* This file is a part of LEMON, a generic C++ optimization library
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#ifndef LEMON_GRAPH_UTILS_H
#define LEMON_GRAPH_UTILS_H
#include <lemon/bits/invalid.h>
#include <lemon/bits/utility.h>
#include <lemon/bits/traits.h>
#include <lemon/bits/alteration_notifier.h>
#include <lemon/bits/default_map.h>
///\brief Graph utilities.
///Creates convenience typedefs for the digraph types and iterators
///This \c \#define creates convenience typedefs for the following types
///of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
#define DIGRAPH_TYPEDEFS(Digraph) \
typedef Digraph::Node Node; \
typedef Digraph::NodeIt NodeIt; \
typedef Digraph::Arc Arc; \
typedef Digraph::ArcIt ArcIt; \
typedef Digraph::InArcIt InArcIt; \
typedef Digraph::OutArcIt OutArcIt; \
typedef Digraph::NodeMap<bool> BoolNodeMap; \
typedef Digraph::NodeMap<int> IntNodeMap; \
typedef Digraph::NodeMap<double> DoubleNodeMap; \
typedef Digraph::ArcMap<bool> BoolArcMap; \
typedef Digraph::ArcMap<int> IntArcMap; \
typedef Digraph::ArcMap<double> DoubleArcMap
///Creates convenience typedefs for the digraph types and iterators
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
typedef typename Digraph::Node Node; \
typedef typename Digraph::NodeIt NodeIt; \
typedef typename Digraph::Arc Arc; \
typedef typename Digraph::ArcIt ArcIt; \
typedef typename Digraph::InArcIt InArcIt; \
typedef typename Digraph::OutArcIt OutArcIt; \
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
typedef typename Digraph::template NodeMap<int> IntNodeMap; \
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
typedef typename Digraph::template ArcMap<int> IntArcMap; \
typedef typename Digraph::template ArcMap<double> DoubleArcMap
///Creates convenience typedefs for the graph types and iterators
///This \c \#define creates the same convenience typedefs as defined
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
///\note If the graph type is a dependent type, ie. the graph type depend
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
#define GRAPH_TYPEDEFS(Graph) \
DIGRAPH_TYPEDEFS(Graph); \
typedef Graph::Edge Edge; \
typedef Graph::EdgeIt EdgeIt; \
typedef Graph::IncEdgeIt IncEdgeIt; \
typedef Graph::EdgeMap<bool> BoolEdgeMap; \
typedef Graph::EdgeMap<int> IntEdgeMap; \
typedef Graph::EdgeMap<double> DoubleEdgeMap
///Creates convenience typedefs for the graph types and iterators
///\note Use this macro, if the graph type is a dependent type,
///ie. the graph type depend on a template parameter.
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
typedef typename Graph::Edge Edge; \
typedef typename Graph::EdgeIt EdgeIt; \
typedef typename Graph::IncEdgeIt IncEdgeIt; \
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
/// \brief Function to count the items in the graph.
/// This function counts the items (nodes, arcs etc) in the graph.
/// The complexity of the function is O(n) because
/// it iterates on all of the items.
template <typename Graph, typename Item>
inline int countItems(const Graph& g) {
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
for (ItemIt it(g); it != INVALID; ++it) {
namespace _graph_utils_bits {
template <typename Graph, typename Enable = void>
struct CountNodesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Node>(g);
template <typename Graph>
struct CountNodesSelector<
enable_if<typename Graph::NodeNumTag, void>::type>
static int count(const Graph &g) {
/// \brief Function to count the nodes in the graph.
/// This function counts the nodes in the graph.
/// The complexity of the function is O(n) but for some
/// graph structures it is specialized to run in O(1).
/// If the graph contains a \e nodeNum() member function and a
/// \e NodeNumTag tag then this function calls directly the member
/// function to query the cardinality of the node set.
template <typename Graph>
inline int countNodes(const Graph& g) {
return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
namespace _graph_utils_bits {
template <typename Graph, typename Enable = void>
struct CountArcsSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Arc>(g);
template <typename Graph>
struct CountArcsSelector<
typename enable_if<typename Graph::ArcNumTag, void>::type>
static int count(const Graph &g) {
/// \brief Function to count the arcs in the graph.
/// This function counts the arcs in the graph.
/// The complexity of the function is O(e) but for some
/// graph structures it is specialized to run in O(1).
/// If the graph contains a \e arcNum() member function and a
/// \e EdgeNumTag tag then this function calls directly the member
/// function to query the cardinality of the arc set.
template <typename Graph>
inline int countArcs(const Graph& g) {
return _graph_utils_bits::CountArcsSelector<Graph>::count(g);
namespace _graph_utils_bits {
template <typename Graph, typename Enable = void>
struct CountEdgesSelector {
static int count(const Graph &g) {
return countItems<Graph, typename Graph::Edge>(g);
template <typename Graph>
struct CountEdgesSelector<
typename enable_if<typename Graph::EdgeNumTag, void>::type>
static int count(const Graph &g) {
/// \brief Function to count the edges in the graph.
/// This function counts the edges in the graph.
/// The complexity of the function is O(m) but for some
/// graph structures it is specialized to run in O(1).
/// If the graph contains a \e edgeNum() member function and a
/// \e EdgeNumTag tag then this function calls directly the member
/// function to query the cardinality of the edge set.
template <typename Graph>
inline int countEdges(const Graph& g) {
return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
template <typename Graph, typename DegIt>
inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
for (DegIt it(_g, _n); it != INVALID; ++it) {
/// \brief Function to count the number of the out-arcs from node \c n.
/// This function counts the number of the out-arcs from node \c n
template <typename Graph>
inline int countOutArcs(const Graph& _g, const typename Graph::Node& _n) {
return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
/// \brief Function to count the number of the in-arcs to node \c n.
