Location: LEMON/LEMON-official/lemon/dfs.h

Load file history
gravatar
alpar (Alpar Juttner)
Update the AUTHORS file
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_DFS_H
#define LEMON_DFS_H
///\ingroup search
///\file
///\brief DFS algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>
namespace lemon {
///Default traits class of Dfs class.
///Default traits class of Dfs class.
///\tparam GR Digraph type.
template<class GR>
struct DfsDefaultTraits
{
///The type of the digraph the algorithm runs on.
typedef GR Digraph;
///\brief The type of the map that stores the predecessor
///arcs of the %DFS paths.
///
///The type of the map that stores the predecessor
///arcs of the %DFS paths.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
///Instantiates a PredMap.
///This function instantiates a PredMap.
///\param g is the digraph, to which we would like to define the
///PredMap.
static PredMap *createPredMap(const Digraph &g)
{
return new PredMap(g);
}
///The type of the map that indicates which nodes are processed.
///The type of the map that indicates which nodes are processed.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
///Instantiates a ProcessedMap.
///This function instantiates a ProcessedMap.
///\param g is the digraph, to which
///we would like to define the ProcessedMap
#ifdef DOXYGEN
static ProcessedMap *createProcessedMap(const Digraph &g)
#else
static ProcessedMap *createProcessedMap(const Digraph &)
#endif
{
return new ProcessedMap();
}
///The type of the map that indicates which nodes are reached.
///The type of the map that indicates which nodes are reached.
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
///Instantiates a ReachedMap.
///This function instantiates a ReachedMap.
///\param g is the digraph, to which
///we would like to define the ReachedMap.
static ReachedMap *createReachedMap(const Digraph &g)
{
return new ReachedMap(g);
}
///The type of the map that stores the distances of the nodes.
///The type of the map that stores the distances of the nodes.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<int> DistMap;
///Instantiates a DistMap.
///This function instantiates a DistMap.
///\param g is the digraph, to which we would like to define the
///DistMap.
static DistMap *createDistMap(const Digraph &g)
{
return new DistMap(g);
}
};
///%DFS algorithm class.
///\ingroup search
///This class provides an efficient implementation of the %DFS algorithm.
///
///There is also a \ref dfs() "function-type interface" for the DFS
///algorithm, which is convenient in the simplier cases and it can be
///used easier.
///
///\tparam GR The type of the digraph the algorithm runs on.
///The default value is \ref ListDigraph. The value of GR is not used
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits.
///\tparam TR Traits class to set various data types used by the algorithm.
///The default traits class is
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
///See \ref DfsDefaultTraits for the documentation of
///a Dfs traits class.
#ifdef DOXYGEN
template <typename GR,
typename TR>
#else
template <typename GR=ListDigraph,
typename TR=DfsDefaultTraits<GR> >
#endif
class Dfs {
public:
///The type of the digraph the algorithm runs on.
typedef typename TR::Digraph Digraph;
///\brief The type of the map that stores the predecessor arcs of the
///DFS paths.
typedef typename TR::PredMap PredMap;
///The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
///The type of the map that indicates which nodes are reached.
typedef typename TR::ReachedMap ReachedMap;
///The type of the map that indicates which nodes are processed.
typedef typename TR::ProcessedMap ProcessedMap;
///The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///The traits class.
typedef TR Traits;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
//Pointer to the underlying digraph.
const Digraph *G;
//Pointer to the map of predecessor arcs.
PredMap *_pred;
//Indicates if _pred is locally allocated (true) or not.
bool local_pred;
//Pointer to the map of distances.
DistMap *_dist;
//Indicates if _dist is locally allocated (true) or not.
bool local_dist;
//Pointer to the map of reached status of the nodes.
ReachedMap *_reached;
//Indicates if _reached is locally allocated (true) or not.
bool local_reached;
//Pointer to the map of processed status of the nodes.
ProcessedMap *_processed;
//Indicates if _processed is locally allocated (true) or not.
bool local_processed;
std::vector<typename Digraph::OutArcIt> _stack;
int _stack_head;
//Creates the maps if necessary.
void create_maps()
{
if(!_pred) {
local_pred = true;
_pred = Traits::createPredMap(*G);
}
if(!_dist) {
local_dist = true;
_dist = Traits::createDistMap(*G);
}
if(!_reached) {
local_reached = true;
_reached = Traits::createReachedMap(*G);
}
if(!_processed) {
local_processed = true;
_processed = Traits::createProcessedMap(*G);
}
}
protected:
Dfs() {}
public:
typedef Dfs Create;
///\name Named template parameters
///@{
template <class T>
struct SetPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &)
{
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///PredMap type.
