Location: LEMON/LEMON-official/test/min_cost_flow_test.cc

Load file history
gravatar
deba@inf.elte.hu
Fix glp_prob definition (#286)
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <fstream>
#include <limits>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/network_simplex.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concept_check.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label sup1 sup2 sup3 sup4 sup5 sup6\n"
" 1 20 27 0 30 20 30\n"
" 2 -4 0 0 0 -8 -3\n"
" 3 0 0 0 0 0 0\n"
" 4 0 0 0 0 0 0\n"
" 5 9 0 0 0 6 11\n"
" 6 -6 0 0 0 -5 -6\n"
" 7 0 0 0 0 0 0\n"
" 8 0 0 0 0 0 3\n"
" 9 3 0 0 0 0 0\n"
" 10 -2 0 0 0 -7 -2\n"
" 11 0 0 0 0 -10 0\n"
" 12 -20 -27 0 -30 -30 -20\n"
"\n"
"@arcs\n"
" cost cap low1 low2 low3\n"
" 1 2 70 11 0 8 8\n"
" 1 3 150 3 0 1 0\n"
" 1 4 80 15 0 2 2\n"
" 2 8 80 12 0 0 0\n"
" 3 5 140 5 0 3 1\n"
" 4 6 60 10 0 1 0\n"
" 4 7 80 2 0 0 0\n"
" 4 8 110 3 0 0 0\n"
" 5 7 60 14 0 0 0\n"
" 5 11 120 12 0 0 0\n"
" 6 3 0 3 0 0 0\n"
" 6 9 140 4 0 0 0\n"
" 6 10 90 8 0 0 0\n"
" 7 1 30 5 0 0 -5\n"
" 8 12 60 16 0 4 3\n"
" 9 12 50 6 0 0 0\n"
"10 12 70 13 0 5 2\n"
"10 2 100 7 0 0 0\n"
"10 7 60 10 0 0 -3\n"
"11 10 20 14 0 6 -20\n"
"12 11 30 10 0 0 -10\n"
"\n"
"@attributes\n"
"source 1\n"
"target 12\n";
enum SupplyType {
EQ,
GEQ,
LEQ
};
// Check the interface of an MCF algorithm
template <typename GR, typename Value, typename Cost>
class McfClassConcept
{
public:
template <typename MCF>
struct Constraints {
void constraints() {
checkConcept<concepts::Digraph, GR>();
MCF mcf(g);
const MCF& const_mcf = mcf;
b = mcf.reset()
.lowerMap(lower)
.upperMap(upper)
.costMap(cost)
.supplyMap(sup)
.stSupply(n, n, k)
.run();
c = const_mcf.totalCost();
x = const_mcf.template totalCost<double>();
v = const_mcf.flow(a);
c = const_mcf.potential(n);
const_mcf.flowMap(fm);
const_mcf.potentialMap(pm);
}
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef concepts::ReadMap<Node, Value> NM;
typedef concepts::ReadMap<Arc, Value> VAM;
typedef concepts::ReadMap<Arc, Cost> CAM;
typedef concepts::WriteMap<Arc, Value> FlowMap;
typedef concepts::WriteMap<Node, Cost> PotMap;
const GR &g;
const VAM &lower;
const VAM &upper;
const CAM &cost;
const NM &sup;
const Node &n;
const Arc &a;
const Value &k;
FlowMap fm;
PotMap pm;
bool b;
double x;
typename MCF::Value v;
typename MCF::Cost c;
};
};
// Check the feasibility of the given flow (primal soluiton)
template < typename GR, typename LM, typename UM,
typename SM, typename FM >
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
const SM& supply, const FM& flow,
SupplyType type = EQ )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
for (ArcIt e(gr); e != INVALID; ++e) {
if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
}
for (NodeIt n(gr); n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
bool b = (type == EQ && sum == supply[n]) ||
(type == GEQ && sum >= supply[n]) ||
(type == LEQ && sum <= supply[n]);
if (!b) return false;
}
return true;
}
// Check the feasibility of the given potentials (dual soluiton)
// using the "Complementary Slackness" optimality condition
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename FM, typename PM >
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const FM& flow,
const PM& pi )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
bool opt = true;
for (ArcIt e(gr); opt && e != INVALID; ++e) {
typename CM::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
opt = red_cost == 0 ||
(red_cost > 0 && flow[e] == lower[e]) ||
(red_cost < 0 && flow[e] == upper[e]);
}
for (NodeIt n(gr); opt && n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
opt = (sum == supply[n]) || (pi[n] == 0);
}
return opt;
}
// Run a minimum cost flow algorithm and check the results
template < typename MCF, typename GR,
typename LM, typename UM,
typename CM, typename SM,
typename PT >
void checkMcf( const MCF& mcf, PT mcf_result,
