gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Minor bug fix in maps.h. Fixed the existing two variants of stdMap() and added two new variants.
0 1 0
default
1 file changed with 26 insertions and 5 deletions:
↑ Collapse diff ↑
Ignore white space 768 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27 27
// #include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32
///
33 33
#include <map>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \addtogroup maps
38 38
  /// @{
39 39

	
40 40
  /// Base class of maps.
41 41

	
42 42
  /// Base class of maps.
43 43
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44 44
  template<typename K, typename T>
45 45
  class MapBase {
46 46
  public:
47 47
    /// The key type of the map.
48 48
    typedef K Key;
49 49
    /// The value type of the map. (The type of objects associated with the keys).
50 50
    typedef T Value;
51 51
  };
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map, 
57 57
  /// but data written to it is not required (i.e. it will be sent to 
58 58
  /// <tt>/dev/null</tt>).
59 59
  template<typename K, typename T>
60 60
  class NullMap : public MapBase<K, T> {
61 61
  public:
62 62
    typedef MapBase<K, T> Parent;
63 63
    typedef typename Parent::Key Key;
64 64
    typedef typename Parent::Value Value;
65 65
    
66 66
    /// Gives back a default constructed element.
67 67
    T operator[](const K&) const { return T(); }
68 68
    /// Absorbs the value.
69 69
    void set(const K&, const T&) {}
70 70
  };
71 71

	
72 72
  ///Returns a \c NullMap class
73 73

	
74 74
  ///This function just returns a \c NullMap class.
75 75
  ///\relates NullMap
76 76
  template <typename K, typename V> 
77 77
  NullMap<K, V> nullMap() {
78 78
    return NullMap<K, V>();
79 79
  }
80 80

	
81 81

	
82 82
  /// Constant map.
83 83

	
84 84
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
85 85
  /// specified value to each key.
86 86
  /// In other aspects it is equivalent to \c NullMap.
87 87
  template<typename K, typename T>
88 88
  class ConstMap : public MapBase<K, T> {
89 89
  private:
90 90
    T v;
91 91
  public:
92 92

	
93 93
    typedef MapBase<K, T> Parent;
94 94
    typedef typename Parent::Key Key;
95 95
    typedef typename Parent::Value Value;
96 96

	
97 97
    /// Default constructor
98 98

	
99 99
    /// Default constructor.
100 100
    /// The value of the map will be uninitialized. 
101 101
    /// (More exactly it will be default constructed.)
102 102
    ConstMap() {}
103 103
    
104 104
    /// Constructor with specified initial value
105 105

	
106 106
    /// Constructor with specified initial value.
107 107
    /// \param _v is the initial value of the map.
108 108
    ConstMap(const T &_v) : v(_v) {}
109 109
    
110 110
    ///\e
111 111
    T operator[](const K&) const { return v; }
112 112

	
113 113
    ///\e
114 114
    void setAll(const T &t) {
115 115
      v = t;
116 116
    }    
117 117

	
118 118
    template<typename T1>
119 119
    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
120 120
  };
121 121

	
122 122
  ///Returns a \c ConstMap class
123 123

	
124 124
  ///This function just returns a \c ConstMap class.
125 125
  ///\relates ConstMap
126 126
  template<typename K, typename V> 
127 127
  inline ConstMap<K, V> constMap(const V &v) {
128 128
    return ConstMap<K, V>(v);
129 129
  }
130 130

	
131 131

	
132 132
  template<typename T, T v>
133 133
  struct Const { };
134 134

	
135 135
  /// Constant map with inlined constant value.
136 136

	
137 137
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
138 138
  /// specified value to each key.
139 139
  /// In other aspects it is equivalent to \c NullMap.
140 140
  template<typename K, typename V, V v>
141 141
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
142 142
  public:
143 143
    typedef MapBase<K, V> Parent;
144 144
    typedef typename Parent::Key Key;
145 145
    typedef typename Parent::Value Value;
146 146

