Location: LEMON/LEMON-official/lemon/suurballe.h

Load file history
gravatar
deba@inf.elte.hu
Add more docs to LGF function interface (#109)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_SUURBALLE_H
#define LEMON_SUURBALLE_H
///\ingroup shortest_path
///\file
///\brief An algorithm for finding arc-disjoint paths between two
/// nodes having minimum total length.
#include <vector>
#include <lemon/bin_heap.h>
#include <lemon/path.h>
#include <lemon/list_graph.h>
#include <lemon/maps.h>
namespace lemon {
/// \addtogroup shortest_path
/// @{
/// \brief Algorithm for finding arc-disjoint paths between two nodes
/// having minimum total length.
///
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for
/// finding arc-disjoint paths having minimum total length (cost)
/// from a given source node to a given target node in a digraph.
///
/// In fact, this implementation is the specialization of the
/// \ref CapacityScaling "successive shortest path" algorithm.
///
/// \tparam GR The digraph type the algorithm runs on.
/// The default value is \c ListDigraph.
/// \tparam LEN The type of the length (cost) map.
/// The default value is <tt>Digraph::ArcMap<int></tt>.
///
/// \warning Length values should be \e non-negative \e integers.
///
/// \note For finding node-disjoint paths this algorithm can be used
/// with \ref SplitNodes.
#ifdef DOXYGEN
template <typename GR, typename LEN>
#else
template < typename GR = ListDigraph,
typename LEN = typename GR::template ArcMap<int> >
#endif
class Suurballe
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef ConstMap<Arc, int> ConstArcMap;
typedef typename GR::template NodeMap<Arc> PredMap;
public:
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// The type of the length map.
typedef LEN LengthMap;
/// The type of the lengths.
typedef typename LengthMap::Value Length;
/// The type of the flow map.
typedef typename Digraph::template ArcMap<int> FlowMap;
/// The type of the potential map.
typedef typename Digraph::template NodeMap<Length> PotentialMap;
/// The type of the path structures.
typedef SimplePath<Digraph> Path;
private:
/// \brief Special implementation of the Dijkstra algorithm
/// for finding shortest paths in the residual network.
///
/// \ref ResidualDijkstra is a special implementation of the
/// \ref Dijkstra algorithm for finding shortest paths in the
/// residual network of the digraph with respect to the reduced arc
/// lengths and modifying the node potentials according to the
/// distance of the nodes.
class ResidualDijkstra
{
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
typedef BinHeap<Length, HeapCrossRef> Heap;
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The main maps
const FlowMap &_flow;
const LengthMap &_length;
PotentialMap &_potential;
// The distance map
PotentialMap _dist;
// The pred arc map
PredMap &_pred;
// The processed (i.e. permanently labeled) nodes
std::vector<Node> _proc_nodes;
Node _s;
Node _t;
public:
/// Constructor.
ResidualDijkstra( const Digraph &digraph,
const FlowMap &flow,
const LengthMap &length,
PotentialMap &potential,
PredMap &pred,
Node s, Node t ) :
_graph(digraph), _flow(flow), _length(length), _potential(potential),
_dist(digraph), _pred(pred), _s(s), _t(t) {}
/// \brief Run the algorithm. It returns \c true if a path is found
/// from the source node to the target node.
bool run() {
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
Heap heap(heap_cross_ref);
heap.push(_s, 0);
_pred[_s] = INVALID;
_proc_nodes.clear();
// Process nodes
while (!heap.empty() && heap.top() != _t) {
Node u = heap.top(), v;
Length d = heap.prio() + _potential[u], nd;
_dist[u] = heap.prio();
heap.pop();
_proc_nodes.push_back(u);
// Traverse outgoing arcs
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 0) {
v = _graph.target(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d + _length[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d + _length[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
// Traverse incoming arcs
for (InArcIt e(_graph, u); e != INVALID; ++e) {
if (_flow[e] == 1) {
v = _graph.source(e);
switch(heap.state(v)) {
case Heap::PRE_HEAP:
heap.push(v, d - _length[e] - _potential[v]);
_pred[v] = e;
break;
case Heap::IN_HEAP:
nd = d - _length[e] - _potential[v];
if (nd < heap[v]) {
heap.decrease(v, nd);
_pred[v] = e;
}
break;
case Heap::POST_HEAP:
break;
}
}
}
}
if (heap.empty()) return false;
// Update potentials of processed nodes
Length t_dist = heap.prio();
for (int i = 0; i < int(_proc_nodes.size()); ++i)
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
return true;
}
}; //class ResidualDijkstra
private:
// The digraph the algorithm runs on
const Digraph &_graph;
// The length map
const LengthMap &_length;
// Arc map of the current flow
FlowMap *_flow;
bool _local_flow;
// Node map of the current potentials
PotentialMap *_potential;
bool _local_potential;
// The source node
Node _source;
// The target node
Node _target;
// Container to store the found paths
std::vector< SimplePath<Digraph> > paths;
int _path_num;
// The pred arc map
PredMap _pred;
// Implementation of the Dijkstra algorithm for finding augmenting
// shortest paths in the residual network
ResidualDijkstra *_dijkstra;
public:
/// \brief Constructor.
///
/// Constructor.
///
/// \param digraph The digraph the algorithm runs on.
/// \param length The length (cost) values of the arcs.
/// \param s The source node.
/// \param t The target node.
