min = c; |
318 | 320 |
_in_arc = e; |
319 | 321 |
} |
320 | 322 |
} |
321 | 323 |
return min < 0; |
322 | 324 |
} |
323 | 325 |
|
324 | 326 |
}; //class BestEligiblePivotRule |
325 | 327 |
|
326 | 328 |
|
327 | 329 |
// Implementation of the Block Search pivot rule |
328 | 330 |
class BlockSearchPivotRule |
329 | 331 |
{ |
330 | 332 |
private: |
331 | 333 |
|
332 | 334 |
// References to the NetworkSimplex class |
333 | 335 |
const IntVector &_source; |
334 | 336 |
const IntVector &_target; |
335 | 337 |
const CostVector &_cost; |
336 |
const |
|
338 |
const CharVector &_state; |
|
337 | 339 |
const CostVector &_pi; |
338 | 340 |
int &_in_arc; |
339 | 341 |
int _search_arc_num; |
340 | 342 |
|
341 | 343 |
// Pivot rule data |
342 | 344 |
int _block_size; |
343 | 345 |
int _next_arc; |
344 | 346 |
|
345 | 347 |
public: |
346 | 348 |
|
347 | 349 |
// Constructor |
348 | 350 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
349 | 351 |
_source(ns._source), _target(ns._target), |
350 | 352 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
351 | 353 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
352 | 354 |
_next_arc(0) |
353 | 355 |
{ |
354 | 356 |
// The main parameters of the pivot rule |
355 | 357 |
const double BLOCK_SIZE_FACTOR = 0.5; |
356 | 358 |
const int MIN_BLOCK_SIZE = 10; |
357 | 359 |
|
358 | 360 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
359 | 361 |
std::sqrt(double(_search_arc_num))), |
360 | 362 |
MIN_BLOCK_SIZE ); |
361 | 363 |
} |
362 | 364 |
|
363 | 365 |
// Find next entering arc |
364 | 366 |
bool findEnteringArc() { |
365 | 367 |
Cost c, min = 0; |
366 | 368 |
int cnt = _block_size; |
367 | 369 |
int e; |
368 | 370 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
369 | 371 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
370 | 372 |
if (c < min) { |
371 | 373 |
min = c; |
372 | 374 |
_in_arc = e; |
373 | 375 |
} |
374 | 376 |
if (--cnt == 0) { |
375 | 377 |
if (min < 0) goto search_end; |
376 | 378 |
cnt = _block_size; |
377 | 379 |
} |
378 | 380 |
} |
379 | 381 |
for (e = 0; e < _next_arc; ++e) { |
380 | 382 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
381 | 383 |
if (c < min) { |
382 | 384 |
min = c; |
383 | 385 |
_in_arc = e; |
384 | 386 |
} |
385 | 387 |
if (--cnt == 0) { |
386 | 388 |
if (min < 0) goto search_end; |
387 | 389 |
cnt = _block_size; |
388 | 390 |
} |
389 | 391 |
} |
390 | 392 |
if (min >= 0) return false; |
391 | 393 |
|
392 | 394 |
search_end: |
393 | 395 |
_next_arc = e; |
394 | 396 |
return true; |
395 | 397 |
} |
396 | 398 |
|
397 | 399 |
}; //class BlockSearchPivotRule |
398 | 400 |
|
399 | 401 |
|
400 | 402 |
// Implementation of the Candidate List pivot rule |
401 | 403 |
class CandidateListPivotRule |
402 | 404 |
{ |
403 | 405 |
private: |
404 | 406 |
|
405 | 407 |
// References to the NetworkSimplex class |
406 | 408 |
const IntVector &_source; |
407 | 409 |
const IntVector &_target; |
408 | 410 |
const CostVector &_cost; |
409 |
const |
|
411 |
const CharVector &_state; |
|
410 | 412 |
const CostVector &_pi; |
411 | 413 |
int &_in_arc; |
412 | 414 |
int _search_arc_num; |
413 | 415 |
|
414 | 416 |
// Pivot rule data |
415 | 417 |
IntVector _candidates; |
416 | 418 |
int _list_length, _minor_limit; |
417 | 419 |
int _curr_length, _minor_count; |
418 | 420 |
int _next_arc; |
419 | 421 |
|
420 | 422 |
public: |
421 | 423 |
|
422 | 424 |
/// Constructor |
423 | 425 |
CandidateListPivotRule(NetworkSimplex &ns) : |
424 | 426 |
_source(ns._source), _target(ns._target), |
425 | 427 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
426 | 428 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
427 | 429 |
_next_arc(0) |
428 | 430 |
{ |
429 | 431 |
// The main parameters of the pivot rule |
430 | 432 |
const double LIST_LENGTH_FACTOR = 0.25; |
431 | 433 |
const int MIN_LIST_LENGTH = 10; |
432 | 434 |
const double MINOR_LIMIT_FACTOR = 0.1; |
433 | 435 |
const int MIN_MINOR_LIMIT = 3; |
434 | 436 |
|
435 | 437 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
436 | 438 |
std::sqrt(double(_search_arc_num))), |
437 | 439 |
MIN_LIST_LENGTH ); |
438 | 440 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
439 | 441 |
MIN_MINOR_LIMIT ); |
440 | 442 |
_curr_length = _minor_count = 0; |
441 | 443 |
_candidates.resize(_list_length); |
442 | 444 |
} |
443 | 445 |
|
444 | 446 |
/// Find next entering arc |
445 | 447 |
bool findEnteringArc() { |
446 | 448 |
Cost min, c; |
447 | 449 |
int e; |
448 | 450 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
449 | 451 |
// Minor iteration: select the best eligible arc from the |
450 | 452 |
// current candidate list |
451 | 453 |
++_minor_count; |
452 | 454 |
min = 0; |
453 | 455 |
for (int i = 0; i < _curr_length; ++i) { |
454 | 456 |
e = _candidates[i]; |
455 | 457 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
456 | 458 |
if (c < min) { |
457 | 459 |
min = c; |
458 | 460 |
_in_arc = e; |
459 | 461 |
} |
