/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_HAO_ORLIN_H #define LEMON_HAO_ORLIN_H #include #include #include #include #include #include /// \file /// \ingroup min_cut /// \brief Implementation of the Hao-Orlin algorithm. /// /// Implementation of the Hao-Orlin algorithm class for testing network /// reliability. namespace lemon { /// \ingroup min_cut /// /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs. /// /// Hao-Orlin calculates a minimum cut in a directed graph /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and /// consists of two phases: in the first phase it determines a /// minimum cut with \f$ source \f$ on the source-side (i.e. a set /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal /// out-degree) and in the second phase it determines a minimum cut /// with \f$ source \f$ on the sink-side (i.e. a set /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal /// out-degree). Obviously, the smaller of these two cuts will be a /// minimum cut of \f$ D \f$. The algorithm is a modified /// push-relabel preflow algorithm and our implementation calculates /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The /// purpose of such algorithm is testing network reliability. For an /// undirected graph you can run just the first phase of the /// algorithm or you can use the algorithm of Nagamochi and Ibaraki /// which solves the undirected problem in /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the /// NagamochiIbaraki algorithm class. /// /// \param _Digraph is the graph type of the algorithm. /// \param _CapacityMap is an edge map of capacities which should /// be any numreric type. The default type is _Digraph::ArcMap. /// \param _Tolerance is the handler of the inexact computation. The /// default type for this is Tolerance. #ifdef DOXYGEN template #else template , typename _Tolerance = Tolerance > #endif class HaoOrlin { private: typedef _Digraph Digraph; typedef _CapacityMap CapacityMap; typedef _Tolerance Tolerance; typedef typename CapacityMap::Value Value; TEMPLATE_GRAPH_TYPEDEFS(Digraph); const Digraph& _graph; const CapacityMap* _capacity; typedef typename Digraph::template ArcMap FlowMap; FlowMap* _flow; Node _source; int _node_num; // Bucketing structure std::vector _first, _last; typename Digraph::template NodeMap* _next; typename Digraph::template NodeMap* _prev; typename Digraph::template NodeMap* _active; typename Digraph::template NodeMap* _bucket; std::vector _dormant; std::list > _sets; std::list::iterator _highest; typedef typename Digraph::template NodeMap ExcessMap; ExcessMap* _excess; typedef typename Digraph::template NodeMap SourceSetMap; SourceSetMap* _source_set; Value _min_cut; typedef typename Digraph::template NodeMap MinCutMap; MinCutMap* _min_cut_map; Tolerance _tolerance; public: /// \brief Constructor /// /// Constructor of the algorithm class. HaoOrlin(const Digraph& graph, const CapacityMap& capacity, const Tolerance& tolerance = Tolerance()) : _graph(graph), _capacity(&capacity), _flow(0), _source(), _node_num(), _first(), _last(), _next(0), _prev(0), _active(0), _bucket(0), _dormant(), _sets(), _highest(), _excess(0), _source_set(0), _min_cut(), _min_cut_map(0), _tolerance(tolerance) {} ~HaoOrlin() { if (_min_cut_map) { delete _min_cut_map; } if (_source_set) { delete _source_set; } if (_excess) { delete _excess; } if (_next) { delete _next; } if (_prev) { delete _prev; } if (_active) { delete _active; } if (_bucket) { delete _bucket; } if (_flow) { delete _flow; } } private: void activate(const Node& i) { _active->set(i, true); int bucket = (*_bucket)[i]; if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; //unlace _next->set((*_prev)[i], (*_next)[i]); if ((*_next)[i] != INVALID) { _prev->set((*_next)[i], (*_prev)[i]); } else { _last[bucket] = (*_prev)[i]; } //lace _next->set(i, _first[bucket]); _prev->set(_first[bucket], i); _prev->set(i, INVALID); _first[bucket] = i; } void deactivate(const Node& i) { _active->set(i, false); int bucket = (*_bucket)[i]; if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; //unlace _prev->set((*_next)[i], (*_prev)[i]); if ((*_prev)[i] != INVALID) { _next->set((*_prev)[i], (*_next)[i]); } else { _first[bucket] = (*_next)[i]; } //lace _prev->set(i, _last[bucket]); _next->set(_last[bucket], i); _next->set(i, INVALID); _last[bucket] = i; } void addItem(const Node& i, int bucket) { (*_bucket)[i] = bucket; if (_last[bucket] != INVALID) { _prev->set(i, _last[bucket]); _next->set(_last[bucket], i); _next->set(i, INVALID); _last[bucket] = i; } else { _prev->set(i, INVALID); _first[bucket] = i; _next->set(i, INVALID); _last[bucket] = i; } } void findMinCutOut() { for (NodeIt n(_graph); n != INVALID; ++n) { _excess->set(n, 0); } for (ArcIt a(_graph); a != INVALID; ++a) { _flow->set(a, 0); } int bucket_num = 0; std::vector queue(_node_num); int qfirst = 0, qlast = 0, qsep = 0; { typename Digraph::template NodeMap reached(_graph, false); reached.set(_source, true); bool first_set = true; for (NodeIt t(_graph); t != INVALID; ++t) { if (reached[t]) continue; _sets.push_front(std::list()); queue[qlast++] = t; reached.set(t, true); while (qfirst != qlast) { if (qsep == qfirst) { ++bucket_num; _sets.front().push_front(bucket_num); _dormant[bucket_num] = !first_set; _first[bucket_num] = _last[bucket_num] = INVALID; qsep = qlast; } Node n = queue[qfirst++]; addItem(n, bucket_num); for (InArcIt a(_graph, n); a != INVALID; ++a) { Node u = _graph.source(a); if (!reached[u] && _tolerance.positive((*_capacity)[a])) { reached.set(u, true); queue[qlast++] = u; } } } first_set = false; } ++bucket_num; _bucket->set(_source, 0); _dormant[0] = true; } _source_set->set(_source, true); Node target = _last[_sets.back().back()]; { for (OutArcIt a(_graph, _source); a != INVALID; ++a) { if (_tolerance.positive((*_capacity)[a])) { Node u = _graph.target(a); _flow->set(a, (*_capacity)[a]); _excess->set(u, (*_excess)[u] + (*_capacity)[a]); if (!(*_active)[u] && u != _source) { activate(u); } } } if ((*_active)[target]) { deactivate(target); } _highest = _sets.back().begin(); while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } while (true) { while (_highest != _sets.back().end()) { Node n = _first[*_highest]; Value excess = (*_excess)[n]; int next_bucket = _node_num; int under_bucket; if (++std::list::iterator(_highest) == _sets.back().end()) { under_bucket = -1; } else { under_bucket = *(++std::list::iterator(_highest)); } for (OutArcIt a(_graph, n); a != INVALID; ++a) { Node v = _graph.target(a); if (_dormant[(*_bucket)[v]]) continue; Value rem = (*_capacity)[a] - (*_flow)[a]; if (!_tolerance.positive(rem)) continue; if ((*_bucket)[v] == under_bucket) { if (!(*_active)[v] && v != target) { activate(v); } if (!_tolerance.less(rem, excess)) { _flow->set(a, (*_flow)[a] + excess); _excess->set(v, (*_excess)[v] + excess); excess = 0; goto no_more_push; } else { excess -= rem; _excess->set(v, (*_excess)[v] + rem); _flow->set(a, (*_capacity)[a]); } } else if (next_bucket > (*_bucket)[v]) { next_bucket = (*_bucket)[v]; } } for (InArcIt a(_graph, n); a != INVALID; ++a) { Node v = _graph.source(a); if (_dormant[(*_bucket)[v]]) continue; Value rem = (*_flow)[a]; if (!_tolerance.positive(rem)) continue; if ((*_bucket)[v] == under_bucket) { if (!(*_active)[v] && v != target) { activate(v); } if (!_tolerance.less(rem, excess)) { _flow->set(a, (*_flow)[a] - excess); _excess->set(v, (*_excess)[v] + excess); excess = 0; goto no_more_push; } else { excess -= rem; _excess->set(v, (*_excess)[v] + rem); _flow->set(a, 0); } } else if (next_bucket > (*_bucket)[v]) { next_bucket = (*_bucket)[v]; } } no_more_push: _excess->set(n, excess); if (excess != 0) { if ((*_next)[n] == INVALID) { typename std::list >::iterator new_set = _sets.insert(--_sets.end(), std::list()); new_set->splice(new_set->end(), _sets.back(), _sets.back().begin(), ++_highest); for (std::list::iterator it = new_set->begin(); it != new_set->end(); ++it) { _dormant[*it] = true; } while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } else if (next_bucket == _node_num) { _first[(*_bucket)[n]] = (*_next)[n]; _prev->set((*_next)[n], INVALID); std::list >::iterator new_set = _sets.insert(--_sets.end(), std::list()); new_set->push_front(bucket_num); _bucket->set(n, bucket_num); _first[bucket_num] = _last[bucket_num] = n; _next->set(n, INVALID); _prev->set(n, INVALID); _dormant[bucket_num] = true; ++bucket_num; while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } else { _first[*_highest] = (*_next)[n]; _prev->set((*_next)[n], INVALID); while (next_bucket != *_highest) { --_highest; } if (_highest == _sets.back().begin()) { _sets.back().push_front(bucket_num); _dormant[bucket_num] = false; _first[bucket_num] = _last[bucket_num] = INVALID; ++bucket_num; } --_highest; _bucket->set(n, *_highest); _next->set(n, _first[*_highest]); if (_first[*_highest] != INVALID) { _prev->set(_first[*_highest], n); } else { _last[*_highest] = n; } _first[*_highest] = n; } } else { deactivate(n); if (!(*_active)[_first[*_highest]]) { ++_highest; if (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { _highest = _sets.back().end(); } } } } if ((*_excess)[target] < _min_cut) { _min_cut = (*_excess)[target]; for (NodeIt i(_graph); i != INVALID; ++i) { _min_cut_map->set(i, true); } for (std::list::iterator it = _sets.back().begin(); it != _sets.back().end(); ++it) { Node n = _first[*it]; while (n != INVALID) { _min_cut_map->set(n, false); n = (*_next)[n]; } } } { Node new_target; if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { if ((*_next)[target] == INVALID) { _last[(*_bucket)[target]] = (*_prev)[target]; new_target = (*_prev)[target]; } else { _prev->set((*_next)[target], (*_prev)[target]); new_target = (*_next)[target]; } if ((*_prev)[target] == INVALID) { _first[(*_bucket)[target]] = (*_next)[target]; } else { _next->set((*_prev)[target], (*_next)[target]); } } else { _sets.back().pop_back(); if (_sets.back().empty()) { _sets.pop_back(); if (_sets.empty()) break; for (std::list::iterator it = _sets.back().begin(); it != _sets.back().end(); ++it) { _dormant[*it] = false; } } new_target = _last[_sets.back().back()]; } _bucket->set(target, 0); _source_set->set(target, true); for (OutArcIt a(_graph, target); a != INVALID; ++a) { Value rem = (*_capacity)[a] - (*_flow)[a]; if (!_tolerance.positive(rem)) continue; Node v = _graph.target(a); if (!(*_active)[v] && !(*_source_set)[v]) { activate(v); } _excess->set(v, (*_excess)[v] + rem); _flow->set(a, (*_capacity)[a]); } for (InArcIt a(_graph, target); a != INVALID; ++a) { Value rem = (*_flow)[a]; if (!_tolerance.positive(rem)) continue; Node v = _graph.source(a); if (!(*_active)[v] && !(*_source_set)[v]) { activate(v); } _excess->set(v, (*_excess)[v] + rem); _flow->set(a, 0); } target = new_target; if ((*_active)[target]) { deactivate(target); } _highest = _sets.back().begin(); while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } } } void findMinCutIn() { for (NodeIt n(_graph); n != INVALID; ++n) { _excess->set(n, 0); } for (ArcIt a(_graph); a != INVALID; ++a) { _flow->set(a, 0); } int bucket_num = 0; std::vector queue(_node_num); int qfirst = 0, qlast = 0, qsep = 0; { typename Digraph::template NodeMap reached(_graph, false); reached.set(_source, true); bool first_set = true; for (NodeIt t(_graph); t != INVALID; ++t) { if (reached[t]) continue; _sets.push_front(std::list()); queue[qlast++] = t; reached.set(t, true); while (qfirst != qlast) { if (qsep == qfirst) { ++bucket_num; _sets.front().push_front(bucket_num); _dormant[bucket_num] = !first_set; _first[bucket_num] = _last[bucket_num] = INVALID; qsep = qlast; } Node n = queue[qfirst++]; addItem(n, bucket_num); for (OutArcIt a(_graph, n); a != INVALID; ++a) { Node u = _graph.target(a); if (!reached[u] && _tolerance.positive((*_capacity)[a])) { reached.set(u, true); queue[qlast++] = u; } } } first_set = false; } ++bucket_num; _bucket->set(_source, 0); _dormant[0] = true; } _source_set->set(_source, true); Node target = _last[_sets.back().back()]; { for (InArcIt a(_graph, _source); a != INVALID; ++a) { if (_tolerance.positive((*_capacity)[a])) { Node u = _graph.source(a); _flow->set(a, (*_capacity)[a]); _excess->set(u, (*_excess)[u] + (*_capacity)[a]); if (!