	
147 147
    ConstMap() { }
148 148
    ///\e
149 149
    V operator[](const K&) const { return v; }
150 150
    ///\e
151 151
    void set(const K&, const V&) { }
152 152
  };
153 153

	
154 154
  ///Returns a \c ConstMap class with inlined value
155 155

	
156 156
  ///This function just returns a \c ConstMap class with inlined value.
157 157
  ///\relates ConstMap
158 158
  template<typename K, typename V, V v> 
159 159
  inline ConstMap<K, Const<V, v> > constMap() {
160 160
    return ConstMap<K, Const<V, v> >();
161 161
  }
162 162

	
163 163
  ///Map based on \c std::map
164 164

	
165 165
  ///This is essentially a wrapper for \c std::map with addition that
166 166
  ///you can specify a default value different from \c Value().
167 167
  ///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
168 168
  template <typename K, typename T, typename Compare = std::less<K> >
169 169
  class StdMap : public MapBase<K, T> {
170 170
    template <typename K1, typename T1, typename C1>
171 171
    friend class StdMap;
172 172
  public:
173 173

	
174 174
    typedef MapBase<K, T> Parent;
175 175
    ///Key type
176 176
    typedef typename Parent::Key Key;
177 177
    ///Value type
178 178
    typedef typename Parent::Value Value;
179 179
    ///Reference Type
180 180
    typedef T& Reference;
181 181
    ///Const reference type
182 182
    typedef const T& ConstReference;
183 183

	
184 184
    typedef True ReferenceMapTag;
185 185

	
186 186
  private:
187 187
    
188 188
    typedef std::map<K, T, Compare> Map;
189 189
    Value _value;
190 190
    Map _map;
191 191

	
192 192
  public:
193 193

	
194 194
    /// Constructor with specified default value
195 195
    StdMap(const T& value = T()) : _value(value) {}
196 196
    /// \brief Constructs the map from an appropriate \c std::map, and 
197 197
    /// explicitly specifies a default value.
198 198
    template <typename T1, typename Comp1>
199 199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
200 200
      : _map(map.begin(), map.end()), _value(value) {}
201 201
    
202 202
    /// \brief Constructs a map from an other \ref StdMap.
203 203
    template<typename T1, typename Comp1>
204 204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
205 205
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
206 206

	
207 207
  private:
208 208

	
209 209
    StdMap& operator=(const StdMap&);
210 210

	
211 211
  public:
212 212

	
213 213
    ///\e
214 214
    Reference operator[](const Key &k) {
215 215
      typename Map::iterator it = _map.lower_bound(k);
216 216
      if (it != _map.end() && !_map.key_comp()(k, it->first))
217 217
	return it->second;
218 218
      else
219 219
	return _map.insert(it, std::make_pair(k, _value))->second;
220 220
    }
221 221

	
222 222
    /// \e 
223 223
    ConstReference operator[](const Key &k) const {
224 224
      typename Map::const_iterator it = _map.find(k);
225 225
      if (it != _map.end())
226 226
	return it->second;
227 227
      else
228 228
	return _value;
229 229
    }
230 230

	
231 231
    /// \e 
232 232
    void set(const Key &k, const T &t) {
233 233
      typename Map::iterator it = _map.lower_bound(k);
234 234
      if (it != _map.end() && !_map.key_comp()(k, it->first))
235 235
	it->second = t;
236 236
      else
237 237
	_map.insert(it, std::make_pair(k, t));
238 238
    }
239 239

	
240 240
    /// \e
241 241
    void setAll(const T &t) {
242 242
      _value = t;
243 243
      _map.clear();
244 244
    }    
245 245