460 | 462 |
else if (c >= 0) { |
461 | 463 |
_candidates[i--] = _candidates[--_curr_length]; |
462 | 464 |
} |
463 | 465 |
} |
464 | 466 |
if (min < 0) return true; |
465 | 467 |
} |
466 | 468 |
|
467 | 469 |
// Major iteration: build a new candidate list |
468 | 470 |
min = 0; |
469 | 471 |
_curr_length = 0; |
470 | 472 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
471 | 473 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
472 | 474 |
if (c < 0) { |
473 | 475 |
_candidates[_curr_length++] = e; |
474 | 476 |
if (c < min) { |
475 | 477 |
min = c; |
476 | 478 |
_in_arc = e; |
477 | 479 |
} |
478 | 480 |
if (_curr_length == _list_length) goto search_end; |
479 | 481 |
} |
480 | 482 |
} |
481 | 483 |
for (e = 0; e < _next_arc; ++e) { |
482 | 484 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
483 | 485 |
if (c < 0) { |
484 | 486 |
_candidates[_curr_length++] = e; |
485 | 487 |
if (c < min) { |
486 | 488 |
min = c; |
487 | 489 |
_in_arc = e; |
488 | 490 |
} |
489 | 491 |
if (_curr_length == _list_length) goto search_end; |
490 | 492 |
} |
491 | 493 |
} |
492 | 494 |
if (_curr_length == 0) return false; |
493 | 495 |
|
494 | 496 |
search_end: |
495 | 497 |
_minor_count = 1; |
496 | 498 |
_next_arc = e; |
497 | 499 |
return true; |
498 | 500 |
} |
499 | 501 |
|
500 | 502 |
}; //class CandidateListPivotRule |
501 | 503 |
|
502 | 504 |
|
503 | 505 |
// Implementation of the Altering Candidate List pivot rule |
504 | 506 |
class AlteringListPivotRule |
505 | 507 |
{ |
506 | 508 |
private: |
507 | 509 |
|
508 | 510 |
// References to the NetworkSimplex class |
509 | 511 |
const IntVector &_source; |
510 | 512 |
const IntVector &_target; |
511 | 513 |
const CostVector &_cost; |
512 |
const |
|
514 |
const CharVector &_state; |
|
513 | 515 |
const CostVector &_pi; |
514 | 516 |
int &_in_arc; |
515 | 517 |
int _search_arc_num; |
516 | 518 |
|
517 | 519 |
// Pivot rule data |
518 | 520 |
int _block_size, _head_length, _curr_length; |
519 | 521 |
int _next_arc; |
520 | 522 |
IntVector _candidates; |
521 | 523 |
CostVector _cand_cost; |
522 | 524 |
|
523 | 525 |
// Functor class to compare arcs during sort of the candidate list |
524 | 526 |
class SortFunc |
525 | 527 |
{ |
526 | 528 |
private: |
527 | 529 |
const CostVector &_map; |
528 | 530 |
public: |
529 | 531 |
SortFunc(const CostVector &map) : _map(map) {} |
530 | 532 |
bool operator()(int left, int right) { |
531 | 533 |
return _map[left] > _map[right]; |
532 | 534 |
} |
533 | 535 |
}; |
534 | 536 |
|
535 | 537 |
SortFunc _sort_func; |
536 | 538 |
|
537 | 539 |
public: |
538 | 540 |
|
539 | 541 |
// Constructor |
540 | 542 |
AlteringListPivotRule(NetworkSimplex &ns) : |
541 | 543 |
_source(ns._source), _target(ns._target), |
542 | 544 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
543 | 545 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
544 | 546 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
545 | 547 |
{ |
546 | 548 |
// The main parameters of the pivot rule |
547 | 549 |
const double BLOCK_SIZE_FACTOR = 1.0; |
548 | 550 |
const int MIN_BLOCK_SIZE = 10; |
549 | 551 |
const double HEAD_LENGTH_FACTOR = 0.1; |
550 | 552 |
const int MIN_HEAD_LENGTH = 3; |
551 | 553 |
|
552 | 554 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
553 | 555 |
std::sqrt(double(_search_arc_num))), |
554 | 556 |
MIN_BLOCK_SIZE ); |
555 | 557 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
556 | 558 |
MIN_HEAD_LENGTH ); |
557 | 559 |
_candidates.resize(_head_length + _block_size); |
558 | 560 |
_curr_length = 0; |
559 | 561 |
} |
560 | 562 |
|
561 | 563 |
// Find next entering arc |
562 | 564 |
bool findEnteringArc() { |
563 | 565 |
// Check the current candidate list |
564 | 566 |
int e; |
565 | 567 |
for (int i = 0; i < _curr_length; ++i) { |
566 | 568 |
e = _candidates[i]; |
567 | 569 |
_cand_cost[e] = _state[e] * |
568 | 570 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
569 | 571 |
if (_cand_cost[e] >= 0) { |
570 | 572 |
_candidates[i--] = _candidates[--_curr_length]; |
571 | 573 |
} |
572 | 574 |
} |
573 | 575 |
|
574 | 576 |
// Extend the list |
575 | 577 |
int cnt = _block_size; |
576 | 578 |
int limit = _head_length; |
577 | 579 |
|
578 | 580 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
579 | 581 |
_cand_cost[e] = _state[e] * |
580 | 582 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
581 | 583 |
if (_cand_cost[e] < 0) { |
582 | 584 |
_candidates[_curr_length++] = e; |
583 | 585 |
} |
584 | 586 |
if (--cnt == 0) { |
585 | 587 |
if (_curr_length > limit) goto search_end; |
586 | 588 |
limit = 0; |
587 | 589 |
cnt = _block_size; |
588 | 590 |
} |
589 | 591 |
} |
590 | 592 |
for (e = 0; e < _next_arc; ++e) { |
591 | 593 |
_cand_cost[e] = _state[e] * |
592 | 594 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
593 | 595 |
if (_cand_cost[e] < 0) { |
594 | 596 |
_candidates[_curr_length++] = e; |
595 | 597 |
} |
596 | 598 |
if (--cnt == 0) { |
597 | 599 |
