diff --git a/lemon/dfs.h b/lemon/dfs.h new file mode 100644 --- /dev/null +++ b/lemon/dfs.h @@ -0,0 +1,1543 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_DFS_H +#define LEMON_DFS_H + +///\ingroup search +///\file +///\brief Dfs algorithm. + +#include +#include +#include +#include +#include +#include + +#include + +namespace lemon { + + + ///Default traits class of Dfs class. + + ///Default traits class of Dfs class. + ///\param GR Digraph type. + template + struct DfsDefaultTraits + { + ///The digraph type the algorithm runs on. + typedef GR Digraph; + ///\brief The type of the map that stores the last + ///arcs of the %DFS paths. + /// + ///The type of the map that stores the last + ///arcs of the %DFS paths. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef typename Digraph::template NodeMap PredMap; + ///Instantiates a PredMap. + + ///This function instantiates a \ref PredMap. + ///\param G is the digraph, to which we would like to define the PredMap. + ///\todo The digraph alone may be insufficient to initialize + static PredMap *createPredMap(const GR &G) + { + return new PredMap(G); + } + + ///The type of the map that indicates which nodes are processed. + + ///The type of the map that indicates which nodes are processed. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///\todo named parameter to set this type, function to read and write. + typedef NullMap ProcessedMap; + ///Instantiates a ProcessedMap. + + ///This function instantiates a \ref ProcessedMap. + ///\param g is the digraph, to which + ///we would like to define the \ref ProcessedMap +#ifdef DOXYGEN + static ProcessedMap *createProcessedMap(const GR &g) +#else + static ProcessedMap *createProcessedMap(const GR &) +#endif + { + return new ProcessedMap(); + } + ///The type of the map that indicates which nodes are reached. + + ///The type of the map that indicates which nodes are reached. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///\todo named parameter to set this type, function to read and write. + typedef typename Digraph::template NodeMap ReachedMap; + ///Instantiates a ReachedMap. + + ///This function instantiates a \ref ReachedMap. + ///\param G is the digraph, to which + ///we would like to define the \ref ReachedMap. + static ReachedMap *createReachedMap(const GR &G) + { + return new ReachedMap(G); + } + ///The type of the map that stores the dists of the nodes. + + ///The type of the map that stores the dists of the nodes. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef typename Digraph::template NodeMap DistMap; + ///Instantiates a DistMap. + + ///This function instantiates a \ref DistMap. + ///\param G is the digraph, to which we would like to define the \ref DistMap + static DistMap *createDistMap(const GR &G) + { + return new DistMap(G); + } + }; + + ///%DFS algorithm class. + + ///\ingroup search + ///This class provides an efficient implementation of the %DFS algorithm. + /// + ///\param GR The digraph type the algorithm runs on. The default value is + ///\ref ListDigraph. The value of GR is not used directly by Dfs, it + ///is only passed to \ref DfsDefaultTraits. + ///\param TR Traits class to set various data types used by the algorithm. + ///The default traits class is + ///\ref DfsDefaultTraits "DfsDefaultTraits". + ///See \ref DfsDefaultTraits for the documentation of + ///a Dfs traits class. + /// + ///\author Jacint Szabo and Alpar Juttner +#ifdef DOXYGEN + template +#else + template > +#endif + class Dfs { + public: + /** + * \brief \ref Exception for uninitialized parameters. + * + * This error represents problems in the initialization + * of the parameters of the algorithms. + */ + class UninitializedParameter : public lemon::UninitializedParameter { + public: + virtual const char* what() const throw() { + return "lemon::Dfs::UninitializedParameter"; + } + }; + + typedef TR Traits; + ///The type of the underlying digraph. + typedef typename TR::Digraph Digraph; + ///\e + typedef typename Digraph::Node Node; + ///\e + typedef typename Digraph::NodeIt NodeIt; + ///\e + typedef typename Digraph::Arc Arc; + ///\e + typedef typename Digraph::OutArcIt OutArcIt; + + ///\brief The type of the map that stores the last + ///arcs of the %DFS paths. + typedef typename TR::PredMap PredMap; + ///The type of the map indicating which nodes are reached. + typedef typename TR::ReachedMap ReachedMap; + ///The type of the map indicating which nodes are processed. + typedef typename TR::ProcessedMap ProcessedMap; + ///The type of the map that stores the dists of the nodes. + typedef typename TR::DistMap DistMap; + private: + /// Pointer to the underlying digraph. + const Digraph *G; + ///Pointer to the map of predecessors arcs. + PredMap *_pred; + ///Indicates if \ref _pred is locally allocated (\c true) or not. + bool local_pred; + ///Pointer to the map of distances. + DistMap *_dist; + ///Indicates if \ref _dist is locally allocated (\c true) or not. + bool local_dist; + ///Pointer to the map of reached status of the nodes. + ReachedMap *_reached; + ///Indicates if \ref _reached is locally allocated (\c true) or not. + bool local_reached; + ///Pointer to the map of processed status of the nodes. + ProcessedMap *_processed; + ///Indicates if \ref _processed is locally allocated (\c true) or not. + bool local_processed; + + std::vector _stack; + int _stack_head; + + ///Creates the maps if necessary. + + ///\todo Better memory allocation (instead of new). + void create_maps() + { + if(!