gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Minor bug fix in maps.h. Fixed the existing two variants of stdMap() and added two new variants.
0 1 0
default
1 file changed with 26 insertions and 5 deletions:
↑ Collapse diff ↑
Ignore white space 3072 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27 27
// #include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32
///
33 33
#include <map>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \addtogroup maps
38 38
  /// @{
39 39

	
40 40
  /// Base class of maps.
41 41

	
42 42
  /// Base class of maps.
43 43
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44 44
  template<typename K, typename T>
45 45
  class MapBase {
46 46
  public:
47 47
    /// The key type of the map.
48 48
    typedef K Key;
49 49
    /// The value type of the map. (The type of objects associated with the keys).
50 50
    typedef T Value;
51 51
  };
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map, 
57 57
  /// but data written to it is not required (i.e. it will be sent to 
58 58
  /// <tt>/dev/null</tt>).
59 59
  template<typename K, typename T>
60 60
  class NullMap : public MapBase<K, T> {
61 61
  public:
62 62
    typedef MapBase<K, T> Parent;
63 63
    typedef typename Parent::Key Key;
64 64
    typedef typename Parent::Value Value;
65 65
    
66 66
    /// Gives back a default constructed element.
67 67
    T operator[](const K&) const { return T(); }
68 68
    /// Absorbs the value.
69 69
    void set(const K&, const T&) {}
70 70
  };
71 71

	
72 72
  ///Returns a \c NullMap class
73 73

	
74 74
  ///This function just returns a \c NullMap class.
75 75
  ///\relates NullMap
76 76
  template <typename K, typename V> 
77 77
  NullMap<K, V> nullMap() {
78 78
    return NullMap<K, V>();
79 79
  }
80 80

	
81 81

	
82 82
  /// Constant map.
83 83

	
84 84
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
85 85
  /// specified value to each key.
86 86
  /// In other aspects it is equivalent to \c NullMap.
87 87
  template<typename K, typename T>
88 88
  class ConstMap : public MapBase<K, T> {
89 89
  private:
90 90
    T v;
91 91
  public:
92 92

	
93 93
    typedef MapBase<K, T> Parent;
94 94
    typedef typename Parent::Key Key;
95 95
    typedef typename Parent::Value Value;
96 96

	
97 97
    /// Default constructor
98 98

	
99 99
    /// Default constructor.
100 100
    /// The value of the map will be uninitialized. 
101 101
    /// (More exactly it will be default constructed.)
102 102
    ConstMap() {}
103 103
    
104 104
    /// Constructor with specified initial value
105 105

	
106 106
    /// Constructor with specified initial value.
107 107
    /// \param _v is the initial value of the map.
108 108
    ConstMap(const T &_v) : v(_v) {}
109 109
    
110 110
    ///\e
111 111
    T operator[](const K&) const { return v; }
112 112

	
113 113
    ///\e
114 114
    void setAll(const T &t) {
115 115
      v = t;
116 116
    }    
117 117

	
118 118
    template<typename T1>
119 119
    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
120 120
  };
121 121

	
122 122
  ///Returns a \c ConstMap class
123 123

	
124 124
  ///This function just returns a \c ConstMap class.
125 125
  ///\relates ConstMap
126 126
  template<typename K, typename V> 
127 127
  inline ConstMap<K, V> constMap(const V &v) {
128 128
    return ConstMap<K, V>(v);
129 129
  }
130 130

	
131 131

	
132 132
  template<typename T, T v>
133 133
  struct Const { };
134 134

	
135 135
  /// Constant map with inlined constant value.
136 136

	
137 137
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
138 138
  /// specified value to each key.
139 139
  /// In other aspects it is equivalent to \c NullMap.
140 140
  template<typename K, typename V, V v>
141 141
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
142 142
  public:
143 143
    typedef MapBase<K, V> Parent;
144 144
    typedef typename Parent::Key Key;
145 145
    typedef typename Parent::Value Value;
146 146

	
147 147
    ConstMap() { }
148 148
    ///\e
149 149
    V operator[](const K&) const { return v; }
150 150
    ///\e
151 151
    void set(const K&, const V&) { }
152 152
  };
153 153

	
154 154
  ///Returns a \c ConstMap class with inlined value
155 155

	
156 156
  ///This function just returns a \c ConstMap class with inlined value.
157 157
  ///\relates ConstMap
158 158
  template<typename K, typename V, V v> 
159 159
  inline ConstMap<K, Const<V, v> > constMap() {
160 160
    return ConstMap<K, Const<V, v> >();
161 161
  }
162 162

	
163 163
  ///Map based on \c std::map
164 164

	
165 165
  ///This is essentially a wrapper for \c std::map with addition that
166 166
  ///you can specify a default value different from \c Value().
167 167
  ///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
168 168
  template <typename K, typename T, typename Compare = std::less<K> >
169 169
  class StdMap : public MapBase<K, T> {
170 170
    template <typename K1, typename T1, typename C1>
171 171
    friend class StdMap;
172 172
  public:
173 173

	
174 174
    typedef MapBase<K, T> Parent;
175 175
    ///Key type
176 176
    typedef typename Parent::Key Key;
177 177
    ///Value type
178 178
    typedef typename Parent::Value Value;
179 179
    ///Reference Type
180 180
    typedef T& Reference;
181 181
    ///Const reference type
182 182
    typedef const T& ConstReference;
183 183

	
184 184
    typedef True ReferenceMapTag;
185 185

	
186 186
  private:
187 187
    
188 188
    typedef std::map<K, T, Compare> Map;
189 189
    Value _value;
190 190
    Map _map;
191 191

	
192 192
  public:
193 193

	
194 194
    /// Constructor with specified default value
195 195
    StdMap(const T& value = T()) : _value(value) {}
196 196
    /// \brief Constructs the map from an appropriate \c std::map, and 
197 197
    /// explicitly specifies a default value.
198 198
    template <typename T1, typename Comp1>
199 199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
200 200
      : _map(map.begin(), map.end()), _value(value) {}
201 201
    
202 202
    /// \brief Constructs a map from an other \ref StdMap.
203 203
    template<typename T1, typename Comp1>
204 204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
205 205
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
206 206

	
207 207
  private:
208 208

	
209 209
    StdMap& operator=(const StdMap&);
210 210

	
211 211
  public:
212 212

	
213 213
    ///\e
214 214
    Reference operator[](const Key &k) {
215 215
      typename Map::iterator it = _map.lower_bound(k);
216 216
      if (it != _map.end() && !_map.key_comp()(k, it->first))
217 217
	return it->second;
218 218
      else
219 219
	return _map.insert(it, std::make_pair(k, _value))->second;
220 220
    }
221 221

	
222 222
    /// \e 
223 223
    ConstReference operator[](const Key &k) const {
224 224
      typename Map::const_iterator it = _map.find(k);
225 225
      if (it != _map.end())
226 226
	return it->second;
227 227
      else
228 228
	return _value;
229 229
    }
230 230

	
231 231
    /// \e 
232 232
    void set(const Key &k, const T &t) {
233 233
      typename Map::iterator it = _map.lower_bound(k);
234 234
      if (it != _map.end() && !_map.key_comp()(k, it->first))
235 235
	it->second = t;
236 236
      else
237 237
	_map.insert(it, std::make_pair(k, t));
238 238
    }
239 239

	
240 240
    /// \e
241 241
    void setAll(const T &t) {
242 242
      _value = t;
243 243
      _map.clear();
244 244
    }    
245 245

	
246 246
  };
247 247
  
248 248
  ///Returns a \c StdMap class
249 249

	
250 250
  ///This function just returns a \c StdMap class with specified 
251 251
  ///default value.
252 252
  ///\relates StdMap
253
  template<typename K, typename V, typename Compare = std::less<K> > 
253
  template<typename K, typename V, typename Compare> 
254 254
  inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
255 255
    return StdMap<K, V, Compare>(value);
256 256
  }
257
  