///
///\ref named-templ-param "Named parameter" for setting
///PredMap type.
template <class T>
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
};
template <class T>
struct SetDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &)
{
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///DistMap type.
///
///\ref named-templ-param "Named parameter" for setting
///DistMap type.
template <class T>
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
};
template <class T>
struct SetReachedMapTraits : public Traits {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &)
{
LEMON_ASSERT(false, "ReachedMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///ReachedMap type.
///
///\ref named-templ-param "Named parameter" for setting
///ReachedMap type.
template <class T>
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
};
template <class T>
struct SetProcessedMapTraits : public Traits {
typedef T ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &)
{
LEMON_ASSERT(false, "ProcessedMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///ProcessedMap type.
///
///\ref named-templ-param "Named parameter" for setting
///ProcessedMap type.
template <class T>
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
};
struct SetStandardProcessedMapTraits : public Traits {
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &g)
{
return new ProcessedMap(g);
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
///
///\ref named-templ-param "Named parameter" for setting
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
///If you don't set it explicitly, it will be automatically allocated.
struct SetStandardProcessedMap :
public Dfs< Digraph, SetStandardProcessedMapTraits > {
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
};
///@}
public:
///Constructor.
///Constructor.
///\param g The digraph the algorithm runs on.
Dfs(const Digraph &g) :
G(&g),
_pred(NULL), local_pred(false),
_dist(NULL), local_dist(false),
_reached(NULL), local_reached(false),
_processed(NULL), local_processed(false)
{ }
///Destructor.
~Dfs()
{
if(local_pred) delete _pred;
if(local_dist) delete _dist;
if(local_reached) delete _reached;
if(local_processed) delete _processed;
}
///Sets the map that stores the predecessor arcs.
///Sets the map that stores the predecessor arcs.
///If you don't use this function before calling \ref run(),
///it will allocate one. The destructor deallocates this
///automatically allocated map, of course.
///\return <tt> (*this) </tt>
Dfs &predMap(PredMap &m)
{
if(local_pred) {
delete _pred;
local_pred=false;
}
_pred = &m;
return *this;
}
///Sets the map that indicates which nodes are reached.
///Sets the map that indicates which nodes are reached.
///If you don't use this function before calling \ref run(),
///it will allocate one. The destructor deallocates this
///automatically allocated map, of course.
///\return <tt> (*this) </tt>
Dfs &reachedMap(ReachedMap &m)
{
if(local_reached) {
delete _reached;
local_reached=false;
}
_reached = &m;
return *this;
}
///Sets the map that indicates which nodes are processed.
///Sets the map that indicates which nodes are processed.
///If you don't use this function before calling \ref run(),
///it will allocate one. The destructor deallocates this
///automatically allocated map, of course.
///\return <tt> (*this) </tt>
Dfs &processedMap(ProcessedMap &m)
{
if(local_processed) {
delete _processed;
local_processed=false;
}
_processed = &m;
return *this;
}
///Sets the map that stores the distances of the nodes.
///Sets the map that stores the distances of the nodes calculated by
///the algorithm.
///If you don't use this function before calling \ref run(),
///it will allocate one. The destructor deallocates this
///automatically allocated map, of course.
///\return <tt> (*this) </tt>
Dfs &distMap(DistMap &m)
{
if(local_dist) {
delete _dist;
local_dist=false;
}
_dist = &m;
return *this;
}
public:
///\name Execution control
///The simplest way to execute the algorithm is to use
///one of the member functions called \ref lemon::Dfs::run() "run()".
///\n
///If you need more control on the execution, first you must call
///\ref lemon::Dfs::init() "init()", then you can add a source node
///with \ref lemon::Dfs::addSource() "addSource()".
///Finally \ref lemon::Dfs::start() "start()" will perform the
///actual path computation.
///@{
///Initializes the internal data structures.
///Initializes the internal data structures.
///
void init()
{
create_maps();
_stack.resize(countNodes(*G));
_stack_head=-1;
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
_pred->set(u,INVALID);
_reached->set(u,false);
_processed->set(u,false);
}
}
///Adds a new source node.
///Adds a new source node to the set of nodes to be processed.
///
///\pre The stack must be empty. (Otherwise the algorithm gives
///false results.)
///
///\warning Distances will be wrong (or at least strange) in case of
///multiple sources.
void addSource(Node s)
{
LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
if(!(*_reached)[s])
{
_reached->set(s,true);
_pred->set(s,INVALID);
OutArcIt e(*G,s);
if(e!=INVALID) {
_stack[++_stack_head]=e;
_dist->set(s,_stack_head);
}
else {
_processed->set(s,true);
_dist->set(s,0);
}
}
}
///Processes the next arc.