_pred) { + local_pred = true; + _pred = Traits::createPredMap(*G); + } + if(!_dist) { + local_dist = true; + _dist = Traits::createDistMap(*G); + } + if(!_reached) { + local_reached = true; + _reached = Traits::createReachedMap(*G); + } + if(!_processed) { + local_processed = true; + _processed = Traits::createProcessedMap(*G); + } + } + + protected: + + Dfs() {} + + public: + + typedef Dfs Create; + + ///\name Named template parameters + + ///@{ + + template + struct DefPredMapTraits : public Traits { + typedef T PredMap; + static PredMap *createPredMap(const Digraph &G) + { + throw UninitializedParameter(); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///PredMap type + /// + ///\ref named-templ-param "Named parameter" for setting PredMap type + /// + template + struct DefPredMap : public Dfs > { + typedef Dfs > Create; + }; + + + template + struct DefDistMapTraits : public Traits { + typedef T DistMap; + static DistMap *createDistMap(const Digraph &) + { + throw UninitializedParameter(); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///DistMap type + /// + ///\ref named-templ-param "Named parameter" for setting DistMap + ///type + template + struct DefDistMap { + typedef Dfs > Create; + }; + + template + struct DefReachedMapTraits : public Traits { + typedef T ReachedMap; + static ReachedMap *createReachedMap(const Digraph &) + { + throw UninitializedParameter(); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///ReachedMap type + /// + ///\ref named-templ-param "Named parameter" for setting ReachedMap type + /// + template + struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits > { + typedef Dfs< Digraph, DefReachedMapTraits > Create; + }; + + template + struct DefProcessedMapTraits : public Traits { + typedef T ProcessedMap; + static ProcessedMap *createProcessedMap(const Digraph &) + { + throw UninitializedParameter(); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///ProcessedMap type + /// + ///\ref named-templ-param "Named parameter" for setting ProcessedMap type + /// + template + struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits > { + typedef Dfs< Digraph, DefProcessedMapTraits > Create; + }; + + struct DefDigraphProcessedMapTraits : public Traits { + typedef typename Digraph::template NodeMap ProcessedMap; + static ProcessedMap *createProcessedMap(const Digraph &G) + { + return new ProcessedMap(G); + } + }; + ///\brief \ref named-templ-param "Named parameter" + ///for setting the ProcessedMap type to be Digraph::NodeMap. + /// + ///\ref named-templ-param "Named parameter" + ///for setting the ProcessedMap type to be Digraph::NodeMap. + ///If you don't set it explicitely, it will be automatically allocated. + template + class DefProcessedMapToBeDefaultMap : + public Dfs< Digraph, DefDigraphProcessedMapTraits> { + typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; + }; + + ///@} + + public: + + ///Constructor. + + ///\param _G the digraph the algorithm will run on. + /// + Dfs(const Digraph& _G) : + G(&_G), + _pred(NULL), local_pred(false), + _dist(NULL), local_dist(false), + _reached(NULL), local_reached(false), + _processed(NULL), local_processed(false) + { } + + ///Destructor. + ~Dfs() + { + if(local_pred) delete _pred; + if(local_dist) delete _dist; + if(local_reached) delete _reached; + if(local_processed) delete _processed; + } + + ///Sets the map storing the predecessor arcs. + + ///Sets the map storing the predecessor arcs. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dfs &predMap(PredMap &m) + { + if(local_pred) { + delete _pred; + local_pred=false; + } + _pred = &m; + return *this; + } + + ///Sets the map storing the distances calculated by the algorithm. + + ///Sets the map storing the distances calculated by the algorithm. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dfs &distMap(DistMap &m) + { + if(local_dist) { + delete _dist; + local_dist=false; + } + _dist = &m; + return *this; + } + + ///Sets the map indicating if a node is reached. + + ///Sets the map indicating if a node is reached. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dfs &reachedMap(ReachedMap &m) + { + if(local_reached) { + delete _reached; + local_reached=false; + } + _reached = &m; + return *this; + } + + ///Sets the map indicating if a node is processed. + + ///Sets the map indicating if a node is processed. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dfs &processedMap(ProcessedMap &m) + { + if(local_processed) { + delete _processed; + local_processed=false; + } + _processed = &m; + return *this; + } + + public: + ///\name Execution control + ///The simplest way to execute the algorithm is to use + ///one of the member functions called \c run(...). + ///\n + ///If you need more control on the execution, + ///first you must call \ref init(), then you can add a source node + ///with \ref addSource(). + ///Finally \ref start() will perform the actual path + ///computation. + + ///@{ + + ///Initializes the internal data structures. + + ///Initializes the internal data structures. + /// + void init() + { + create_maps(); + _stack.resize(countNodes(*G)); + _stack_head=-1; + for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { + _pred->set(u,INVALID); + // _predNode->set(u,INVALID); + _reached->set(u,false); + _processed->set(u,false); + } + } + + ///Adds a new source node. + + ///Adds a new source node to the set of nodes to be processed. + /// + ///\warning dists are wrong (or at least strange) + ///in case of multiple sources. + void addSource(Node s) + { + if(!(*_reached)[s]) + { + _reached->set(s,true); + _pred->set(s,INVALID); + OutArcIt e(*G,s); + if(e!=INVALID) { + _stack[++_stack_head]=e; + _dist->set(s,_stack_head); + } + else { + _processed->set(s,true); + _dist->set(s,0); + } + } + } + + ///Processes the next arc. + + ///Processes the next arc. + /// + ///\return The processed arc. + /// + ///\pre The stack must not be empty! + Arc processNextArc() + { + Node m; + Arc e=_stack[_stack_head]; + if(!(*_reached)[m=G->target(e)]) { + _pred->set(m,e); + _reached->set(m,true); + ++_stack_head; + _stack[_stack_head] = OutArcIt(*G, m); + _dist->set(m,_stack_head); + } + else { + m=G->source(e); + ++_stack[_stack_head]; + } + while(_stack_head>=0 && _stack[_stack_head]==INVALID) { + _processed->set(m,true); + --_stack_head; + if(_stack_head>=0) { + m=G->source(_stack[_stack_head]); + ++_stack[_stack_head]; + } + } + return e; + } + ///Next arc to be processed. + + ///Next arc to be processed. + /// + ///\return The next arc to be processed or INVALID if the stack is + /// empty. + OutArcIt nextArc() + { + return _stack_head>=0?_stack[_stack_head]:INVALID; + } + + ///\brief Returns \c false if there are nodes + ///to be processed in the queue + /// + ///Returns \c false if there are nodes + ///to be processed in the queue + bool emptyQueue() { return _stack_head<0; } + ///Returns the number of the nodes to be processed. + + ///Returns the number of the nodes to be processed in the queue. + int queueSize() { return _stack_head+1; } + + ///Executes the algorithm. + + ///Executes the algorithm. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///This method runs the %DFS algorithm from the root node(s) + ///in order to + ///compute the + ///%DFS path to each node. The algorithm computes + ///- The %DFS tree. + ///- The distance of each node from the root(s) in the %DFS tree. + /// + void start() + { + while ( !emptyQueue() ) processNextArc(); + } + + ///Executes the algorithm until \c dest is reached. + + ///Executes the algorithm until \c dest is reached. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///This method runs the %DFS algorithm from the root node(s) + ///in order to + ///compute the + ///%DFS path to \c dest. The algorithm computes + ///- The %DFS path to \c dest. + ///- The distance of \c dest from the root(s) in the %DFS tree. + /// + void start(Node dest) + { + while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) + processNextArc(); + } + + ///Executes the algorithm until a condition is met. + + ///Executes the algorithm until a condition is met. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///\param em must be a bool (or convertible) arc map. The algorithm + ///will stop when it reaches an arc \c e with em[e] true. + /// + ///\return The reached arc \c e with em[e] true or + ///\c INVALID if no such arc was found. + /// + ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, + ///not a node map. + template + Arc start(const EM &em) + { + while ( !emptyQueue() && !em[_stack[_stack_head]] ) + processNextArc(); + return emptyQueue() ? INVALID : _stack[_stack_head]; + } + + ///Runs %DFS algorithm to visit all nodes in the digraph. + + ///This method runs the %DFS algorithm in order to + ///compute the + ///%DFS path to each node. The algorithm computes + ///- The %DFS tree. + ///- The distance of each node from the root in the %DFS tree. + /// + ///\note d.run() is just a shortcut of the following code. + ///\code + /// d.init(); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!d.reached(it)) { + /// d.addSource(it); + /// d.start(); + /// } + /// } + ///\endcode + void run() { + init(); + for (NodeIt it(*G); it != INVALID; ++it) { + if (!reached(it)) { + addSource(it); + start(); + } + } + } + + ///Runs %DFS algorithm from node \c s. + + ///This method runs the %DFS algorithm from a root node \c s + ///in order to + ///compute the + ///%DFS path to each node. The algorithm computes + ///- The %DFS tree. + ///- The distance of each node from the root in the %DFS tree. + /// + ///\note d.run(s) is just a shortcut of the following code. + ///\code + /// d.init(); + /// d.addSource(s); + /// d.start(); + ///\endcode + void run(Node s) { + init(); + addSource(s); + start(); + } + + ///Finds the %DFS path between \c s and \c t. + + ///Finds the %DFS path between \c s and \c t. + /// + ///\return The length of the %DFS s---t path if there exists one, + ///0 otherwise. + ///\note Apart from the return value, d.run(s,t) is + ///just a shortcut of the following code. + ///\code + /// d.init(); + /// d.addSource(s); + /// d.start(t); + ///\endcode + int run(Node s,Node t) { + init(); + addSource(s); + start(t); + return reached(t)?