258
  ///Returns a \c StdMap class
259

	
260
  ///This function just returns a \c StdMap class with specified 
261
  ///default value.
262
  ///\relates StdMap
263
  template<typename K, typename V> 
264
  inline StdMap<K, V, std::less<K> > stdMap(const V& value = V()) {
265
    return StdMap<K, V, std::less<K> >(value);
266
  }
267
  
268
  ///Returns a \c StdMap class created from an appropriate std::map
269

	
270
  ///This function just returns a \c StdMap class created from an 
271
  ///appropriate std::map.
272
  ///\relates StdMap
273
  template<typename K, typename V, typename Compare> 
274
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
275
                                       const V& value = V() ) {
276
    return StdMap<K, V, Compare>(map, value);
277
  }
257 278

	
258 279
  ///Returns a \c StdMap class created from an appropriate std::map
259 280

	
260 281
  ///This function just returns a \c StdMap class created from an 
261 282
  ///appropriate std::map.
262 283
  ///\relates StdMap
263
  template<typename K, typename V, typename Compare = std::less<K> > 
264
  inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, 
265
                                       const V& value = V() ) {
266
    return StdMap<K, V, Compare>(map, value);
284
  template<typename K, typename V> 
285
  inline StdMap<K, V, std::less<K> > stdMap( const std::map<K, V, std::less<K> > &map, 
286
                                             const V& value = V() ) {
287
    return StdMap<K, V, std::less<K> >(map, value);
267 288
  }
268 289

	
269 290
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
270 291
  ///
271 292
  /// This map has the <tt>[0..size-1]</tt> keyset and the values
272 293
  /// are stored in a \c std::vector<T>  container. It can be used with
273 294
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
274 295
  /// the used items are small integer numbers.
275 296
  /// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
276 297
  ///
277 298
  /// \todo Revise its name
278 299
  template <typename T>
279 300
  class IntegerMap : public MapBase<int, T> {
280 301

	
281 302
    template <typename T1>
282 303
    friend class IntegerMap;
283 304

	
284 305
  public:
285 306

	
286 307
    typedef MapBase<int, T> Parent;
287 308
    ///\e
288 309
    typedef typename Parent::Key Key;
289 310
    ///\e
290 311
    typedef typename Parent::Value Value;
291 312
    ///\e
292 313
    typedef T& Reference;
293 314
    ///\e
294 315
    typedef const T& ConstReference;
295 316

	
296 317
    typedef True ReferenceMapTag;
297 318

	
298 319
  private:
299 320
    
300 321
    typedef std::vector<T> Vector;
301 322
    Vector _vector;
302 323

	
303 324
  public:
304 325

	
305 326
    /// Constructor with specified default value
306 327
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
307 328

	
308 329
    /// \brief Constructs the map from an appropriate \c std::vector.
309 330
    template <typename T1>
310 331
    IntegerMap(const std::vector<T1>& vector) 
311 332
      : _vector(vector.begin(), vector.end()) {}
312 333
    
313 334
    /// \brief Constructs a map from an other \ref IntegerMap.
314 335
    template <typename T1>
315 336
    IntegerMap(const IntegerMap<T1> &c) 
316 337
      : _vector(c._vector.begin(), c._vector.end()) {}
317 338

	
318 339
    /// \brief Resize the container
319 340
    void resize(int size, const T& value = T()) {
320 341
      _vector.resize(size, value);
321 342
    }
322 343

	
323 344
  private:
324 345

	
325 346
    IntegerMap& operator=(const IntegerMap&);
326 347

	
327 348
  public:
328 349

	
329 350
    ///\e
330 351
    Reference operator[](Key k) {
331 352
      return _vector[k];
332 353
    }
333 354

	
334 355
    /// \e 
335 356
    ConstReference operator[](Key k) const {
336 357
      return _vector[k];
337 358
    }
338 359

	
339 360
    /// \e 
340 361
    void set(const Key &k, const T& t) {
341 362
      _vector[k] = t;
342 363
    }
343 364

	
344 365
  };
345 366
  
346 367
  ///Returns an \c IntegerMap class
347 368

	
348 369
  ///This function just returns an \c IntegerMap class.
349 370
  ///\relates IntegerMap
350 371
  template<typename T>
351 372
  inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
352 373
    return IntegerMap<T>(size, value);
353 374
  }
354 375

	
355 376
  /// @}
356 377

	
357 378
  /// \addtogroup map_adaptors
358 379
  /// @{
359 380

	
360 381
  /// \brief Identity map.
361 382
  ///
362 383
  /// This map gives back the given key as value without any
363 384
  /// modification. 
364 385
  template <typename T>
365 386
  class IdentityMap : public MapBase<T, T> {
366 387
  public:
367 388
    typedef MapBase<T, T> Parent;
368 389
    typedef typename Parent::Key Key;
369 390
    typedef typename Parent::Value Value;
370 391

	
371 392
    /// \e
372 393
    const T& operator[](const T& t) const {
373 394
      return t;
374 395
    }
375 396
  };
376 397

	
377 398
  ///Returns an \c IdentityMap class
378 399

	
379 400
  ///This function just returns an \c IdentityMap class.
380 401
  ///\relates IdentityMap
381 402
  template<typename T>
382 403
  inline IdentityMap<T> identityMap() {
383 404
    return IdentityMap<T>();
384 405
  }
385 406
  
386 407

	
387 408
  ///\brief Convert the \c Value of a map to another type using
388 409
  ///the default conversion.
389 410
  ///
390 411
  ///This \ref concepts::ReadMap "read only map"
391 412
  ///converts the \c Value of a map to type \c T.
392 413
  ///Its \c Key is inherited from \c M.
393 414
  template <typename M, typename T> 
394 415
  class ConvertMap : public MapBase<typename M::Key, T> {
395 416
    const M& m;
396 417
  public:
397 418
    typedef MapBase<typename M::Key, T> Parent;
398 419
    typedef typename Parent::Key Key;
399 420
    typedef typename Parent::Value Value;
400 421

	
401 422
    ///Constructor
402 423

	
403 424
    ///Constructor.
404 425
    ///\param _m is the underlying map.
405 426
    ConvertMap(const M &_m) : m(_m) {};
406 427

	
407 428
    ///\e
408 429
    Value operator[](const Key& k) const {return m[k];}
409 430
  };
410 431
  
411 432
  ///Returns a \c ConvertMap class
412 433

	
413 434
  ///This function just returns a \c ConvertMap class.
414 435
  ///\relates ConvertMap
415 436
  template<typename T, typename M>
416 437
  inline ConvertMap<M, T> convertMap(const M &m) {
417 438
    return ConvertMap<M, T>(m);
418 439
  }
419 440

	
420 441
  ///Simple wrapping of a map
421 442

	
422 443
  ///This \ref concepts::ReadMap "read only map" returns the simple
423 444
  ///wrapping of the given map. Sometimes the reference maps cannot be
424 445
  ///combined with simple read maps. This map adaptor wraps the given
425 446
  ///map to simple read map.
426 447
  ///
427 448
  ///\sa SimpleWriteMap
428 449
  ///
429 450
  /// \todo Revise the misleading name 
430 451
  template<typename M> 
431 452
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
432 453
    const M& m;
433 454

	
434 455
  public:
435 456
    typedef MapBase<typename M::Key, typename M::Value> Parent;
436 457
    typedef typename Parent::Key Key;
437 458
    typedef typename Parent::Value Value;
438 459

	
439 460
    ///Constructor
440 461
    SimpleMap(const M &_m) : m(_m) {};
441 462
    ///\e
442 463
    Value operator[](Key k) const {return m[k];}
443 464
  };
444 465
  