if (_curr_length > limit) goto search_end; |
598 | 600 |
limit = 0; |
599 | 601 |
cnt = _block_size; |
600 | 602 |
} |
601 | 603 |
} |
602 | 604 |
if (_curr_length == 0) return false; |
603 | 605 |
|
604 | 606 |
search_end: |
605 | 607 |
|
606 | 608 |
// Make heap of the candidate list (approximating a partial sort) |
607 | 609 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
608 | 610 |
_sort_func ); |
609 | 611 |
|
610 | 612 |
// Pop the first element of the heap |
611 | 613 |
_in_arc = _candidates[0]; |
612 | 614 |
_next_arc = e; |
613 | 615 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
614 | 616 |
_sort_func ); |
615 | 617 |
_curr_length = std::min(_head_length, _curr_length - 1); |
616 | 618 |
return true; |
617 | 619 |
} |
618 | 620 |
|
619 | 621 |
}; //class AlteringListPivotRule |
620 | 622 |
|
621 | 623 |
public: |
622 | 624 |
|
623 | 625 |
/// \brief Constructor. |
624 | 626 |
/// |
625 | 627 |
/// The constructor of the class. |
626 | 628 |
/// |
627 | 629 |
/// \param graph The digraph the algorithm runs on. |
628 | 630 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
629 | 631 |
/// mixed order in the internal data structure. |
630 | 632 |
/// In special cases, it could lead to better overall performance, |
631 | 633 |
/// but it is usually slower. Therefore it is disabled by default. |
632 | 634 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
633 | 635 |
_graph(graph), _node_id(graph), _arc_id(graph), |
636 |
MAX(std::numeric_limits<Value>::max()), |
|
634 | 637 |
INF(std::numeric_limits<Value>::has_infinity ? |
635 |
std::numeric_limits<Value>::infinity() : |
|
636 |
std::numeric_limits<Value>::max()) |
|
638 |
std::numeric_limits<Value>::infinity() : MAX) |
|
637 | 639 |
{ |
638 | 640 |
// Check the value types |
639 | 641 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
640 | 642 |
"The flow type of NetworkSimplex must be signed"); |
641 | 643 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
642 | 644 |
"The cost type of NetworkSimplex must be signed"); |
643 | 645 |
|
644 | 646 |
// Resize vectors |
645 | 647 |
_node_num = countNodes(_graph); |
646 | 648 |
_arc_num = countArcs(_graph); |
647 | 649 |
int all_node_num = _node_num + 1; |
648 | 650 |
int max_arc_num = _arc_num + 2 * _node_num; |
649 | 651 |
|
650 | 652 |
_source.resize(max_arc_num); |
651 | 653 |
_target.resize(max_arc_num); |
652 | 654 |
|
653 | 655 |
_lower.resize(_arc_num); |
654 | 656 |
_upper.resize(_arc_num); |
655 | 657 |
_cap.resize(max_arc_num); |
656 | 658 |
_cost.resize(max_arc_num); |
657 | 659 |
_supply.resize(all_node_num); |
658 | 660 |
_flow.resize(max_arc_num); |
659 | 661 |
_pi.resize(all_node_num); |
660 | 662 |
|
661 | 663 |
_parent.resize(all_node_num); |
662 | 664 |
_pred.resize(all_node_num); |
663 | 665 |
_forward.resize(all_node_num); |
664 | 666 |
_thread.resize(all_node_num); |
665 | 667 |
_rev_thread.resize(all_node_num); |
666 | 668 |
_succ_num.resize(all_node_num); |
667 | 669 |
_last_succ.resize(all_node_num); |
668 | 670 |
_state.resize(max_arc_num); |
669 | 671 |
|
670 | 672 |
// Copy the graph |
671 | 673 |
int i = 0; |
672 | 674 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
673 | 675 |
_node_id[n] = i; |
674 | 676 |
} |
675 | 677 |
if (arc_mixing) { |
676 | 678 |
// Store the arcs in a mixed order |
677 | 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
678 | 680 |
int i = 0, j = 0; |
679 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
680 | 682 |
_arc_id[a] = i; |
681 | 683 |
_source[i] = _node_id[_graph.source(a)]; |
682 | 684 |
_target[i] = _node_id[_graph.target(a)]; |
683 | 685 |
if ((i += k) >= _arc_num) i = ++j; |
684 | 686 |
} |
685 | 687 |
} else { |
686 | 688 |
// Store the arcs in the original order |
687 | 689 |
int i = 0; |
688 | 690 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
689 | 691 |
_arc_id[a] = i; |
690 | 692 |
_source[i] = _node_id[_graph.source(a)]; |
691 | 693 |
_target[i] = _node_id[_graph.target(a)]; |
692 | 694 |
} |
693 | 695 |
} |
694 | 696 |
|
695 | 697 |
// Reset parameters |
696 | 698 |
reset(); |
697 | 699 |
} |
698 | 700 |
|
699 | 701 |
/// \name Parameters |
700 | 702 |
/// The parameters of the algorithm can be specified using these |
701 | 703 |
/// functions. |
702 | 704 |
|
703 | 705 |
/// @{ |
704 | 706 |
|
705 | 707 |
/// \brief Set the lower bounds on the arcs. |
706 | 708 |
/// |
707 | 709 |
/// This function sets the lower bounds on the arcs. |
708 | 710 |
/// If it is not used before calling \ref run(), the lower bounds |
709 | 711 |
/// will be set to zero on all arcs. |
710 | 712 |
/// |
711 | 713 |
/// \param map An arc map storing the lower bounds. |
712 | 714 |
/// Its \c Value type must be convertible to the \c Value type |
713 | 715 |
/// of the algorithm. |
714 | 716 |
/// |
715 | 717 |
/// \return <tt>(*this)</tt> |
716 | 718 |
template <typename LowerMap> |
717 | 719 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