(*_active)[u] && u != _source) { activate(u); } } } if ((*_active)[target]) { deactivate(target); } _highest = _sets.back().begin(); while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } while (true) { while (_highest != _sets.back().end()) { Node n = _first[*_highest]; Value excess = (*_excess)[n]; int next_bucket = _node_num; int under_bucket; if (++std::list::iterator(_highest) == _sets.back().end()) { under_bucket = -1; } else { under_bucket = *(++std::list::iterator(_highest)); } for (InArcIt a(_graph, n); a != INVALID; ++a) { Node v = _graph.source(a); if (_dormant[(*_bucket)[v]]) continue; Value rem = (*_capacity)[a] - (*_flow)[a]; if (!_tolerance.positive(rem)) continue; if ((*_bucket)[v] == under_bucket) { if (!(*_active)[v] && v != target) { activate(v); } if (!_tolerance.less(rem, excess)) { _flow->set(a, (*_flow)[a] + excess); _excess->set(v, (*_excess)[v] + excess); excess = 0; goto no_more_push; } else { excess -= rem; _excess->set(v, (*_excess)[v] + rem); _flow->set(a, (*_capacity)[a]); } } else if (next_bucket > (*_bucket)[v]) { next_bucket = (*_bucket)[v]; } } for (OutArcIt a(_graph, n); a != INVALID; ++a) { Node v = _graph.target(a); if (_dormant[(*_bucket)[v]]) continue; Value rem = (*_flow)[a]; if (!_tolerance.positive(rem)) continue; if ((*_bucket)[v] == under_bucket) { if (!(*_active)[v] && v != target) { activate(v); } if (!_tolerance.less(rem, excess)) { _flow->set(a, (*_flow)[a] - excess); _excess->set(v, (*_excess)[v] + excess); excess = 0; goto no_more_push; } else { excess -= rem; _excess->set(v, (*_excess)[v] + rem); _flow->set(a, 0); } } else if (next_bucket > (*_bucket)[v]) { next_bucket = (*_bucket)[v]; } } no_more_push: _excess->set(n, excess); if (excess != 0) { if ((*_next)[n] == INVALID) { typename std::list >::iterator new_set = _sets.insert(--_sets.end(), std::list()); new_set->splice(new_set->end(), _sets.back(), _sets.back().begin(), ++_highest); for (std::list::iterator it = new_set->begin(); it != new_set->end(); ++it) { _dormant[*it] = true; } while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } else if (next_bucket == _node_num) { _first[(*_bucket)[n]] = (*_next)[n]; _prev->set((*_next)[n], INVALID); std::list >::iterator new_set = _sets.insert(--_sets.end(), std::list()); new_set->push_front(bucket_num); _bucket->set(n, bucket_num); _first[bucket_num] = _last[bucket_num] = n; _next->set(n, INVALID); _prev->set(n, INVALID); _dormant[bucket_num] = true; ++bucket_num; while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } else { _first[*_highest] = (*_next)[n]; _prev->set((*_next)[n], INVALID); while (next_bucket != *_highest) { --_highest; } if (_highest == _sets.back().begin()) { _sets.back().push_front(bucket_num); _dormant[bucket_num] = false; _first[bucket_num] = _last[bucket_num] = INVALID; ++bucket_num; } --_highest; _bucket->set(n, *_highest); _next->set(n, _first[*_highest]); if (_first[*_highest] != INVALID) { _prev->set(_first[*_highest], n); } else { _last[*_highest] = n; } _first[*_highest] = n; } } else { deactivate(n); if (!(*_active)[_first[*_highest]]) { ++_highest; if (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { _highest = _sets.back().end(); } } } } if ((*_excess)[target] < _min_cut) { _min_cut = (*_excess)[target]; for (NodeIt i(_graph); i != INVALID; ++i) { _min_cut_map->set(i, false); } for (std::list::iterator it = _sets.back().begin(); it != _sets.back().end(); ++it) { Node n = _first[*it]; while (n != INVALID) { _min_cut_map->set(n, true); n = (*_next)[n]; } } } { Node new_target; if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { if ((*_next)[target] == INVALID) { _last[(*_bucket)[target]] = (*_prev)[target]; new_target = (*_prev)[target]; } else { _prev->set((*_next)[target], (*_prev)[target]); new_target = (*_next)[target]; } if ((*_prev)[target] == INVALID) { _first[(*_bucket)[target]] = (*_next)[target]; } else { _next->set((*_prev)[target], (*_next)[target]); } } else { _sets.back().pop_back(); if (_sets.back().empty()) { _sets.pop_back(); if (_sets.empty()) break; for (std::list::iterator it = _sets.back().begin(); it != _sets.back().end(); ++it) { _dormant[*it] = false; } } new_target = _last[_sets.back().back()]; } _bucket->set(target, 0); _source_set->set(target, true); for (InArcIt a(_graph, target); a != INVALID; ++a) { Value rem = (*_capacity)[a] - (*_flow)[a]; if (!_tolerance.positive(rem)) continue; Node v = _graph.source(a); if (!