diff --git a/lemon/cost_scaling.h b/lemon/cost_scaling.h new file mode 100644 --- /dev/null +++ b/lemon/cost_scaling.h @@ -0,0 +1,850 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_COST_SCALING_H +#define LEMON_COST_SCALING_H + +/// \ingroup min_cost_flow_algs +/// \file +/// \brief Cost scaling algorithm for finding a minimum cost flow. + +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +namespace lemon { + + /// \addtogroup min_cost_flow_algs + /// @{ + + /// \brief Implementation of the cost scaling algorithm for finding a + /// minimum cost flow. + /// + /// \ref CostScaling implements the cost scaling algorithm performing + /// augment/push and relabel operations for finding a minimum cost + /// flow. + /// + /// \tparam Digraph The digraph type the algorithm runs on. + /// \tparam LowerMap The type of the lower bound map. + /// \tparam CapacityMap The type of the capacity (upper bound) map. + /// \tparam CostMap The type of the cost (length) map. + /// \tparam SupplyMap The type of the supply map. + /// + /// \warning + /// - Arc capacities and costs should be \e non-negative \e integers. + /// - Supply values should be \e signed \e integers. + /// - The value types of the maps should be convertible to each other. + /// - \c CostMap::Value must be signed type. + /// + /// \note Arc costs are multiplied with the number of nodes during + /// the algorithm so overflow problems may arise more easily than with + /// other minimum cost flow algorithms. + /// If it is available, long long int type is used instead of + /// long int in the inside computations. + /// + /// \author Peter Kovacs + template < typename Digraph, + typename LowerMap = typename Digraph::template ArcMap, + typename CapacityMap = typename Digraph::template ArcMap, + typename CostMap = typename Digraph::template ArcMap, + typename SupplyMap = typename Digraph::template NodeMap > + class CostScaling + { + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + typedef typename CapacityMap::Value Capacity; + typedef typename CostMap::Value Cost; + typedef typename SupplyMap::Value Supply; + typedef typename Digraph::template ArcMap CapacityArcMap; + typedef typename Digraph::template NodeMap SupplyNodeMap; + + typedef ResidualDigraph< const Digraph, + CapacityArcMap, CapacityArcMap > ResDigraph; + typedef typename ResDigraph::Arc ResArc; + +#if defined __GNUC__ && !defined __STRICT_ANSI__ + typedef long long int LCost; +#else + typedef long int LCost; +#endif + typedef typename Digraph::template ArcMap LargeCostMap; + + public: + + /// The type of the flow map. + typedef typename Digraph::template ArcMap FlowMap; + /// The type of the potential map. + typedef typename Digraph::template NodeMap PotentialMap; + + private: + + /// \brief Map adaptor class for handling residual arc costs. + /// + /// Map adaptor class for handling residual arc costs. + template + class ResidualCostMap : public MapBase + { + private: + + const Map &_cost_map; + + public: + + ///\e + ResidualCostMap(const Map &cost_map) : + _cost_map(cost_map) {} + + ///\e + inline typename Map::Value operator[](const ResArc &e) const { + return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; + } + + }; //class ResidualCostMap + + /// \brief Map adaptor class for handling reduced arc costs. + /// + /// Map adaptor class for handling reduced arc costs. + class ReducedCostMap : public MapBase + { + private: + + const Digraph &_gr; + const LargeCostMap &_cost_map; + const PotentialMap &_pot_map; + + public: + + ///\e + ReducedCostMap( const Digraph &gr, + const LargeCostMap &cost_map, + const PotentialMap &pot_map ) : + _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} + + ///\e + inline LCost operator[](const Arc &e) const { + return _cost_map[e] + _pot_map[_gr.source(e)] + - _pot_map[_gr.target(e)]; + } + + }; //class ReducedCostMap + + private: + + // The digraph the algorithm runs on + const Digraph &_graph; + // The original lower bound map + const LowerMap *_lower; + // The modified capacity map + CapacityArcMap _capacity; + // The original cost map + const CostMap &_orig_cost; + // The scaled cost map + LargeCostMap _cost; + // The modified supply map + SupplyNodeMap _supply; + bool _valid_supply; + + // Arc map of the current flow + FlowMap *_flow; + bool _local_flow; + // Node map of the current potentials + PotentialMap *_potential; + bool _local_potential; + + // The residual cost map + ResidualCostMap _res_cost; + // The residual digraph + ResDigraph *_res_graph; + // The reduced cost map + ReducedCostMap *_red_cost; + // The excess map + SupplyNodeMap _excess; + // The epsilon parameter used for cost scaling + LCost _epsilon; + // The scaling factor + int _alpha; + + public: + + /// \brief General constructor (with lower bounds). + /// + /// General constructor (with lower bounds). + /// + /// \param digraph The digraph the algorithm runs on. + /// \param lower The lower bounds of the arcs. + /// \param capacity The capacities (upper bounds) of the arcs. + /// \param cost The cost (length) values of the arcs. + /// \param supply The supply values of the nodes (signed). + CostScaling( const Digraph &digraph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost), + _cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), _res_cost(_cost), + _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) + { + // Check the sum of supply values + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; + _valid_supply = sum == 0; + + for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e]; + for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n]; + + // Remove non-zero lower bounds + for (ArcIt e(_graph); e != INVALID; ++e) { + if (lower[e] != 0) { + _capacity[e] -= lower[e]; + _supply[_graph.source(e)] -= lower[e]; + _supply[_graph.target(e)] += lower[e]; + } + } + } +/* + /// \brief General constructor (without lower bounds). + /// + /// General constructor (without lower bounds). + /// + /// \param digraph The digraph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the arcs. + /// \param cost The cost (length) values of the arcs. + /// \param supply The supply values of the nodes (signed). + CostScaling( const Digraph &digraph, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), + _cost(digraph), _supply(supply), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), _res_cost(_cost), + _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) + { + // Check the sum of supply values + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; + _valid_supply = sum == 0; + } + + /// \brief Simple constructor (with lower bounds). + /// + /// Simple constructor (with lower bounds). + /// + /// \param digraph The digraph the algorithm runs on. + /// \param lower The lower bounds of the arcs. + /// \param capacity The capacities (upper bounds) of the arcs. + /// \param cost The cost (length) values of the arcs. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CostScaling( const Digraph &digraph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost), + _cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), _res_cost(_cost), + _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) + { + // Remove non-zero lower bounds + _supply[s] = flow_value; + _supply[t] = -flow_value; + for (ArcIt e(_graph); e != INVALID; ++e) { + if (lower[e] != 0) { + _capacity[e] -= lower[e]; + _supply[_graph.source(e)] -= lower[e]; + _supply[_graph.target(e)] += lower[e]; + } + } + _valid_supply = true; + } + + /// \brief Simple constructor (without lower bounds). + /// + /// Simple constructor (without lower bounds). + /// + /// \param digraph The digraph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the arcs. + /// \param cost The cost (length) values of the arcs. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CostScaling( const Digraph &digraph, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), + _cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), + _potential(NULL), _local_potential(false), _res_cost(_cost), + _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) + { + _supply[s] = flow_value; + _supply[t] = -flow_value; + _valid_supply = true; + } +*/ + /// Destructor. + ~CostScaling() { + if (_local_flow) delete _flow; + if (_local_potential) delete _potential; + delete _res_graph; + delete _red_cost; + } + + /// \brief Set the flow map. + /// + /// Set the flow map. + /// + /// \return \c (*this) + CostScaling& flowMap(FlowMap &map) { + if (_local_flow) { + delete _flow; + _local_flow = false; + } + _flow = ↦ + return *this; + } + + /// \brief Set the potential map. + /// + /// Set the potential map. + /// + /// \return \c (*this) + CostScaling& potentialMap(PotentialMap &map) { + if (_local_potential) { + delete _potential; + _local_potential = false; + } + _potential = ↦ + return *this; + } + + /// \name Execution control + + /// @{ + + /// \brief Run the algorithm. + /// + /// Run the algorithm. + /// + /// \param partial_augment By default the algorithm performs + /// partial augment and relabel operations in the cost scaling + /// phases. Set this parameter to \c false for using local push and + /// relabel operations instead. + /// + /// \return \c true if a feasible flow can be found. + bool run(bool partial_augment = true) { + if (partial_augment) { + return init() && startPartialAugment(); + } else { + return init() && startPushRelabel(); + } + } + + /// @} + + /// \name Query Functions + /// The result of the algorithm can be obtained using these + /// functions.