/// This function counts the number of the in-arcs to node \c n
template <typename Graph>
inline int countInArcs(const Graph& _g, const typename Graph::Node& _n) {
return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
/// \brief Function to count the number of the inc-edges to node \c n.
/// This function counts the number of the inc-edges to node \c n
template <typename Graph>
inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) {
return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
namespace _graph_utils_bits {
template <typename Graph, typename Enable = void>
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc e) {
while (e != INVALID && g.target(e) != v) {
template <typename Graph>
typename enable_if<typename Graph::FindEdgeTag, void>::type>
typedef typename Graph::Node Node;
typedef typename Graph::Arc Arc;
static Arc find(const Graph &g, Node u, Node v, Arc prev) {
return g.findArc(u, v, prev);
/// \brief Finds an arc between two nodes of a graph.
/// Finds an arc from node \c u to node \c v in graph \c g.
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first arc from \c u to \c v. Otherwise it looks for
/// the next arc from \c u to \c v after \c prev.
/// \return The found arc or \ref INVALID if there is no such an arc.
/// Thus you can iterate through each arc from \c u to \c v as it follows.
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
template <typename Graph>
inline typename Graph::Arc
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Arc prev = INVALID) {
return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev);
/// \brief Iterator for iterating on arcs connected the same nodes.
/// Iterator for iterating on arcs connected the same nodes. It is
/// higher level interface for the findArc() function. You can
/// use it the following way:
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
template <typename _Graph>
class ConArcIt : public _Graph::Arc {
typedef typename Graph::Arc Parent;
typedef typename Graph::Arc Arc;
typedef typename Graph::Node Node;
/// Construct a new ConArcIt iterating on the arcs which
/// connects the \c u and \c v node.
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
Parent::operator=(findArc(_graph, u, v));
/// Construct a new ConArcIt which continues the iterating from
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
/// \brief Increment operator.
/// It increments the iterator and gives back the next arc.
Parent::operator=(findArc(_graph, _graph.source(*this),
_graph.target(*this), *this));
namespace _graph_utils_bits {
template <typename Graph, typename Enable = void>
struct FindEdgeSelector {
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge e) {
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
while (e != INVALID && (!b || g.v(e) != v)) {
template <typename Graph>
typename enable_if<typename Graph::FindEdgeTag, void>::type>
typedef typename Graph::Node Node;
typedef typename Graph::Edge Edge;
static Edge find(const Graph &g, Node u, Node v, Edge prev) {
return g.findEdge(u, v, prev);
/// \brief Finds an edge between two nodes of a graph.
/// Finds an edge from node \c u to node \c v in graph \c g.
/// If the node \c u and node \c v is equal then each loop edge
/// will be enumerated once.
/// If \c prev is \ref INVALID (this is the default value), then
/// it finds the first arc from \c u to \c v. Otherwise it looks for
/// the next arc from \c u to \c v after \c prev.
/// \return The found arc or \ref INVALID if there is no such an arc.
/// Thus you can iterate through each arc from \c u to \c v as it follows.
/// for(Edge e = findEdge(g,u,v); e != INVALID;
/// e = findEdge(g,u,v,e)) {
template <typename Graph>
inline typename Graph::Edge
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
typename Graph::Edge p = INVALID) {
return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
/// \brief Iterator for iterating on edges connected the same nodes.
/// Iterator for iterating on edges connected the same nodes. It is
/// higher level interface for the findEdge() function. You can
/// use it the following way:
/// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
template <typename _Graph>
class ConEdgeIt : public _Graph::Edge {
typedef typename Graph::Edge Parent;
typedef typename Graph::Edge Edge;
typedef typename Graph::Node Node;
/// Construct a new ConEdgeIt iterating on the edges which
/// connects the \c u and \c v node.
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
Parent::operator=(findEdge(_graph, u, v));
/// Construct a new ConEdgeIt which continues the iterating from
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
/// \brief Increment operator.
/// It increments the iterator and gives back the next edge.
ConEdgeIt& operator++() {
Parent::operator=(findEdge(_graph, _graph.u(*this),
_graph.v(*this), *this));
namespace _graph_utils_bits {
template <typename Digraph, typename Item, typename RefMap>
virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
virtual ~MapCopyBase() {}
template <typename Digraph, typename Item, typename RefMap,
typename ToMap, typename FromMap>
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
MapCopy(ToMap& tmap, const FromMap& map)
: _tmap(tmap), _map(map) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_tmap.set(refMap[it], _map[it]);
template <typename Digraph, typename Item, typename RefMap, typename It>
class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
virtual void copy(const Digraph&, const RefMap& refMap) {
template <typename Digraph, typename Item, typename RefMap, typename Ref>
class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
RefCopy(Ref& map) : _map(map) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_map.set(it, refMap[it]);
template <typename Digraph, typename Item, typename RefMap,
class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
virtual void copy(const Digraph& digraph, const RefMap& refMap) {
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
for (ItemIt it(digraph); it != INVALID; ++it) {
_cmap.set(refMap[it], it);
template <typename Digraph, typename Enable = void>
struct DigraphCopySelector {
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(Digraph &to, const From& from,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
for (typename From::ArcIt it(from); it != INVALID; ++it) {
arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
nodeRefMap[from.target(it)]);
template <typename Digraph>
struct DigraphCopySelector<
typename enable_if<typename Digraph::BuildTag, void>::type>
template <typename From, typename NodeRefMap, typename ArcRefMap>
static void copy(Digraph &to, const From& from,
NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
to.build(from, nodeRefMap, arcRefMap);
template <typename Graph, typename Enable = void>
struct GraphCopySelector {
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(Graph &to, const From& from,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
for (typename From::NodeIt it(from); it != INVALID; ++it) {
nodeRefMap[it] = to.addNode();
for (typename From::EdgeIt it(from); it != INVALID; ++it) {
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
template <typename Graph>
struct GraphCopySelector<
typename enable_if<typename Graph::BuildTag, void>::type>
template <typename From, typename NodeRefMap, typename EdgeRefMap>
static void copy(Graph &to, const From& from,
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
to.build(from, nodeRefMap, edgeRefMap);
/// \brief Class to copy a digraph.