(*_active)[v] && !(*_source_set)[v]) { activate(v); } _excess->set(v, (*_excess)[v] + rem); _flow->set(a, (*_capacity)[a]); } for (OutArcIt a(_graph, target); a != INVALID; ++a) { Value rem = (*_flow)[a]; if (!_tolerance.positive(rem)) continue; Node v = _graph.target(a); if (!(*_active)[v] && !(*_source_set)[v]) { activate(v); } _excess->set(v, (*_excess)[v] + rem); _flow->set(a, 0); } target = new_target; if ((*_active)[target]) { deactivate(target); } _highest = _sets.back().begin(); while (_highest != _sets.back().end() && !(*_active)[_first[*_highest]]) { ++_highest; } } } } public: /// \name Execution control /// The simplest way to execute the algorithm is to use /// one of the member functions called \c run(...). /// \n /// If you need more control on the execution, /// first you must call \ref init(), then the \ref calculateIn() or /// \ref calculateIn() functions. /// @{ /// \brief Initializes the internal data structures. /// /// Initializes the internal data structures. It creates /// the maps, residual graph adaptors and some bucket structures /// for the algorithm. void init() { init(NodeIt(_graph)); } /// \brief Initializes the internal data structures. /// /// Initializes the internal data structures. It creates /// the maps, residual graph adaptor and some bucket structures /// for the algorithm. Node \c source is used as the push-relabel /// algorithm's source. void init(const Node& source) { _source = source; _node_num = countNodes(_graph); _first.resize(_node_num); _last.resize(_node_num); _dormant.resize(_node_num); if (!_flow) { _flow = new FlowMap(_graph); } if (!_next) { _next = new typename Digraph::template NodeMap(_graph); } if (!_prev) { _prev = new typename Digraph::template NodeMap(_graph); } if (!_active) { _active = new typename Digraph::template NodeMap(_graph); } if (!_bucket) { _bucket = new typename Digraph::template NodeMap(_graph); } if (!_excess) { _excess = new ExcessMap(_graph); } if (!_source_set) { _source_set = new SourceSetMap(_graph); } if (!_min_cut_map) { _min_cut_map = new MinCutMap(_graph); } _min_cut = std::numeric_limits::max(); } /// \brief Calculates a minimum cut with \f$ source \f$ on the /// source-side. /// /// Calculates a minimum cut with \f$ source \f$ on the /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source /// \in X \f$ and minimal out-degree). void calculateOut() { findMinCutOut(); } /// \brief Calculates a minimum cut with \f$ source \f$ on the /// target-side. /// /// Calculates a minimum cut with \f$ source \f$ on the /// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source /// \in X \f$ and minimal out-degree). void calculateIn() { findMinCutIn(); } /// \brief Runs the algorithm. /// /// Runs the algorithm. It finds nodes \c source and \c target /// arbitrarily and then calls \ref init(), \ref calculateOut() /// and \ref calculateIn(). void run() { init(); calculateOut(); calculateIn(); } /// \brief Runs the algorithm. /// /// Runs the algorithm. It uses the given \c source node, finds a /// proper \c target and then calls the \ref init(), \ref /// calculateOut() and \ref calculateIn(). void run(const Node& s) { init(s); calculateOut(); calculateIn(); } /// @} /// \name Query Functions /// The result of the %HaoOrlin algorithm /// can be obtained using these functions. /// \n /// Before using these functions, either \ref run(), \ref /// calculateOut() or \ref calculateIn() must be called. /// @{ /// \brief Returns the value of the minimum value cut. /// /// Returns the value of the minimum value cut. Value minCutValue() const { return _min_cut; } /// \brief Returns a minimum cut. /// /// Sets \c nodeMap to the characteristic vector of a minimum /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$ /// with minimal out-degree (i.e. \c nodeMap will be true exactly /// for the nodes of \f$ X \f$). \pre nodeMap should be a /// bool-valued node-map. template Value minCutMap(NodeMap& nodeMap) const { for (NodeIt it(_graph); it != INVALID; ++it) { nodeMap.set(it, (*_min_cut_map)[it]); } return _min_cut; } /// @} }; //class HaoOrlin } //namespace lemon #endif //LEMON_HAO_ORLIN_H