718 | 720 |
_have_lower = true; |
719 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
720 | 722 |
_lower[_arc_id[a]] = map[a]; |
721 | 723 |
} |
722 | 724 |
return *this; |
723 | 725 |
} |
724 | 726 |
|
725 | 727 |
/// \brief Set the upper bounds (capacities) on the arcs. |
726 | 728 |
/// |
727 | 729 |
/// This function sets the upper bounds (capacities) on the arcs. |
728 | 730 |
/// If it is not used before calling \ref run(), the upper bounds |
729 | 731 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
730 | 732 |
/// unbounded from above on each arc). |
731 | 733 |
/// |
732 | 734 |
/// \param map An arc map storing the upper bounds. |
733 | 735 |
/// Its \c Value type must be convertible to the \c Value type |
734 | 736 |
/// of the algorithm. |
735 | 737 |
/// |
736 | 738 |
/// \return <tt>(*this)</tt> |
737 | 739 |
template<typename UpperMap> |
738 | 740 |
NetworkSimplex& upperMap(const UpperMap& map) { |
739 | 741 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
740 | 742 |
_upper[_arc_id[a]] = map[a]; |
741 | 743 |
} |
742 | 744 |
return *this; |
743 | 745 |
} |
744 | 746 |
|
745 | 747 |
/// \brief Set the costs of the arcs. |
746 | 748 |
/// |
747 | 749 |
/// This function sets the costs of the arcs. |
748 | 750 |
/// If it is not used before calling \ref run(), the costs |
749 | 751 |
/// will be set to \c 1 on all arcs. |
750 | 752 |
/// |
751 | 753 |
/// \param map An arc map storing the costs. |
752 | 754 |
/// Its \c Value type must be convertible to the \c Cost type |
753 | 755 |
/// of the algorithm. |
754 | 756 |
/// |
755 | 757 |
/// \return <tt>(*this)</tt> |
756 | 758 |
template<typename CostMap> |
757 | 759 |
NetworkSimplex& costMap(const CostMap& map) { |
758 | 760 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
759 | 761 |
_cost[_arc_id[a]] = map[a]; |
760 | 762 |
} |
761 | 763 |
return *this; |
762 | 764 |
} |
763 | 765 |
|
764 | 766 |
/// \brief Set the supply values of the nodes. |
... | ... |
@@ -895,591 +897,591 @@ |
895 | 897 |
/// ns.upperMap(capacity).costMap(cost) |
896 | 898 |
/// .supplyMap(sup).run(); |
897 | 899 |
/// \endcode |
898 | 900 |
/// |
899 | 901 |
/// \return <tt>(*this)</tt> |
900 | 902 |
NetworkSimplex& reset() { |
901 | 903 |
for (int i = 0; i != _node_num; ++i) { |
902 | 904 |
_supply[i] = 0; |
903 | 905 |
} |
904 | 906 |
for (int i = 0; i != _arc_num; ++i) { |
905 | 907 |
_lower[i] = 0; |
906 | 908 |
_upper[i] = INF; |
907 | 909 |
_cost[i] = 1; |
908 | 910 |
} |
909 | 911 |
_have_lower = false; |
910 | 912 |
_stype = GEQ; |
911 | 913 |
return *this; |
912 | 914 |
} |
913 | 915 |
|
914 | 916 |
/// @} |
915 | 917 |
|
916 | 918 |
/// \name Query Functions |
917 | 919 |
/// The results of the algorithm can be obtained using these |
918 | 920 |
/// functions.\n |
919 | 921 |
/// The \ref run() function must be called before using them. |
920 | 922 |
|
921 | 923 |
/// @{ |
922 | 924 |
|
923 | 925 |
/// \brief Return the total cost of the found flow. |
924 | 926 |
/// |
925 | 927 |
/// This function returns the total cost of the found flow. |
926 | 928 |
/// Its complexity is O(e). |
927 | 929 |
/// |
928 | 930 |
/// \note The return type of the function can be specified as a |
929 | 931 |
/// template parameter. For example, |
930 | 932 |
/// \code |
931 | 933 |
/// ns.totalCost<double>(); |
932 | 934 |
/// \endcode |
933 | 935 |
/// It is useful if the total cost cannot be stored in the \c Cost |
934 | 936 |
/// type of the algorithm, which is the default return type of the |
935 | 937 |
/// function. |
936 | 938 |
/// |
937 | 939 |
/// \pre \ref run() must be called before using this function. |
938 | 940 |
template <typename Number> |
939 | 941 |
Number totalCost() const { |
940 | 942 |
Number c = 0; |
941 | 943 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
942 | 944 |
int i = _arc_id[a]; |
943 | 945 |
c += Number(_flow[i]) * Number(_cost[i]); |
944 | 946 |
} |
945 | 947 |
return c; |
946 | 948 |
} |
947 | 949 |
|
948 | 950 |
#ifndef DOXYGEN |
949 | 951 |
Cost totalCost() const { |
950 | 952 |
return totalCost<Cost>(); |
951 | 953 |
} |
952 | 954 |
#endif |
953 | 955 |
|
954 | 956 |
/// \brief Return the flow on the given arc. |
955 | 957 |
/// |
956 | 958 |
/// This function returns the flow on the given arc. |
957 | 959 |
/// |
958 | 960 |
/// \pre \ref run() must be called before using this function. |
959 | 961 |
Value flow(const Arc& a) const { |
960 | 962 |
return _flow[_arc_id[a]]; |
961 | 963 |
} |
962 | 964 |
|
963 | 965 |
/// \brief Return the flow map (the primal solution). |
964 | 966 |
/// |
965 | 967 |
/// This function copies the flow value on each arc into the given |
966 | 968 |
/// map. The \c Value type of the algorithm must be convertible to |
967 | 969 |
/// the \c Value type of the map. |
968 | 970 |
/// |
969 | 971 |
/// \pre \ref run() must be called before using this function. |
970 | 972 |
template <typename FlowMap> |
971 | 973 |
