Location: LEMON/LEMON-official/test/suurballe_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Support real types + numerical stability fix in NS (#254) - Real types are supported by appropriate inicialization. - A feature of the XTI spanning tree structure is removed to ensure numerical stability (could cause problems using integer types). The node potentials are updated always on the lower subtree, in order to prevent overflow problems. The former method isn't notably faster during to our tests.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/path.h>
#include <lemon/suurballe.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label supply1 supply2 supply3\n"
"1 0 20 27\n"
"2 0 -4 0\n"
"3 0 0 0\n"
"4 0 0 0\n"
"5 0 9 0\n"
"6 0 -6 0\n"
"7 0 0 0\n"
"8 0 0 0\n"
"9 0 3 0\n"
"10 0 -2 0\n"
"11 0 0 0\n"
"12 0 -20 -27\n"
"@arcs\n"
" cost capacity lower1 lower2\n"
" 1 2 70 11 0 8\n"
" 1 3 150 3 0 1\n"
" 1 4 80 15 0 2\n"
" 2 8 80 12 0 0\n"
" 3 5 140 5 0 3\n"
" 4 6 60 10 0 1\n"
" 4 7 80 2 0 0\n"
" 4 8 110 3 0 0\n"
" 5 7 60 14 0 0\n"
" 5 11 120 12 0 0\n"
" 6 3 0 3 0 0\n"
" 6 9 140 4 0 0\n"
" 6 10 90 8 0 0\n"
" 7 1 30 5 0 0\n"
" 8 12 60 16 0 4\n"
" 9 12 50 6 0 0\n"
"10 12 70 13 0 5\n"
"10 2 100 7 0 0\n"
"10 7 60 10 0 0\n"
"11 10 20 14 0 6\n"
"12 11 30 10 0 0\n"
"@attributes\n"
"source 1\n"
"target 12\n"
"@end\n";
// Check the feasibility of the flow
template <typename Digraph, typename FlowMap>
bool checkFlow( const Digraph& gr, const FlowMap& flow,
typename Digraph::Node s, typename Digraph::Node t,
int value )
{
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
for (ArcIt e(gr); e != INVALID; ++e)
if (!(flow[e] == 0 || flow[e] == 1)) return false;
for (NodeIt n(gr); n != INVALID; ++n) {
int sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
if (n == s && sum != value) return false;
if (n == t && sum != -value) return false;
if (n != s && n != t && sum != 0) return false;
}
return true;
}
// Check the optimalitiy of the flow
template < typename Digraph, typename CostMap,
typename FlowMap, typename PotentialMap >
bool checkOptimality( const Digraph& gr, const CostMap& cost,
const FlowMap& flow, const PotentialMap& pi )
{
// Check the "Complementary Slackness" optimality condition
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
bool opt = true;
for (ArcIt e(gr); e != INVALID; ++e) {
typename CostMap::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
opt = (flow[e] == 0 && red_cost >= 0) ||
(flow[e] == 1 && red_cost <= 0);
if (!opt) break;
}
return opt;
}
// Check a path
template <typename Digraph, typename Path>
bool checkPath( const Digraph& gr, const Path& path,
typename Digraph::Node s, typename Digraph::Node t)
{
// Check the "Complementary Slackness" optimality condition
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
Node n = s;
for (int i = 0; i < path.length(); ++i) {
if (gr.source(path.nth(i)) != n) return false;
n = gr.target(path.nth(i));
}
return n == t;
}
int main()
{
DIGRAPH_TYPEDEFS(ListDigraph);
// Read the test digraph
ListDigraph digraph;
ListDigraph::ArcMap<int> length(digraph);
Node source, target;
std::istringstream input(test_lgf);
DigraphReader<ListDigraph>(digraph, input).
arcMap("cost", length).
node("source", source).
node("target", target).
run();
// Find 2 paths
{
Suurballe<ListDigraph> suurballe(digraph, length, source, target);
check(suurballe.run(2) == 2, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), source, target, 2),
"The flow is not feasible");
check(suurballe.totalLength() == 510, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), source, target),
"Wrong path");
}
// Find 3 paths
{
Suurballe<ListDigraph> suurballe(digraph, length, source, target);
check(suurballe.run(3) == 3, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), source, target, 3),
"The flow is not feasible");
check(suurballe.totalLength() == 1040, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), source, target),
"Wrong path");
}
// Find 5 paths (only 3 can be found)
{
Suurballe<ListDigraph> suurballe(digraph, length, source, target);
check(suurballe.run(5) == 3, "Wrong number of paths");
check(checkFlow(digraph, suurballe.flowMap(), source, target, 3),
"The flow is not feasible");
check(suurballe.totalLength() == 1040, "The flow is not optimal");
check(checkOptimality(digraph, length, suurballe.flowMap(),
suurballe.potentialMap()),
"Wrong potentials");
for (int i = 0; i < suurballe.pathNum(); ++i)
check(checkPath(digraph, suurballe.path(i), source, target),
"Wrong path");
}
return 0;
}