_stack_head+1:0; + } + + ///@} + + ///\name Query Functions + ///The result of the %DFS algorithm can be obtained using these + ///functions.\n + ///Before the use of these functions, + ///either run() or start() must be called. + + ///@{ + + typedef PredMapPath Path; + + ///Gives back the shortest path. + + ///Gives back the shortest path. + ///\pre The \c t should be reachable from the source. + Path path(Node t) + { + return Path(*G, *_pred, t); + } + + ///The distance of a node from the root(s). + + ///Returns the distance of a node from the root(s). + ///\pre \ref run() must be called before using this function. + ///\warning If node \c v is unreachable from the root(s) then the return + ///value of this funcion is undefined. + int dist(Node v) const { return (*_dist)[v]; } + + ///Returns the 'previous arc' of the %DFS tree. + + ///For a node \c v it returns the 'previous arc' + ///of the %DFS path, + ///i.e. it returns the last arc of a %DFS path from the root(s) to \c + ///v. It is \ref INVALID + ///if \c v is unreachable from the root(s) or \c v is a root. The + ///%DFS tree used here is equal to the %DFS tree used in + ///\ref predNode(). + ///\pre Either \ref run() or \ref start() must be called before using + ///this function. + Arc predArc(Node v) const { return (*_pred)[v];} + + ///Returns the 'previous node' of the %DFS tree. + + ///For a node \c v it returns the 'previous node' + ///of the %DFS tree, + ///i.e. it returns the last but one node from a %DFS path from the + ///root(s) to \c v. + ///It is INVALID if \c v is unreachable from the root(s) or + ///if \c v itself a root. + ///The %DFS tree used here is equal to the %DFS + ///tree used in \ref predArc(). + ///\pre Either \ref run() or \ref start() must be called before + ///using this function. + Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: + G->source((*_pred)[v]); } + + ///Returns a reference to the NodeMap of distances. + + ///Returns a reference to the NodeMap of distances. + ///\pre Either \ref run() or \ref init() must + ///be called before using this function. + const DistMap &distMap() const { return *_dist;} + + ///Returns a reference to the %DFS arc-tree map. + + ///Returns a reference to the NodeMap of the arcs of the + ///%DFS tree. + ///\pre Either \ref run() or \ref init() + ///must be called before using this function. + const PredMap &predMap() const { return *_pred;} + + ///Checks if a node is reachable from the root. + + ///Returns \c true if \c v is reachable from the root(s). + ///\warning The source nodes are inditated as unreachable. + ///\pre Either \ref run() or \ref start() + ///must be called before using this function. + /// + bool reached(Node v) { return (*_reached)[v]; } + + ///@} + }; + + ///Default traits class of Dfs function. + + ///Default traits class of Dfs function. + ///\param GR Digraph type. + template + struct DfsWizardDefaultTraits + { + ///The digraph type the algorithm runs on. + typedef GR Digraph; + ///\brief The type of the map that stores the last + ///arcs of the %DFS paths. + /// + ///The type of the map that stores the last + ///arcs of the %DFS paths. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef NullMap PredMap; + ///Instantiates a PredMap. + + ///This function instantiates a \ref PredMap. + ///\param g is the digraph, to which we would like to define the PredMap. + ///\todo The digraph alone may be insufficient to initialize +#ifdef DOXYGEN + static PredMap *createPredMap(const GR &g) +#else + static PredMap *createPredMap(const GR &) +#endif + { + return new PredMap(); + } + + ///The type of the map that indicates which nodes are processed. + + ///The type of the map that indicates which nodes are processed. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///\todo named parameter to set this type, function to read and write. + typedef NullMap ProcessedMap; + ///Instantiates a ProcessedMap. + + ///This function instantiates a \ref ProcessedMap. + ///\param g is the digraph, to which + ///we would like to define the \ref ProcessedMap +#ifdef DOXYGEN + static ProcessedMap *createProcessedMap(const GR &g) +#else + static ProcessedMap *createProcessedMap(const GR &) +#endif + { + return new ProcessedMap(); + } + ///The type of the map that indicates which nodes are reached. + + ///The type of the map that indicates which nodes are reached. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///\todo named parameter to set this type, function to read and write. + typedef typename Digraph::template NodeMap ReachedMap; + ///Instantiates a ReachedMap. + + ///This function instantiates a \ref ReachedMap. + ///\param G is the digraph, to which + ///we would like to define the \ref ReachedMap. + static ReachedMap *createReachedMap(const GR &G) + { + return new ReachedMap(G); + } + ///The type of the map that stores the dists of the nodes. + + ///The type of the map that stores the dists of the nodes. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef NullMap DistMap; + ///Instantiates a DistMap. + + ///This function instantiates a \ref DistMap. + ///\param g is the digraph, to which we would like to define the \ref DistMap +#ifdef DOXYGEN + static DistMap *createDistMap(const GR &g) +#else + static DistMap *createDistMap(const GR &) +#endif + { + return new DistMap(); + } + }; + + /// Default traits used by \ref DfsWizard + + /// To make it easier to use Dfs algorithm + ///we have created a wizard class. + /// This \ref DfsWizard class needs default traits, + ///as well as the \ref Dfs class. + /// The \ref DfsWizardBase is a class to be the default traits of the + /// \ref DfsWizard class. + template + class DfsWizardBase : public DfsWizardDefaultTraits + { + + typedef DfsWizardDefaultTraits Base; + protected: + /// Type of the nodes in the digraph. + typedef typename Base::Digraph::Node Node; + + /// Pointer to the underlying digraph. + void *_g; + ///Pointer to the map of reached nodes. + void *_reached; + ///Pointer to the map of processed nodes. + void *_processed; + ///Pointer to the map of predecessors arcs. + void *_pred; + ///Pointer to the map of distances. + void *_dist; + ///Pointer to the source node. + Node _source; + + public: + /// Constructor. + + /// This constructor does not require parameters, therefore it initiates + /// all of the attributes to default values (0, INVALID). + DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), + _dist(0), _source(INVALID) {} + + /// Constructor. + + /// This constructor requires some parameters, + /// listed in the parameters list. + /// Others are initiated to 0. + /// \param g is the initial value of \ref _g + /// \param s is the initial value of \ref _source + DfsWizardBase(const GR &g, Node s=INVALID) : + _g(reinterpret_cast(const_cast(&g))), + _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} + + }; + + /// A class to make the usage of the Dfs algorithm easier + + /// This class is created to make it easier to use the Dfs algorithm. + /// It uses the functions and features of the plain \ref Dfs, + /// but it is much simpler to use it. + /// + /// Simplicity means that the way to change the types defined + /// in the traits class is based on functions that returns the new class + /// and not on templatable built-in classes. + /// When using the plain \ref Dfs + /// the new class with the modified type comes from + /// the original class by using the :: + /// operator. In the case of \ref DfsWizard only + /// a function have to be called and it will + /// return the needed class. + /// + /// It does not have own \ref run method. When its \ref run method is called + /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run + /// method of it. + template + class DfsWizard : public TR + { + typedef TR Base; + + ///The type of the underlying digraph. + typedef typename TR::Digraph Digraph; + //\e + typedef typename Digraph::Node Node; + //\e + typedef typename Digraph::NodeIt NodeIt; + //\e + typedef typename Digraph::Arc Arc; + //\e + typedef typename Digraph::OutArcIt OutArcIt; + + ///\brief The type of the map that stores + ///the reached nodes + typedef typename TR::ReachedMap ReachedMap; + ///\brief The type of the map that stores + ///the processed nodes + typedef typename TR::ProcessedMap ProcessedMap; + ///\brief The type of the map that stores the last + ///arcs of the %DFS paths. + typedef typename TR::PredMap PredMap; + ///The type of the map that stores the distances of the nodes. + typedef typename TR::DistMap DistMap; + + public: + /// Constructor. + DfsWizard() : TR() {} + + /// Constructor that requires parameters. + + /// Constructor that requires parameters. + /// These parameters will be the default values for the traits class. + DfsWizard(const Digraph &g, Node s=INVALID) : + TR(g,s) {} + + ///Copy constructor + DfsWizard(const TR &b) : TR(b) {} + + ~DfsWizard() {} + + ///Runs Dfs algorithm from a given node. + + ///Runs Dfs algorithm from a given node. + ///The node can be given by the \ref source function. + void run() + { + if(Base::_source==INVALID) throw UninitializedParameter(); + Dfs alg(*reinterpret_cast(Base::_g)); + if(Base::_reached) + alg.reachedMap(*reinterpret_cast(Base::_reached)); + if(Base::_processed) + alg.processedMap(*reinterpret_cast(Base::_processed)); + if(Base::_pred) + alg.predMap(*reinterpret_cast(Base::_pred)); + if(Base::_dist) + alg.distMap(*reinterpret_cast(Base::_dist)); + alg.run(Base::_source); + } + + ///Runs Dfs algorithm from the given node. + + ///Runs Dfs algorithm from the given node. + ///\param s is the given source. + void run(Node s) + { + Base::_source=s; + run(); + } + + template + struct DefPredMapBase : public Base { + typedef T