void flowMap(FlowMap &map) const { |
972 | 974 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
973 | 975 |
map.set(a, _flow[_arc_id[a]]); |
974 | 976 |
} |
975 | 977 |
} |
976 | 978 |
|
977 | 979 |
/// \brief Return the potential (dual value) of the given node. |
978 | 980 |
/// |
979 | 981 |
/// This function returns the potential (dual value) of the |
980 | 982 |
/// given node. |
981 | 983 |
/// |
982 | 984 |
/// \pre \ref run() must be called before using this function. |
983 | 985 |
Cost potential(const Node& n) const { |
984 | 986 |
return _pi[_node_id[n]]; |
985 | 987 |
} |
986 | 988 |
|
987 | 989 |
/// \brief Return the potential map (the dual solution). |
988 | 990 |
/// |
989 | 991 |
/// This function copies the potential (dual value) of each node |
990 | 992 |
/// into the given map. |
991 | 993 |
/// The \c Cost type of the algorithm must be convertible to the |
992 | 994 |
/// \c Value type of the map. |
993 | 995 |
/// |
994 | 996 |
/// \pre \ref run() must be called before using this function. |
995 | 997 |
template <typename PotentialMap> |
996 | 998 |
void potentialMap(PotentialMap &map) const { |
997 | 999 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
998 | 1000 |
map.set(n, _pi[_node_id[n]]); |
999 | 1001 |
} |
1000 | 1002 |
} |
1001 | 1003 |
|
1002 | 1004 |
/// @} |
1003 | 1005 |
|
1004 | 1006 |
private: |
1005 | 1007 |
|
1006 | 1008 |
// Initialize internal data structures |
1007 | 1009 |
bool init() { |
1008 | 1010 |
if (_node_num == 0) return false; |
1009 | 1011 |
|
1010 | 1012 |
// Check the sum of supply values |
1011 | 1013 |
_sum_supply = 0; |
1012 | 1014 |
for (int i = 0; i != _node_num; ++i) { |
1013 | 1015 |
_sum_supply += _supply[i]; |
1014 | 1016 |
} |
1015 | 1017 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1016 | 1018 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1017 | 1019 |
|
1018 | 1020 |
// Remove non-zero lower bounds |
1019 | 1021 |
if (_have_lower) { |
1020 | 1022 |
for (int i = 0; i != _arc_num; ++i) { |
1021 | 1023 |
Value c = _lower[i]; |
1022 | 1024 |
if (c >= 0) { |
1023 |
_cap[i] = _upper[i] < |
|
1025 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
|
1024 | 1026 |
} else { |
1025 |
_cap[i] = _upper[i] < |
|
1027 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
|
1026 | 1028 |
} |
1027 | 1029 |
_supply[_source[i]] -= c; |
1028 | 1030 |
_supply[_target[i]] += c; |
1029 | 1031 |
} |
1030 | 1032 |
} else { |
1031 | 1033 |
for (int i = 0; i != _arc_num; ++i) { |
1032 | 1034 |
_cap[i] = _upper[i]; |
1033 | 1035 |
} |
1034 | 1036 |
} |
1035 | 1037 |
|
1036 | 1038 |
// Initialize artifical cost |
1037 | 1039 |
Cost ART_COST; |
1038 | 1040 |
if (std::numeric_limits<Cost>::is_exact) { |
1039 | 1041 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1040 | 1042 |
} else { |
1041 | 1043 |
ART_COST = std::numeric_limits<Cost>::min(); |
1042 | 1044 |
for (int i = 0; i != _arc_num; ++i) { |
1043 | 1045 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1044 | 1046 |
} |
1045 | 1047 |
ART_COST = (ART_COST + 1) * _node_num; |
1046 | 1048 |
} |
1047 | 1049 |
|
1048 | 1050 |
// Initialize arc maps |
1049 | 1051 |
for (int i = 0; i != _arc_num; ++i) { |
1050 | 1052 |
_flow[i] = 0; |
1051 | 1053 |
_state[i] = STATE_LOWER; |
1052 | 1054 |
} |
1053 | 1055 |
|
1054 | 1056 |
// Set data for the artificial root node |
1055 | 1057 |
_root = _node_num; |
1056 | 1058 |
_parent[_root] = -1; |
1057 | 1059 |
_pred[_root] = -1; |
1058 | 1060 |
_thread[_root] = 0; |
1059 | 1061 |
_rev_thread[0] = _root; |
1060 | 1062 |
_succ_num[_root] = _node_num + 1; |
1061 | 1063 |
_last_succ[_root] = _root - 1; |
1062 | 1064 |
_supply[_root] = -_sum_supply; |
1063 | 1065 |
_pi[_root] = 0; |
1064 | 1066 |
|
1065 | 1067 |
// Add artificial arcs and initialize the spanning tree data structure |
1066 | 1068 |
if (_sum_supply == 0) { |
1067 | 1069 |
// EQ supply constraints |
1068 | 1070 |
_search_arc_num = _arc_num; |
1069 | 1071 |
_all_arc_num = _arc_num + _node_num; |
1070 | 1072 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1071 | 1073 |
_parent[u] = _root; |
1072 | 1074 |
_pred[u] = e; |
1073 | 1075 |
_thread[u] = u + 1; |
1074 | 1076 |
_rev_thread[u + 1] = u; |
1075 | 1077 |
_succ_num[u] = 1; |
1076 | 1078 |
_last_succ[u] = u; |
1077 | 1079 |
_cap[e] = INF; |
1078 | 1080 |
_state[e] = STATE_TREE; |
1079 | 1081 |
if (_supply[u] >= 0) { |
1080 | 1082 |
_forward[u] = true; |
1081 | 1083 |
_pi[u] = 0; |
1082 | 1084 |
_source[e] = u; |
1083 | 1085 |
_target[e] = _root; |
1084 | 1086 |
_flow[e] = _supply[u]; |
1085 | 1087 |
_cost[e] = 0; |
1086 | 1088 |
} else { |
1087 | 1089 |
_forward[u] = false; |
1088 | 1090 |
_pi[u] = ART_COST; |
1089 | 1091 |
_source[e] = _root; |
1090 | 1092 |
_target[e] = u; |
1091 | 1093 |
_flow[e] = -_supply[u]; |
1092 | 1094 |
_cost[e] = ART_COST; |
1093 | 1095 |
} |
1094 | 1096 |
} |
1095 | 1097 |
} |
1096 | 1098 |
else if (_sum_supply > 0) { |
1097 | 1099 |
