Location: LEMON/LEMON-official/lemon/path.h

Load file history
gravatar
alpar (Alpar Juttner)
Merge several CMAKE related improvements
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup paths
///\file
///\brief Classes for representing paths in digraphs.
///
#ifndef LEMON_PATH_H
#define LEMON_PATH_H
#include <vector>
#include <algorithm>
#include <lemon/error.h>
#include <lemon/core.h>
#include <lemon/concepts/path.h>
namespace lemon {
/// \addtogroup paths
/// @{
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \tparam GR The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence, it
/// cannot enumerate the nodes of the path and the source node of
/// a zero length path is undefined.
///
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(1) time. The front and back
/// insertion and erase is done in O(1) (amortized) time. The
/// implementation uses two vectors for storing the front and back
/// insertions.
template <typename GR>
class Path {
public:
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
Path() {}
/// \brief Template copy constructor
///
/// This constuctor initializes the path from any other path type.
/// It simply makes a copy of the given path.
template <typename CPath>
Path(const CPath& cpath) {
copyPath(*this, cpath);
}
/// \brief Template copy assignment
///
/// This operator makes a copy of a path of any other type.
template <typename CPath>
Path& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief LEMON style iterator for path arcs
///
/// This class is used to iterate on the arcs of the paths.
class ArcIt {
friend class Path;
public:
/// \brief Default constructor
ArcIt() {}
/// \brief Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the iterator to the first arc of path
ArcIt(const Path &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
ArcIt(const Path &_path, int _idx)
: path(&_path), idx(_idx) {}
public:
/// \brief Conversion to Arc
operator const Arc&() const {
return path->nth(idx);
}
/// \brief Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// \brief Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// \brief Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// \brief Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const Path *path;
int idx;
};
/// \brief Length of the path.
int length() const { return head.size() + tail.size(); }
/// \brief Return whether the path is empty.
bool empty() const { return head.empty() && tail.empty(); }
/// \brief Reset the path to an empty one.
void clear() { head.clear(); tail.clear(); }
/// \brief The nth arc.
///
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
const Arc& nth(int n) const {
return n < int(head.size()) ? *(head.rbegin() + n) :
*(tail.begin() + (n - head.size()));
}
/// \brief Initialize arc iterator to point to the nth arc
///
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief The first arc of the path
const Arc& front() const {
return head.empty() ? tail.front() : head.back();
}
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
head.push_back(arc);
}
/// \brief Erase the first arc of the path
void eraseFront() {
if (!head.empty()) {
head.pop_back();
} else {
head.clear();
int halfsize = tail.size() / 2;
head.resize(halfsize);
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
head.rbegin());
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
tail.resize(tail.size() - halfsize - 1);
}
}
/// \brief The last arc of the path
const Arc& back() const {
return tail.empty() ? head.front() : tail.back();
}
/// \brief Add a new arc behind the current path
void addBack(const Arc& arc) {
tail.push_back(arc);
}
/// \brief Erase the last arc of the path
void eraseBack() {
if (!tail.empty()) {
tail.pop_back();
} else {
int halfsize = head.size() / 2;
tail.resize(halfsize);
std::copy(head.begin() + 1, head.begin() + halfsize + 1,
tail.rbegin());
std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
head.resize(head.size() - halfsize - 1);
}
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
int len = path.length();
tail.reserve(len);
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
tail.push_back(it);
}
}
template <typename CPath>
void buildRev(const CPath& path) {
int len = path.length();
head.reserve(len);
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
head.push_back(it);
}
}
protected:
typedef std::vector<Arc> Container;
Container head, tail;
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \tparam GR The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is a just back insertable and erasable path
/// type. It can be indexed in O(1) time. The back insertion and
/// erasure is amortized O(1) time. This implementation is faster
/// then the \c Path type because it use just one vector for the
/// arcs.
template <typename GR>
class SimplePath {
public:
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
SimplePath() {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath(const CPath& cpath) {
copyPath(*this, cpath);
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class SimplePath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const SimplePath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
/// Constructor with starting point
ArcIt(const SimplePath &_path, int _idx)
: idx(_idx), path(&_path) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return path->nth(idx);
}
/// Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const SimplePath *path;
int idx;
};
/// \brief Length of the path.
int length() const { return data.size(); }
/// \brief Return true if the path is empty.
bool empty() const { return data.empty(); }
/// \brief Reset the path to an empty one.
void clear() { data.clear(); }
/// \brief The nth arc.