/// Class to copy a digraph to another digraph (duplicate a digraph). The
/// simplest way of using it is through the \c copyDigraph() function.
/// This class not just make a copy of a graph, but it can create
/// references and cross references between the nodes and arcs of
/// the two graphs, it can copy maps for use with the newly created
/// graph and copy nodes and arcs.
/// To make a copy from a graph, first an instance of DigraphCopy
/// should be created, then the data belongs to the graph should
/// assigned to copy. In the end, the \c run() member should be
/// The next code copies a graph with several data:
/// DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
/// // create a reference for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// // create a cross reference (inverse) for the arcs
/// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
/// OrigGraph::ArcMap<double> oamap(orig_graph);
/// NewGraph::ArcMap<double> namap(new_graph);
/// dc.arcMap(namap, oamap);
/// // Executions of copy
template <typename To, typename From>
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template ArcMap<TArc> ArcRefMap;
/// \brief Constructor for the DigraphCopy.
/// It copies the content of the \c _from digraph into the
DigraphCopy(To& to, const From& from)
: _from(from), _to(to) {}
/// \brief Destructor of the DigraphCopy
/// Destructor of the DigraphCopy
for (int i = 0; i < int(_node_maps.size()); ++i) {
for (int i = 0; i < int(_arc_maps.size()); ++i) {
/// \brief Copies the node references into the given map.
/// Copies the node references into the given map. The parameter
/// should be a map, which key type is the Node type of the source
/// graph, while the value type is the Node type of the
template <typename NodeRef>
DigraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
/// \brief Copies the node cross references into the given map.
/// Copies the node cross references (reverse references) into
/// the given map. The parameter should be a map, which key type
/// is the Node type of the destination graph, while the value type is
/// the Node type of the source graph.
template <typename NodeCrossRef>
DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
/// \brief Make copy of the given map.
/// Makes copy of the given map for the newly created digraph.
/// The new map's key type is the destination graph's node type,
/// and the copied map's key type is the source graph's node type.
template <typename ToMap, typename FromMap>
DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
_node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node,
NodeRefMap, ToMap, FromMap>(tmap, map));
/// \brief Make a copy of the given node.
/// Make a copy of the given node.
DigraphCopy& node(TNode& tnode, const Node& snode) {
_node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(tnode, snode));
/// \brief Copies the arc references into the given map.
/// Copies the arc references into the given map.
template <typename ArcRef>
DigraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
/// \brief Copies the arc cross references into the given map.
/// Copies the arc cross references (reverse references) into
template <typename ArcCrossRef>
DigraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
/// \brief Make copy of the given map.
/// Makes copy of the given map for the newly created digraph.
/// The new map's key type is the to digraph's arc type,
/// and the copied map's key type is the from digraph's arc
template <typename ToMap, typename FromMap>
DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
_arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc,
ArcRefMap, ToMap, FromMap>(tmap, map));
/// \brief Make a copy of the given arc.
/// Make a copy of the given arc.
DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
_arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(tarc, sarc));
/// \brief Executes the copies.
NodeRefMap nodeRefMap(_from);
ArcRefMap arcRefMap(_from);
_graph_utils_bits::DigraphCopySelector<To>::
copy(_to, _from, nodeRefMap, arcRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
/// \brief Copy a digraph to another digraph.
/// Copy a digraph to another digraph. The complete usage of the
/// function is detailed in the DigraphCopy class, but a short
/// example shows a basic work:
/// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from digraph to the nodes of the \c to digraph and
/// \c ecr will contain the mapping from the arcs of the \c to digraph
/// to the arcs of the \c from digraph.
template <typename To, typename From>
DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
return DigraphCopy<To, From>(to, from);
/// \brief Class to copy a graph.
/// Class to copy a graph to another graph (duplicate a graph). The
/// simplest way of using it is through the \c copyGraph() function.
/// This class not just make a copy of a graph, but it can create
/// references and cross references between the nodes, edges and arcs of
/// the two graphs, it can copy maps for use with the newly created
/// graph and copy nodes, edges and arcs.
/// To make a copy from a graph, first an instance of GraphCopy
/// should be created, then the data belongs to the graph should
/// assigned to copy. In the end, the \c run() member should be
/// The next code copies a graph with several data:
/// GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
/// // create a reference for the nodes
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
/// // create a cross reference (inverse) for the edges
/// NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
/// dc.edgeCrossRef(ecr);
/// OrigGraph::ArcMap<double> oamap(orig_graph);
/// NewGraph::ArcMap<double> namap(new_graph);
/// dc.arcMap(namap, oamap);
/// // Executions of copy
template <typename To, typename From>
typedef typename From::Node Node;
typedef typename From::NodeIt NodeIt;
typedef typename From::Arc Arc;
typedef typename From::ArcIt ArcIt;
typedef typename From::Edge Edge;
typedef typename From::EdgeIt EdgeIt;
typedef typename To::Node TNode;
typedef typename To::Arc TArc;
typedef typename To::Edge TEdge;
typedef typename From::template NodeMap<TNode> NodeRefMap;
typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
ArcRefMap(const To& to, const From& from,
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
_edge_ref(edge_ref), _node_ref(node_ref) {}
typedef typename From::Arc Key;
typedef typename To::Arc Value;
Value operator[](const Key& key) const {
bool forward = _from.u(key) != _from.v(key) ?
