Location: LEMON/LEMON-official/lemon/concepts/path.h

Load file history
gravatar
kpeter (Peter Kovacs)
Implement the scaling Price Refinement heuristic in CostScaling (#417) instead of Early Termination. These two heuristics are similar, but the newer one is faster and not only makes it possible to skip some epsilon phases, but it can improve the performance of the other phases, as well.
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup concept
///\file
///\brief The concept of paths
///
#ifndef LEMON_CONCEPTS_PATH_H
#define LEMON_CONCEPTS_PATH_H
#include <lemon/core.h>
#include <lemon/concept_check.h>
namespace lemon {
namespace concepts {
/// \addtogroup concept
/// @{
/// \brief A skeleton structure for representing directed paths in
/// a digraph.
///
/// A skeleton structure for representing directed paths in a
/// digraph.
/// In a sense, a path can be treated as a list of arcs.
/// LEMON path types just store this list. As a consequence, they cannot
/// enumerate the nodes on the path directly and a zero length path
/// cannot store its source node.
///
/// The arcs of a path should be stored in the order of their directions,
/// i.e. the target node of each arc should be the same as the source
/// node of the next arc. This consistency could be checked using
/// \ref checkPath().
/// The source and target nodes of a (consistent) path can be obtained
/// using \ref pathSource() and \ref pathTarget().
///
/// A path can be constructed from another path of any type using the
/// copy constructor or the assignment operator.
///
/// \tparam GR The digraph type in which the path is.
template <typename GR>
class Path {
public:
/// Type of the underlying digraph.
typedef GR Digraph;
/// Arc type of the underlying digraph.
typedef typename Digraph::Arc Arc;
class ArcIt;
/// \brief Default constructor
Path() {}
/// \brief Template copy constructor
template <typename CPath>
Path(const CPath& cpath) {}
/// \brief Template assigment operator
template <typename CPath>
Path& operator=(const CPath& cpath) {
ignore_unused_variable_warning(cpath);
return *this;
}
/// Length of the path, i.e. the number of arcs on the path.
int length() const { return 0;}
/// Returns whether the path is empty.
bool empty() const { return true;}
/// Resets the path to an empty path.
void clear() {}
/// \brief LEMON style iterator for enumerating the arcs of a path.
///
/// LEMON style iterator class for enumerating the arcs of a path.
class ArcIt {
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) {}
/// Sets the iterator to the first arc of the given path
ArcIt(const Path &) {}
/// Conversion to \c Arc
operator Arc() const { return INVALID; }
/// Next arc
ArcIt& operator++() {return *this;}
/// Comparison operator
bool operator==(const ArcIt&) const {return true;}
/// Comparison operator
bool operator!=(const ArcIt&) const {return true;}
/// Comparison operator
bool operator<(const ArcIt&) const {return false;}
};
template <typename _Path>
struct Constraints {
void constraints() {
Path<Digraph> pc;
_Path p, pp(pc);
int l = p.length();
int e = p.empty();
p.clear();
p = pc;
typename _Path::ArcIt id, ii(INVALID), i(p);
++i;
typename Digraph::Arc ed = i;
e = (i == ii);
e = (i != ii);
e = (i < ii);
ignore_unused_variable_warning(l);
ignore_unused_variable_warning(pp);
ignore_unused_variable_warning(e);
ignore_unused_variable_warning(id);
ignore_unused_variable_warning(ii);
ignore_unused_variable_warning(ed);
}
};
};
namespace _path_bits {
template <typename _Digraph, typename _Path, typename RevPathTag = void>
struct PathDumperConstraints {
void constraints() {
int l = p.length();
int e = p.empty();
typename _Path::ArcIt id, i(p);
++i;
typename _Digraph::Arc ed = i;
e = (i == INVALID);
e = (i != INVALID);
ignore_unused_variable_warning(l);
ignore_unused_variable_warning(e);
ignore_unused_variable_warning(id);
ignore_unused_variable_warning(ed);
}
_Path& p;
};
template <typename _Digraph, typename _Path>
struct PathDumperConstraints<
_Digraph, _Path,
typename enable_if<typename _Path::RevPathTag, void>::type
> {
void constraints() {
int l = p.length();
int e = p.empty();
typename _Path::RevArcIt id, i(p);
++i;
typename _Digraph::Arc ed = i;
e = (i == INVALID);
e = (i != INVALID);
ignore_unused_variable_warning(l);
ignore_unused_variable_warning(e);
ignore_unused_variable_warning(id);
ignore_unused_variable_warning(ed);
}
_Path& p;
};
}
/// \brief A skeleton structure for path dumpers.
///
/// A skeleton structure for path dumpers. The path dumpers are
/// the generalization of the paths, they can enumerate the arcs
/// of the path either in forward or in backward order.
/// These classes are typically not used directly, they are rather
/// used to be assigned to a real path type.
///
/// The main purpose of this concept is that the shortest path
/// algorithms can enumerate the arcs easily in reverse order.
/// In LEMON, such algorithms give back a (reverse) path dumper that
/// can be assigned to a real path. The dumpers can be implemented as
/// an adaptor class to the predecessor map.
///
/// \tparam GR The digraph type in which the path is.
template <typename GR>
class PathDumper {
public:
/// Type of the underlying digraph.
typedef GR Digraph;
/// Arc type of the underlying digraph.
typedef typename Digraph::Arc Arc;
/// Length of the path, i.e. the number of arcs on the path.
int length() const { return 0;}
/// Returns whether the path is empty.
bool empty() const { return true;}
/// \brief Forward or reverse dumping
///
/// If this tag is defined to be \c True, then reverse dumping
/// is provided in the path dumper. In this case, \c RevArcIt
/// iterator should be implemented instead of \c ArcIt iterator.
typedef False RevPathTag;
/// \brief LEMON style iterator for enumerating the arcs of a path.
///
/// LEMON style iterator class for enumerating the arcs of a path.
class ArcIt {
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) {}
/// Sets the iterator to the first arc of the given path
ArcIt(const PathDumper&) {}
/// Conversion to \c Arc
operator Arc() const { return INVALID; }
/// Next arc
ArcIt& operator++() {return *this;}
/// Comparison operator
bool operator==(const ArcIt&) const {return true;}
/// Comparison operator
bool operator!=(const ArcIt&) const {return true;}
/// Comparison operator
bool operator<(const ArcIt&) const {return false;}
};
/// \brief LEMON style iterator for enumerating the arcs of a path
/// in reverse direction.
///
/// LEMON style iterator class for enumerating the arcs of a path
/// in reverse direction.
class RevArcIt {
public:
/// Default constructor
RevArcIt() {}
/// Invalid constructor
RevArcIt(Invalid) {}
/// Sets the iterator to the last arc of the given path
RevArcIt(const PathDumper &) {}
/// Conversion to \c Arc
operator Arc() const { return INVALID; }
/// Next arc
RevArcIt& operator++() {return *this;}
/// Comparison operator
bool operator==(const RevArcIt&) const {return true;}
/// Comparison operator
bool operator!=(const RevArcIt&) const {return true;}
/// Comparison operator
bool operator<(const RevArcIt&) const {return false;}
};
template <typename _Path>
struct Constraints {
void constraints() {
function_requires<_path_bits::
PathDumperConstraints<Digraph, _Path> >();
}
};
};
///@}
}
} // namespace lemon
#endif