Location: LEMON/LEMON-official/lemon/full_graph.h

Load file history
gravatar
ladanyi@tmit.bme.hu
Revert to the canonical way of customizing CXXFLAGS A default list of compiler flags is set via AM_CXXFLAGS Automake variable. However this gets overridden by per-target CXXFLAGS variables (e.g. foo_CXXFLAGS in case the foo target). Because of this you should append $(AM_CXXFLAGS) to the end of the per-target CXXFLAGS variables (e.g. foo_CXXFLAGS = ... $(AM_CXXFLAGS)). After this default list of flags the contents of the CXXFLAGS user variable is passed to the compiler. This variable has a default value determined by configure (in case of g++ it is '-g -O2'). You can override this by specifying CXXFLAGS when invoking make (e.g. make CXXFLAGS='-O3').
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_FULL_GRAPH_H
#define LEMON_FULL_GRAPH_H
#include <lemon/core.h>
#include <lemon/bits/graph_extender.h>
///\ingroup graphs
///\file
///\brief FullGraph and FullDigraph classes.
namespace lemon {
class FullDigraphBase {
public:
typedef FullDigraphBase Graph;
class Node;
class Arc;
protected:
int _node_num;
int _arc_num;
FullDigraphBase() {}
void construct(int n) { _node_num = n; _arc_num = n * n; }
public:
typedef True NodeNumTag;
typedef True ArcNumTag;
Node operator()(int ix) const { return Node(ix); }
int index(const Node& node) const { return node._id; }
Arc arc(const Node& s, const Node& t) const {
return Arc(s._id * _node_num + t._id);
}
int nodeNum() const { return _node_num; }
int arcNum() const { return _arc_num; }
int maxNodeId() const { return _node_num - 1; }
int maxArcId() const { return _arc_num - 1; }
Node source(Arc arc) const { return arc._id / _node_num; }
Node target(Arc arc) const { return arc._id % _node_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
typedef True FindArcTag;
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev == INVALID ? arc(s, t) : INVALID;
}
class Node {
friend class FullDigraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Arc {
friend class FullDigraphBase;
protected:
int _id; // _node_num * source + target;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = _arc_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void firstOut(Arc& arc, const Node& node) const {
arc._id = (node._id + 1) * _node_num - 1;
}
void nextOut(Arc& arc) const {
if (arc._id % _node_num == 0) arc._id = 0;
--arc._id;
}
void firstIn(Arc& arc, const Node& node) const {
arc._id = _arc_num + node._id - _node_num;
}
void nextIn(Arc& arc) const {
arc._id -= _node_num;
if (arc._id < 0) arc._id = -1;
}
};
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
/// \ingroup graphs
///
/// \brief A full digraph class.
///
/// This is a simple and fast directed full graph implementation.
/// From each node go arcs to each node (including the source node),
/// therefore the number of the arcs in the digraph is the square of
/// the node number. This digraph type is completely static, so you
/// can neither add nor delete either arcs or nodes, and it needs
/// constant space in memory.
///
/// This class conforms to the \ref concepts::Digraph "Digraph" concept
/// and it also has an important extra feature that its maps are
/// real \ref concepts::ReferenceMap "reference map"s.
///
/// The \c FullDigraph and \c FullGraph classes are very similar,
/// but there are two differences. While this class conforms only
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph
/// class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover \c FullGraph does not contain a loop arc for each
/// node as \c FullDigraph does.