_node_ref[_from.source(key)] ==
_to.source(_to.direct(_edge_ref[key], true)) :
return _to.direct(_edge_ref[key], forward);
const EdgeRefMap& _edge_ref;
const NodeRefMap& _node_ref;
/// \brief Constructor for the GraphCopy.
/// It copies the content of the \c _from graph into the
GraphCopy(To& to, const From& from)
: _from(from), _to(to) {}
/// \brief Destructor of the GraphCopy
/// Destructor of the GraphCopy
for (int i = 0; i < int(_node_maps.size()); ++i) {
for (int i = 0; i < int(_arc_maps.size()); ++i) {
for (int i = 0; i < int(_edge_maps.size()); ++i) {
/// \brief Copies the node references into the given map.
/// Copies the node references into the given map.
template <typename NodeRef>
GraphCopy& nodeRef(NodeRef& map) {
_node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node,
NodeRefMap, NodeRef>(map));
/// \brief Copies the node cross references into the given map.
/// Copies the node cross references (reverse references) into
template <typename NodeCrossRef>
GraphCopy& nodeCrossRef(NodeCrossRef& map) {
_node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
NodeRefMap, NodeCrossRef>(map));
/// \brief Make copy of the given map.
/// Makes copy of the given map for the newly created graph.
/// The new map's key type is the to graph's node type,
/// and the copied map's key type is the from graph's node
template <typename ToMap, typename FromMap>
GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
_node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node,
NodeRefMap, ToMap, FromMap>(tmap, map));
/// \brief Make a copy of the given node.
/// Make a copy of the given node.
GraphCopy& node(TNode& tnode, const Node& snode) {
_node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node,
NodeRefMap, TNode>(tnode, snode));
/// \brief Copies the arc references into the given map.
/// Copies the arc references into the given map.
template <typename ArcRef>
GraphCopy& arcRef(ArcRef& map) {
_arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc,
ArcRefMap, ArcRef>(map));
/// \brief Copies the arc cross references into the given map.
/// Copies the arc cross references (reverse references) into
template <typename ArcCrossRef>
GraphCopy& arcCrossRef(ArcCrossRef& map) {
_arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
ArcRefMap, ArcCrossRef>(map));
/// \brief Make copy of the given map.
/// Makes copy of the given map for the newly created graph.
/// The new map's key type is the to graph's arc type,
/// and the copied map's key type is the from graph's arc
template <typename ToMap, typename FromMap>
GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
_arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc,
ArcRefMap, ToMap, FromMap>(tmap, map));
/// \brief Make a copy of the given arc.
/// Make a copy of the given arc.
GraphCopy& arc(TArc& tarc, const Arc& sarc) {
_arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc,
ArcRefMap, TArc>(tarc, sarc));
/// \brief Copies the edge references into the given map.
/// Copies the edge references into the given map.
template <typename EdgeRef>
GraphCopy& edgeRef(EdgeRef& map) {
_edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge,
EdgeRefMap, EdgeRef>(map));
/// \brief Copies the edge cross references into the given map.
/// Copies the edge cross references (reverse
/// references) into the given map.
template <typename EdgeCrossRef>
GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
_edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From,
Edge, EdgeRefMap, EdgeCrossRef>(map));
/// \brief Make copy of the given map.
/// Makes copy of the given map for the newly created graph.
/// The new map's key type is the to graph's edge type,
/// and the copied map's key type is the from graph's edge
template <typename ToMap, typename FromMap>
GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
_edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge,
EdgeRefMap, ToMap, FromMap>(tmap, map));
/// \brief Make a copy of the given edge.
/// Make a copy of the given edge.
GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
_edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge,
EdgeRefMap, TEdge>(tedge, sedge));
/// \brief Executes the copies.
NodeRefMap nodeRefMap(_from);
EdgeRefMap edgeRefMap(_from);
ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
_graph_utils_bits::GraphCopySelector<To>::
copy(_to, _from, nodeRefMap, edgeRefMap);
for (int i = 0; i < int(_node_maps.size()); ++i) {
_node_maps[i]->copy(_from, nodeRefMap);
for (int i = 0; i < int(_edge_maps.size()); ++i) {
_edge_maps[i]->copy(_from, edgeRefMap);
for (int i = 0; i < int(_arc_maps.size()); ++i) {
_arc_maps[i]->copy(_from, arcRefMap);
std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
/// \brief Copy a graph to another graph.
/// Copy a graph to another graph. The complete usage of the
/// function is detailed in the GraphCopy class, but a short
/// example shows a basic work:
/// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
/// After the copy the \c nr map will contain the mapping from the
/// nodes of the \c from graph to the nodes of the \c to graph and
/// \c ecr will contain the mapping from the arcs of the \c to graph
/// to the arcs of the \c from graph.
template <typename To, typename From>
copyGraph(To& to, const From& from) {
return GraphCopy<To, From>(to, from);
/// \addtogroup graph_maps
/// Provides an immutable and unique id for each item in the graph.
/// The IdMap class provides a unique and immutable id for each item of the
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
/// different items (nodes) get different ids <li>\b immutable: the id of an
/// item (node) does not change (even if you delete other nodes). </ul>
/// Through this map you get access (i.e. can read) the inner id values of
/// the items stored in the graph. This map can be inverted with its member
/// class \c InverseMap or with the \c operator() member.
template <typename _Graph, typename _Item>
/// Constructor of the map.
explicit IdMap(const Graph& graph) : _graph(&graph) {}
/// \brief Gives back the \e id of the item.
/// Gives back the immutable and unique \e id of the item.
int operator[](const Item& item) const { return _graph->id(item);}
/// \brief Gives back the item by its id.
/// Gives back the item by its id.
Item operator()(int id) { return _graph->fromId(id, Item()); }
/// \brief The class represents the inverse of its owner (IdMap).