445 466
  ///Returns a \c SimpleMap class
446 467

	
447 468
  ///This function just returns a \c SimpleMap class.
448 469
  ///\relates SimpleMap
449 470
  template<typename M>
450 471
  inline SimpleMap<M> simpleMap(const M &m) {
451 472
    return SimpleMap<M>(m);
452 473
  }
453 474

	
454 475
  ///Simple writable wrapping of a map
455 476

	
456 477
  ///This \ref concepts::ReadWriteMap "read-write map" returns the simple
457 478
  ///wrapping of the given map. Sometimes the reference maps cannot be
458 479
  ///combined with simple read-write maps. This map adaptor wraps the
459 480
  ///given map to simple read-write map.
460 481
  ///
461 482
  ///\sa SimpleMap
462 483
  ///
463 484
  /// \todo Revise the misleading name
464 485
  template<typename M> 
465 486
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
466 487
    M& m;
467 488

	
468 489
  public:
469 490
    typedef MapBase<typename M::Key, typename M::Value> Parent;
470 491
    typedef typename Parent::Key Key;
471 492
    typedef typename Parent::Value Value;
472 493

	
473 494
    ///Constructor
474 495
    SimpleWriteMap(M &_m) : m(_m) {};
475 496
    ///\e
476 497
    Value operator[](Key k) const {return m[k];}
477 498
    ///\e
478 499
    void set(Key k, const Value& c) { m.set(k, c); }
479 500
  };
480 501

	
481 502
  ///Returns a \c SimpleWriteMap class
482 503

	
483 504
  ///This function just returns a \c SimpleWriteMap class.
484 505
  ///\relates SimpleWriteMap
485 506
  template<typename M>
486 507
  inline SimpleWriteMap<M> simpleWriteMap(M &m) {
487 508
    return SimpleWriteMap<M>(m);
488 509
  }
489 510

	
490 511
  ///Sum of two maps
491 512

	
492 513
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
493 514
  ///given maps.
494 515
  ///Its \c Key and \c Value are inherited from \c M1.
495 516
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
496 517
  template<typename M1, typename M2> 
497 518
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
498 519
    const M1& m1;
499 520
    const M2& m2;
500 521

	
501 522
  public:
502 523
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
503 524
    typedef typename Parent::Key Key;
504 525
    typedef typename Parent::Value Value;
505 526

	
506 527
    ///Constructor
507 528
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
508 529
    ///\e
509 530
    Value operator[](Key k) const {return m1[k]+m2[k];}
510 531
  };
511 532
  
512 533
  ///Returns an \c AddMap class
513 534

	
514 535
  ///This function just returns an \c AddMap class.
515 536
  ///\todo Extend the documentation: how to call these type of functions?
516 537
  ///
517 538
  ///\relates AddMap
518 539
  template<typename M1, typename M2> 
519 540
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
520 541
    return AddMap<M1, M2>(m1,m2);
521 542
  }
522 543

	
523 544
  ///Shift a map with a constant.
524 545

	
525 546
  ///This \ref concepts::ReadMap "read only map" returns the sum of the
526 547
  ///given map and a constant value.
527 548
  ///Its \c Key and \c Value are inherited from \c M.
528 549
  ///
529 550
  ///Actually,
530 551
  ///\code
531 552
  ///  ShiftMap<X> sh(x,v);
532 553
  ///\endcode
533 554
  ///is equivalent to
534 555
  ///\code
535 556
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
536 557
  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
537 558
  ///\endcode
538 559
  ///
539 560
  ///\sa ShiftWriteMap
540 561
  template<typename M, typename C = typename M::Value> 
541 562
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
542 563
    const M& m;
543 564
    C v;
544 565
  public:
545 566
    typedef MapBase<typename M::Key, typename M::Value> Parent;
546 567
    typedef typename Parent::Key Key;
547 568
    typedef typename Parent::Value Value;
548 569

	
549 570
    ///Constructor
550 571

	
551 572
    ///Constructor.
552 573
    ///\param _m is the undelying map.
553 574
    ///\param _v is the shift value.
554 575
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
555 576
    ///\e
556 577
    Value operator[](Key k) const {return m[k] + v;}
557 578
  };
558 579

	
559 580
  ///Shift a map with a constant (ReadWrite version).
560 581

	
561 582
  ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the
562 583
  ///given map and a constant value. It makes also possible to write the map.
563 584
  ///Its \c Key and \c Value are inherited from \c M.
564 585
  ///
565 586
  ///\sa ShiftMap
566 587
  template<typename M, typename C = typename M::Value> 
567 588
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
568 589
    M& m;
569 590
    C v;
570 591
  public:
571 592
    typedef MapBase<typename M::Key, typename M::Value> Parent;
572 593
    typedef typename Parent::Key Key;
573 594
    typedef typename Parent::Value Value;
574 595

	
575 596
    ///Constructor
576 597

	
577 598
    ///Constructor.
578 599
    ///\param _m is the undelying map.
579 600
    ///\param _v is the shift value.
580 601
    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
581 602
    /// \e
582 603
    Value operator[](Key k) const {return m[k] + v;}
583 604
    /// \e
584 605
    void set(Key k, const Value& c) { m.set(k, c - v); }
585 606
  };
586 607
  
587 608
  ///Returns a \c ShiftMap class
588 609

	
589 610
  ///This function just returns a \c ShiftMap class.
590 611
  ///\relates ShiftMap
591 612
  template<typename M, typename C> 
592 613
  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
593 614
    return ShiftMap<M, C>(m,v);
594 615
  }
595 616

	
596 617
  ///Returns a \c ShiftWriteMap class
597 618

	
598 619
  ///This function just returns a \c ShiftWriteMap class.
599 620
  ///\relates ShiftWriteMap
600 621
  template<typename M, typename C> 
601 622
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
602 623
    return ShiftWriteMap<M, C>(m,v);
603 624
  }
604 625

	
605 626
  ///Difference of two maps
606 627

	
607 628
  ///This \ref concepts::ReadMap "read only map" returns the difference
608 629
  ///of the values of the two given maps.
609 630
  ///Its \c Key and \c Value are inherited from \c M1.
610 631
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
611 632
  ///
612 633
  /// \todo Revise the misleading name
613 634
  template<typename M1, typename M2> 
614 635
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
615 636
    const M1& m1;
616 637
    const M2& m2;
617 638
  public:
618 639
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
619 640
    typedef typename Parent::Key Key;
620 641
    typedef typename Parent::Value Value;
621 642

	
622 643
    ///Constructor
623 644
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
624 645
    /// \e
625 646
    Value operator[](Key k) const {return m1[k]-m2[k];}
626 647
  };
627 648
  
628 649
  ///Returns a \c SubMap class
629 650

	
630 651
  ///This function just returns a \c SubMap class.
631 652
  ///
632 653
  ///\relates SubMap
633 654
  template<typename M1, typename M2> 
634 655
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
635 656
    return SubMap<M1, M2>(m1, m2);
636 657
  }
637 658

	
638 659
  ///Product of two maps
639 660

	
640 661
  ///This \ref concepts::ReadMap "read only map" returns the product of the
641 662
  ///values of the two given maps.
642 663
  ///Its \c Key and \c Value are inherited from \c M1.
643 664
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
644 665
  template<typename M1, typename M2> 
645 666
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
646 667
    const M1& m1;
647 668
    const M2& m2;
648 669
  public:
649 670
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
650 671
    typedef typename Parent::Key Key;
651 672
    typedef typename Parent::Value Value;
652 673

	
653 674
    ///Constructor
654 675
    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
655 676
    /// \e
656 677
    Value operator[](Key k) const {return m1[k]*m2[k];}
657 678
  };
658 679
  