	
246 246
  };
247 247
  
248 248
  ///Returns a \c StdMap class
249 249

	
250 250
  ///This function just returns a \c StdMap class with specified 
251 251
  ///default value.
252 252
  ///\relates StdMap
253
  template<typename K, typename V, typename Compare = std::less<K> > 
253
  template<typename K, typename V, typename Compare> 
254 254
  inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
255 255
    return StdMap<K, V, Compare>(value);
256 256
  }
257
  
258
  ///Returns a \c StdMap class
259

	
260
  ///This function just returns a \c StdMap class with specified 
261
  ///default value.
262
  ///\relates StdMap
263
  template<typename K, typename V> 
264
  inline StdMap<K, V, std::less<K> > stdMap(const V& value = V()) {
265
    return StdMap<K, V, std::less<K> >(value);
266
  }
267
  
268
  ///Returns a \c StdMap class created from an appropriate std::map
269

	
270
  ///This function just returns a \c StdMap class created from an 
271
  ///appropriate std::map.
272
  ///\relates StdMap
273
  template<typename K, typename V, typename Compare> 
274
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
275
                                       const V& value = V() ) {
276
    return StdMap<K, V, Compare>(map, value);
277
  }
257 278

	
258 279
  ///Returns a \c StdMap class created from an appropriate std::map
259 280

	
260 281
  ///This function just returns a \c StdMap class created from an 
261 282
  ///appropriate std::map.
262 283
  ///\relates StdMap
263
  template<typename K, typename V, typename Compare = std::less<K> > 
264
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
265
                                       const V& value = V() ) {
266
    return StdMap<K, V, Compare>(map, value);
284
  template<typename K, typename V> 
285
  inline StdMap<K, V, std::less<K> > stdMap( const std::map<K, V, std::less<K> > &map, 
286
                                             const V& value = V() ) {
287
    return StdMap<K, V, std::less<K> >(map, value);
267 288
  }
268 289

	
269 290
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
270 291
  ///
271 292
  /// This map has the <tt>[0..size-1]</tt> keyset and the values
272 293
  /// are stored in a \c std::vector<T>  container. It can be used with
273 294
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
274 295
  /// the used items are small integer numbers.
275 296
  /// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
276 297
  ///
277 298
  /// \todo Revise its name
278 299
  template <typename T>
279 300
  class IntegerMap : public MapBase<int, T> {
280 301

	
281 302
    template <typename T1>
282 303
    friend class IntegerMap;
283 304

	
284 305
  public:
285 306

	
286 307
    typedef MapBase<int, T> Parent;
287 308
    ///\e
288 309
    typedef typename Parent::Key Key;
289 310
    ///\e
290 311
    typedef typename Parent::Value Value;
291 312
    ///\e
292 313
    typedef T& Reference;
293 314
    ///\e
294 315
    typedef const T& ConstReference;
295 316

	
296 317
    typedef True ReferenceMapTag;
297 318

	
298 319
  private:
299 320
    
300 321
    typedef std::vector<T> Vector;
301 322
    Vector _vector;
302 323

	
303 324
  public:
304 325

	
305 326
    /// Constructor with specified default value
306 327
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
307 328

	
308 329
    /// \brief Constructs the map from an appropriate \c std::vector.
309 330
    template <typename T1>
310 331
    IntegerMap(const std::vector<T1>& vector) 
311 332
      : _vector(vector.begin(), vector.end()) {}
312 333
    
313 334
    /// \brief Constructs a map from an other \ref IntegerMap.
314 335
    template <typename T1>
315 336
    IntegerMap(const IntegerMap<T1> &c) 
316 337
      : _vector(c._vector.begin(), c._vector.end()) {}
317 338

	
318 339
    /// \brief Resize the container
319 340
    void resize(int size, const T& value = T()) {
320 341
      _vector.resize(size, value);
321 342
    }
322 343

	
323 344
  private:
324 345

	
325 346
    IntegerMap& operator=(const IntegerMap&);
326 347

	
327 348
  public:
328 349

	
329 350
    ///\e
330 351
    Reference operator[](Key k) {
331 352
      return _vector[k];
332 353
    }
333 354