/// The class represents the inverse of its owner (IdMap).
/// Constructor for creating an id-to-item map.
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
/// Constructor for creating an id-to-item map.
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
/// \brief Gives back the given item from its id.
/// Gives back the given item from its id.
Item operator[](int id) const { return _graph->fromId(id, Item());}
/// \brief Gives back the inverse of the map.
/// Gives back the inverse of the IdMap.
InverseMap inverse() const { return InverseMap(*_graph);}
/// \brief General invertable graph-map type.
/// This type provides simple invertable graph-maps.
/// The InvertableMap wraps an arbitrary ReadWriteMap
/// and if a key is set to a new value then store it
/// The values of the map can be accessed
/// with stl compatible forward iterator.
/// \tparam _Graph The graph type.
/// \tparam _Item The item type of the graph.
/// \tparam _Value The value type of the map.
/// \see IterableValueMap
template <typename _Graph, typename _Item, typename _Value>
class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
typedef DefaultMap<_Graph, _Item, _Value> Map;
typedef std::map<_Value, _Item> Container;
/// The key type of InvertableMap (Node, Arc, Edge).
typedef typename Map::Key Key;
/// The value type of the InvertableMap.
typedef typename Map::Value Value;
/// Construct a new InvertableMap for the graph.
explicit InvertableMap(const Graph& graph) : Map(graph) {}
/// \brief Forward iterator for values.
/// This iterator is an stl compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the [beginValue, endValue) range.
: public std::iterator<std::forward_iterator_tag, Value> {
friend class InvertableMap;
ValueIterator(typename Container::const_iterator _it)
ValueIterator& operator++() { ++it; return *this; }
ValueIterator operator++(int) {
ValueIterator tmp(*this);
const Value& operator*() const { return it->first; }
const Value* operator->() const { return &(it->first); }
bool operator==(ValueIterator jt) const { return it == jt.it; }
bool operator!=(ValueIterator jt) const { return it != jt.it; }
typename Container::const_iterator it;
/// \brief Returns an iterator to the first value.
/// Returns an stl compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the [beginValue, endValue)
ValueIterator beginValue() const {
return ValueIterator(_inv_map.begin());
/// \brief Returns an iterator after the last value.
/// Returns an stl compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the [beginValue, endValue)
ValueIterator endValue() const {
return ValueIterator(_inv_map.end());
/// \brief The setter function of the map.
/// Sets the mapped value.
void set(const Key& key, const Value& val) {
Value oldval = Map::operator[](key);
typename Container::iterator it = _inv_map.find(oldval);
if (it != _inv_map.end() && it->second == key) {
_inv_map.insert(make_pair(val, key));
/// \brief The getter function of the map.
/// It gives back the value associated with the key.
typename MapTraits<Map>::ConstReturnValue
operator[](const Key& key) const {
return Map::operator[](key);
/// \brief Gives back the item by its value.
/// Gives back the item by its value.
Key operator()(const Value& key) const {
typename Container::const_iterator it = _inv_map.find(key);
return it != _inv_map.end() ? it->second : INVALID;
/// \brief Erase the key from the map.
/// Erase the key to the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Key& key) {
Value val = Map::operator[](key);
typename Container::iterator it = _inv_map.find(val);
if (it != _inv_map.end() && it->second == key) {
/// \brief Erase more keys from the map.
/// Erase more keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
Value val = Map::operator[](keys[i]);
typename Container::iterator it = _inv_map.find(val);
if (it != _inv_map.end() && it->second == keys[i]) {
/// \brief Clear the keys from the map and inverse map.
/// Clear the keys from the map and inverse map. It is called by the
/// \c AlterationNotifier.
/// \brief The inverse map type.
/// The inverse of this map. The subscript operator of the map
/// gives back always the item what was last assigned to the value.
/// \brief Constructor of the InverseMap.
/// Constructor of the InverseMap.
explicit InverseMap(const InvertableMap& inverted)
/// The value type of the InverseMap.
typedef typename InvertableMap::Key Value;
/// The key type of the InverseMap.
typedef typename InvertableMap::Value Key;
/// \brief Subscript operator.
/// Subscript operator. It gives back always the item
/// what was last assigned to the value.
Value operator[](const Key& key) const {
const InvertableMap& _inverted;
/// \brief It gives back the just readable inverse map.
/// It gives back the just readable inverse map.
InverseMap inverse() const {
return InverseMap(*this);
/// \brief Provides a mutable, continuous and unique descriptor for each
/// The DescriptorMap class provides a unique and continuous (but mutable)
/// descriptor (id) for each item of the same type (e.g. node) in the
/// graph. This id is <ul><li>\b unique: different items (nodes) get
/// different ids <li>\b continuous: the range of the ids is the set of
/// integers between 0 and \c n-1, where \c n is the number of the items of
/// this type (e.g. nodes) (so the id of a node can change if you delete an
/// other node, i.e. this id is mutable). </ul> This map can be inverted
/// with its member class \c InverseMap, or with the \c operator() member.
/// \tparam _Graph The graph class the \c DescriptorMap belongs to.
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
template <typename _Graph, typename _Item>
class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
typedef DefaultMap<_Graph, _Item, int> Map;
/// The graph class of DescriptorMap.
/// The key type of DescriptorMap (Node, Arc, Edge).
typedef typename Map::Key Key;
/// The value type of DescriptorMap.
typedef typename Map::Value Value;
/// Constructor for descriptor map.
explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
/// \brief Add a new key to the map.
/// Add a new key to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const Item& item) {
Map::set(item, _inv_map.size());
_inv_map.push_back(item);
/// \brief Add more new keys to the map.
/// Add more new keys to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(items[i], _inv_map.size());
_inv_map.push_back(items[i]);
/// \brief Erase the key from the map.