///Processes the next arc.
///
///\return The processed arc.
///
///\pre The stack must not be empty.
Arc processNextArc()
{
Node m;
Arc e=_stack[_stack_head];
if(!(*_reached)[m=G->target(e)]) {
_pred->set(m,e);
_reached->set(m,true);
++_stack_head;
_stack[_stack_head] = OutArcIt(*G, m);
_dist->set(m,_stack_head);
}
else {
m=G->source(e);
++_stack[_stack_head];
}
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
_processed->set(m,true);
--_stack_head;
if(_stack_head>=0) {
m=G->source(_stack[_stack_head]);
++_stack[_stack_head];
}
}
return e;
}
///Next arc to be processed.
///Next arc to be processed.
///
///\return The next arc to be processed or \c INVALID if the stack
///is empty.
OutArcIt nextArc() const
{
return _stack_head>=0?_stack[_stack_head]:INVALID;
}
///\brief Returns \c false if there are nodes
///to be processed.
///
///Returns \c false if there are nodes
///to be processed in the queue (stack).
bool emptyQueue() const { return _stack_head<0; }
///Returns the number of the nodes to be processed.
///Returns the number of the nodes to be processed in the queue (stack).
int queueSize() const { return _stack_head+1; }
///Executes the algorithm.
///Executes the algorithm.
///
///This method runs the %DFS algorithm from the root node
///in order to compute the DFS path to each node.
///
/// The algorithm computes
///- the %DFS tree,
///- the distance of each node from the root in the %DFS tree.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
///
///\note <tt>d.start()</tt> is just a shortcut of the following code.
///\code
/// while ( !d.emptyQueue() ) {
/// d.processNextArc();
/// }
///\endcode
void start()
{
while ( !emptyQueue() ) processNextArc();
}
///Executes the algorithm until the given target node is reached.
///Executes the algorithm until the given target node is reached.
///
///This method runs the %DFS algorithm from the root node
///in order to compute the DFS path to \c t.
///
///The algorithm computes
///- the %DFS path to \c t,
///- the distance of \c t from the root in the %DFS tree.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
void start(Node t)
{
while ( !emptyQueue() && !(*_reached)[t] )
processNextArc();
}
///Executes the algorithm until a condition is met.
///Executes the algorithm until a condition is met.
///
///This method runs the %DFS algorithm from the root node
///until an arc \c a with <tt>am[a]</tt> true is found.
///
///\param am A \c bool (or convertible) arc map. The algorithm
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
///
///\return The reached arc \c a with <tt>am[a]</tt> true or
///\c INVALID if no such arc was found.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
///
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
///not a node map.
template<class ArcBoolMap>
Arc start(const ArcBoolMap &am)
{
while ( !emptyQueue() && !am[_stack[_stack_head]] )
processNextArc();
return emptyQueue() ? INVALID : _stack[_stack_head];
}
///Runs the algorithm from the given source node.
///This method runs the %DFS algorithm from node \c s
///in order to compute the DFS path to each node.
///
///The algorithm computes
///- the %DFS tree,
///- the distance of each node from the root in the %DFS tree.
///
///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
///Finds the %DFS path between \c s and \c t.
///This method runs the %DFS algorithm from node \c s
///in order to compute the DFS path to node \c t
///(it stops searching when \c t is processed)
///
///\return \c true if \c t is reachable form \c s.
///
///\note Apart from the return value, <tt>d.run(s,t)</tt> is
///just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start(t);
///\endcode
bool run(Node s,Node t) {
init();
addSource(s);
start(t);
return reached(t);
}
///Runs the algorithm to visit all nodes in the digraph.
///This method runs the %DFS algorithm in order to compute the
///%DFS path to each node.
///
///The algorithm computes
///- the %DFS tree,
///- the distance of each node from the root in the %DFS tree.
///
///\note <tt>d.run()</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// for (NodeIt n(digraph); n != INVALID; ++n) {
/// if (!d.reached(n)) {
/// d.addSource(n);
/// d.start();
/// }
/// }
///\endcode
void run() {
init();
for (NodeIt it(*G); it != INVALID; ++it) {
if (!reached(it)) {
addSource(it);
start();
}
}
}
///@}
///\name Query Functions
///The result of the %DFS algorithm can be obtained using these
///functions.\n
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start()
///"start()" must be called before using them.
///@{
///The DFS path to a node.