PredMap; + static PredMap *createPredMap(const Digraph &) { return 0; }; + DefPredMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting PredMap type + /// + /// \ref named-templ-param "Named parameter" + ///function for setting PredMap type + /// + template + DfsWizard > predMap(const T &t) + { + Base::_pred=reinterpret_cast(const_cast(&t)); + return DfsWizard >(*this); + } + + + template + struct DefReachedMapBase : public Base { + typedef T ReachedMap; + static ReachedMap *createReachedMap(const Digraph &) { return 0; }; + DefReachedMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting ReachedMap + /// + /// \ref named-templ-param "Named parameter" + ///function for setting ReachedMap + /// + template + DfsWizard > reachedMap(const T &t) + { + Base::_pred=reinterpret_cast(const_cast(&t)); + return DfsWizard >(*this); + } + + + template + struct DefProcessedMapBase : public Base { + typedef T ProcessedMap; + static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; + DefProcessedMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting ProcessedMap + /// + /// \ref named-templ-param "Named parameter" + ///function for setting ProcessedMap + /// + template + DfsWizard > processedMap(const T &t) + { + Base::_pred=reinterpret_cast(const_cast(&t)); + return DfsWizard >(*this); + } + + template + struct DefDistMapBase : public Base { + typedef T DistMap; + static DistMap *createDistMap(const Digraph &) { return 0; }; + DefDistMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting DistMap type + /// + /// \ref named-templ-param "Named parameter" + ///function for setting DistMap type + /// + template + DfsWizard > distMap(const T &t) + { + Base::_dist=reinterpret_cast(const_cast(&t)); + return DfsWizard >(*this); + } + + /// Sets the source node, from which the Dfs algorithm runs. + + /// Sets the source node, from which the Dfs algorithm runs. + /// \param s is the source node. + DfsWizard &source(Node s) + { + Base::_source=s; + return *this; + } + + }; + + ///Function type interface for Dfs algorithm. + + ///\ingroup search + ///Function type interface for Dfs algorithm. + /// + ///This function also has several + ///\ref named-templ-func-param "named parameters", + ///they are declared as the members of class \ref DfsWizard. + ///The following + ///example shows how to use these parameters. + ///\code + /// dfs(g,source).predMap(preds).run(); + ///\endcode + ///\warning Don't forget to put the \ref DfsWizard::run() "run()" + ///to the end of the parameter list. + ///\sa DfsWizard + ///\sa Dfs + template + DfsWizard > + dfs(const GR &g,typename GR::Node s=INVALID) + { + return DfsWizard >(g,s); + } + +#ifdef DOXYGEN + /// \brief Visitor class for dfs. + /// + /// It gives a simple interface for a functional interface for dfs + /// traversal. The traversal on a linear data structure. + template + struct DfsVisitor { + typedef _Digraph Digraph; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Node Node; + /// \brief Called when the arc reach a node. + /// + /// It is called when the dfs find an arc which target is not + /// reached yet. + void discover(const Arc& arc) {} + /// \brief Called when the node reached first time. + /// + /// It is Called when the node reached first time. + void reach(const Node& node) {} + /// \brief Called when we step back on an arc. + /// + /// It is called when the dfs should step back on the arc. + void backtrack(const Arc& arc) {} + /// \brief Called when we step back from the node. + /// + /// It is called when we step back from the node. + void leave(const Node& node) {} + /// \brief Called when the arc examined but target of the arc + /// already discovered. + /// + /// It called when the arc examined but the target of the arc + /// already discovered. + void examine(const Arc& arc) {} + /// \brief Called for the source node of the dfs. + /// + /// It is called for the source node of the dfs. + void start(const Node& node) {} + /// \brief Called when we leave the source node of the dfs. + /// + /// It is called when we leave the source node of the dfs. + void stop(const Node& node) {} + + }; +#else + template + struct DfsVisitor { + typedef _Digraph Digraph; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Node Node; + void discover(const Arc&) {} + void reach(const Node&) {} + void backtrack(const Arc&) {} + void leave(const Node&) {} + void examine(const Arc&) {} + void start(const Node&) {} + void stop(const Node&) {} + + template + struct Constraints { + void constraints() { + Arc arc; + Node node; + visitor.discover(arc); + visitor.reach(node); + visitor.backtrack(arc); + visitor.leave(node); + visitor.examine(arc); + visitor.start(node); + visitor.stop(arc); + } + _Visitor& visitor; + }; + }; +#endif + + /// \brief Default traits class of DfsVisit class. + /// + /// Default traits class of DfsVisit class. + /// \param _Digraph Digraph type. + template + struct DfsVisitDefaultTraits { + + /// \brief The digraph type the algorithm runs on. + typedef _Digraph Digraph; + + /// \brief The type of the map that indicates which nodes are