/// Erase the key from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Item& item) {
Map::set(_inv_map.back(), Map::operator[](item));
_inv_map[Map::operator[](item)] = _inv_map.back();
/// \brief Erase more keys from the map.
/// Erase more keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(_inv_map.back(), Map::operator[](items[i]));
_inv_map[Map::operator[](items[i])] = _inv_map.back();
/// \brief Build the unique map.
/// Build the unique map. It is called by the
/// \c AlterationNotifier.
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
/// \brief Clear the keys from the map.
/// Clear the keys from the map. It is called by the
/// \c AlterationNotifier.
/// \brief Returns the maximal value plus one.
/// Returns the maximal value plus one in the map.
unsigned int size() const {
/// \brief Swaps the position of the two items in the map.
/// Swaps the position of the two items in the map.
void swap(const Item& p, const Item& q) {
int pi = Map::operator[](p);
int qi = Map::operator[](q);
/// \brief Gives back the \e descriptor of the item.
/// Gives back the mutable and unique \e descriptor of the map.
int operator[](const Item& item) const {
return Map::operator[](item);
/// \brief Gives back the item by its descriptor.
/// Gives back th item by its descriptor.
Item operator()(int id) const {
typedef std::vector<Item> Container;
/// \brief The inverse map type of DescriptorMap.
/// The inverse map type of DescriptorMap.
/// \brief Constructor of the InverseMap.
/// Constructor of the InverseMap.
explicit InverseMap(const DescriptorMap& inverted)
/// The value type of the InverseMap.
typedef typename DescriptorMap::Key Value;
/// The key type of the InverseMap.
typedef typename DescriptorMap::Value Key;
/// \brief Subscript operator.
/// Subscript operator. It gives back the item
/// that the descriptor belongs to currently.
Value operator[](const Key& key) const {
/// \brief Size of the map.
/// Returns the size of the map.
unsigned int size() const {
const DescriptorMap& _inverted;
/// \brief Gives back the inverse of the map.
/// Gives back the inverse of the map.
const InverseMap inverse() const {
return InverseMap(*this);
/// \brief Returns the source of the given arc.
/// The SourceMap gives back the source Node of the given arc.
template <typename Digraph>
typedef typename Digraph::Node Value;
typedef typename Digraph::Arc Key;
/// \param _digraph The digraph that the map belongs to.
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
/// \brief The subscript operator.
/// The subscript operator.
/// \return The source of the arc
Value operator[](const Key& arc) const {
return _digraph.source(arc);
/// \brief Returns a \ref SourceMap class.
/// This function just returns an \ref SourceMap class.
template <typename Digraph>
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
return SourceMap<Digraph>(digraph);
/// \brief Returns the target of the given arc.
/// The TargetMap gives back the target Node of the given arc.
template <typename Digraph>
typedef typename Digraph::Node Value;
typedef typename Digraph::Arc Key;
/// \param _digraph The digraph that the map belongs to.
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
/// \brief The subscript operator.
/// The subscript operator.
/// \return The target of the arc
Value operator[](const Key& e) const {
return _digraph.target(e);
/// \brief Returns a \ref TargetMap class.
/// This function just returns a \ref TargetMap class.
template <typename Digraph>
inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
return TargetMap<Digraph>(digraph);
/// \brief Returns the "forward" directed arc view of an edge.
/// Returns the "forward" directed arc view of an edge.
template <typename Graph>
typedef typename Graph::Arc Value;
typedef typename Graph::Edge Key;
/// \param _graph The graph that the map belongs to.
explicit ForwardMap(const Graph& graph) : _graph(graph) {}
/// \brief The subscript operator.
/// The subscript operator.
/// \return The "forward" directed arc view of edge
Value operator[](const Key& key) const {
return _graph.direct(key, true);
/// \brief Returns a \ref ForwardMap class.
/// This function just returns an \ref ForwardMap class.
template <typename Graph>
inline ForwardMap<Graph> forwardMap(const Graph& graph) {
return ForwardMap<Graph>(graph);
/// \brief Returns the "backward" directed arc view of an edge.
/// Returns the "backward" directed arc view of an edge.
template <typename Graph>
typedef typename Graph::Arc Value;
typedef typename Graph::Edge Key;
/// \param _graph The graph that the map belongs to.
explicit BackwardMap(const Graph& graph) : _graph(graph) {}
/// \brief The subscript operator.
/// The subscript operator.
/// \return The "backward" directed arc view of edge
Value operator[](const Key& key) const {
return _graph.direct(key, false);
/// \brief Returns a \ref BackwardMap class
/// This function just returns a \ref BackwardMap class.
template <typename Graph>
inline BackwardMap<Graph> backwardMap(const Graph& graph) {
return BackwardMap<Graph>(graph);
/// \brief Potential difference map
/// If there is an potential map on the nodes then we
/// can get an arc map as we get the substraction of the
/// values of the target and source.
template <typename Digraph, typename NodeMap>
class PotentialDifferenceMap {
typedef typename Digraph::Arc Key;
typedef typename NodeMap::Value Value;
/// Contructor of the map
explicit PotentialDifferenceMap(const Digraph& digraph,
const NodeMap& potential)
: _digraph(digraph), _potential(potential) {}
/// \brief Const subscription operator
/// Const subscription operator
Value operator[](const Key& arc) const {
return _potential[_digraph.target(arc)] -
_potential[_digraph.source(arc)];
const NodeMap& _potential;
/// \brief Returns a PotentialDifferenceMap.
/// This function just returns a PotentialDifferenceMap.
/// \relates PotentialDifferenceMap
template <typename Digraph, typename NodeMap>
PotentialDifferenceMap<Digraph, NodeMap>
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
/// \brief Map of the node in-degrees.