///Returns the DFS path to a node.
///
///\warning \c t should be reachable from the root.
///
///\pre Either \ref run() or \ref start() must be called before
///using this function.
Path path(Node t) const { return Path(*G, *_pred, t); }
///The distance of a node from the root.
///Returns the distance of a node from the root.
///
///\warning If node \c v is not reachable from the root, then
///the return value of this function is undefined.
///
///\pre Either \ref run() or \ref start() must be called before
///using this function.
int dist(Node v) const { return (*_dist)[v]; }
///Returns the 'previous arc' of the %DFS tree for a node.
///This function returns the 'previous arc' of the %DFS tree for the
///node \c v, i.e. it returns the last arc of a %DFS path from the
///root to \c v. It is \c INVALID
///if \c v is not reachable from the root(s) or if \c v is a root.
///
///The %DFS tree used here is equal to the %DFS tree used in
///\ref predNode().
///
///\pre Either \ref run() or \ref start() must be called before using
///this function.
Arc predArc(Node v) const { return (*_pred)[v];}
///Returns the 'previous node' of the %DFS tree.
///This function returns the 'previous node' of the %DFS
///tree for the node \c v, i.e. it returns the last but one node
///from a %DFS path from the root to \c v. It is \c INVALID
///if \c v is not reachable from the root(s) or if \c v is a root.
///
///The %DFS tree used here is equal to the %DFS tree used in
///\ref predArc().
///
///\pre Either \ref run() or \ref start() must be called before
///using this function.
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
G->source((*_pred)[v]); }
///\brief Returns a const reference to the node map that stores the
///distances of the nodes.
///
///Returns a const reference to the node map that stores the
///distances of the nodes calculated by the algorithm.
///
///\pre Either \ref run() or \ref init()
///must be called before using this function.
const DistMap &distMap() const { return *_dist;}
///\brief Returns a const reference to the node map that stores the
///predecessor arcs.
///
///Returns a const reference to the node map that stores the predecessor
///arcs, which form the DFS tree.
///
///\pre Either \ref run() or \ref init()
///must be called before using this function.
const PredMap &predMap() const { return *_pred;}
///Checks if a node is reachable from the root(s).
///Returns \c true if \c v is reachable from the root(s).
///\pre Either \ref run() or \ref start()
///must be called before using this function.
bool reached(Node v) const { return (*_reached)[v]; }
///@}
};
///Default traits class of dfs() function.
///Default traits class of dfs() function.
///\tparam GR Digraph type.
template<class GR>
struct DfsWizardDefaultTraits
{
///The type of the digraph the algorithm runs on.
typedef GR Digraph;
///\brief The type of the map that stores the predecessor
///arcs of the %DFS paths.
///
///The type of the map that stores the predecessor
///arcs of the %DFS paths.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
///Instantiates a PredMap.
///This function instantiates a PredMap.
///\param g is the digraph, to which we would like to define the
///PredMap.
static PredMap *createPredMap(const Digraph &g)
{
return new PredMap(g);
}
///The type of the map that indicates which nodes are processed.
///The type of the map that indicates which nodes are processed.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
///By default it is a NullMap.
typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
///Instantiates a ProcessedMap.
///This function instantiates a ProcessedMap.
///\param g is the digraph, to which
///we would like to define the ProcessedMap.
#ifdef DOXYGEN
static ProcessedMap *createProcessedMap(const Digraph &g)
#else
static ProcessedMap *createProcessedMap(const Digraph &)
#endif
{
return new ProcessedMap();
}
///The type of the map that indicates which nodes are reached.
///The type of the map that indicates which nodes are reached.
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
///Instantiates a ReachedMap.
///This function instantiates a ReachedMap.
///\param g is the digraph, to which
///we would like to define the ReachedMap.
static ReachedMap *createReachedMap(const Digraph &g)
{
return new ReachedMap(g);
}
///The type of the map that stores the distances of the nodes.
///The type of the map that stores the distances of the nodes.
///It must meet the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<int> DistMap;
///Instantiates a DistMap.
///This function instantiates a DistMap.
///\param g is the digraph, to which we would like to define
///the DistMap
static DistMap *createDistMap(const Digraph &g)
{
return new DistMap(g);
}
///The type of the DFS paths.
///The type of the DFS paths.
///It must meet the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
};
/// Default traits class used by DfsWizard
/// To make it easier to use Dfs algorithm
/// we have created a wizard class.
/// This \ref DfsWizard class needs default traits,
/// as well as the \ref Dfs class.