reached. + /// + /// The type of the map that indicates which nodes are reached. + /// It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// \todo named parameter to set this type, function to read and write. + typedef typename Digraph::template NodeMap ReachedMap; + + /// \brief Instantiates a ReachedMap. + /// + /// This function instantiates a \ref ReachedMap. + /// \param digraph is the digraph, to which + /// we would like to define the \ref ReachedMap. + static ReachedMap *createReachedMap(const Digraph &digraph) { + return new ReachedMap(digraph); + } + + }; + + /// %DFS Visit algorithm class. + + /// \ingroup search + /// This class provides an efficient implementation of the %DFS algorithm + /// with visitor interface. + /// + /// The %DfsVisit class provides an alternative interface to the Dfs + /// class. It works with callback mechanism, the DfsVisit object calls + /// on every dfs event the \c Visitor class member functions. + /// + /// \param _Digraph The digraph type the algorithm runs on. The default value is + /// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it + /// is only passed to \ref DfsDefaultTraits. + /// \param _Visitor The Visitor object for the algorithm. The + /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which + /// does not observe the Dfs events. If you want to observe the dfs + /// events you should implement your own Visitor class. + /// \param _Traits Traits class to set various data types used by the + /// algorithm. The default traits class is + /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". + /// See \ref DfsVisitDefaultTraits for the documentation of + /// a Dfs visit traits class. + /// + /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso +#ifdef DOXYGEN + template +#else + template , + typename _Traits = DfsDefaultTraits<_Digraph> > +#endif + class DfsVisit { + public: + + /// \brief \ref Exception for uninitialized parameters. + /// + /// This error represents problems in the initialization + /// of the parameters of the algorithms. + class UninitializedParameter : public lemon::UninitializedParameter { + public: + virtual const char* what() const throw() + { + return "lemon::DfsVisit::UninitializedParameter"; + } + }; + + typedef _Traits Traits; + + typedef typename Traits::Digraph Digraph; + + typedef _Visitor Visitor; + + ///The type of the map indicating which nodes are reached. + typedef typename Traits::ReachedMap ReachedMap; + + private: + + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::OutArcIt OutArcIt; + + /// Pointer to the underlying digraph. + const Digraph *_digraph; + /// Pointer to the visitor object. + Visitor *_visitor; + ///Pointer to the map of reached status of the nodes. + ReachedMap *_reached; + ///Indicates if \ref _reached is locally allocated (\c true) or not. + bool local_reached; + + std::vector _stack; + int _stack_head; + + /// \brief Creates the maps if necessary. + /// + /// Creates the maps if necessary. + void create_maps() { + if(!_reached) { + local_reached = true; + _reached = Traits::createReachedMap(*_digraph); + } + } + + protected: + + DfsVisit() {} + + public: + + typedef DfsVisit Create; + + /// \name Named template parameters + + ///@{ + template + struct DefReachedMapTraits : public Traits { + typedef T ReachedMap; + static ReachedMap *createReachedMap(const Digraph &digraph) { + throw UninitializedParameter(); + } + }; + /// \brief \ref named-templ-param "Named parameter" for setting + /// ReachedMap type + /// + /// \ref named-templ-param "Named parameter" for setting ReachedMap type + template + struct DefReachedMap : public DfsVisit< Digraph, Visitor, + DefReachedMapTraits > { + typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits > Create; + }; + ///@} + + public: + + /// \brief Constructor. + /// + /// Constructor. + /// + /// \param digraph the digraph the algorithm will run on. + /// \param visitor The visitor of the algorithm. + /// + DfsVisit(const Digraph& digraph, Visitor& visitor) + : _digraph(&digraph), _visitor(&visitor), + _reached(0), local_reached(false) {} + + /// \brief Destructor. + /// + /// Destructor. + ~DfsVisit() { + if(local_reached) delete _reached; + } + + /// \brief Sets the map indicating if a node is reached. + /// + /// Sets the map indicating if a node is reached. + /// If you don't use this function before calling \ref run(), + /// it will allocate one. The destuctor deallocates this + /// automatically allocated map, of course. + /// \return (*this) + DfsVisit &reachedMap(ReachedMap &m) { + if(local_reached) { + delete _reached; + local_reached=false; + } + _reached = &m; + return *this; + } + + public: + /// \name Execution control + /// The simplest way to execute the algorithm is to use + /// one of the member functions called \c run(...). + /// \n + /// If you need more control on the execution, + /// first you must call \ref init(), then you can adda source node + /// with \ref addSource(). + /// Finally \ref start() will perform the actual path + /// computation. + + /// @{ + /// \brief Initializes the internal data structures. + /// + /// Initializes the internal data structures. + /// + void init() { + create_maps(); + _stack.resize(countNodes(*_digraph)); + _stack_head = -1; + for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { + _reached->set(u, false); + } + } + + /// \brief Adds a new source node. + /// + /// Adds a new source node to the set of nodes to be processed. + void addSource(Node s) { + if(!