/// This map returns the in-degree of a node. Once it is constructed,
/// the degrees are stored in a standard NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
/// \warning Besides addNode() and addArc(), a digraph structure may provide
/// alternative ways to modify the digraph. The correct behavior of InDegMap
/// is not guarantied if these additional features are used. For example
/// the functions \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
template <typename _Digraph>
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
::ItemNotifier::ObserverBase {
typedef _Digraph Digraph;
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
typedef DefaultMap<Digraph, Key, int> Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
virtual void add(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
/// Constructor for creating in-degree map.
explicit InDegMap(const Digraph& digraph)
: _digraph(digraph), _deg(digraph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
/// Gives back the in-degree of a Node.
int operator[](const Key& key) const {
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.target(arc)];
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.target(arcs[i])];
virtual void erase(const Arc& arc) {
--_deg[_digraph.target(arc)];
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.target(arcs[i])];
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
/// \brief Map of the node out-degrees.
/// This map returns the out-degree of a node. Once it is constructed,
/// the degrees are stored in a standard NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
/// \warning Besides addNode() and addArc(), a digraph structure may provide
/// alternative ways to modify the digraph. The correct behavior of OutDegMap
/// is not guarantied if these additional features are used. For example
/// the functions \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
template <typename _Digraph>
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
::ItemNotifier::ObserverBase {
typedef _Digraph Digraph;
typedef typename Digraph::Node Key;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
typedef DefaultMap<Digraph, Key, int> Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
virtual void add(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
/// Constructor for creating out-degree map.
explicit OutDegMap(const Digraph& digraph)
: _digraph(digraph), _deg(digraph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
/// Gives back the out-degree of a Node.
int operator[](const Key& key) const {
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.source(arc)];
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.source(arcs[i])];
virtual void erase(const Arc& arc) {
--_deg[_digraph.source(arc)];
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.source(arcs[i])];
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
///Dynamic arc look up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in amortized time <em>O(log d)</em>,
///where <em>d</em> is the out-degree of the source node.
///It is possible to find \e all parallel arcs between two nodes with
///the \c findFirst() and \c findNext() members.
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
///digraph is not changed so frequently.
///This class uses a self-adjusting binary search tree, Sleator's
///and Tarjan's Splay tree for guarantee the logarithmic amortized
///time bound for arc lookups. This class also guarantees the
///optimal time bound in a constant factor for any distribution of
///\tparam G The type of the underlying digraph.
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
typedef typename ItemSetTraits<G, typename G::Arc>
::ItemNotifier::ObserverBase Parent;
TEMPLATE_DIGRAPH_TYPEDEFS(G);
class AutoNodeMap : public DefaultMap<G, Node, Arc> {
typedef DefaultMap<G, Node, Arc> Parent;
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
virtual void add(const Node& node) {
Parent::set(node, INVALID);
virtual void add(const std::vector<Node>& nodes) {
for (int i = 0; i < int(nodes.size()); ++i) {
Parent::set(nodes[i], INVALID);
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, INVALID);
typename Digraph::template ArcMap<Arc> _parent;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
return g.target(a)<g.target(b);
///It builds up the search database.
DynArcLookUp(const Digraph &g)
: _g(g),_head(g),_parent(g),_left(g),_right(g)
Parent::attach(_g.notifier(typename Digraph::Arc()));
virtual void add(const Arc& arc) {
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
virtual void erase(const Arc& arc) {
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
for(NodeIt n(_g);n!=INVALID;++n) {
_right.set(arc, INVALID);
_parent.set(arc, INVALID);
if (_left[e] == INVALID) {
if (_right[e] == INVALID) {
if (_left[arc] == INVALID) {
if (_right[arc] != INVALID) {
_parent.set(_right[arc], _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], _right[arc]);
_right.set(_parent[arc], _right[arc]);
_head.set(_g.source(arc), _right[arc]);
} else if (_right[arc] == INVALID) {
_parent.set(_left[arc], _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], _left[arc]);
_right.set(_parent[arc], _left[arc]);
_head.set(_g.source(arc), _left[arc]);
if (_right[e] != INVALID) {
while (_right[e] != INVALID) {
_right.set(_parent[e], _left[e]);
if (_left[e] != INVALID) {
_parent.set(_left[e], _parent[e]);
_left.set(e, _left[arc]);
_parent.set(_left[arc], e);
_right.set(e, _right[arc]);
_parent.set(_right[arc], e);
_parent.set(e, _parent[arc]);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], e);
_right.set(_parent[arc], e);
_right.set(e, _right[arc]);
_parent.set(_right[arc], e);
if (_parent[arc] != INVALID) {
if (_left[_parent[arc]] == arc) {
_left.set(_parent[arc], e);
_right.set(_parent[arc], e);
_head.set(_g.source(arc), e);
Arc refreshRec(std::vector<Arc> &v,int a,int b)
Arc left = refreshRec(v,a,m-1);
Arc right = refreshRec(v,m+1,b);
for(NodeIt n(_g);n!=INVALID;++n) {
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
std::sort(v.begin(),v.end(),ArcLess(_g));
Arc head = refreshRec(v,0,v.size()-1);
_parent.set(head, INVALID);
else _head.set(n, INVALID);
_parent.set(v, _parent[w]);
if (_parent[v] != INVALID) {
if (_right[_parent[v]] == w) {
_right.set(_parent[v], v);
_left.set(_parent[v], v);
if (_left[w] != INVALID){
_parent.set(_left[w], w);
_parent.set(v, _parent[w]);
if (_parent[v] != INVALID){
if (_left[_parent[v]] == w) {
_left.set(_parent[v], v);
_right.set(_parent[v], v);
if (_right[w] != INVALID){
_parent.set(_right[w], w);
while (_parent[v] != INVALID) {
if (v == _left[_parent[v]]) {
if (_parent[_parent[v]] == INVALID) {
if (_parent[v] == _left[_parent[_parent[v]]]) {
if (_parent[_parent[v]] == INVALID) {
if (_parent[v] == _left[_parent[_parent[v]]]) {
///Find an arc between two nodes.