// LEQ supply constraints |
1098 | 1100 |
_search_arc_num = _arc_num + _node_num; |
1099 | 1101 |
int f = _arc_num + _node_num; |
1100 | 1102 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1101 | 1103 |
_parent[u] = _root; |
1102 | 1104 |
_thread[u] = u + 1; |
1103 | 1105 |
_rev_thread[u + 1] = u; |
1104 | 1106 |
_succ_num[u] = 1; |
1105 | 1107 |
_last_succ[u] = u; |
1106 | 1108 |
if (_supply[u] >= 0) { |
1107 | 1109 |
_forward[u] = true; |
1108 | 1110 |
_pi[u] = 0; |
1109 | 1111 |
_pred[u] = e; |
1110 | 1112 |
_source[e] = u; |
1111 | 1113 |
_target[e] = _root; |
1112 | 1114 |
_cap[e] = INF; |
1113 | 1115 |
_flow[e] = _supply[u]; |
1114 | 1116 |
_cost[e] = 0; |
1115 | 1117 |
_state[e] = STATE_TREE; |
1116 | 1118 |
} else { |
1117 | 1119 |
_forward[u] = false; |
1118 | 1120 |
_pi[u] = ART_COST; |
1119 | 1121 |
_pred[u] = f; |
1120 | 1122 |
_source[f] = _root; |
1121 | 1123 |
_target[f] = u; |
1122 | 1124 |
_cap[f] = INF; |
1123 | 1125 |
_flow[f] = -_supply[u]; |
1124 | 1126 |
_cost[f] = ART_COST; |
1125 | 1127 |
_state[f] = STATE_TREE; |
1126 | 1128 |
_source[e] = u; |
1127 | 1129 |
_target[e] = _root; |
1128 | 1130 |
_cap[e] = INF; |
1129 | 1131 |
_flow[e] = 0; |
1130 | 1132 |
_cost[e] = 0; |
1131 | 1133 |
_state[e] = STATE_LOWER; |
1132 | 1134 |
++f; |
1133 | 1135 |
} |
1134 | 1136 |
} |
1135 | 1137 |
_all_arc_num = f; |
1136 | 1138 |
} |
1137 | 1139 |
else { |
1138 | 1140 |
// GEQ supply constraints |
1139 | 1141 |
_search_arc_num = _arc_num + _node_num; |
1140 | 1142 |
int f = _arc_num + _node_num; |
1141 | 1143 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1142 | 1144 |
_parent[u] = _root; |
1143 | 1145 |
_thread[u] = u + 1; |
1144 | 1146 |
_rev_thread[u + 1] = u; |
1145 | 1147 |
_succ_num[u] = 1; |
1146 | 1148 |
_last_succ[u] = u; |
1147 | 1149 |
if (_supply[u] <= 0) { |
1148 | 1150 |
_forward[u] = false; |
1149 | 1151 |
_pi[u] = 0; |
1150 | 1152 |
_pred[u] = e; |
1151 | 1153 |
_source[e] = _root; |
1152 | 1154 |
_target[e] = u; |
1153 | 1155 |
_cap[e] = INF; |
1154 | 1156 |
_flow[e] = -_supply[u]; |
1155 | 1157 |
_cost[e] = 0; |
1156 | 1158 |
_state[e] = STATE_TREE; |
1157 | 1159 |
} else { |
1158 | 1160 |
_forward[u] = true; |
1159 | 1161 |
_pi[u] = -ART_COST; |
1160 | 1162 |
_pred[u] = f; |
1161 | 1163 |
_source[f] = u; |
1162 | 1164 |
_target[f] = _root; |
1163 | 1165 |
_cap[f] = INF; |
1164 | 1166 |
_flow[f] = _supply[u]; |
1165 | 1167 |
_state[f] = STATE_TREE; |
1166 | 1168 |
_cost[f] = ART_COST; |
1167 | 1169 |
_source[e] = _root; |
1168 | 1170 |
_target[e] = u; |
1169 | 1171 |
_cap[e] = INF; |
1170 | 1172 |
_flow[e] = 0; |
1171 | 1173 |
_cost[e] = 0; |
1172 | 1174 |
_state[e] = STATE_LOWER; |
1173 | 1175 |
++f; |
1174 | 1176 |
} |
1175 | 1177 |
} |
1176 | 1178 |
_all_arc_num = f; |
1177 | 1179 |
} |
1178 | 1180 |
|
1179 | 1181 |
return true; |
1180 | 1182 |
} |
1181 | 1183 |
|
1182 | 1184 |
// Find the join node |
1183 | 1185 |
void findJoinNode() { |
1184 | 1186 |
int u = _source[in_arc]; |
1185 | 1187 |
int v = _target[in_arc]; |
1186 | 1188 |
while (u != v) { |
1187 | 1189 |
if (_succ_num[u] < _succ_num[v]) { |
1188 | 1190 |
u = _parent[u]; |
1189 | 1191 |
} else { |
1190 | 1192 |
v = _parent[v]; |
1191 | 1193 |
} |
1192 | 1194 |
} |
1193 | 1195 |
join = u; |
1194 | 1196 |
} |
1195 | 1197 |
|
1196 | 1198 |
// Find the leaving arc of the cycle and returns true if the |
1197 | 1199 |
// leaving arc is not the same as the entering arc |
1198 | 1200 |
bool findLeavingArc() { |
1199 | 1201 |
// Initialize first and second nodes according to the direction |
1200 | 1202 |
// of the cycle |
1201 | 1203 |
if (_state[in_arc] == STATE_LOWER) { |
1202 | 1204 |
first = _source[in_arc]; |
1203 | 1205 |
second = _target[in_arc]; |
1204 | 1206 |
} else { |
1205 | 1207 |
first = _target[in_arc]; |
1206 | 1208 |
second = _source[in_arc]; |
1207 | 1209 |
} |
1208 | 1210 |
delta = _cap[in_arc]; |
1209 | 1211 |
int result = 0; |
1210 | 1212 |
Value d; |
1211 | 1213 |
int e; |
1212 | 1214 |
|
1213 | 1215 |
// Search the cycle along the path form the first node to the root |
1214 | 1216 |
for (int u = first; u != join; u = _parent[u]) { |
1215 | 1217 |
e = _pred[u]; |
1216 | 1218 |
d = _forward[u] ? |
1217 |
_flow[e] : (_cap[e] |
|
1219 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
|
1218 | 1220 |
if (d < delta) { |
1219 | 1221 |
delta = d; |
1220 | 1222 |
u_out = u; |
1221 | 1223 |
result = 1; |
1222 | 1224 |
} |
1223 | 1225 |
} |
1224 | 1226 |
// Search the cycle along the path form the second node to the root |
1225 | 1227 |
for (int u = second; u != join; u = _parent[u]) { |
1226 | 1228 |
e = _pred[u]; |
1227 | 1229 |
d = _forward[u] ? |
1228 |
(_cap[e] |
|
1230 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1229 | 1231 |
if (d <= delta) { |
1230 | 1232 |
delta = d; |
1231 | 1233 |
u_out = u; |
1232 | 1234 |
result = 2; |
1233 | 1235 |
} |
1234 | 1236 |
} |
1235 | 1237 |
|
1236 | 1238 |
if (result == 1) { |
1237 | 1239 |