/// The \ref DfsWizardBase is a class to be the default traits of the
/// \ref DfsWizard class.
template<class GR>
class DfsWizardBase : public DfsWizardDefaultTraits<GR>
{
typedef DfsWizardDefaultTraits<GR> Base;
protected:
//The type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
//Pointer to the digraph the algorithm runs on.
void *_g;
//Pointer to the map of reached nodes.
void *_reached;
//Pointer to the map of processed nodes.
void *_processed;
//Pointer to the map of predecessors arcs.
void *_pred;
//Pointer to the map of distances.
void *_dist;
//Pointer to the DFS path to the target node.
void *_path;
//Pointer to the distance of the target node.
int *_di;
public:
/// Constructor.
/// This constructor does not require parameters, therefore it initiates
/// all of the attributes to \c 0.
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
_dist(0), _path(0), _di(0) {}
/// Constructor.
/// This constructor requires one parameter,
/// others are initiated to \c 0.
/// \param g The digraph the algorithm runs on.
DfsWizardBase(const GR &g) :
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
};
/// Auxiliary class for the function-type interface of DFS algorithm.
/// This auxiliary class is created to implement the
/// \ref dfs() "function-type interface" of \ref Dfs algorithm.
/// It does not have own \ref run() method, it uses the functions
/// and features of the plain \ref Dfs.
///
/// This class should only be used through the \ref dfs() function,
/// which makes it easier to use the algorithm.
template<class TR>
class DfsWizard : public TR
{
typedef TR Base;
///The type of the digraph the algorithm runs on.
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
///\brief The type of the map that stores the predecessor
///arcs of the DFS paths.
typedef typename TR::PredMap PredMap;
///\brief The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
///\brief The type of the map that indicates which nodes are reached.
typedef typename TR::ReachedMap ReachedMap;
///\brief The type of the map that indicates which nodes are processed.
typedef typename TR::ProcessedMap ProcessedMap;
///The type of the DFS paths
typedef typename TR::Path Path;
public:
/// Constructor.
DfsWizard() : TR() {}
/// Constructor that requires parameters.
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param g The digraph the algorithm runs on.
DfsWizard(const Digraph &g) :
TR(g) {}
///Copy constructor
DfsWizard(const TR &b) : TR(b) {}
~DfsWizard() {}
///Runs DFS algorithm from the given source node.
///This method runs DFS algorithm from node \c s
///in order to compute the DFS path to each node.
void run(Node s)
{
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
if (Base::_pred)
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist)
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
if (Base::_reached)
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
if (Base::_processed)
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
if (s!=INVALID)
alg.run(s);
else
alg.run();
}
///Finds the DFS path between \c s and \c t.
///This method runs DFS algorithm from node \c s
///in order to compute the DFS path to node \c t
///(it stops searching when \c t is processed).
///
///\return \c true if \c t is reachable form \c s.
bool run(Node s, Node t)
{
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
if (Base::_pred)
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist)
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
if (Base::_reached)
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
if (Base::_processed)
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
alg.run(s,t);
if (Base::_path)
*reinterpret_cast<Path*>(Base::_path) = alg.path(t);
if (Base::_di)
*Base::_di = alg.dist(t);
return alg.reached(t);
}
///Runs DFS algorithm to visit all nodes in the digraph.
///This method runs DFS algorithm in order to compute
///the DFS path to each node.
void run()
{
run(INVALID);
}
template<class T>
struct SetPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for setting PredMap object.
///
///\ref named-func-param "Named parameter"
///for setting PredMap object.
template<class T>
DfsWizard<SetPredMapBase<T> > predMap(const T &t)
{
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetPredMapBase<T> >(*this);
}
template<class T>
struct SetReachedMapBase : public Base {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
SetReachedMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for setting ReachedMap object.
///
/// \ref named-func-param "Named parameter"
///for setting ReachedMap object.
template<class T>
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
{
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetReachedMapBase<T> >(*this);
}
template<class T>
struct SetDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for setting DistMap object.
///
/// \ref named-func-param "Named parameter"
///for setting DistMap object.
template<class T>
DfsWizard<SetDistMapBase<T> > distMap(const T &t)
{
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetDistMapBase<T> >(*this);
}
template<class T>
struct SetProcessedMapBase : public Base {
typedef T ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
SetProcessedMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for setting ProcessedMap object.
///
/// \ref named-func-param "Named parameter"
///for setting ProcessedMap object.
template<class T>
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
{
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetProcessedMapBase<T> >(*this);
}
template<class T>
struct SetPathBase : public Base {
typedef T Path;
SetPathBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for getting the DFS path to the target node.