Suurballe( const Digraph &digraph,
const LengthMap &length,
Node s, Node t ) :
_graph(digraph), _length(length), _flow(0), _local_flow(false),
_potential(0), _local_potential(false), _source(s), _target(t),
_pred(digraph) {}
/// Destructor.
~Suurballe() {
if (_local_flow) delete _flow;
if (_local_potential) delete _potential;
delete _dijkstra;
}
/// \brief Set the flow map.
///
/// This function sets the flow map.
///
/// The found flow contains only 0 and 1 values. It is the union of
/// the found arc-disjoint paths.
///
/// \return <tt>(*this)</tt>
Suurballe& flowMap(FlowMap &map) {
if (_local_flow) {
delete _flow;
_local_flow = false;
}
_flow = &map;
return *this;
}
/// \brief Set the potential map.
///
/// This function sets the potential map.
///
/// The potentials provide the dual solution of the underlying
/// minimum cost flow problem.
///
/// \return <tt>(*this)</tt>
Suurballe& potentialMap(PotentialMap &map) {
if (_local_potential) {
delete _potential;
_local_potential = false;
}
_potential = &map;
return *this;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to call the run()
/// function.
/// \n
/// If you only need the flow that is the union of the found
/// arc-disjoint paths, you may call init() and findFlow().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
///
/// \param k The number of paths to be found.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// \c s to \c t in the digraph. Otherwise it returns the number of
/// arc-disjoint paths found.
///
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a
/// shortcut of the following code.
/// \code
/// s.init();
/// s.findFlow(k);
/// s.findPaths();
/// \endcode
int run(int k = 2) {
init();
findFlow(k);
findPaths();
return _path_num;
}
/// \brief Initialize the algorithm.
///
/// This function initializes the algorithm.
void init() {
// Initialize maps
if (!_flow) {
_flow = new FlowMap(_graph);
_local_flow = true;
}
if (!_potential) {
_potential = new PotentialMap(_graph);
_local_potential = true;
}
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length,
*_potential, _pred,
_source, _target );
}
/// \brief Execute the successive shortest path algorithm to find
/// an optimal flow.
///
/// This function executes the successive shortest path algorithm to
/// find a minimum cost flow, which is the union of \c k or less
/// arc-disjoint paths.
///
/// \return \c k if there are at least \c k arc-disjoint paths from
/// \c s to \c t in the digraph. Otherwise it returns the number of
/// arc-disjoint paths found.
///
/// \pre \ref init() must be called before using this function.
int findFlow(int k = 2) {
// Find shortest paths
_path_num = 0;
while (_path_num < k) {
// Run Dijkstra
if (!_dijkstra->run()) break;
++_path_num;
// Set the flow along the found shortest path
Node u = _target;
Arc e;
while ((e = _pred[u]) != INVALID) {
if (u == _graph.target(e)) {
(*_flow)[e] = 1;
u = _graph.source(e);
} else {
(*_flow)[e] = 0;
u = _graph.target(e);
}
}
}
return _path_num;
}
/// \brief Compute the paths from the flow.
///
/// This function computes the paths from the flow.
///
/// \pre \ref init() and \ref findFlow() must be called before using
/// this function.
void findPaths() {
// Create the residual flow map (the union of the paths not found
// so far)
FlowMap res_flow(_graph);
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
paths.clear();
paths.resize(_path_num);
for (int i = 0; i < _path_num; ++i) {
Node n = _source;
while (n != _target) {
OutArcIt e(_graph, n);
for ( ; res_flow[e] == 0; ++e) ;
n = _graph.target(e);
paths[i].addBack(e);
res_flow[e] = 0;
}
}
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.
/// \n The algorithm should be executed before using them.
/// @{
/// \brief Return a const reference to the arc map storing the
/// found flow.
///
/// This function returns a const reference to the arc map storing
/// the flow that is the union of the found arc-disjoint paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const FlowMap& flowMap() const {
return *_flow;
}
/// \brief Return a const reference to the node map storing the
/// found potentials (the dual solution).
///
/// This function returns a const reference to the node map storing
/// the found potentials that provide the dual solution of the
/// underlying minimum cost flow problem.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
const PotentialMap& potentialMap() const {
return *_potential;
}
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
/// It is \c 1 if the arc is involved in one of the found paths,
/// otherwise it is \c 0.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int flow(const Arc& arc) const {
return (*_flow)[arc];
}
/// \brief Return the potential of the given node.
///
/// This function returns the potential of the given node.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length potential(const Node& node) const {
return (*_potential)[node];
}
/// \brief Return the total length (cost) of the found paths (flow).
///
/// This function returns the total length (cost) of the found paths
/// (flow). The complexity of the function is O(e).
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
Length totalLength() const {
Length c = 0;
for (ArcIt e(_graph); e != INVALID; ++e)
c += (*_flow)[e] * _length[e];
return c;
}
/// \brief Return the number of the found paths.
///
/// This function returns the number of the found paths.
///
/// \pre \ref run() or \ref findFlow() must be called before using
/// this function.
int pathNum() const {
return _path_num;
}
/// \brief Return a const reference to the specified path.
///
/// This function returns a const reference to the specified path.
///
/// \param i The function returns the \c i-th path.
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
///
/// \pre \ref run() or \ref findPaths() must be called before using
/// this function.
Path path(int i) const {
return paths[i];
}
/// @}
}; //class Suurballe
///@}
} //namespace lemon
#endif //LEMON_SUURBALLE_H