///
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
const Arc& nth(int n) const {
return data[n];
}
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief The first arc of the path.
const Arc& front() const {
return data.front();
}
/// \brief The last arc of the path.
const Arc& back() const {
return data.back();
}
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
data.push_back(arc);
}
/// \brief Erase the last arc of the path
void eraseBack() {
data.pop_back();
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
int len = path.length();
data.resize(len);
int index = 0;
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
data[index] = it;;
++index;
}
}
template <typename CPath>
void buildRev(const CPath& path) {
int len = path.length();
data.resize(len);
int index = len;
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
--index;
data[index] = it;;
}
}
protected:
typedef std::vector<Arc> Container;
Container data;
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \tparam GR The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(k) time, where k is the rank
/// of the arc in the path. The length can be computed in O(n)
/// time. The front and back insertion and erasure is O(1) time
/// and it can be splited and spliced in O(1) time.
template <typename GR>
class ListPath {
public:
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
protected:
// the std::list<> is incompatible
// hard to create invalid iterator
struct Node {
Arc arc;
Node *next, *prev;
};
Node *first, *last;
std::allocator<Node> alloc;
public:
/// \brief Default constructor
///
/// Default constructor
ListPath() : first(0), last(0) {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath(const CPath& cpath) : first(0), last(0) {
copyPath(*this, cpath);
}
/// \brief Destructor of the path
///
/// Destructor of the path
~ListPath() {
clear();
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class ListPath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), node(0) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const ListPath &_path)
: path(&_path), node(_path.first) {}
protected:
ArcIt(const ListPath &_path, Node *_node)
: path(&_path), node(_node) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return node->arc;
}
/// Next arc
ArcIt& operator++() {
node = node->next;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return node==e.node; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return node!=e.node; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return node<e.node; }
private:
const ListPath *path;
Node *node;
};
/// \brief The nth arc.
///
/// This function looks for the nth arc in O(n) time.
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
const Arc& nth(int n) const {
Node *node = first;
for (int i = 0; i < n; ++i) {
node = node->next;
}
return node->arc;
}
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
Node *node = first;
for (int i = 0; i < n; ++i) {
node = node->next;
}
return ArcIt(*this, node);
}
/// \brief Length of the path.
int length() const {
int len = 0;
Node *node = first;
while (node != 0) {
node = node->next;
++len;
}
return len;
}
/// \brief Return true if the path is empty.
bool empty() const { return first == 0; }
/// \brief Reset the path to an empty one.
void clear() {
while (first != 0) {
last = first->next;
alloc.destroy(first);
alloc.deallocate(first, 1);
first = last;
}
}
/// \brief The first arc of the path
const Arc& front() const {
return first->arc;
}
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
node->prev = 0;
node->next = first;
node->arc = arc;
if (first) {
first->prev = node;
first = node;
} else {
first = last = node;
}
}
/// \brief Erase the first arc of the path
void eraseFront() {
Node *node = first;
first = first->next;
if (first) {
first->prev = 0;
} else {
last = 0;
}
alloc.destroy(node);
alloc.deallocate(node, 1);
}
/// \brief The last arc of the path.
const Arc& back() const {
return last->arc;
}
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
node->next = 0;
node->prev = last;
node->arc = arc;
if (last) {
last->next = node;
last = node;
} else {
last = first = node;
}
}
/// \brief Erase the last arc of the path
void eraseBack() {
Node *node = last;
last = last->prev;
if (last) {
last->next = 0;
} else {
first = 0;
}
alloc.destroy(node);
alloc.deallocate(node, 1);
}
/// \brief Splice a path to the back of the current path.
///
/// It splices \c tpath to the back of the current path and \c
/// tpath becomes empty. The time complexity of this function is
/// O(1).
void spliceBack(ListPath& tpath) {
if (first) {
if (tpath.first) {
last->next = tpath.first;
tpath.first->prev = last;
last = tpath.last;
}
} else {
first = tpath.first;
last = tpath.last;
}
tpath.first = tpath.last = 0;
}
/// \brief Splice a path to the front of the current path.