	
334 355
    /// \e 
335 356
    ConstReference operator[](Key k) const {
336 357
      return _vector[k];
337 358
    }
338 359

	
339 360
    /// \e 
340 361
    void set(const Key &k, const T& t) {
341 362
      _vector[k] = t;
342 363
    }
343 364

	
344 365
  };
345 366
  
346 367
  ///Returns an \c IntegerMap class
347 368

	
348 369
  ///This function just returns an \c IntegerMap class.
349 370
  ///\relates IntegerMap
350 371
  template<typename T>
351 372
  inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
352 373
    return IntegerMap<T>(size, value);
353 374
  }
354 375

	
355 376
  /// @}
356 377

	
357 378
  /// \addtogroup map_adaptors
358 379
  /// @{
359 380

	
360 381
  /// \brief Identity map.
361 382
  ///
362 383
  /// This map gives back the given key as value without any
363 384
  /// modification. 
364 385
  template <typename T>
365 386
  class IdentityMap : public MapBase<T, T> {
366 387
  public:
367 388
    typedef MapBase<T, T> Parent;
368 389
    typedef typename Parent::Key Key;
369 390
    typedef typename Parent::Value Value;
370 391

	
371 392
    /// \e
372 393
    const T& operator[](const T& t) const {
373 394
      return t;
374 395
    }
375 396
  };
376 397

	
377 398
  ///Returns an \c IdentityMap class
378 399

	
379 400
  ///This function just returns an \c IdentityMap class.
380 401
  ///\relates IdentityMap
381 402
  template<typename T>
382 403
  inline IdentityMap<T> identityMap() {
383 404
    return IdentityMap<T>();
384 405
  }
385 406
  
386 407

	
387 408
  ///\brief Convert the \c Value of a map to another type using
388 409
  ///the default conversion.
389 410
  ///
390 411
  ///This \ref concepts::ReadMap "read only map"
391 412
  ///converts the \c Value of a map to type \c T.
392 413
  ///Its \c Key is inherited from \c M.
393 414
  template <typename M, typename T> 
394 415
  class ConvertMap : public MapBase<typename M::Key, T> {
395 416
    const M& m;
396 417
  public:
397 418
    typedef MapBase<typename M::Key, T> Parent;
398 419
    typedef typename Parent::Key Key;
399 420
    typedef typename Parent::Value Value;
400 421

	
401 422
    ///Constructor
402 423

	
403 424
    ///Constructor.
404 425
    ///\param _m is the underlying map.
405 426
    ConvertMap(const M &_m) : m(_m) {};
406 427

	
407 428
    ///\e
408 429
    Value operator[](const Key& k) const {return m[k];}
409 430
  };
410 431
  
411 432
  ///Returns a \c ConvertMap class
412 433

	
413 434
  ///This function just returns a \c ConvertMap class.
414 435
  ///\relates ConvertMap
415 436
  template<typename T, typename M>
416 437
  inline ConvertMap<M, T> convertMap(const M &m) {
417 438
    return ConvertMap<M, T>(m);
418 439
  }
419 440

	
420 441
  ///Simple wrapping of a map
421 442

	
422 443
  ///This \ref concepts::ReadMap "read only map" returns the simple
423 444
  ///wrapping of the given map. Sometimes the reference maps cannot be
424 445
  ///combined with simple read maps. This map adaptor wraps the given
425 446
  ///map to simple read map.
426 447
  ///
427 448
  ///\sa SimpleWriteMap
428 449
  ///
429 450
  /// \todo Revise the misleading name 
430 451
  template<typename M> 
431 452
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
432 453
    const M& m;
433 454

	
434 455
  public:
435 456
    typedef MapBase<typename M::Key, typename M::Value> Parent;
436 457
    typedef typename Parent::Key Key;
437 458
    typedef typename Parent::Value Value;
438 459

