* This file is a part of LEMON, a generic C++ optimization library
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_TEST_TEST_TOOLS_H
#define LEMON_TEST_TEST_TOOLS_H
#include <lemon/concept_check.h>
#include <lemon/concepts/digraph.h>
#include <lemon/random.h>
//! \brief Some utilities to write test programs.
///If \c rc is fail, writes an error message end exit.
///If \c rc is fail, writes an error message end exit.
///The error message contains the file name and the line number of the
///source code in a standard from, which makes it possible to go there
///using good source browsers like e.g. \c emacs.
///\code check(0==1,"This is obviously false.");\endcode will
///print this (and then exits).
///\verbatim digraph_test.cc:123: error: This is obviously false. \endverbatim
///\todo It should be in \c error.h
std::cerr << __FILE__ ":" << __LINE__ << ": error: " << msg << std::endl; \
///Structure returned by \ref addPetersen().
///Structure returned by \ref addPetersen().
template<class Digraph> struct PetStruct
///Vector containing the outer nodes.
std::vector<typename Digraph::Node> outer;
///Vector containing the inner nodes.
std::vector<typename Digraph::Node> inner;
///Vector containing the arcs of the inner circle.
std::vector<typename Digraph::Arc> incir;
///Vector containing the arcs of the outer circle.
std::vector<typename Digraph::Arc> outcir;
///Vector containing the chord arcs.
std::vector<typename Digraph::Arc> chords;
///Adds a Petersen digraph to \c G.
///Adds a Petersen digraph to \c G.
///\return The nodes and arcs of the generated digraph.
template<typename Digraph>
PetStruct<Digraph> addPetersen(Digraph &G,int num = 5)
n.outer.push_back(G.addNode());
n.inner.push_back(G.addNode());
n.chords.push_back(G.addArc(n.outer[i],n.inner[i]));
n.outcir.push_back(G.addArc(n.outer[i],n.outer[(i+1) % num]));
n.incir.push_back(G.addArc(n.inner[i],n.inner[(i+2) % num]));
/// \brief Adds to the digraph the reverse pair of all arcs.
/// Adds to the digraph the reverse pair of all arcs.
template<class Digraph> void bidirDigraph(Digraph &G)
typedef typename Digraph::Arc Arc;
typedef typename Digraph::ArcIt ArcIt;
for(ArcIt e(G);e!=INVALID;++e) ee.push_back(e);
for(typename std::vector<Arc>::iterator p=ee.begin();p!=ee.end();p++)
G.addArc(G.target(*p),G.source(*p));
/// \brief Checks the bidirectioned Petersen digraph.
/// Checks the bidirectioned Petersen digraph.
template<class Digraph> void checkBidirPetersen(Digraph &G, int num = 5)
typedef typename Digraph::Node Node;
typedef typename Digraph::ArcIt ArcIt;
typedef typename Digraph::NodeIt NodeIt;
checkDigraphNodeList(G, 2 * num);
checkDigraphArcList(G, 6 * num);
for(NodeIt n(G);n!=INVALID;++n) {
checkDigraphInArcList(G, n, 3);
checkDigraphOutArcList(G, n, 3);
///Structure returned by \ref addUPetersen().
///Structure returned by \ref addUPetersen().
template<class Digraph> struct UPetStruct
///Vector containing the outer nodes.
std::vector<typename Digraph::Node> outer;
///Vector containing the inner nodes.
std::vector<typename Digraph::Node> inner;
///Vector containing the arcs of the inner circle.
std::vector<typename Digraph::Edge> incir;
///Vector containing the arcs of the outer circle.
std::vector<typename Digraph::Edge> outcir;
///Vector containing the chord arcs.
std::vector<typename Digraph::Edge> chords;
///Adds a Petersen digraph to the undirected \c G.
///Adds a Petersen digraph to the undirected \c G.
///\return The nodes and arcs of the generated digraph.
template<typename Digraph>
UPetStruct<Digraph> addUPetersen(Digraph &G,int num=5)
n.outer.push_back(G.addNode());
n.inner.push_back(G.addNode());
n.chords.push_back(G.addArc(n.outer[i],n.inner[i]));
n.outcir.push_back(G.addArc(n.outer[i],n.outer[(i+1)%5]));
n.incir.push_back(G.addArc(n.inner[i],n.inner[(i+2)%5]));