(*_reached)[s]) { + _reached->set(s,true); + _visitor->start(s); + _visitor->reach(s); + Arc e; + _digraph->firstOut(e, s); + if (e != INVALID) { + _stack[++_stack_head] = e; + } else { + _visitor->leave(s); + } + } + } + + /// \brief Processes the next arc. + /// + /// Processes the next arc. + /// + /// \return The processed arc. + /// + /// \pre The stack must not be empty! + Arc processNextArc() { + Arc e = _stack[_stack_head]; + Node m = _digraph->target(e); + if(!(*_reached)[m]) { + _visitor->discover(e); + _visitor->reach(m); + _reached->set(m, true); + _digraph->firstOut(_stack[++_stack_head], m); + } else { + _visitor->examine(e); + m = _digraph->source(e); + _digraph->nextOut(_stack[_stack_head]); + } + while (_stack_head>=0 && _stack[_stack_head] == INVALID) { + _visitor->leave(m); + --_stack_head; + if (_stack_head >= 0) { + _visitor->backtrack(_stack[_stack_head]); + m = _digraph->source(_stack[_stack_head]); + _digraph->nextOut(_stack[_stack_head]); + } else { + _visitor->stop(m); + } + } + return e; + } + + /// \brief Next arc to be processed. + /// + /// Next arc to be processed. + /// + /// \return The next arc to be processed or INVALID if the stack is + /// empty. + Arc nextArc() { + return _stack_head >= 0 ? _stack[_stack_head] : INVALID; + } + + /// \brief Returns \c false if there are nodes + /// to be processed in the queue + /// + /// Returns \c false if there are nodes + /// to be processed in the queue + bool emptyQueue() { return _stack_head < 0; } + + /// \brief Returns the number of the nodes to be processed. + /// + /// Returns the number of the nodes to be processed in the queue. + int queueSize() { return _stack_head + 1; } + + /// \brief Executes the algorithm. + /// + /// Executes the algorithm. + /// + /// \pre init() must be called and at least one node should be added + /// with addSource() before using this function. + void start() { + while ( !emptyQueue() ) processNextArc(); + } + + /// \brief Executes the algorithm until \c dest is reached. + /// + /// Executes the algorithm until \c dest is reached. + /// + /// \pre init() must be called and at least one node should be added + /// with addSource() before using this function. + void start(Node dest) { + while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) + processNextArc(); + } + + /// \brief Executes the algorithm until a condition is met. + /// + /// Executes the algorithm until a condition is met. + /// + /// \pre init() must be called and at least one node should be added + /// with addSource() before using this function. + /// + /// \param em must be a bool (or convertible) arc map. The algorithm + /// will stop when it reaches an arc \c e with em[e] true. + /// + ///\return The reached arc \c e with em[e] true or + ///\c INVALID if no such arc was found. + /// + /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, + /// not a node map. + template + Arc start(const EM &em) { + while ( !emptyQueue() && !em[_stack[_stack_head]] ) + processNextArc(); + return emptyQueue() ? INVALID : _stack[_stack_head]; + } + + /// \brief Runs %DFSVisit algorithm from node \c s. + /// + /// This method runs the %DFS algorithm from a root node \c s. + /// \note d.run(s) is just a shortcut of the following code. + ///\code + /// d.init(); + /// d.addSource(s); + /// d.start(); + ///\endcode + void run(Node s) { + init(); + addSource(s); + start(); + } + + /// \brief Runs %DFSVisit algorithm to visit all nodes in the digraph. + + /// This method runs the %DFS algorithm in order to + /// compute the %DFS path to each node. The algorithm computes + /// - The %DFS tree. + /// - The distance of each node from the root in the %DFS tree. + /// + ///\note d.run() is just a shortcut of the following code. + ///\code + /// d.init(); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!d.reached(it)) { + /// d.addSource(it); + /// d.start(); + /// } + /// } + ///\endcode + void run() { + init(); + for (NodeIt it(*_digraph); it != INVALID; ++it) { + if (!reached(it)) { + addSource(it); + start(); + } + } + } + ///@} + + /// \name Query Functions + /// The result of the %DFS algorithm can be obtained using these + /// functions.\n + /// Before the use of these functions, + /// either run() or start() must be called. + ///@{ + /// \brief Checks if a node is reachable from the root. + /// + /// Returns \c true if \c v is reachable from the root(s). + /// \warning The source nodes are inditated as unreachable. + /// \pre Either \ref run() or \ref start() + /// must be called before using this function. + /// + bool reached(Node v) { return (*_reached)[v]; } + ///@} + }; + + +} //END OF NAMESPACE LEMON + +#endif +