/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_CORE_H #define LEMON_CORE_H #include #include #include #include #include #include // Disable the following warnings when compiling with MSVC: // C4250: 'class1' : inherits 'class2::member' via dominance // C4355: 'this' : used in base member initializer list // C4503: 'function' : decorated name length exceeded, name was truncated // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) // C4996: 'function': was declared deprecated #ifdef _MSC_VER #pragma warning( disable : 4250 4355 4503 4800 4996 ) #endif ///\file ///\brief LEMON core utilities. /// ///This header file contains core utilities for LEMON. ///It is automatically included by all graph types, therefore it usually ///do not have to be included directly. namespace lemon { /// \brief Dummy type to make it easier to create invalid iterators. /// /// Dummy type to make it easier to create invalid iterators. /// See \ref INVALID for the usage. struct Invalid { public: bool operator==(Invalid) { return true; } bool operator!=(Invalid) { return false; } bool operator< (Invalid) { return false; } }; /// \brief Invalid iterators. /// /// \ref Invalid is a global type that converts to each iterator /// in such a way that the value of the target iterator will be invalid. #ifdef LEMON_ONLY_TEMPLATES const Invalid INVALID = Invalid(); #else extern const Invalid INVALID; #endif /// \addtogroup gutils /// @{ ///Create convenience typedefs for the digraph types and iterators ///This \c \#define creates convenient type definitions for the following ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. /// ///\note If the graph type is a dependent type, ie. the graph type depend ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() ///macro. #define DIGRAPH_TYPEDEFS(Digraph) \ typedef Digraph::Node Node; \ typedef Digraph::NodeIt NodeIt; \ typedef Digraph::Arc Arc; \ typedef Digraph::ArcIt ArcIt; \ typedef Digraph::InArcIt InArcIt; \ typedef Digraph::OutArcIt OutArcIt; \ typedef Digraph::NodeMap BoolNodeMap; \ typedef Digraph::NodeMap IntNodeMap; \ typedef Digraph::NodeMap DoubleNodeMap; \ typedef Digraph::ArcMap BoolArcMap; \ typedef Digraph::ArcMap IntArcMap; \ typedef Digraph::ArcMap DoubleArcMap ///Create convenience typedefs for the digraph types and iterators ///\see DIGRAPH_TYPEDEFS /// ///\note Use this macro, if the graph type is a dependent type, ///ie. the graph type depend on a template parameter. #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ typedef typename Digraph::Node Node; \ typedef typename Digraph::NodeIt NodeIt; \ typedef typename Digraph::Arc Arc; \ typedef typename Digraph::ArcIt ArcIt; \ typedef typename Digraph::InArcIt InArcIt; \ typedef typename Digraph::OutArcIt OutArcIt; \ typedef typename Digraph::template NodeMap BoolNodeMap; \ typedef typename Digraph::template NodeMap IntNodeMap; \ typedef typename Digraph::template NodeMap DoubleNodeMap; \ typedef typename Digraph::template ArcMap BoolArcMap; \ typedef typename Digraph::template ArcMap IntArcMap; \ typedef typename Digraph::template ArcMap DoubleArcMap ///Create convenience typedefs for the graph types and iterators ///This \c \#define creates the same convenient type definitions as defined ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, ///\c DoubleEdgeMap. /// ///\note If the graph type is a dependent type, ie. the graph type depend ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() ///macro. #define GRAPH_TYPEDEFS(Graph) \ DIGRAPH_TYPEDEFS(Graph); \ typedef Graph::Edge Edge; \ typedef Graph::EdgeIt EdgeIt; \ typedef Graph::IncEdgeIt IncEdgeIt; \ typedef Graph::EdgeMap BoolEdgeMap; \ typedef Graph::EdgeMap IntEdgeMap; \ typedef Graph::EdgeMap DoubleEdgeMap ///Create convenience typedefs for the graph types and iterators ///\see GRAPH_TYPEDEFS /// ///\note Use this macro, if the graph type is a dependent type, ///ie. the graph type depend on a template parameter. #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ typedef typename Graph::Edge Edge; \ typedef typename Graph::EdgeIt EdgeIt; \ typedef typename Graph::IncEdgeIt IncEdgeIt; \ typedef typename Graph::template EdgeMap BoolEdgeMap; \ typedef typename Graph::template EdgeMap IntEdgeMap; \ typedef typename Graph::template EdgeMap DoubleEdgeMap /// \brief Function to count the items in a graph. /// /// This function counts the items (nodes, arcs etc.) in a graph. /// The complexity of the function is linear because /// it iterates on all of the items. template inline int countItems(const Graph& g) { typedef typename ItemSetTraits::ItemIt ItemIt; int num = 0; for (ItemIt it(g); it != INVALID; ++it) { ++num; } return num; } // Node counting: namespace _core_bits { template struct CountNodesSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountNodesSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.nodeNum(); } }; } /// \brief Function to count the nodes in the graph. /// /// This function counts the nodes in the graph. /// The