659 680
  ///Returns a \c MulMap class
660 681

	
661 682
  ///This function just returns a \c MulMap class.
662 683
  ///\relates MulMap
663 684
  template<typename M1, typename M2> 
664 685
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
665 686
    return MulMap<M1, M2>(m1,m2);
666 687
  }
667 688
 
668 689
  ///Scales a map with a constant.
669 690

	
670 691
  ///This \ref concepts::ReadMap "read only map" returns the value of the
671 692
  ///given map multiplied from the left side with a constant value.
672 693
  ///Its \c Key and \c Value are inherited from \c M.
673 694
  ///
674 695
  ///Actually,
675 696
  ///\code
676 697
  ///  ScaleMap<X> sc(x,v);
677 698
  ///\endcode
678 699
  ///is equivalent to
679 700
  ///\code
680 701
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
681 702
  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
682 703
  ///\endcode
683 704
  ///
684 705
  ///\sa ScaleWriteMap
685 706
  template<typename M, typename C = typename M::Value> 
686 707
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
687 708
    const M& m;
688 709
    C v;
689 710
  public:
690 711
    typedef MapBase<typename M::Key, typename M::Value> Parent;
691 712
    typedef typename Parent::Key Key;
692 713
    typedef typename Parent::Value Value;
693 714

	
694 715
    ///Constructor
695 716

	
696 717
    ///Constructor.
697 718
    ///\param _m is the undelying map.
698 719
    ///\param _v is the scaling value.
699 720
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
700 721
    /// \e
701 722
    Value operator[](Key k) const {return v * m[k];}
702 723
  };
703 724

	
704 725
  ///Scales a map with a constant (ReadWrite version).
705 726

	
706 727
  ///This \ref concepts::ReadWriteMap "read-write map" returns the value of the
707 728
  ///given map multiplied from the left side with a constant value. It can
708 729
  ///also be used as write map if the \c / operator is defined between
709 730
  ///\c Value and \c C and the given multiplier is not zero.
710 731
  ///Its \c Key and \c Value are inherited from \c M.
711 732
  ///
712 733
  ///\sa ScaleMap
713 734
  template<typename M, typename C = typename M::Value> 
714 735
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
715 736
    M& m;
716 737
    C v;
717 738
  public:
718 739
    typedef MapBase<typename M::Key, typename M::Value> Parent;
719 740
    typedef typename Parent::Key Key;
720 741
    typedef typename Parent::Value Value;
721 742

	
722 743
    ///Constructor
723 744

	
724 745
    ///Constructor.
725 746
    ///\param _m is the undelying map.
726 747
    ///\param _v is the scaling value.
727 748
    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
728 749
    /// \e
729 750
    Value operator[](Key k) const {return v * m[k];}
730 751
    /// \e
731 752
    void set(Key k, const Value& c) { m.set(k, c / v);}
732 753
  };
733 754
  
734 755
  ///Returns a \c ScaleMap class
735 756

	
736 757
  ///This function just returns a \c ScaleMap class.
737 758
  ///\relates ScaleMap
738 759
  template<typename M, typename C> 
739 760
  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
740 761
    return ScaleMap<M, C>(m,v);
741 762
  }
742 763

	
743 764
  ///Returns a \c ScaleWriteMap class
744 765

	
745 766
  ///This function just returns a \c ScaleWriteMap class.
746 767
  ///\relates ScaleWriteMap
747 768
  template<typename M, typename C> 
748 769
  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
749 770
    return ScaleWriteMap<M, C>(m,v);
750 771
  }
751 772

	
752 773
  ///Quotient of two maps
753 774

	
754 775
  ///This \ref concepts::ReadMap "read only map" returns the quotient of the
755 776
  ///values of the two given maps.
756 777
  ///Its \c Key and \c Value are inherited from \c M1.
757 778
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
758 779
  template<typename M1, typename M2> 
759 780
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
760 781
    const M1& m1;
761 782
    const M2& m2;
762 783
  public:
763 784
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
764 785
    typedef typename Parent::Key Key;
765 786
    typedef typename Parent::Value Value;
766 787

	
767 788
    ///Constructor
768 789
    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
769 790
    /// \e
770 791
    Value operator[](Key k) const {return m1[k]/m2[k];}
771 792
  };
772 793
  
773 794
  ///Returns a \c DivMap class
774 795

	
775 796
  ///This function just returns a \c DivMap class.
776 797
  ///\relates DivMap
777 798
  template<typename M1, typename M2> 
778 799
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
779 800
    return DivMap<M1, M2>(m1,m2);
780 801
  }
781 802
  
782 803
  ///Composition of two maps
783 804

	
784 805
  ///This \ref concepts::ReadMap "read only map" returns the composition of
785 806
  ///two given maps.
786 807
  ///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
787 808
  ///then for
788 809
  ///\code
789 810
  ///  ComposeMap<M1, M2> cm(m1,m2);
790 811
  ///\endcode
791 812
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
792 813
  ///
793 814
  ///Its \c Key is inherited from \c M2 and its \c Value is from \c M1.
794 815
  ///\c M2::Value must be convertible to \c M1::Key.
795 816
  ///
796 817
  ///\sa CombineMap
797 818
  ///
798 819
  ///\todo Check the requirements.
799 820
  template <typename M1, typename M2> 
800 821
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
801 822
    const M1& m1;
802 823
    const M2& m2;
803 824
  public:
804 825
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
805 826
    typedef typename Parent::Key Key;
806 827
    typedef typename Parent::Value Value;
807 828

	
808 829
    ///Constructor
809 830
    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
810 831
    
811 832
    /// \e
812 833

	
813 834

	
814 835
    /// \todo Use the  MapTraits once it is ported.
815 836
    ///
816 837

	
817 838
    //typename MapTraits<M1>::ConstReturnValue
818 839
    typename M1::Value
819 840
    operator[](Key k) const {return m1[m2[k]];}
820 841
  };
821 842

	
822 843
  ///Returns a \c ComposeMap class
823 844

	
824 845
  ///This function just returns a \c ComposeMap class.
825 846
  ///\relates ComposeMap
826 847
  template <typename M1, typename M2> 
827 848
  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
828 849
    return ComposeMap<M1, M2>(m1,m2);
829 850
  }
830 851
  
831 852
  ///Combine of two maps using an STL (binary) functor.
832 853

	
833 854
  ///Combine of two maps using an STL (binary) functor.
834 855
  ///
835 856
  ///This \ref concepts::ReadMap "read only map" takes two maps and a
836 857
  ///binary functor and returns the composition of the two
837 858
  ///given maps unsing the functor. 
838 859
  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
839 860
  ///and \c f is of \c F, then for
840 861
  ///\code
841 862
  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
842 863
  ///\endcode
843 864
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
844 865
  ///
845 866
  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
846 867
  ///\c M2::Value and \c M1::Value must be convertible to the corresponding
847 868
  ///input parameter of \c F and the return type of \c F must be convertible
848 869
  ///to \c V.
849 870
  ///
850 871
  ///\sa ComposeMap
851 872
  ///
852 873
  ///\todo Check the requirements.
853 874
  template<typename M1, typename M2, typename F,
854 875
	   typename V = typename F::result_type> 
855 876
  class CombineMap : public MapBase<typename M1::Key, V> {
856 877
    const M1& m1;
857 878
    const M2& m2;
858 879
    F f;
859 880
  public:
860 881
    typedef MapBase<typename M1::Key, V> Parent;
861 882
    typedef typename Parent::Key Key;
862 883
    typedef typename Parent::Value Value;
863 884

	
864 885
    ///Constructor
865 886
    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
866 887
      : m1(_m1), m2(_m2), f(_f) {};
867 888
    /// \e
868 889
    Value operator[](Key k) const {return f(m1[k],m2[k]);}
869 890
  };
870 891
  