///
/// It splices \c tpath before the current path and \c tpath
/// becomes empty. The time complexity of this function
/// is O(1).
void spliceFront(ListPath& tpath) {
if (first) {
if (tpath.first) {
first->prev = tpath.last;
tpath.last->next = first;
first = tpath.first;
}
} else {
first = tpath.first;
last = tpath.last;
}
tpath.first = tpath.last = 0;
}
/// \brief Splice a path into the current path.
///
/// It splices the \c tpath into the current path before the
/// position of \c it iterator and \c tpath becomes empty. The
/// time complexity of this function is O(1). If the \c it is
/// \c INVALID then it will splice behind the current path.
void splice(ArcIt it, ListPath& tpath) {
if (it.node) {
if (tpath.first) {
tpath.first->prev = it.node->prev;
if (it.node->prev) {
it.node->prev->next = tpath.first;
} else {
first = tpath.first;
}
it.node->prev = tpath.last;
tpath.last->next = it.node;
}
} else {
if (first) {
if (tpath.first) {
last->next = tpath.first;
tpath.first->prev = last;
last = tpath.last;
}
} else {
first = tpath.first;
last = tpath.last;
}
}
tpath.first = tpath.last = 0;
}
/// \brief Split the current path.
///
/// It splits the current path into two parts. The part before
/// the iterator \c it will remain in the current path and the part
/// starting with
/// \c it will put into \c tpath. If \c tpath have arcs
/// before the operation they are removed first. The time
/// complexity of this function is O(1) plus the the time of emtying
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath
void split(ArcIt it, ListPath& tpath) {
tpath.clear();
if (it.node) {
tpath.first = it.node;
tpath.last = last;
if (it.node->prev) {
last = it.node->prev;
last->next = 0;
} else {
first = last = 0;
}
it.node->prev = 0;
}
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
addBack(it);
}
}
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
addFront(it);
}
}
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \tparam GR The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the source node of
/// a zero length path is undefined.
///
/// This implementation is completly static, i.e. it can be copy constucted
/// or copy assigned from another path, but otherwise it cannot be
/// modified.
///
/// Being the the most memory efficient path type in LEMON,
/// it is intented to be
/// used when you want to store a large number of paths.
template <typename GR>
class StaticPath {
public:
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
StaticPath() : len(0), arcs(0) {}
/// \brief Template copy constructor
///
/// This path can be initialized from any other path type.
template <typename CPath>
StaticPath(const CPath& cpath) : arcs(0) {
copyPath(*this, cpath);
}
/// \brief Destructor of the path
///
/// Destructor of the path
~StaticPath() {
if (arcs) delete[] arcs;
}
/// \brief Template copy assignment
///
/// This path can be made equal to any other path type. It simply
/// makes a copy of the given path.
template <typename CPath>
StaticPath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class StaticPath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// Initializate the constructor to the first arc of path
ArcIt(const StaticPath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
/// Constructor with starting point
ArcIt(const StaticPath &_path, int _idx)
: idx(_idx), path(&_path) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return path->nth(idx);
}
/// Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const StaticPath *path;
int idx;
};
/// \brief The nth arc.
///
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
const Arc& nth(int n) const {
return arcs[n];
}
/// \brief The arc iterator pointing to the nth arc.
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief The length of the path.
int length() const { return len; }
/// \brief Return true when the path is empty.
int empty() const { return len == 0; }
/// \brief Erase all arcs in the digraph.
void clear() {
len = 0;
if (arcs) delete[] arcs;
arcs = 0;
}
/// \brief The first arc of the path.
const Arc& front() const {
return arcs[0];
}
/// \brief The last arc of the path.