///
/// \sa FullGraph
class FullDigraph : public ExtendedFullDigraphBase {
public:
typedef ExtendedFullDigraphBase Parent;
/// \brief Constructor
FullDigraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullDigraph(int n) { construct(n); }
/// \brief Resizes the digraph
///
/// Resizes the digraph. The function will fully destroy and
/// rebuild the digraph. This cause that the maps of the digraph will
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since it is a static
/// digraph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since it is a static
/// digraph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
/// \sa operator()
int index(const Node& node) const { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(const Node& u, const Node& v) const {
return Parent::arc(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
};
class FullGraphBase {
int _node_num;
int _edge_num;
public:
typedef FullGraphBase Graph;
class Node;
class Arc;
class Edge;
protected:
FullGraphBase() {}
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
int _uid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? u : _node_num - 2 - u;
}
int _vid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? v : _node_num - 1 - v;
}
void _uvid(int e, int& u, int& v) const {
u = e / _node_num;
v = e % _node_num;
if (u >= v) {
u = _node_num - 2 - u;
v = _node_num - 1 - v;
}
}
void _stid(int a, int& s, int& t) const {
if ((a & 1) == 1) {
_uvid(a >> 1, s, t);
} else {
_uvid(a >> 1, t, s);
}
}
int _eid(int u, int v) const {
if (u < (_node_num - 1) / 2) {
return u * _node_num + v;
} else {
return (_node_num - 1 - u) * _node_num - v - 1;
}
}
public:
Node operator()(int ix) const { return Node(ix); }
int index(const Node& node) const { return node._id; }
Edge edge(const Node& u, const Node& v) const {
if (u._id < v._id) {
return Edge(_eid(u._id, v._id));
} else if (u._id != v._id) {
return Edge(_eid(v._id, u._id));
} else {
return INVALID;
}
}
Arc arc(const Node& s, const Node& t) const {
if (s._id < t._id) {
return Arc((_eid(s._id, t._id) << 1) | 1);
} else if (s._id != t._id) {
return Arc(_eid(t._id, s._id) << 1);
} else {
return INVALID;
}
}
typedef True NodeNumTag;
typedef True ArcNumTag;
typedef True EdgeNumTag;
int nodeNum() const { return _node_num; }
int arcNum() const { return 2 * _edge_num; }
int edgeNum() const { return _edge_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static int id(Edge edge) { return edge._id; }
int maxNodeId() const { return _node_num-1; }
int maxArcId() const { return 2 * _edge_num-1; }
int maxEdgeId() const { return _edge_num-1; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
Node u(Edge edge) const {
return Node(_uid(edge._id));
}
Node v(Edge edge) const {
return Node(_vid(edge._id));
}
Node source(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_uid(arc._id >> 1) : _vid(arc._id >> 1));
}
Node target(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_vid(arc._id >> 1) : _uid(arc._id >> 1));
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
}
class Node {
friend class FullGraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Edge {
friend class FullGraphBase;
friend class Arc;
protected:
int _id;
Edge(int id) : _id(id) {}
public:
Edge() { }
Edge (Invalid) { _id = -1; }
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
};
class Arc {
friend class FullGraphBase;
protected:
int _id;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
}
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
}
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = (_edge_num << 1) - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void first(Edge& edge) const {
edge._id = _edge_num - 1;
}
static void next(Edge& edge) {
--edge._id;
}
void firstOut(Arc& arc, const Node& node) const {
int s = node._id, t = _node_num - 1;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
--t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void nextOut(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--t;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
if (s == t) --t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void firstIn(Arc& arc, const Node& node) const {
int s = _node_num - 1, t = node._id;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
--s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void nextIn(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--s;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
if (s == t) --s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void firstInc(Edge& edge, bool& dir, const Node& node) const {
int u = node._id, v = _node_num - 1;
if (u < v) {
edge._id = _eid(u, v);
dir = true;
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
}
void nextInc(Edge& edge, bool& dir) const {
int u, v;
if (dir) {
_uvid(edge._id, u, v);
--v;
if (u < v) {
edge._id = _eid(u, v);
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
} else {
_uvid(edge._id, v, u);
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
}
}
};
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
/// \ingroup graphs
///
/// \brief An undirected full graph class.
///
/// This is a simple and fast undirected full graph
/// implementation. From each node go edge to each other node,
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$.
/// This graph type is completely static, so you can neither
/// add nor delete either edges or nodes, and it needs constant
/// space in memory.
///
/// This class conforms to the \ref concepts::Graph "Graph" concept
/// and it also has an important extra feature that its maps are
/// real \ref concepts::ReferenceMap "reference map"s.
///
/// The \c FullGraph and \c FullDigraph classes are very similar,
/// but there are two differences. While the \c FullDigraph class
/// conforms only to the \ref concepts::Digraph "Digraph" concept,
/// this class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover \c FullGraph does not contain a loop arc for each
/// node as \c FullDigraph does.
///
/// \sa FullDigraph
class FullGraph : public ExtendedFullGraphBase {
public:
typedef ExtendedFullGraphBase Parent;
/// \brief Constructor
FullGraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullGraph(int n) { construct(n); }
/// \brief Resizes the graph
///
/// Resizes the graph. The function will fully destroy and
/// rebuild the graph. This cause that the maps of the graph will
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since it is a static
/// graph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since it is a static
/// graph its nodes can be indexed with integers from the range
/// <tt>[0..nodeNum()-1]</tt>.
/// \sa operator()
int index(const Node& node) const { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(const Node& s, const Node& t) const {
return Parent::arc(s, t);
}
/// \brief Returns the edge connects the given nodes.
///
/// Returns the edge connects the given nodes.
Edge edge(const Node& u, const Node& v) const {
return Parent::edge(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
};
} //namespace lemon
#endif //LEMON_FULL_GRAPH_H