871 892
  ///Returns a \c CombineMap class
872 893

	
873 894
  ///This function just returns a \c CombineMap class.
874 895
  ///
875 896
  ///For example if \c m1 and \c m2 are both \c double valued maps, then 
876 897
  ///\code
877 898
  ///combineMap(m1,m2,std::plus<double>())
878 899
  ///\endcode
879 900
  ///is equivalent to
880 901
  ///\code
881 902
  ///addMap(m1,m2)
882 903
  ///\endcode
883 904
  ///
884 905
  ///This function is specialized for adaptable binary function
885 906
  ///classes and C++ functions.
886 907
  ///
887 908
  ///\relates CombineMap
888 909
  template<typename M1, typename M2, typename F, typename V> 
889 910
  inline CombineMap<M1, M2, F, V> 
890 911
  combineMap(const M1& m1,const M2& m2, const F& f) {
891 912
    return CombineMap<M1, M2, F, V>(m1,m2,f);
892 913
  }
893 914

	
894 915
  template<typename M1, typename M2, typename F> 
895 916
  inline CombineMap<M1, M2, F, typename F::result_type> 
896 917
  combineMap(const M1& m1, const M2& m2, const F& f) {
897 918
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
898 919
  }
899 920

	
900 921
  template<typename M1, typename M2, typename K1, typename K2, typename V> 
901 922
  inline CombineMap<M1, M2, V (*)(K1, K2), V> 
902 923
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
903 924
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
904 925
  }
905 926

	
906 927
  ///Negative value of a map
907 928

	
908 929
  ///This \ref concepts::ReadMap "read only map" returns the negative
909 930
  ///value of the value returned by the given map.
910 931
  ///Its \c Key and \c Value are inherited from \c M.
911 932
  ///The unary \c - operator must be defined for \c Value, of course.
912 933
  ///
913 934
  ///\sa NegWriteMap
914 935
  template<typename M> 
915 936
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
916 937
    const M& m;
917 938
  public:
918 939
    typedef MapBase<typename M::Key, typename M::Value> Parent;
919 940
    typedef typename Parent::Key Key;
920 941
    typedef typename Parent::Value Value;
921 942

	
922 943
    ///Constructor
923 944
    NegMap(const M &_m) : m(_m) {};
924 945
    /// \e
925 946
    Value operator[](Key k) const {return -m[k];}
926 947
  };
927 948
  
928 949
  ///Negative value of a map (ReadWrite version)
929 950

	
930 951
  ///This \ref concepts::ReadWriteMap "read-write map" returns the negative
931 952
  ///value of the value returned by the given map.
932 953
  ///Its \c Key and \c Value are inherited from \c M.
933 954
  ///The unary \c - operator must be defined for \c Value, of course.
934 955
  ///
935 956
  /// \sa NegMap
936 957
  template<typename M> 
937 958
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
938 959
    M& m;
939 960
  public:
940 961
    typedef MapBase<typename M::Key, typename M::Value> Parent;
941 962
    typedef typename Parent::Key Key;
942 963
    typedef typename Parent::Value Value;
943 964

	
944 965
    ///Constructor
945 966
    NegWriteMap(M &_m) : m(_m) {};
946 967
    /// \e
947 968
    Value operator[](Key k) const {return -m[k];}
948 969
    /// \e
949 970
    void set(Key k, const Value& v) { m.set(k, -v); }
950 971
  };
951 972

	
952 973
  ///Returns a \c NegMap class
953 974

	
954 975
  ///This function just returns a \c NegMap class.
955 976
  ///\relates NegMap
956 977
  template <typename M> 
957 978
  inline NegMap<M> negMap(const M &m) {
958 979
    return NegMap<M>(m);
959 980
  }
960 981

	
961 982
  ///Returns a \c NegWriteMap class
962 983

	
963 984
  ///This function just returns a \c NegWriteMap class.
964 985
  ///\relates NegWriteMap
965 986
  template <typename M> 
966 987
  inline NegWriteMap<M> negMap(M &m) {
967 988
    return NegWriteMap<M>(m);
968 989
  }
969 990

	
970 991
  ///Absolute value of a map
971 992

	
972 993
  ///This \ref concepts::ReadMap "read only map" returns the absolute value
973 994
  ///of the value returned by the given map.
974 995
  ///Its \c Key and \c Value are inherited from \c M. 
975 996
  ///\c Value must be comparable to \c 0 and the unary \c -
976 997
  ///operator must be defined for it, of course.
977 998
  template<typename M> 
978 999
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
979 1000
    const M& m;
980 1001
  public:
981 1002
    typedef MapBase<typename M::Key, typename M::Value> Parent;
982 1003
    typedef typename Parent::Key Key;
983 1004
    typedef typename Parent::Value Value;
984 1005

	
985 1006
    ///Constructor
986 1007
    AbsMap(const M &_m) : m(_m) {};
987 1008
    /// \e
988 1009
    Value operator[](Key k) const {
989 1010
      Value tmp = m[k]; 
990 1011
      return tmp >= 0 ? tmp : -tmp;
991 1012
    }
992 1013

	
993 1014
  };
994 1015
  
995 1016
  ///Returns an \c AbsMap class
996 1017

	
997 1018
  ///This function just returns an \c AbsMap class.
998 1019
  ///\relates AbsMap
999 1020
  template<typename M> 
1000 1021
  inline AbsMap<M> absMap(const M &m) {
1001 1022
    return AbsMap<M>(m);
1002 1023
  }
1003 1024

	
1004 1025
  ///Converts an STL style functor to a map
1005 1026

	
1006 1027
  ///This \ref concepts::ReadMap "read only map" returns the value
1007 1028
  ///of a given functor.
1008 1029
  ///
1009 1030
  ///Template parameters \c K and \c V will become its
1010 1031
  ///\c Key and \c Value. 
1011 1032
  ///In most cases they have to be given explicitly because a 
1012 1033
  ///functor typically does not provide \c argument_type and 
1013 1034
  ///\c result_type typedefs.
1014 1035
  ///
1015 1036
  ///Parameter \c F is the type of the used functor.
1016 1037
  ///
1017 1038
  ///\sa MapFunctor
1018 1039
  template<typename F, 
1019 1040
	   typename K = typename F::argument_type, 
1020 1041
	   typename V = typename F::result_type> 
1021 1042
  class FunctorMap : public MapBase<K, V> {
1022 1043
    F f;
1023 1044
  public:
1024 1045
    typedef MapBase<K, V> Parent;
1025 1046
    typedef typename Parent::Key Key;
1026 1047
    typedef typename Parent::Value Value;
1027 1048

	
1028 1049
    ///Constructor
1029 1050
    FunctorMap(const F &_f = F()) : f(_f) {}
1030 1051
    /// \e
1031 1052
    Value operator[](Key k) const { return f(k);}
1032 1053
  };
1033 1054
  
1034 1055
  ///Returns a \c FunctorMap class
1035 1056

	
1036 1057
  ///This function just returns a \c FunctorMap class.
1037 1058
  ///
1038 1059
  ///This function is specialized for adaptable binary function
1039 1060
  ///classes and C++ functions.
1040 1061
  ///
1041 1062
  ///\relates FunctorMap
1042 1063
  template<typename K, typename V, typename F> inline 
1043 1064
  FunctorMap<F, K, V> functorMap(const F &f) {
1044 1065
    return FunctorMap<F, K, V>(f);
1045 1066
  }
1046 1067

	
1047 1068
  template <typename F> inline 
1048 1069
  FunctorMap<F, typename F::argument_type, typename F::result_type> 
1049 1070
  functorMap(const F &f) {
1050 1071
    return FunctorMap<F, typename F::argument_type, 
1051 1072
      typename F::result_type>(f);
1052 1073
  }
1053 1074