const Arc& back() const {
return arcs[len - 1];
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
len = path.length();
arcs = new Arc[len];
int index = 0;
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
arcs[index] = it;
++index;
}
}
template <typename CPath>
void buildRev(const CPath& path) {
len = path.length();
arcs = new Arc[len];
int index = len;
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
--index;
arcs[index] = it;
}
}
private:
int len;
Arc* arcs;
};
///////////////////////////////////////////////////////////////////////
// Additional utilities
///////////////////////////////////////////////////////////////////////
namespace _path_bits {
template <typename Path, typename Enable = void>
struct RevPathTagIndicator {
static const bool value = false;
};
template <typename Path>
struct RevPathTagIndicator<
Path,
typename enable_if<typename Path::RevPathTag, void>::type
> {
static const bool value = true;
};
template <typename Path, typename Enable = void>
struct BuildTagIndicator {
static const bool value = false;
};
template <typename Path>
struct BuildTagIndicator<
Path,
typename enable_if<typename Path::BuildTag, void>::type
> {
static const bool value = true;
};
template <typename Target, typename Source,
bool buildEnable = BuildTagIndicator<Target>::value>
struct PathCopySelectorForward {
static void copy(Target& target, const Source& source) {
target.clear();
for (typename Source::ArcIt it(source); it != INVALID; ++it) {
target.addBack(it);
}
}
};
template <typename Target, typename Source>
struct PathCopySelectorForward<Target, Source, true> {
static void copy(Target& target, const Source& source) {
target.clear();
target.build(source);
}
};
template <typename Target, typename Source,
bool buildEnable = BuildTagIndicator<Target>::value>
struct PathCopySelectorBackward {
static void copy(Target& target, const Source& source) {
target.clear();
for (typename Source::RevArcIt it(source); it != INVALID; ++it) {
target.addFront(it);
}
}
};
template <typename Target, typename Source>
struct PathCopySelectorBackward<Target, Source, true> {
static void copy(Target& target, const Source& source) {
target.clear();
target.buildRev(source);
}
};
template <typename Target, typename Source,
bool revEnable = RevPathTagIndicator<Source>::value>
struct PathCopySelector {
static void copy(Target& target, const Source& source) {
PathCopySelectorForward<Target, Source>::copy(target, source);
}
};
template <typename Target, typename Source>
struct PathCopySelector<Target, Source, true> {
static void copy(Target& target, const Source& source) {
PathCopySelectorBackward<Target, Source>::copy(target, source);
}
};
}
/// \brief Make a copy of a path.
///
/// This function makes a copy of a path.
template <typename Target, typename Source>
void copyPath(Target& target, const Source& source) {
checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>();
_path_bits::PathCopySelector<Target, Source>::copy(target, source);
}
/// \brief Check the consistency of a path.
///
/// This function checks that the target of each arc is the same
/// as the source of the next one.
///
template <typename Digraph, typename Path>
bool checkPath(const Digraph& digraph, const Path& path) {
typename Path::ArcIt it(path);
if (it == INVALID) return true;
typename Digraph::Node node = digraph.target(it);
++it;
while (it != INVALID) {
if (digraph.source(it) != node) return false;
node = digraph.target(it);
++it;
}
return true;
}
/// \brief The source of a path
///
/// This function returns the source of the given path.
template <typename Digraph, typename Path>
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
return digraph.source(path.front());
}
/// \brief The target of a path
///
/// This function returns the target of the given path.
template <typename Digraph, typename Path>
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
return digraph.target(path.back());
}
/// \brief Class which helps to iterate through the nodes of a path
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores only this list. As a consequence, it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot have a source node.
///
/// This class implements the node iterator of a path structure. To
/// provide this feature, the underlying digraph should be passed to
/// the constructor of the iterator.
template <typename Path>
class PathNodeIt {
private:
const typename Path::Digraph *_digraph;
typename Path::ArcIt _it;
typename Path::Digraph::Node _nd;
public:
typedef typename Path::Digraph Digraph;
typedef typename Digraph::Node Node;
/// Default constructor
PathNodeIt() {}
/// Invalid constructor
PathNodeIt(Invalid)
: _digraph(0), _it(INVALID), _nd(INVALID) {}
/// Constructor
PathNodeIt(const Digraph& digraph, const Path& path)
: _digraph(&digraph), _it(path) {
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
}
/// Constructor
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src)
: _digraph(&digraph), _it(path), _nd(src) {}
///Conversion to Digraph::Node
operator Node() const {
return _nd;
}
/// Next node
PathNodeIt& operator++() {
if (_it == INVALID) _nd = INVALID;
else {
_nd = _digraph->target(_it);
++_it;
}
return *this;
}
/// Comparison operator
bool operator==(const PathNodeIt& n) const {
return _it == n._it && _nd == n._nd;
}
/// Comparison operator
bool operator!=(const PathNodeIt& n) const {
return _it != n._it || _nd != n._nd;
}
/// Comparison operator
bool operator<(const PathNodeIt& n) const {
return (_it < n._it && _nd != INVALID);
}
};
///@}
} // namespace lemon
#endif // LEMON_PATH_H