const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply,
PT result, bool optimal, typename CM::Value total,
const std::string &test_id = "",
SupplyType type = EQ )
{
check(mcf_result == result, "Wrong result " + test_id);
if (optimal) {
typename GR::template ArcMap<typename SM::Value> flow(gr);
typename GR::template NodeMap<typename CM::Value> pi(gr);
mcf.flowMap(flow);
mcf.potentialMap(pi);
check(checkFlow(gr, lower, upper, supply, flow, type),
"The flow is not feasible " + test_id);
check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
check(checkPotential(gr, lower, upper, cost, supply, flow, pi),
"Wrong potentials " + test_id);
}
}
int main()
{
// Check the interfaces
{
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
NetworkSimplex<GR> >();
checkConcept< McfClassConcept<GR, double, double>,
NetworkSimplex<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
NetworkSimplex<GR, int, double> >();
}
// Run various MCF tests
typedef ListDigraph Digraph;
DIGRAPH_TYPEDEFS(ListDigraph);
// Read the test digraph
Digraph gr;
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
Node v, w;
std::istringstream input(test_lgf);
DigraphReader<Digraph>(gr, input)
.arcMap("cost", c)
.arcMap("cap", u)
.arcMap("low1", l1)
.arcMap("low2", l2)
.arcMap("low3", l3)
.nodeMap("sup1", s1)
.nodeMap("sup2", s2)
.nodeMap("sup3", s3)
.nodeMap("sup4", s4)
.nodeMap("sup5", s5)
.nodeMap("sup6", s6)
.node("source", v)
.node("target", w)
.run();
// Build a test digraph for testing negative costs
Digraph ngr;
Node n1 = ngr.addNode();
Node n2 = ngr.addNode();
Node n3 = ngr.addNode();
Node n4 = ngr.addNode();
Node n5 = ngr.addNode();
Node n6 = ngr.addNode();
Node n7 = ngr.addNode();
Arc a1 = ngr.addArc(n1, n2);
Arc a2 = ngr.addArc(n1, n3);
Arc a3 = ngr.addArc(n2, n4);
Arc a4 = ngr.addArc(n3, n4);
Arc a5 = ngr.addArc(n3, n2);
Arc a6 = ngr.addArc(n5, n3);
Arc a7 = ngr.addArc(n5, n6);
Arc a8 = ngr.addArc(n6, n7);
Arc a9 = ngr.addArc(n7, n5);
Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0);
ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000);
Digraph::NodeMap<int> ns(ngr, 0);
nl2[a7] = 1000;
nl2[a8] = -1000;
ns[n1] = 100;
ns[n4] = -100;
nc[a1] = 100;
nc[a2] = 30;
nc[a3] = 20;
nc[a4] = 80;
nc[a5] = 50;
nc[a6] = 10;
nc[a7] = 80;
nc[a8] = 30;
nc[a9] = -120;
// A. Test NetworkSimplex with the default pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
// Check the equality form
mcf.upperMap(u).costMap(c);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2");
mcf.lowerMap(l2);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4");
mcf.reset();
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5");
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6");
mcf.reset();
checkMcf(mcf, mcf.run(),
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7");
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
checkMcf(mcf, mcf.run(),
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9");
// Check the GEQ form
mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ);
mcf.supplyType(mcf.GEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ);
mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ);
// Check the LEQ form
mcf.reset().supplyType(mcf.LEQ);
mcf.upperMap(u).costMap(c).supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ);
mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ);
// Check negative costs
NetworkSimplex<Digraph> nmcf(ngr);
nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns);
checkMcf(nmcf, nmcf.run(),
ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A16");
checkMcf(nmcf, nmcf.upperMap(nu2).run(),
ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true, -40000, "#A17");
nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns);
checkMcf(nmcf, nmcf.run(),
ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false, 0, "#A18");
}
// B. Test NetworkSimplex with each pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5");
}
return 0;
}