	
1054 1075
  template <typename K, typename V> inline 
1055 1076
  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
1056 1077
    return FunctorMap<V (*)(K), K, V>(f);
1057 1078
  }
1058 1079

	
1059 1080

	
1060 1081
  ///Converts a map to an STL style (unary) functor
1061 1082

	
1062 1083
  ///This class Converts a map to an STL style (unary) functor.
1063 1084
  ///That is it provides an <tt>operator()</tt> to read its values.
1064 1085
  ///
1065 1086
  ///For the sake of convenience it also works as
1066 1087
  ///a ususal \ref concepts::ReadMap "readable map",
1067 1088
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1068 1089
  ///
1069 1090
  ///\sa FunctorMap
1070 1091
  template <typename M> 
1071 1092
  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1072 1093
    const M& m;
1073 1094
  public:
1074 1095
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1075 1096
    typedef typename Parent::Key Key;
1076 1097
    typedef typename Parent::Value Value;
1077 1098

	
1078 1099
    typedef typename M::Key argument_type;
1079 1100
    typedef typename M::Value result_type;
1080 1101

	
1081 1102
    ///Constructor
1082 1103
    MapFunctor(const M &_m) : m(_m) {};
1083 1104
    ///\e
1084 1105
    Value operator()(Key k) const {return m[k];}
1085 1106
    ///\e
1086 1107
    Value operator[](Key k) const {return m[k];}
1087 1108
  };
1088 1109
  
1089 1110
  ///Returns a \c MapFunctor class
1090 1111

	
1091 1112
  ///This function just returns a \c MapFunctor class.
1092 1113
  ///\relates MapFunctor
1093 1114
  template<typename M> 
1094 1115
  inline MapFunctor<M> mapFunctor(const M &m) {
1095 1116
    return MapFunctor<M>(m);
1096 1117
  }
1097 1118

	
1098 1119
  ///Just readable version of \ref ForkWriteMap
1099 1120

	
1100 1121
  ///This map has two \ref concepts::ReadMap "readable map"
1101 1122
  ///parameters and each read request will be passed just to the
1102 1123
  ///first map. This class is the just readable map type of \c ForkWriteMap.
1103 1124
  ///
1104 1125
  ///The \c Key and \c Value are inherited from \c M1.
1105 1126
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1106 1127
  ///
1107 1128
  ///\sa ForkWriteMap
1108 1129
  ///
1109 1130
  /// \todo Why is it needed?
1110 1131
  template<typename  M1, typename M2> 
1111 1132
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1112 1133
    const M1& m1;
1113 1134
    const M2& m2;
1114 1135
  public:
1115 1136
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1116 1137
    typedef typename Parent::Key Key;
1117 1138
    typedef typename Parent::Value Value;
1118 1139

	
1119 1140
    ///Constructor
1120 1141
    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1121 1142
    /// \e
1122 1143
    Value operator[](Key k) const {return m1[k];}
1123 1144
  };
1124 1145

	
1125 1146

	
1126 1147
  ///Applies all map setting operations to two maps
1127 1148

	
1128 1149
  ///This map has two \ref concepts::WriteMap "writable map"
1129 1150
  ///parameters and each write request will be passed to both of them.
1130 1151
  ///If \c M1 is also \ref concepts::ReadMap "readable",
1131 1152
  ///then the read operations will return the
1132 1153
  ///corresponding values of \c M1.
1133 1154
  ///
1134 1155
  ///The \c Key and \c Value are inherited from \c M1.
1135 1156
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1136 1157
  ///
1137 1158
  ///\sa ForkMap
1138 1159
  template<typename  M1, typename M2> 
1139 1160
  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1140 1161
    M1& m1;
1141 1162
    M2& m2;
1142 1163
  public:
1143 1164
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1144 1165
    typedef typename Parent::Key Key;
1145 1166
    typedef typename Parent::Value Value;
1146 1167

	
1147 1168
    ///Constructor
1148 1169
    ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
1149 1170
    ///\e
1150 1171
    Value operator[](Key k) const {return m1[k];}
1151 1172
    ///\e
1152 1173
    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
1153 1174
  };
1154 1175
  
1155 1176
  ///Returns a \c ForkMap class
1156 1177

	
1157 1178
  ///This function just returns a \c ForkMap class.
1158 1179
  ///\relates ForkMap
1159 1180
  template <typename M1, typename M2> 
1160 1181
  inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
1161 1182
    return ForkMap<M1, M2>(m1,m2);
1162 1183
  }
1163 1184

	
1164 1185
  ///Returns a \c ForkWriteMap class
1165 1186

	
1166 1187
  ///This function just returns a \c ForkWriteMap class.
1167 1188
  ///\relates ForkWriteMap
1168 1189
  template <typename M1, typename M2> 
1169 1190
  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
1170 1191
    return ForkWriteMap<M1, M2>(m1,m2);
1171 1192
  }
1172 1193

	
1173 1194

	
1174 1195
  
1175 1196
  /* ************* BOOL MAPS ******************* */
1176 1197
  
1177 1198
  ///Logical 'not' of a map
1178 1199
  
1179 1200
  ///This bool \ref concepts::ReadMap "read only map" returns the 
1180 1201
  ///logical negation of the value returned by the given map.
1181 1202
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1182 1203
  ///
1183 1204
  ///\sa NotWriteMap
1184 1205
  template <typename M> 
1185 1206
  class NotMap : public MapBase<typename M::Key, bool> {
1186 1207
    const M& m;
1187 1208
  public:
1188 1209
    typedef MapBase<typename M::Key, bool> Parent;
1189 1210
    typedef typename Parent::Key Key;
1190 1211
    typedef typename Parent::Value Value;
1191 1212

	
1192 1213
    /// Constructor
1193 1214
    NotMap(const M &_m) : m(_m) {};
1194 1215
    ///\e
1195 1216
    Value operator[](Key k) const {return !m[k];}
1196 1217
  };
1197 1218

	
1198 1219
  ///Logical 'not' of a map (ReadWrie version)
1199 1220
  
1200 1221
  ///This bool \ref concepts::ReadWriteMap "read-write map" returns the 
1201 1222
  ///logical negation of the value returned by the given map. When it is set,
1202 1223
  ///the opposite value is set to the original map.
1203 1224
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1204 1225
  ///
1205 1226
  ///\sa NotMap
1206 1227
  template <typename M> 
1207 1228
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1208 1229
    M& m;
1209 1230
  public:
1210 1231
    typedef MapBase<typename M::Key, bool> Parent;
1211 1232
    typedef typename Parent::Key Key;
1212 1233
    typedef typename Parent::Value Value;
1213 1234

	
1214 1235
    /// Constructor
1215 1236
    NotWriteMap(M &_m) : m(_m) {};
1216 1237
    ///\e
1217 1238
    Value operator[](Key k) const {return !m[k];}
1218 1239
    ///\e
1219 1240
    void set(Key k, bool v) { m.set(k, !v); }
1220 1241
  };
1221 1242
  
1222 1243
  ///Returns a \c NotMap class
1223 1244
  
1224 1245
  ///This function just returns a \c NotMap class.
1225 1246
  ///\relates NotMap
1226 1247
  template <typename M> 
1227 1248
  inline NotMap<M> notMap(const M &m) {
1228 1249
    return NotMap<M>(m);
1229 1250
  }
1230 1251
  
1231 1252
  ///Returns a \c NotWriteMap class
1232 1253
  
1233 1254
  ///This function just returns a \c NotWriteMap class.
1234 1255
  ///\relates NotWriteMap
1235 1256
  template <typename M> 
1236 1257
  inline NotWriteMap<M> notMap(M &m) {
1237 1258
    return NotWriteMap<M>(m);
1238 1259
  }
1239 1260