///
///\ref named-func-param "Named parameter"
///for getting the DFS path to the target node.
template<class T>
DfsWizard<SetPathBase<T> > path(const T &t)
{
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetPathBase<T> >(*this);
}
///\brief \ref named-func-param "Named parameter"
///for getting the distance of the target node.
///
///\ref named-func-param "Named parameter"
///for getting the distance of the target node.
DfsWizard dist(const int &d)
{
Base::_di=const_cast<int*>(&d);
return *this;
}
};
///Function-type interface for DFS algorithm.
///\ingroup search
///Function-type interface for DFS algorithm.
///
///This function also has several \ref named-func-param "named parameters",
///they are declared as the members of class \ref DfsWizard.
///The following examples show how to use these parameters.
///\code
/// // Compute the DFS tree
/// dfs(g).predMap(preds).distMap(dists).run(s);
///
/// // Compute the DFS path from s to t
/// bool reached = dfs(g).path(p).dist(d).run(s,t);
///\endcode
///\warning Don't forget to put the \ref DfsWizard::run() "run()"
///to the end of the parameter list.
///\sa DfsWizard
///\sa Dfs
template<class GR>
DfsWizard<DfsWizardBase<GR> >
dfs(const GR &digraph)
{
return DfsWizard<DfsWizardBase<GR> >(digraph);
}
#ifdef DOXYGEN
/// \brief Visitor class for DFS.
///
/// This class defines the interface of the DfsVisit events, and
/// it could be the base of a real visitor class.
template <typename _Digraph>
struct DfsVisitor {
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
/// \brief Called for the source node of the DFS.
///
/// This function is called for the source node of the DFS.
void start(const Node& node) {}
/// \brief Called when the source node is leaved.
///
/// This function is called when the source node is leaved.
void stop(const Node& node) {}
/// \brief Called when a node is reached first time.
///
/// This function is called when a node is reached first time.
void reach(const Node& node) {}
/// \brief Called when an arc reaches a new node.
///
/// This function is called when the DFS finds an arc whose target node
/// is not reached yet.
void discover(const Arc& arc) {}
/// \brief Called when an arc is examined but its target node is
/// already discovered.
///
/// This function is called when an arc is examined but its target node is
/// already discovered.
void examine(const Arc& arc) {}
/// \brief Called when the DFS steps back from a node.
///
/// This function is called when the DFS steps back from a node.
void leave(const Node& node) {}
/// \brief Called when the DFS steps back on an arc.
///
/// This function is called when the DFS steps back on an arc.
void backtrack(const Arc& arc) {}
};
#else
template <typename _Digraph>
struct DfsVisitor {
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
void start(const Node&) {}
void stop(const Node&) {}
void reach(const Node&) {}
void discover(const Arc&) {}
void examine(const Arc&) {}
void leave(const Node&) {}
void backtrack(const Arc&) {}
template <typename _Visitor>
struct Constraints {
void constraints() {
Arc arc;
Node node;
visitor.start(node);
visitor.stop(arc);
visitor.reach(node);
visitor.discover(arc);
visitor.examine(arc);
visitor.leave(node);
visitor.backtrack(arc);
}
_Visitor& visitor;
};
};
#endif
/// \brief Default traits class of DfsVisit class.
///
/// Default traits class of DfsVisit class.
/// \tparam _Digraph The type of the digraph the algorithm runs on.
template<class _Digraph>
struct DfsVisitDefaultTraits {
/// \brief The type of the digraph the algorithm runs on.
typedef _Digraph Digraph;
/// \brief The type of the map that indicates which nodes are reached.
///
/// The type of the map that indicates which nodes are reached.
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
/// \brief Instantiates a ReachedMap.
///
/// This function instantiates a ReachedMap.
/// \param digraph is the digraph, to which
/// we would like to define the ReachedMap.
static ReachedMap *createReachedMap(const Digraph &digraph) {
return new ReachedMap(digraph);
}
};
/// \ingroup search
///
/// \brief %DFS algorithm class with visitor interface.
///
/// This class provides an efficient implementation of the %DFS algorithm
/// with visitor interface.
///
/// The %DfsVisit class provides an alternative interface to the Dfs
/// class. It works with callback mechanism, the DfsVisit object calls
/// the member functions of the \c Visitor class on every DFS event.
///
/// This interface of the DFS algorithm should be used in special cases
/// when extra actions have to be performed in connection with certain
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs()
/// instead.
///
/// \tparam _Digraph The type of the digraph the algorithm runs on.
/// The default value is
/// \ref ListDigraph. The value of _Digraph is not used directly by
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits.