u_in = first; |
1238 | 1240 |
v_in = second; |
1239 | 1241 |
} else { |
1240 | 1242 |
u_in = second; |
1241 | 1243 |
v_in = first; |
1242 | 1244 |
} |
1243 | 1245 |
return result != 0; |
1244 | 1246 |
} |
1245 | 1247 |
|
1246 | 1248 |
// Change _flow and _state vectors |
1247 | 1249 |
void changeFlow(bool change) { |
1248 | 1250 |
// Augment along the cycle |
1249 | 1251 |
if (delta > 0) { |
1250 | 1252 |
Value val = _state[in_arc] * delta; |
1251 | 1253 |
_flow[in_arc] += val; |
1252 | 1254 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1253 | 1255 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1254 | 1256 |
} |
1255 | 1257 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1256 | 1258 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1257 | 1259 |
} |
1258 | 1260 |
} |
1259 | 1261 |
// Update the state of the entering and leaving arcs |
1260 | 1262 |
if (change) { |
1261 | 1263 |
_state[in_arc] = STATE_TREE; |
1262 | 1264 |
_state[_pred[u_out]] = |
1263 | 1265 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1264 | 1266 |
} else { |
1265 | 1267 |
_state[in_arc] = -_state[in_arc]; |
1266 | 1268 |
} |
1267 | 1269 |
} |
1268 | 1270 |
|
1269 | 1271 |
// Update the tree structure |
1270 | 1272 |
void updateTreeStructure() { |
1271 | 1273 |
int u, w; |
1272 | 1274 |
int old_rev_thread = _rev_thread[u_out]; |
1273 | 1275 |
int old_succ_num = _succ_num[u_out]; |
1274 | 1276 |
int old_last_succ = _last_succ[u_out]; |
1275 | 1277 |
v_out = _parent[u_out]; |
1276 | 1278 |
|
1277 | 1279 |
u = _last_succ[u_in]; // the last successor of u_in |
1278 | 1280 |
right = _thread[u]; // the node after it |
1279 | 1281 |
|
1280 | 1282 |
// Handle the case when old_rev_thread equals to v_in |
1281 | 1283 |
// (it also means that join and v_out coincide) |
1282 | 1284 |
if (old_rev_thread == v_in) { |
1283 | 1285 |
last = _thread[_last_succ[u_out]]; |
1284 | 1286 |
} else { |
1285 | 1287 |
last = _thread[v_in]; |
1286 | 1288 |
} |
1287 | 1289 |
|
1288 | 1290 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1289 | 1291 |
// between u_in and u_out, whose parent have to be changed) |
1290 | 1292 |
_thread[v_in] = stem = u_in; |
1291 | 1293 |
_dirty_revs.clear(); |
1292 | 1294 |
_dirty_revs.push_back(v_in); |
1293 | 1295 |
par_stem = v_in; |
1294 | 1296 |
while (stem != u_out) { |
1295 | 1297 |
// Insert the next stem node into the thread list |
1296 | 1298 |
new_stem = _parent[stem]; |
1297 | 1299 |
_thread[u] = new_stem; |
1298 | 1300 |
_dirty_revs.push_back(u); |
1299 | 1301 |
|
1300 | 1302 |
// Remove the subtree of stem from the thread list |
1301 | 1303 |
w = _rev_thread[stem]; |
1302 | 1304 |
_thread[w] = right; |
1303 | 1305 |
_rev_thread[right] = w; |
1304 | 1306 |
|
1305 | 1307 |
// Change the parent node and shift stem nodes |
1306 | 1308 |
_parent[stem] = par_stem; |
1307 | 1309 |
par_stem = stem; |
1308 | 1310 |
stem = new_stem; |
1309 | 1311 |
|
1310 | 1312 |
// Update u and right |
1311 | 1313 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1312 | 1314 |
_rev_thread[par_stem] : _last_succ[stem]; |
1313 | 1315 |
right = _thread[u]; |
1314 | 1316 |
} |
1315 | 1317 |
_parent[u_out] = par_stem; |
1316 | 1318 |
_thread[u] = last; |
1317 | 1319 |
_rev_thread[last] = u; |
1318 | 1320 |
_last_succ[u_out] = u; |
1319 | 1321 |
|
1320 | 1322 |
// Remove the subtree of u_out from the thread list except for |
1321 | 1323 |
// the case when old_rev_thread equals to v_in |
1322 | 1324 |
// (it also means that join and v_out coincide) |
1323 | 1325 |
if (old_rev_thread != v_in) { |
1324 | 1326 |
_thread[old_rev_thread] = right; |
1325 | 1327 |
_rev_thread[right] = old_rev_thread; |
1326 | 1328 |
} |
1327 | 1329 |
|
1328 | 1330 |
// Update _rev_thread using the new _thread values |
1329 | 1331 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1330 | 1332 |
u = _dirty_revs[i]; |
1331 | 1333 |
_rev_thread[_thread[u]] = u; |
1332 | 1334 |
} |
1333 | 1335 |
|
1334 | 1336 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1335 | 1337 |
// stem nodes from u_out to u_in |
1336 | 1338 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1337 | 1339 |
u = u_out; |
1338 | 1340 |
while (u != u_in) { |
1339 | 1341 |
w = _parent[u]; |
1340 | 1342 |
_pred[u] = _pred[w]; |
1341 | 1343 |
_forward[u] = !_forward[w]; |
1342 | 1344 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1343 | 1345 |
_succ_num[u] = tmp_sc; |
1344 | 1346 |
_last_succ[w] = tmp_ls; |
1345 | 1347 |
u = w; |
1346 | 1348 |
} |
1347 | 1349 |
_pred[u_in] = in_arc; |
1348 | 1350 |
_forward[u_in] = (u_in == _source[in_arc]); |
1349 | 1351 |
_succ_num[u_in] = old_succ_num; |
1350 | 1352 |
|
1351 | 1353 |
// Set limits for updating _last_succ form v_in and v_out |
1352 | 1354 |
// towards the root |
1353 | 1355 |
int up_limit_in = -1; |
1354 | 1356 |
int up_limit_out = -1; |
1355 | 1357 |
if (_last_succ[join] == v_in) { |
1356 | 1358 |
up_limit_out = join; |
1357 | 1359 |
} else { |