	
1240 1261
  namespace _maps_bits {
1241 1262

	
1242 1263
    template <typename Value>
1243 1264
    struct Identity {
1244 1265
      typedef Value argument_type;
1245 1266
      typedef Value result_type;
1246 1267
      Value operator()(const Value& val) const {
1247 1268
	return val;
1248 1269
      }
1249 1270
    };
1250 1271

	
1251 1272
    template <typename _Iterator, typename Enable = void>
1252 1273
    struct IteratorTraits {
1253 1274
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1254 1275
    };
1255 1276

	
1256 1277
    template <typename _Iterator>
1257 1278
    struct IteratorTraits<_Iterator,
1258 1279
      typename exists<typename _Iterator::container_type>::type> 
1259 1280
    {
1260 1281
      typedef typename _Iterator::container_type::value_type Value;
1261 1282
    };
1262 1283

	
1263 1284
  }
1264 1285
  
1265 1286

	
1266 1287
  /// \brief Writable bool map for logging each \c true assigned element
1267 1288
  ///
1268 1289
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging 
1269 1290
  /// each \c true assigned element, i.e it copies all the keys set 
1270 1291
  /// to \c true to the given iterator.
1271 1292
  ///
1272 1293
  /// \note The container of the iterator should contain space 
1273 1294
  /// for each element.
1274 1295
  ///
1275 1296
  /// The following example shows how you can write the edges found by 
1276 1297
  /// the \ref Prim algorithm directly to the standard output.
1277 1298
  ///\code
1278 1299
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1279 1300
  /// EdgeIdMap edgeId(graph);
1280 1301
  ///
1281 1302
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1282 1303
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
1283 1304
  ///
1284 1305
  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
1285 1306
  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1286 1307
  ///
1287 1308
  /// prim(graph, cost, writerMap);
1288 1309
  ///\endcode
1289 1310
  ///
1290 1311
  ///\sa BackInserterBoolMap 
1291 1312
  ///\sa FrontInserterBoolMap 
1292 1313
  ///\sa InserterBoolMap 
1293 1314
  ///
1294 1315
  ///\todo Revise the name of this class and the related ones.
1295 1316
  template <typename _Iterator, 
1296 1317
            typename _Functor =
1297 1318
            _maps_bits::Identity<typename _maps_bits::
1298 1319
                                 IteratorTraits<_Iterator>::Value> >
1299 1320
  class StoreBoolMap {
1300 1321
  public:
1301 1322
    typedef _Iterator Iterator;
1302 1323

	
1303 1324
    typedef typename _Functor::argument_type Key;
1304 1325
    typedef bool Value;
1305 1326

	
1306 1327
    typedef _Functor Functor;
1307 1328

	
1308 1329
    /// Constructor
1309 1330
    StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
1310 1331
      : _begin(it), _end(it), _functor(functor) {}
1311 1332

	
1312 1333
    /// Gives back the given iterator set for the first key
1313 1334
    Iterator begin() const {
1314 1335
      return _begin;
1315 1336
    }
1316 1337
 
1317 1338
    /// Gives back the the 'after the last' iterator
1318 1339
    Iterator end() const {
1319 1340
      return _end;
1320 1341
    }
1321 1342

	
1322 1343
    /// The \c set function of the map
1323 1344
    void set(const Key& key, Value value) const {
1324 1345
      if (value) {
1325 1346
	*_end++ = _functor(key);
1326 1347
      }
1327 1348
    }
1328 1349
    
1329 1350
  private:
1330 1351
    Iterator _begin;
1331 1352
    mutable Iterator _end;
1332 1353
    Functor _functor;
1333 1354
  };
1334 1355

	
1335 1356
  /// \brief Writable bool map for logging each \c true assigned element in 
1336 1357
  /// a back insertable container.
1337 1358
  ///
1338 1359
  /// Writable bool map for logging each \c true assigned element by pushing
1339 1360
  /// them into a back insertable container.
1340 1361
  /// It can be used to retrieve the items into a standard
1341 1362
  /// container. The next example shows how you can store the
1342 1363
  /// edges found by the Prim algorithm in a vector.
1343 1364
  ///
1344 1365
  ///\code
1345 1366
  /// vector<Edge> span_tree_edges;
1346 1367
  /// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1347 1368
  /// prim(graph, cost, inserter_map);
1348 1369
  ///\endcode
1349 1370
  ///
1350 1371
  ///\sa StoreBoolMap
1351 1372
  ///\sa FrontInserterBoolMap
1352 1373
  ///\sa InserterBoolMap
1353 1374
  template <typename Container,
1354 1375
            typename Functor =
1355 1376
            _maps_bits::Identity<typename Container::value_type> >
1356 1377
  class BackInserterBoolMap {
1357 1378
  public:
1358 1379
    typedef typename Functor::argument_type Key;
1359 1380
    typedef bool Value;
1360 1381

	
1361 1382
    /// Constructor
1362 1383
    BackInserterBoolMap(Container& _container, 
1363 1384
                        const Functor& _functor = Functor()) 
1364 1385
      : container(_container), functor(_functor) {}
1365 1386

	
1366 1387
    /// The \c set function of the map
1367 1388
    void set(const Key& key, Value value) {
1368 1389
      if (value) {
1369 1390
	container.push_back(functor(key));
1370 1391
      }
1371 1392
    }
1372 1393
    
1373 1394
  private:
1374 1395
    Container& container;
1375 1396
    Functor functor;
1376 1397
  };
1377 1398

	
1378 1399
  /// \brief Writable bool map for logging each \c true assigned element in 
1379 1400
  /// a front insertable container.
1380 1401
  ///
1381 1402
  /// Writable bool map for logging each \c true assigned element by pushing
1382 1403
  /// them into a front insertable container.
1383 1404
  /// It can be used to retrieve the items into a standard
1384 1405
  /// container. For example see \ref BackInserterBoolMap.
1385 1406
  ///
1386 1407
  ///\sa BackInserterBoolMap
1387 1408
  ///\sa InserterBoolMap
1388 1409
  template <typename Container,
1389 1410
            typename Functor =
1390 1411
            _maps_bits::Identity<typename Container::value_type> >
1391 1412
  class FrontInserterBoolMap {
1392 1413
  public:
1393 1414
    typedef typename Functor::argument_type Key;
1394 1415
    typedef bool Value;
1395 1416

	
1396 1417
    /// Constructor
1397 1418
    FrontInserterBoolMap(Container& _container,
1398 1419
                         const Functor& _functor = Functor()) 
1399 1420
      : container(_container), functor(_functor) {}
1400 1421

	
1401 1422
    /// The \c set function of the map
1402 1423
    void set(const Key& key, Value value) {
1403 1424
      if (value) {
1404 1425
	container.push_front(functor(key));
1405 1426
      }
1406 1427
    }
1407 1428
    
1408 1429
  private:
1409 1430
    Container& container;    
1410 1431
    Functor functor;
1411 1432
  };
1412 1433

	
1413 1434
  /// \brief Writable bool map for storing each \c true assigned element in 
1414 1435
  /// an insertable container.
1415 1436
  ///
1416 1437
  /// Writable bool map for storing each \c true assigned element in an 
1417 1438
  /// insertable container. It will insert all the keys set to \c true into
1418 1439
  /// the container.
1419 1440
  ///
1420 1441
  /// For example, if you want to store the cut arcs of the strongly
1421 1442
  /// connected components in a set you can use the next code:
1422 1443
  ///
1423 1444
  ///\code
1424 1445
  /// set<Arc> cut_arcs;
1425 1446
  /// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1426 1447
  /// stronglyConnectedCutArcs(digraph, cost, inserter_map);
1427 1448
  ///\endcode
1428 1449
  ///
1429 1450
  ///\sa BackInserterBoolMap
1430 1451
  ///\sa FrontInserterBoolMap
1431 1452
  template <typename Container,
1432 1453
            typename Functor =
1433 1454
            _maps_bits::Identity<typename Container::value_type> >
1434 1455
  class InserterBoolMap {
1435 1456
  public:
1436 1457
    typedef typename Container::value_type Key;
1437 1458
    typedef bool Value;
1438 1459