/// \tparam _Visitor The Visitor type that is used by the algorithm.
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which
/// does not observe the DFS events. If you want to observe the DFS
/// events, you should implement your own visitor class.
/// \tparam _Traits Traits class to set various data types used by the
/// algorithm. The default traits class is
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>".
/// See \ref DfsVisitDefaultTraits for the documentation of
/// a DFS visit traits class.
#ifdef DOXYGEN
template <typename _Digraph, typename _Visitor, typename _Traits>
#else
template <typename _Digraph = ListDigraph,
typename _Visitor = DfsVisitor<_Digraph>,
typename _Traits = DfsVisitDefaultTraits<_Digraph> >
#endif
class DfsVisit {
public:
///The traits class.
typedef _Traits Traits;
///The type of the digraph the algorithm runs on.
typedef typename Traits::Digraph Digraph;
///The visitor type used by the algorithm.
typedef _Visitor Visitor;
///The type of the map that indicates which nodes are reached.
typedef typename Traits::ReachedMap ReachedMap;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
//Pointer to the underlying digraph.
const Digraph *_digraph;
//Pointer to the visitor object.
Visitor *_visitor;
//Pointer to the map of reached status of the nodes.
ReachedMap *_reached;
//Indicates if _reached is locally allocated (true) or not.
bool local_reached;
std::vector<typename Digraph::Arc> _stack;
int _stack_head;
//Creates the maps if necessary.
void create_maps() {
if(!_reached) {
local_reached = true;
_reached = Traits::createReachedMap(*_digraph);
}
}
protected:
DfsVisit() {}
public:
typedef DfsVisit Create;
/// \name Named template parameters
///@{
template <class T>
struct SetReachedMapTraits : public Traits {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &digraph) {
LEMON_ASSERT(false, "ReachedMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// ReachedMap type.
///
/// \ref named-templ-param "Named parameter" for setting ReachedMap type.
template <class T>
struct SetReachedMap : public DfsVisit< Digraph, Visitor,
SetReachedMapTraits<T> > {
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
};
///@}
public:
/// \brief Constructor.
///
/// Constructor.
///
/// \param digraph The digraph the algorithm runs on.
/// \param visitor The visitor object of the algorithm.
DfsVisit(const Digraph& digraph, Visitor& visitor)
: _digraph(&digraph), _visitor(&visitor),
_reached(0), local_reached(false) {}
/// \brief Destructor.
~DfsVisit() {
if(local_reached) delete _reached;
}
/// \brief Sets the map that indicates which nodes are reached.
///
/// Sets the map that indicates which nodes are reached.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destructor deallocates this
/// automatically allocated map, of course.
/// \return <tt> (*this) </tt>
DfsVisit &reachedMap(ReachedMap &m) {
if(local_reached) {
delete _reached;
local_reached=false;
}
_reached = &m;
return *this;
}
public:
/// \name Execution control
/// The simplest way to execute the algorithm is to use
/// one of the member functions called \ref lemon::DfsVisit::run()
/// "run()".
/// \n
/// If you need more control on the execution, first you must call
/// \ref lemon::DfsVisit::init() "init()", then you can add several
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()".
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the
/// actual path computation.
/// @{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures.
void init() {
create_maps();
_stack.resize(countNodes(*_digraph));
_stack_head = -1;
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
_reached->set(u, false);
}
}
///Adds a new source node.
///Adds a new source node to the set of nodes to be processed.
///
///\pre The stack must be empty. (Otherwise the algorithm gives
///false results.)
///
///\warning Distances will be wrong (or at least strange) in case of
///multiple sources.
void addSource(Node s)
{
LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
if(!(*_reached)[s]) {
_reached->set(s,true);
_visitor->start(s);
_visitor->reach(s);
Arc e;
_digraph->firstOut(e, s);
if (e != INVALID) {
_stack[++_stack_head] = e;
} else {
_visitor->leave(s);
}
}
}
/// \brief Processes the next arc.
///
/// Processes the next arc.
///
/// \return The processed arc.
///
/// \pre The stack must not be empty.
Arc processNextArc() {
Arc e = _stack[_stack_head];
Node m = _digraph->target(e);
if(!(*_reached)[m]) {
_visitor->discover(e);
_visitor->reach(m);
_reached->set(m, true);
_digraph->firstOut(_stack[++_stack_head], m);
} else {
_visitor->examine(e);
m = _digraph->source(e);
_digraph->nextOut(_stack[_stack_head]);
}
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
_visitor->leave(m);
--_stack_head;
if (_stack_head >= 0) {
_visitor->backtrack(_stack[_stack_head]);
m = _digraph->source(_stack[_stack_head]);
_digraph->nextOut(_stack[_stack_head]);
} else {
_visitor->stop(m);
}
}
return e;
}
/// \brief Next arc to be processed.