	
439 460
    ///Constructor
440 461
    SimpleMap(const M &_m) : m(_m) {};
441 462
    ///\e
442 463
    Value operator[](Key k) const {return m[k];}
443 464
  };
444 465
  
445 466
  ///Returns a \c SimpleMap class
446 467

	
447 468
  ///This function just returns a \c SimpleMap class.
448 469
  ///\relates SimpleMap
449 470
  template<typename M>
450 471
  inline SimpleMap<M> simpleMap(const M &m) {
451 472
    return SimpleMap<M>(m);
452 473
  }
453 474

	
454 475
  ///Simple writable wrapping of a map
455 476

	
456 477
  ///This \ref concepts::ReadWriteMap "read-write map" returns the simple
457 478
  ///wrapping of the given map. Sometimes the reference maps cannot be
458 479
  ///combined with simple read-write maps. This map adaptor wraps the
459 480
  ///given map to simple read-write map.
460 481
  ///
461 482
  ///\sa SimpleMap
462 483
  ///
463 484
  /// \todo Revise the misleading name
464 485
  template<typename M> 
465 486
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
466 487
    M& m;
467 488

	
468 489
  public:
469 490
    typedef MapBase<typename M::Key, typename M::Value> Parent;
470 491
    typedef typename Parent::Key Key;
471 492
    typedef typename Parent::Value Value;
472 493

	
473 494
    ///Constructor
474 495
    SimpleWriteMap(M &_m) : m(_m) {};
475 496
    ///\e
476 497
    Value operator[](Key k) const {return m[k];}
477 498
    ///\e
478 499
    void set(Key k, const Value& c) { m.set(k, c); }
479 500
  };
480 501

	
481 502
  ///Returns a \c SimpleWriteMap class
482 503

	
483 504
  ///This function just returns a \c SimpleWriteMap class.
484 505
  ///\relates SimpleWriteMap
485 506
  template<typename M>
486 507
  inline SimpleWriteMap<M> simpleWriteMap(M &m) {
487 508
    return SimpleWriteMap<M>(m);
488 509
  }
489 510

	
490 511
  ///Sum of two maps
491 512

	
492 513
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
493 514
  ///given maps.
494 515
  ///Its \c Key and \c Value are inherited from \c M1.
495 516
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
496 517
  template<typename M1, typename M2> 
497 518
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
498 519
    const M1& m1;
499 520
    const M2& m2;
500 521

	
501 522
  public:
502 523
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
503 524
    typedef typename Parent::Key Key;
504 525
    typedef typename Parent::Value Value;
505 526

	
506 527
    ///Constructor
507 528
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
508 529
    ///\e
509 530
    Value operator[](Key k) const {return m1[k]+m2[k];}
510 531
  };
511 532
  
512 533
  ///Returns an \c AddMap class
513 534

	
514 535
  ///This function just returns an \c AddMap class.
515 536
  ///\todo Extend the documentation: how to call these type of functions?
516 537
  ///
517 538
  ///\relates AddMap
518 539
  template<typename M1, typename M2> 
519 540
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
520 541
    return AddMap<M1, M2>(m1,m2);
521 542
  }
522 543

	
523 544
  ///Shift a map with a constant.
524 545

	
525 546
  ///This \ref concepts::ReadMap "read only map" returns the sum of the
526 547
  ///given map and a constant value.
527 548
  ///Its \c Key and \c Value are inherited from \c M.
528 549
  ///
529 550
  ///Actually,
530 551
  ///\code
531 552
  ///  ShiftMap<X> sh(x,v);
532 553
  ///\endcode
533 554
  ///is equivalent to
534 555
  ///\code
535 556
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
536 557
  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
537 558
  ///\endcode
538 559
  ///
539 560
  ///\sa ShiftWriteMap
540 561
  template<typename M, typename C = typename M::Value> 
541 562
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
542 563
    const M& m;
543 564
    C v;
544 565
  public:
545 566
    typedef MapBase<typename M::Key, typename M::Value> Parent;
546 567
    typedef typename Parent::Key Key;
547 568
    typedef typename Parent::Value Value;
548 569