	
1439 1460
    /// Constructor with specified iterator
1440 1461
    
1441 1462
    /// Constructor with specified iterator.
1442 1463
    /// \param _container The container for storing the elements.
1443 1464
    /// \param _it The elements will be inserted before this iterator.
1444 1465
    /// \param _functor The functor that is used when an element is stored.
1445 1466
    InserterBoolMap(Container& _container, typename Container::iterator _it,
1446 1467
                    const Functor& _functor = Functor()) 
1447 1468
      : container(_container), it(_it), functor(_functor) {}
1448 1469

	
1449 1470
    /// Constructor
1450 1471

	
1451 1472
    /// Constructor without specified iterator.
1452 1473
    /// The elements will be inserted before <tt>_container.end()</tt>.
1453 1474
    /// \param _container The container for storing the elements.
1454 1475
    /// \param _functor The functor that is used when an element is stored.
1455 1476
    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
1456 1477
      : container(_container), it(_container.end()), functor(_functor) {}
1457 1478

	
1458 1479
    /// The \c set function of the map
1459 1480
    void set(const Key& key, Value value) {
1460 1481
      if (value) {
1461 1482
	it = container.insert(it, functor(key));
1462 1483
        ++it;
1463 1484
      }
1464 1485
    }
1465 1486
    
1466 1487
  private:
1467 1488
    Container& container;
1468 1489
    typename Container::iterator it;
1469 1490
    Functor functor;
1470 1491
  };
1471 1492

	
1472 1493
  /// \brief Writable bool map for filling each \c true assigned element with a 
1473 1494
  /// given value.
1474 1495
  ///
1475 1496
  /// Writable bool map for filling each \c true assigned element with a 
1476 1497
  /// given value. The value can set the container.
1477 1498
  ///
1478 1499
  /// The following code finds the connected components of a graph
1479 1500
  /// and stores it in the \c comp map:
1480 1501
  ///\code
1481 1502
  /// typedef Graph::NodeMap<int> ComponentMap;
1482 1503
  /// ComponentMap comp(graph);
1483 1504
  /// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1484 1505
  /// ComponentFillerMap filler(comp, 0);
1485 1506
  ///
1486 1507
  /// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1487 1508
  /// dfs.processedMap(filler);
1488 1509
  /// dfs.init();
1489 1510
  /// for (NodeIt it(graph); it != INVALID; ++it) {
1490 1511
  ///   if (!dfs.reached(it)) {
1491 1512
  ///     dfs.addSource(it);
1492 1513
  ///     dfs.start();
1493 1514
  ///     ++filler.fillValue();
1494 1515
  ///   }
1495 1516
  /// }
1496 1517
  ///\endcode
1497 1518
  template <typename Map>
1498 1519
  class FillBoolMap {
1499 1520
  public:
1500 1521
    typedef typename Map::Key Key;
1501 1522
    typedef bool Value;
1502 1523

	
1503 1524
    /// Constructor
1504 1525
    FillBoolMap(Map& _map, const typename Map::Value& _fill) 
1505 1526
      : map(_map), fill(_fill) {}
1506 1527

	
1507 1528
    /// Constructor
1508 1529
    FillBoolMap(Map& _map) 
1509 1530
      : map(_map), fill() {}
1510 1531

	
1511 1532
    /// Gives back the current fill value
1512 1533
    const typename Map::Value& fillValue() const {
1513 1534
      return fill;
1514 1535
    } 
1515 1536

	
1516 1537
    /// Gives back the current fill value
1517 1538
    typename Map::Value& fillValue() {
1518 1539
      return fill;
1519 1540
    } 
1520 1541

	
1521 1542
    /// Sets the current fill value
1522 1543
    void fillValue(const typename Map::Value& _fill) {
1523 1544
      fill = _fill;
1524 1545
    } 
1525 1546

	
1526 1547
    /// The \c set function of the map
1527 1548
    void set(const Key& key, Value value) {
1528 1549
      if (value) {
1529 1550
	map.set(key, fill);
1530 1551
      }
1531 1552
    }
1532 1553
    
1533 1554
  private:
1534 1555
    Map& map;
1535 1556
    typename Map::Value fill;
1536 1557
  };
1537 1558

	
1538 1559

	
1539 1560
  /// \brief Writable bool map for storing the sequence number of 
1540 1561
  /// \c true assignments.  
1541 1562
  /// 
1542 1563
  /// Writable bool map that stores for each \c true assigned elements  
1543 1564
  /// the sequence number of this setting.
1544 1565
  /// It makes it easy to calculate the leaving
1545 1566
  /// order of the nodes in the \c Dfs algorithm.
1546 1567
  ///
1547 1568
  ///\code
1548 1569
  /// typedef Digraph::NodeMap<int> OrderMap;
1549 1570
  /// OrderMap order(digraph);
1550 1571
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1551 1572
  /// OrderSetterMap setter(order);
1552 1573
  /// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1553 1574
  /// dfs.processedMap(setter);
1554 1575
  /// dfs.init();
1555 1576
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1556 1577
  ///   if (!dfs.reached(it)) {
1557 1578
  ///     dfs.addSource(it);
1558 1579
  ///     dfs.start();
1559 1580
  ///   }
1560 1581
  /// }
1561 1582
  ///\endcode
1562 1583
  ///
1563 1584
  /// The storing of the discovering order is more difficult because the
1564 1585
  /// ReachedMap should be readable in the dfs algorithm but the setting
1565 1586
  /// order map is not readable. Thus we must use the fork map:
1566 1587
  ///
1567 1588
  ///\code
1568 1589
  /// typedef Digraph::NodeMap<int> OrderMap;
1569 1590
  /// OrderMap order(digraph);
1570 1591
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1571 1592
  /// OrderSetterMap setter(order);
1572 1593
  /// typedef Digraph::NodeMap<bool> StoreMap;
1573 1594
  /// StoreMap store(digraph);
1574 1595
  ///
1575 1596
  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
1576 1597
  /// ReachedMap reached(store, setter);
1577 1598
  ///
1578 1599
  /// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
1579 1600
  /// dfs.reachedMap(reached);
1580 1601
  /// dfs.init();
1581 1602
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1582 1603
  ///   if (!dfs.reached(it)) {
1583 1604
  ///     dfs.addSource(it);
1584 1605
  ///     dfs.start();
1585 1606
  ///   }
1586 1607
  /// }
1587 1608
  ///\endcode
1588 1609
  template <typename Map>
1589 1610
  class SettingOrderBoolMap {
1590 1611
  public:
1591 1612
    typedef typename Map::Key Key;
1592 1613
    typedef bool Value;
1593 1614

	
1594 1615
    /// Constructor
1595 1616
    SettingOrderBoolMap(Map& _map) 
1596 1617
      : map(_map), counter(0) {}
1597 1618

	
1598 1619
    /// Number of set operations.
1599 1620
    int num() const {
1600 1621
      return counter;
1601 1622
    }
1602 1623

	
1603 1624
    /// The \c set function of the map
1604 1625
    void set(const Key& key, Value value) {
1605 1626
      if (value) {
1606 1627
	map.set(key, counter++);
1607 1628
      }
1608 1629
    }
1609 1630
    
1610 1631
  private:
1611 1632
    Map& map;
1612 1633
    int counter;
1613 1634
  };
1614 1635

	
1615 1636
  /// @}
1616 1637
}
1617 1638

	
1618 1639
#endif // LEMON_MAPS_H
0 comments (0 inline)