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
/// <em>d</em> is the number of outgoing arcs of \c s.
///\param s The source node
///\param t The target node
///\return An arc from \c s to \c t if there exists,
///\ref INVALID otherwise.
Arc operator()(Node s, Node t) const
const_cast<DynArcLookUp&>(*this).splay(a);
} else if (t < _g.target(a)) {
if (_left[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
if (_right[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
///Find the first arc between two nodes.
///Find the first arc between two nodes in time
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
/// outgoing arcs of \c s.
///\param s The source node
///\param t The target node
///\return An arc from \c s to \c t if there exists, \ref INVALID
Arc findFirst(Node s, Node t) const
if (_right[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
if (_left[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
///Find the next arc between two nodes.
///Find the next arc between two nodes in time
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
/// outgoing arcs of \c s.
///\param s The source node
///\param t The target node
///\return An arc from \c s to \c t if there exists, \ref INVALID
///\note If \c e is not the result of the previous \c findFirst()
///operation then the amorized time bound can not be guaranteed.
Arc findNext(Node s, Node t, Arc a) const
Arc findNext(Node, Node t, Arc a) const
if (_right[a] != INVALID) {
while (_left[a] != INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
while (_parent[a] != INVALID && _right[_parent[a]] == a) {
if (_parent[a] == INVALID) {
const_cast<DynArcLookUp&>(*this).splay(a);
if (_g.target(a) == t) return a;
///Fast arc look up between given endpoints.
///Using this class, you can find an arc in a digraph from a given
///source to a given target in time <em>O(log d)</em>,
///where <em>d</em> is the out-degree of the source node.
///It is not possible to find \e all parallel arcs between two nodes.
///Use \ref AllArcLookUp for this purpose.
///\warning This class is static, so you should refresh() (or at least
///refresh(Node)) this data structure
///whenever the digraph changes. This is a time consuming (superlinearly
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
///\tparam G The type of the underlying digraph.
TEMPLATE_DIGRAPH_TYPEDEFS(G);
typename Digraph::template NodeMap<Arc> _head;
typename Digraph::template ArcMap<Arc> _left;
typename Digraph::template ArcMap<Arc> _right;
ArcLess(const Digraph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
return g.target(a)<g.target(b);
///It builds up the search database, which remains valid until the digraph
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
Arc refreshRec(std::vector<Arc> &v,int a,int b)
_left[me] = a<m?refreshRec(v,a,m-1):INVALID;
_right[me] = m<b?refreshRec(v,m+1,b):INVALID;
///Refresh the data structure at a node.
///Build up the search database of node \c n.
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
///the number of the outgoing arcs of \c n.
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
std::sort(v.begin(),v.end(),ArcLess(_g));
_head[n]=refreshRec(v,0,v.size()-1);
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
///the number of the arcs of \c n and <em>D</em> is the maximum
///out-degree of the digraph.
for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
///Find an arc between two nodes.
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
/// <em>d</em> is the number of outgoing arcs of \c s.
///\param s The source node
///\param t The target node
///\return An arc from \c s to \c t if there exists,
///\ref INVALID otherwise.
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then
///\ref refresh(Node) "refresh(n)" is enough.
Arc operator()(Node s, Node t) const
e!=INVALID&&_g.target(e)!=t;
e = t < _g.target(e)?_left[e]:_right[e]) ;
///Fast look up of all arcs between given endpoints.
///This class is the same as \ref ArcLookUp, with the addition
///that it makes it possible to find all arcs between given endpoints.
///\warning This class is static, so you should refresh() (or at least
///refresh(Node)) this data structure
///whenever the digraph changes. This is a time consuming (superlinearly
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
///\tparam G The type of the underlying digraph.
class AllArcLookUp : public ArcLookUp<G>
using ArcLookUp<G>::_right;
using ArcLookUp<G>::_left;
using ArcLookUp<G>::_head;
TEMPLATE_DIGRAPH_TYPEDEFS(G);
typename Digraph::template ArcMap<Arc> _next;
Arc refreshNext(Arc head,Arc next=INVALID)
if(head==INVALID) return next;
next=refreshNext(_right[head],next);
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
return refreshNext(_left[head],head);
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
///It builds up the search database, which remains valid until the digraph
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
///Refresh the data structure at a node.
///Build up the search database of node \c n.
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
///the number of the outgoing arcs of \c n.
ArcLookUp<G>::refresh(n);
///Refresh the full data structure.
///Build up the full search database. In fact, it simply calls
///\ref refresh(Node) "refresh(n)" for each node \c n.
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
///the number of the arcs of \c n and <em>D</em> is the maximum
///out-degree of the digraph.
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
///Find an arc between two nodes.
///Find an arc between two nodes.
///\param s The source node
///\param t The target node
///\param prev The previous arc between \c s and \c t. It it is INVALID or
///not given, the operator finds the first appropriate arc.
///\return An arc from \c s to \c t after \c prev or
///\ref INVALID if there is no more.
///For example, you can count the number of arcs from \c u to \c v in the
///AllArcLookUp<ListDigraph> ae(g);
///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
/// <em>d</em> is the number of outgoing arcs of \c s. Then, the
///consecutive arcs are found in constant time.
///\warning If you change the digraph, refresh() must be called before using
///this operator. If you change the outgoing arcs of
///a single node \c n, then
///\ref refresh(Node) "refresh(n)" is enough.
Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
using ArcLookUp<G>::operator() ;
Arc operator()(Node s, Node t, Arc prev) const
return prev==INVALID?(*this)(s,t):_next[prev];
} //END OF NAMESPACE LEMON