///
/// Next arc to be processed.
///
/// \return The next arc to be processed or INVALID if the stack is
/// empty.
Arc nextArc() const {
return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
}
/// \brief Returns \c false if there are nodes
/// to be processed.
///
/// Returns \c false if there are nodes
/// to be processed in the queue (stack).
bool emptyQueue() const { return _stack_head < 0; }
/// \brief Returns the number of the nodes to be processed.
///
/// Returns the number of the nodes to be processed in the queue (stack).
int queueSize() const { return _stack_head + 1; }
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// This method runs the %DFS algorithm from the root node
/// in order to compute the %DFS path to each node.
///
/// The algorithm computes
/// - the %DFS tree,
/// - the distance of each node from the root in the %DFS tree.
///
/// \pre init() must be called and a root node should be
/// added with addSource() before using this function.
///
/// \note <tt>d.start()</tt> is just a shortcut of the following code.
/// \code
/// while ( !d.emptyQueue() ) {
/// d.processNextArc();
/// }
/// \endcode
void start() {
while ( !emptyQueue() ) processNextArc();
}
/// \brief Executes the algorithm until the given target node is reached.
///
/// Executes the algorithm until the given target node is reached.
///
/// This method runs the %DFS algorithm from the root node
/// in order to compute the DFS path to \c t.
///
/// The algorithm computes
/// - the %DFS path to \c t,
/// - the distance of \c t from the root in the %DFS tree.
///
/// \pre init() must be called and a root node should be added
/// with addSource() before using this function.
void start(Node t) {
while ( !emptyQueue() && !(*_reached)[t] )
processNextArc();
}
/// \brief Executes the algorithm until a condition is met.
///
/// Executes the algorithm until a condition is met.
///
/// This method runs the %DFS algorithm from the root node
/// until an arc \c a with <tt>am[a]</tt> true is found.
///
/// \param am A \c bool (or convertible) arc map. The algorithm
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
///
/// \return The reached arc \c a with <tt>am[a]</tt> true or
/// \c INVALID if no such arc was found.
///
/// \pre init() must be called and a root node should be added
/// with addSource() before using this function.
///
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
/// not a node map.
template <typename AM>
Arc start(const AM &am) {
while ( !emptyQueue() && !am[_stack[_stack_head]] )
processNextArc();
return emptyQueue() ? INVALID : _stack[_stack_head];
}
/// \brief Runs the algorithm from the given source node.
///
/// This method runs the %DFS algorithm from node \c s.
/// in order to compute the DFS path to each node.
///
/// The algorithm computes
/// - the %DFS tree,
/// - the distance of each node from the root in the %DFS tree.
///
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Finds the %DFS path between \c s and \c t.
/// This method runs the %DFS algorithm from node \c s
/// in order to compute the DFS path to node \c t
/// (it stops searching when \c t is processed).
///
/// \return \c true if \c t is reachable form \c s.
///
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is
/// just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start(t);
///\endcode
bool run(Node s,Node t) {
init();
addSource(s);
start(t);
return reached(t);
}
/// \brief Runs the algorithm to visit all nodes in the digraph.
/// This method runs the %DFS algorithm in order to
/// compute the %DFS path to each node.
///
/// The algorithm computes
/// - the %DFS tree,
/// - the distance of each node from the root in the %DFS tree.
///
/// \note <tt>d.run()</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// for (NodeIt n(digraph); n != INVALID; ++n) {
/// if (!d.reached(n)) {
/// d.addSource(n);
/// d.start();
/// }
/// }
///\endcode
void run() {
init();
for (NodeIt it(*_digraph); it != INVALID; ++it) {
if (!reached(it)) {
addSource(it);
start();
}
}
}
///@}
/// \name Query Functions
/// The result of the %DFS algorithm can be obtained using these
/// functions.\n
/// Either \ref lemon::DfsVisit::run() "run()" or
/// \ref lemon::DfsVisit::start() "start()" must be called before
/// using them.
///@{
/// \brief Checks if a node is reachable from the root(s).
///
/// Returns \c true if \c v is reachable from the root(s).
/// \pre Either \ref run() or \ref start()
/// must be called before using this function.
bool reached(Node v) { return (*_reached)[v]; }
///@}
};
} //END OF NAMESPACE LEMON
#endif