\n + /// \ref lemon::CostScaling::run() "run()" must be called before + /// using them. + + /// @{ + + /// \brief Return a const reference to the arc map storing the + /// found flow. + /// + /// Return a const reference to the arc map storing the found flow. + /// + /// \pre \ref run() must be called before using this function. + const FlowMap& flowMap() const { + return *_flow; + } + + /// \brief Return a const reference to the node map storing the + /// found potentials (the dual solution). + /// + /// Return a const reference to the node map storing the found + /// potentials (the dual solution). + /// + /// \pre \ref run() must be called before using this function. + const PotentialMap& potentialMap() const { + return *_potential; + } + + /// \brief Return the flow on the given arc. + /// + /// Return the flow on the given arc. + /// + /// \pre \ref run() must be called before using this function. + Capacity flow(const Arc& arc) const { + return (*_flow)[arc]; + } + + /// \brief Return the potential of the given node. + /// + /// Return the potential of the given node. + /// + /// \pre \ref run() must be called before using this function. + Cost potential(const Node& node) const { + return (*_potential)[node]; + } + + /// \brief Return the total cost of the found flow. + /// + /// Return the total cost of the found flow. The complexity of the + /// function is \f$ O(e) \f$. + /// + /// \pre \ref run() must be called before using this function. + Cost totalCost() const { + Cost c = 0; + for (ArcIt e(_graph); e != INVALID; ++e) + c += (*_flow)[e] * _orig_cost[e]; + return c; + } + + /// @} + + private: + + /// Initialize the algorithm. + bool init() { + if (!_valid_supply) return false; + // The scaling factor + _alpha = 8; + + // Initialize flow and potential maps + if (!_flow) { + _flow = new FlowMap(_graph); + _local_flow = true; + } + if (!_potential) { + _potential = new PotentialMap(_graph); + _local_potential = true; + } + + _red_cost = new ReducedCostMap(_graph, _cost, *_potential); + _res_graph = new ResDigraph(_graph, _capacity, *_flow); + + // Initialize the scaled cost map and the epsilon parameter + Cost max_cost = 0; + int node_num = countNodes(_graph); + for (ArcIt e(_graph); e != INVALID; ++e) { + _cost[e] = LCost(_orig_cost[e]) * node_num * _alpha; + if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; + } + _epsilon = max_cost * node_num; + + // Find a feasible flow using Circulation + Circulation< Digraph, ConstMap, CapacityArcMap, + SupplyMap > + circulation( _graph, constMap(Capacity(0)), _capacity, + _supply ); + return circulation.flowMap(*_flow).run(); + } + + /// Execute the algorithm performing partial augmentation and + /// relabel operations. + bool startPartialAugment() { + // Paramters for heuristics +// const int BF_HEURISTIC_EPSILON_BOUND = 1000; +// const int BF_HEURISTIC_BOUND_FACTOR = 3; + // Maximum augment path length + const int MAX_PATH_LENGTH = 4; + + // Variables + typename Digraph::template NodeMap pred_arc(_graph); + typename Digraph::template NodeMap forward(_graph); + typename Digraph::template NodeMap next_out(_graph); + typename Digraph::template NodeMap next_in(_graph); + typename Digraph::template NodeMap next_dir(_graph); + std::deque active_nodes; + std::vector path_nodes; + +// int node_num = countNodes(_graph); + for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? + 1 : _epsilon / _alpha ) + { +/* + // "Early Termination" heuristic: use Bellman-Ford algorithm + // to check if the current flow is optimal + if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { + typedef ShiftMap< ResidualCostMap > ShiftCostMap; + ShiftCostMap shift_cost(_res_cost, 1); + BellmanFord bf(*_res_graph, shift_cost); + bf.init(0); + bool done = false; + int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); + for (int i = 0; i < K && !done; ++i) + done = bf.processNextWeakRound(); + if (done) break; + } +*/ + // Saturate arcs not satisfying the optimality condition + Capacity delta; + for (ArcIt e(_graph); e != INVALID; ++e) { + if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { + delta = _capacity[e] - (*_flow)[e]; + _excess[_graph.source(e)] -= delta; + _excess[_graph.target(e)] += delta; + (*_flow)[e] = _capacity[e]; + } + if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { + _excess[_graph.target(e)] -= (*_flow)[e]; + _excess[_graph.source(e)] += (*_flow)[e]; + (*_flow)[e] = 0; + } + } + + // Find active nodes (i.e. nodes with positive excess) + for (NodeIt n(_graph); n != INVALID; ++n) { + if (_excess[n] > 0) active_nodes.push_back(n); + } + + // Initialize the next arc maps + for (NodeIt n(_graph); n != INVALID; ++n) { + next_out[n] = OutArcIt(_graph, n); + next_in[n] = InArcIt(_graph, n); + next_dir[n] = true; + } + + // Perform partial augment and relabel operations + while (active_nodes.size() > 0) { + // Select an active node (FIFO selection) + if (_excess[active_nodes[0]] <= 0) { + active_nodes.pop_front(); + continue; + } + Node start = active_nodes[0]; + path_nodes.clear(); + path_nodes.push_back(start); + + // Find an augmenting path from the start node + Node u, tip = start; + LCost min_red_cost; + while ( _excess[tip] >= 0 && + int(path_nodes.size()) <= MAX_PATH_LENGTH ) + { + if (next_dir[tip]) { + for (OutArcIt e = next_out[tip]; e != INVALID; ++e) { + if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { + u = _graph.target(e); + pred_arc[u] = e; + forward[u] = true; + next_out[tip] = e; + tip = u; + path_nodes.push_back(tip); + goto next_step; + } + } + next_dir[tip] = false; + } + for (InArcIt e = next_in[tip]; e != INVALID; ++e) { + if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { + u = _graph.source(e); + pred_arc[u] = e; + forward[u] = false; + next_in[tip] = e; + tip = u; + path_nodes.push_back(tip); + goto next_step; + } + } + + // Relabel tip node + min_red_cost = std::numeric_limits::max() / 2; + for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) { + if ( _capacity[oe] - (*_flow)[oe] > 0 && + (*_red_cost)[oe] < min_red_cost ) + min_red_cost = (*_red_cost)[oe]; + } + for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) { + if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) + min_red_cost = -(*_red_cost)[ie]; + } + (*_potential)[tip] -= min_red_cost + _epsilon; + + // Reset the next arc maps + next_out[tip] = OutArcIt(_graph, tip); + next_in[tip] = InArcIt(_graph, tip); + next_dir[tip] = true; + + // Step back + if (tip != start) { + path_nodes.pop_back(); + tip = path_nodes[path_nodes.size()-1]; + } + + next_step: + continue; + } + + // Augment along the found path (as much flow as possible) + Capacity delta; + for (int i = 1; i < int(path_nodes.size()); ++i) { + u = path_nodes[i]; + delta = forward[u] ? + _capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] : + (*_flow)[pred_arc[u]]; + delta = std::min(delta, _excess[path_nodes[i-1]]); + (*_flow)[pred_arc[u]] += forward[u] ? delta : -delta; + _excess[path_nodes[i-1]] -= delta; + _excess[u] += delta; + if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u); + } + } + } + + // Compute node potentials for the original costs + ResidualCostMap res_cost(_orig_cost); + BellmanFord< ResDigraph, ResidualCostMap > + bf(*_res_graph, res_cost); + bf.init(0); bf.start(); + for (NodeIt n(_graph); n != INVALID; ++n) + (*_potential)[n] = bf.dist(n); + + // Handle non-zero lower bounds + if (_lower) { + for (ArcIt e(_graph); e != INVALID; ++e) + (*_flow)[e] += (*_lower)[e]; + } + return true; + } + + /// Execute the algorithm performing push and relabel operations. + bool startPushRelabel() { + // Paramters for heuristics +// const int BF_HEURISTIC_EPSILON_BOUND = 1000; +// const int BF_HEURISTIC_BOUND_FACTOR = 3; + + typename Digraph::template NodeMap hyper(_graph, false); + typename Digraph::template NodeMap pred_arc(_graph); + typename Digraph::template NodeMap forward(_graph); + typename Digraph::template NodeMap next_out(_graph); + typename Digraph::template NodeMap next_in(_graph); + typename Digraph::template NodeMap next_dir(_graph); + std::deque active_nodes; + +// int node_num = countNodes(_graph); + for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? + 1 : _epsilon / _alpha ) + { +/* + // "Early Termination" heuristic: use Bellman-Ford algorithm + // to check if the current flow is optimal + if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { + typedef ShiftMap< ResidualCostMap > ShiftCostMap; + ShiftCostMap shift_cost(_res_cost, 1); + BellmanFord bf(*_res_graph, shift_cost); + bf.init(0); + bool done = false; + int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); + for (int i = 0; i < K && !done; ++i) + done = bf.processNextWeakRound(); + if (done) break; + } +*/ + + // Saturate arcs not satisfying the optimality condition + Capacity delta; + for (ArcIt e(_graph); e != INVALID; ++e) { + if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { + delta = _capacity[e] - (*_flow)[e]; + _excess[_graph.source(e)] -= delta; + _excess[_graph.target(e)] += delta; + (*_flow)[e] = _capacity[e]; + } + if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { + _excess[_graph.target(e)] -= (*_flow)[e]; + _excess[_graph.source(e)] += (*_flow)[e]; + (*_flow)[e] = 0; + } + } + + // Find active nodes (i.e. nodes with positive excess) + for (NodeIt n(_graph); n != INVALID; ++n) { + if (_excess[n] > 0) active_nodes.push_back(n); + } + + // Initialize the next arc maps + for (NodeIt n(_graph); n != INVALID; ++n) { + next_out[n] = OutArcIt(_graph, n); + next_in[n] = InArcIt(_graph, n); + next_dir[n] = true; + } + + // Perform push and relabel operations + while (active_nodes.size() > 0) { + // Select an active node (FIFO selection) + Node n = active_nodes[0], t; + bool relabel_enabled = true; + + // Perform push operations if there are admissible arcs + if (_excess[n] > 0 && next_dir[n]) { + OutArcIt e = next_out[n]; + for ( ; e != INVALID; ++e) { + if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) { + delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]); + t = _graph.target(e); + + // Push-look-ahead heuristic + Capacity ahead = -_excess[t]; + for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { + if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) + ahead += _capacity[oe] - (*_flow)[oe]; + } + for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { + if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) + ahead += (*_flow)[ie]; + } + if (ahead < 0) ahead = 0; + + // Push flow along the arc + if (ahead < delta) { + (*_flow)[e] += ahead; + _excess[n] -= ahead; + _excess[t] += ahead; + active_nodes.push_front(t); + hyper[t] = true; + relabel_enabled = false; + break; + } else { + (*_flow)[e] += delta; + _excess[n] -= delta; + _excess[t] += delta; + if (_excess[t] > 0 && _excess[t] <= delta) + active_nodes.push_back(t); + } + + if (_excess[n] == 0) break; + } + } + if (e != INVALID) { + next_out[n] = e; + } else { + next_dir[n] = false; + } + } + + if (_excess[n] > 0 && !next_dir[n]) { + InArcIt e = next_in[n]; + for ( ; e != INVALID; ++e) { + if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) { + delta = std::min((*_flow)[e], _excess[n]); + t = _graph.source(e); + + // Push-look-ahead heuristic + Capacity ahead = -_excess[t]; + for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) { + if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) + ahead += _capacity[oe] - (*_flow)[oe]; + } + for (InArcIt ie(_graph, t); ie != INVALID; ++ie) { + if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) + ahead += (*_flow)[ie]; + } + if (ahead < 0) ahead = 0; + + // Push flow along the arc + if (ahead < delta) { + (*_flow)[e] -= ahead; + _excess[n] -= ahead; + _excess[t] += ahead; + active_nodes.push_front(t); + hyper[t] = true; + relabel_enabled = false; + break; + } else { + (*_flow)[e] -= delta; + _excess[n] -= delta; + _excess[t] += delta; + if (_excess[t] > 0 && _excess[t] <= delta) + active_nodes.push_back(t); + } + + if (_excess[n] == 0) break; + } + } + next_in[n] = e; + } + + // Relabel the node if it is still active (or hyper) + if (relabel_enabled && (_excess[n] > 0 || hyper[n])) { + LCost min_red_cost = std::numeric_limits::max() / 2; + for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) { + if ( _capacity[oe] - (*_flow)[oe] > 0 && + (*_red_cost)[oe] < min_red_cost ) + min_red_cost = (*_red_cost)[oe]; + } + for (InArcIt ie(_graph, n); ie != INVALID; ++ie) { + if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) + min_red_cost = -(*_red_cost)[ie]; + } + (*_potential)[n] -= min_red_cost + _epsilon; + hyper[n] = false; + + // Reset the next arc maps + next_out[n] = OutArcIt(_graph, n); + next_in[n] = InArcIt(_graph, n); + next_dir[n] = true; + } + + // Remove nodes that are not active nor hyper + while ( active_nodes.size() > 0 && + _excess[active_nodes[0]] <= 0 && + !hyper[active_nodes[0]] ) { + active_nodes.pop_front(); + } + } + } + + // Compute node potentials for the original costs + ResidualCostMap res_cost(_orig_cost); + BellmanFord< ResDigraph, ResidualCostMap > + bf(*_res_graph, res_cost); + bf.init(0); bf.start(); + for (NodeIt n(_graph); n != INVALID; ++n) + (*_potential)[n] = bf.dist(n); + + // Handle non-zero lower bounds + if (_lower) { + for (ArcIt e(_graph); e != INVALID; ++e) + (*_flow)[e] += (*_lower)[e]; + } + return true; + } + + }; //class CostScaling + + ///@} + +} //namespace lemon + +#endif //LEMON_COST_SCALING_H