	
549 570
    ///Constructor
550 571

	
551 572
    ///Constructor.
552 573
    ///\param _m is the undelying map.
553 574
    ///\param _v is the shift value.
554 575
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
555 576
    ///\e
556 577
    Value operator[](Key k) const {return m[k] + v;}
557 578
  };
558 579

	
559 580
  ///Shift a map with a constant (ReadWrite version).
560 581

	
561 582
  ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the
562 583
  ///given map and a constant value. It makes also possible to write the map.
563 584
  ///Its \c Key and \c Value are inherited from \c M.
564 585
  ///
565 586
  ///\sa ShiftMap
566 587
  template<typename M, typename C = typename M::Value> 
567 588
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
568 589
    M& m;
569 590
    C v;
570 591
  public:
571 592
    typedef MapBase<typename M::Key, typename M::Value> Parent;
572 593
    typedef typename Parent::Key Key;
573 594
    typedef typename Parent::Value Value;
574 595

	
575 596
    ///Constructor
576 597

	
577 598
    ///Constructor.
578 599
    ///\param _m is the undelying map.
579 600
    ///\param _v is the shift value.
580 601
    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
581 602
    /// \e
582 603
    Value operator[](Key k) const {return m[k] + v;}
583 604
    /// \e
584 605
    void set(Key k, const Value& c) { m.set(k, c - v); }
585 606
  };
586 607
  
587 608
  ///Returns a \c ShiftMap class
588 609

	
589 610
  ///This function just returns a \c ShiftMap class.
590 611
  ///\relates ShiftMap
591 612
  template<typename M, typename C> 
592 613
  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
593 614
    return ShiftMap<M, C>(m,v);
594 615
  }
595 616

	
596 617
  ///Returns a \c ShiftWriteMap class
597 618

	
598 619
  ///This function just returns a \c ShiftWriteMap class.
599 620
  ///\relates ShiftWriteMap
600 621
  template<typename M, typename C> 
601 622
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
602 623
    return ShiftWriteMap<M, C>(m,v);
603 624
  }
604 625

	
605 626
  ///Difference of two maps
606 627

	
607 628
  ///This \ref concepts::ReadMap "read only map" returns the difference
608 629
  ///of the values of the two given maps.
609 630
  ///Its \c Key and \c Value are inherited from \c M1.
610 631
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
611 632
  ///
612 633
  /// \todo Revise the misleading name
613 634
  template<typename M1, typename M2> 
614 635
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
615 636
    const M1& m1;
616 637
    const M2& m2;
617 638
  public:
618 639
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
619 640
    typedef typename Parent::Key Key;
620 641
    typedef typename Parent::Value Value;
621 642

	
622 643
    ///Constructor
623 644
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
624 645
    /// \e
625 646
    Value operator[](Key k) const {return m1[k]-m2[k];}
626 647
  };
627 648
  
628 649
  ///Returns a \c SubMap class
629 650

	
630 651
  ///This function just returns a \c SubMap class.
631 652
  ///
632 653
  ///\relates SubMap
633 654
  template<typename M1, typename M2> 
634 655
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
635 656
    return SubMap<M1, M2>(m1, m2);
636 657
  }
637 658

	
638 659
  ///Product of two maps
639 660

	
640 661
  ///This \ref concepts::ReadMap "read only map" returns the product of the
641 662
  ///values of the two given maps.
642 663
  ///Its \c Key and \c Value are inherited from \c M1.
643 664
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
644 665
  template<typename M1, typename M2> 
645 666
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
646 667
    const M1& m1;
647 668
    const M2& m2;
648 669
  public:
649 670
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
650 671
    typedef typename Parent::Key Key;
0 comments (0 inline)