1358 | 1360 |
up_limit_in = join; |
1359 | 1361 |
} |
1360 | 1362 |
|
1361 | 1363 |
// Update _last_succ from v_in towards the root |
1362 | 1364 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1363 | 1365 |
u = _parent[u]) { |
1364 | 1366 |
_last_succ[u] = _last_succ[u_out]; |
1365 | 1367 |
} |
1366 | 1368 |
// Update _last_succ from v_out towards the root |
1367 | 1369 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1368 | 1370 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1369 | 1371 |
u = _parent[u]) { |
1370 | 1372 |
_last_succ[u] = old_rev_thread; |
1371 | 1373 |
} |
1372 | 1374 |
} else { |
1373 | 1375 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1374 | 1376 |
u = _parent[u]) { |
1375 | 1377 |
_last_succ[u] = _last_succ[u_out]; |
1376 | 1378 |
} |
1377 | 1379 |
} |
1378 | 1380 |
|
1379 | 1381 |
// Update _succ_num from v_in to join |
1380 | 1382 |
for (u = v_in; u != join; u = _parent[u]) { |
1381 | 1383 |
_succ_num[u] += old_succ_num; |
1382 | 1384 |
} |
1383 | 1385 |
// Update _succ_num from v_out to join |
1384 | 1386 |
for (u = v_out; u != join; u = _parent[u]) { |
1385 | 1387 |
_succ_num[u] -= old_succ_num; |
1386 | 1388 |
} |
1387 | 1389 |
} |
1388 | 1390 |
|
1389 | 1391 |
// Update potentials |
1390 | 1392 |
void updatePotential() { |
1391 | 1393 |
Cost sigma = _forward[u_in] ? |
1392 | 1394 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1393 | 1395 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1394 | 1396 |
// Update potentials in the subtree, which has been moved |
1395 | 1397 |
int end = _thread[_last_succ[u_in]]; |
1396 | 1398 |
for (int u = u_in; u != end; u = _thread[u]) { |
1397 | 1399 |
_pi[u] += sigma; |
1398 | 1400 |
} |
1399 | 1401 |
} |
1400 | 1402 |
|
1401 | 1403 |
// Execute the algorithm |
1402 | 1404 |
ProblemType start(PivotRule pivot_rule) { |
1403 | 1405 |
// Select the pivot rule implementation |
1404 | 1406 |
switch (pivot_rule) { |
1405 | 1407 |
case FIRST_ELIGIBLE: |
1406 | 1408 |
return start<FirstEligiblePivotRule>(); |
1407 | 1409 |
case BEST_ELIGIBLE: |
1408 | 1410 |
return start<BestEligiblePivotRule>(); |
1409 | 1411 |
case BLOCK_SEARCH: |
1410 | 1412 |
return start<BlockSearchPivotRule>(); |
1411 | 1413 |
case CANDIDATE_LIST: |
1412 | 1414 |
return start<CandidateListPivotRule>(); |
1413 | 1415 |
case ALTERING_LIST: |
1414 | 1416 |
return start<AlteringListPivotRule>(); |
1415 | 1417 |
} |
1416 | 1418 |
return INFEASIBLE; // avoid warning |
1417 | 1419 |
} |
1418 | 1420 |
|
1419 | 1421 |
template <typename PivotRuleImpl> |
1420 | 1422 |
ProblemType start() { |
1421 | 1423 |
PivotRuleImpl pivot(*this); |
1422 | 1424 |
|
1423 | 1425 |
// Execute the Network Simplex algorithm |
1424 | 1426 |
while (pivot.findEnteringArc()) { |
1425 | 1427 |
findJoinNode(); |
1426 | 1428 |
bool change = findLeavingArc(); |
1427 |
if (delta >= |
|
1429 |
if (delta >= MAX) return UNBOUNDED; |
|
1428 | 1430 |
changeFlow(change); |
1429 | 1431 |
if (change) { |
1430 | 1432 |
updateTreeStructure(); |
1431 | 1433 |
updatePotential(); |
1432 | 1434 |
} |
1433 | 1435 |
} |
1434 | 1436 |
|
1435 | 1437 |
// Check feasibility |
1436 | 1438 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1437 | 1439 |
if (_flow[e] != 0) return INFEASIBLE; |
1438 | 1440 |
} |
1439 | 1441 |
|
1440 | 1442 |
// Transform the solution and the supply map to the original form |
1441 | 1443 |
if (_have_lower) { |
1442 | 1444 |
for (int i = 0; i != _arc_num; ++i) { |
1443 | 1445 |
Value c = _lower[i]; |
1444 | 1446 |
if (c != 0) { |
1445 | 1447 |
_flow[i] += c; |
1446 | 1448 |
_supply[_source[i]] += c; |
1447 | 1449 |
_supply[_target[i]] -= c; |
1448 | 1450 |
} |
1449 | 1451 |
} |
1450 | 1452 |
} |
1451 | 1453 |
|
1452 | 1454 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1453 | 1455 |
// optimality conditions |
1454 | 1456 |
if (_sum_supply == 0) { |
1455 | 1457 |
if (_stype == GEQ) { |
1456 | 1458 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
1457 | 1459 |
for (int i = 0; i != _node_num; ++i) { |
1458 | 1460 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1459 | 1461 |
} |
1460 | 1462 |
if (max_pot > 0) { |
1461 | 1463 |
for (int i = 0; i != _node_num; ++i) |
1462 | 1464 |
_pi[i] -= max_pot; |
1463 | 1465 |
} |
1464 | 1466 |
} else { |
1465 | 1467 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1466 | 1468 |
for (int i = 0; i != _node_num; ++i) { |
1467 | 1469 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1468 | 1470 |
} |
1469 | 1471 |
if (min_pot < 0) { |
1470 | 1472 |
for (int i = 0; i != _node_num; ++i) |
1471 | 1473 |
_pi[i] -= min_pot; |
1472 | 1474 |
} |
1473 | 1475 |
} |
1474 | 1476 |
} |
1475 | 1477 |
|
1476 | 1478 |
return OPTIMAL; |
1477 | 1479 |
} |
1478 | 1480 |
|
1479 | 1481 |
}; //class NetworkSimplex |
1480 | 1482 |
|
1481 | 1483 |
///@} |
1482 | 1484 |
|
1483 | 1485 |
} //namespace lemon |
1484 | 1486 |
|
1485 | 1487 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)