complexity of the function is O(n), but for some /// graph structures it is specialized to run in O(1). /// /// \note If the graph contains a \c nodeNum() member function and a /// \c NodeNumTag tag then this function calls directly the member /// function to query the cardinality of the node set. template inline int countNodes(const Graph& g) { return _core_bits::CountNodesSelector::count(g); } // Arc counting: namespace _core_bits { template struct CountArcsSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountArcsSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.arcNum(); } }; } /// \brief Function to count the arcs in the graph. /// /// This function counts the arcs in the graph. /// The complexity of the function is O(m), but for some /// graph structures it is specialized to run in O(1). /// /// \note If the graph contains a \c arcNum() member function and a /// \c ArcNumTag tag then this function calls directly the member /// function to query the cardinality of the arc set. template inline int countArcs(const Graph& g) { return _core_bits::CountArcsSelector::count(g); } // Edge counting: namespace _core_bits { template struct CountEdgesSelector { static int count(const Graph &g) { return countItems(g); } }; template struct CountEdgesSelector< Graph, typename enable_if::type> { static int count(const Graph &g) { return g.edgeNum(); } }; } /// \brief Function to count the edges in the graph. /// /// This function counts the edges in the graph. /// The complexity of the function is O(m), but for some /// graph structures it is specialized to run in O(1). /// /// \note If the graph contains a \c edgeNum() member function and a /// \c EdgeNumTag tag then this function calls directly the member /// function to query the cardinality of the edge set. template inline int countEdges(const Graph& g) { return _core_bits::CountEdgesSelector::count(g); } template inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { int num = 0; for (DegIt it(_g, _n); it != INVALID; ++it) { ++num; } return num; } /// \brief Function to count the number of the out-arcs from node \c n. /// /// This function counts the number of the out-arcs from node \c n /// in the graph \c g. template inline int countOutArcs(const Graph& g, const typename Graph::Node& n) { return countNodeDegree(g, n); } /// \brief Function to count the number of the in-arcs to node \c n. /// /// This function counts the number of the in-arcs to node \c n /// in the graph \c g. template inline int countInArcs(const Graph& g, const typename Graph::Node& n) { return countNodeDegree(g, n); } /// \brief Function to count the number of the inc-edges to node \c n. /// /// This function counts the number of the inc-edges to node \c n /// in the undirected graph \c g. template inline int countIncEdges(const Graph& g, const typename Graph::Node& n) { return countNodeDegree(g, n); } namespace _core_bits { template class MapCopyBase { public: virtual void copy(const Digraph& from, const RefMap& refMap) = 0; virtual ~MapCopyBase() {} }; template class MapCopy : public MapCopyBase { public: MapCopy(const FromMap& map, ToMap& tmap) : _map(map), _tmap(tmap) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _tmap.set(refMap[it], _map[it]); } } private: const FromMap& _map; ToMap& _tmap; }; template class ItemCopy : public MapCopyBase { public: ItemCopy(const Item& item, It& it) : _item(item), _it(it) {} virtual void copy(const Digraph&, const RefMap& refMap) { _it = refMap[_item]; } private: Item _item; It& _it; }; template class RefCopy : public MapCopyBase { public: RefCopy(Ref& map) : _map(map) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _map.set(it, refMap[it]); } } private: Ref& _map; }; template class CrossRefCopy : public MapCopyBase { public: CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} virtual void copy(const Digraph& digraph, const RefMap& refMap) { typedef typename ItemSetTraits::ItemIt ItemIt; for (ItemIt it(digraph); it != INVALID; ++it) { _cmap.set(refMap[it], it); } } private: CrossRef& _cmap; }; template struct DigraphCopySelector { template static void copy(const From& from, Digraph &to, NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { for (typename From::NodeIt it(from); it != INVALID; ++it) { nodeRefMap[it] = to.addNode(); } for (typename From::ArcIt it(from); it != INVALID; ++it) { arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)], nodeRefMap[from.target(it)]); } } }; template struct DigraphCopySelector< Digraph, typename enable_if::type> { template static void copy(const From& from, Digraph &to, NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) { to.build(from, nodeRefMap, arcRefMap); } }; template struct GraphCopySelector { template static void copy(const From& from, Graph &to, NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { for (typename From::NodeIt it(from); it != INVALID; ++it) { nodeRefMap[it] = to.addNode(); } for (typename From::EdgeIt it(from); it != INVALID; ++it) { edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], nodeRefMap[from.v(it)]); } } }; template struct GraphCopySelector< Graph, typename enable_if::type> { template static void copy(const From& from, Graph &to, NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { to.build(from, nodeRefMap, edgeRefMap); } }; } /// Check whether a graph is undirected. /// /// This function returns \c true if the given graph is undirected. #ifdef DOXYGEN template bool undirected(const GR& g) { return false; } #else template typename enable_if, bool>::type undirected(const GR&) { return true; } template typename disable_if, bool>::type undirected(const GR&) { return false; } #endif /// \brief Class to copy a digraph. /// /// Class to copy a digraph to another digraph (duplicate a digraph). The /// simplest way of using it is through the \c digraphCopy() function. /// /// This class not only make a copy of a digraph, but it can create /// references and cross references between the nodes and arcs of /// the two digraphs, and it can copy maps to use with the newly created /// digraph. /// /// To make a copy from a digraph, first an instance of DigraphCopy /// should be created, then the data belongs to the digraph should /// assigned to copy. In the end, the \c run() member should be /// called. /// /// The next code copies a digraph with several data: ///\code /// DigraphCopy cg(orig_graph, new_graph); /// // Create references for the nodes /// OrigGraph::NodeMap nr(orig_graph); /// cg.nodeRef(nr); /// // Create cross references (inverse) for the arcs /// NewGraph::ArcMap acr(new_graph); /// cg.arcCrossRef(acr); /// // Copy an arc map /// OrigGraph::ArcMap oamap(orig_graph); /// NewGraph::ArcMap namap(new_graph); /// cg.arcMap(oamap, namap); /// // Copy a node /// OrigGraph::Node on; /// NewGraph::Node nn; /// cg.node(on, nn); /// // Execute copying /// cg.run(); ///\endcode template class DigraphCopy { private: typedef typename From::Node Node; typedef typename From::NodeIt NodeIt; typedef typename From::Arc Arc; typedef typename From::ArcIt ArcIt; typedef typename To::Node TNode; typedef typename To::Arc TArc; typedef typename From::template NodeMap NodeRefMap; typedef typename From::template ArcMap ArcRefMap; public: /// \brief Constructor of DigraphCopy. /// /// Constructor of DigraphCopy for copying the content of the /// \c from digraph into the \c to digraph. DigraphCopy(const From& from, To& to) : _from(from), _to(to) {} /// \brief Destructor of DigraphCopy /// /// Destructor of DigraphCopy. ~DigraphCopy() { for (int i = 0; i < int(_node_maps.size()); ++i) { delete _node_maps[i]; } for (int i = 0; i < int(_arc_maps.size()); ++i) { delete _arc_maps[i]; } } /// \brief Copy the node references into the given map. /// /// This function copies the node references into the given map. /// The parameter should be a map, whose key type is the Node type of /// the source digraph, while the value type is the Node type of the /// destination digraph. template DigraphCopy& nodeRef(NodeRef& map) { _node_maps.push_back(new _core_bits::RefCopy(map)); return *this; } /// \brief Copy the node cross references into the given map. /// /// This function copies the node cross references (reverse references) /// into the given map. The parameter should be a map, whose key type /// is the Node type of the destination digraph, while the value type is /// the Node type of the source digraph. template DigraphCopy& nodeCrossRef(NodeCrossRef& map) { _node_maps.push_back(new _core_bits::CrossRefCopy(map)); return *this; } /// \brief Make a copy of the given node map. /// /// This function makes a copy of the given node map for the newly /// created digraph. /// The key type of the new map \c tmap should be the Node type of the /// destination digraph, and the key type of the original map \c map /// should be the Node type of the source digraph. template DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { _node_maps.push_back(new _core_bits::MapCopy(map, tmap)); return *this; } /// \brief Make a copy of the given node. /// /// This function makes a copy of the given node. DigraphCopy& node(const Node& node, TNode& tnode) { _node_maps.push_back(new _core_bits::ItemCopy(node, tnode)); return *this; } /// \brief Copy the arc references into the given map. /// /// This function copies the arc references into the given map. /// The parameter should be a map, whose key type is the Arc type of /// the source digraph, while the value type is the Arc type of the /// destination digraph. template DigraphCopy& arcRef(ArcRef& map) { _arc_maps.push_back(new _core_bits::RefCopy(map)); return *this; } /// \brief Copy the arc cross references into the given map. /// /// This function copies the arc cross references (reverse references) /// into the given map. The parameter should be a map, whose key type /// is the Arc type of the destination digraph, while the value type is /// the Arc type of the source digraph. template DigraphCopy& arcCrossRef(ArcCrossRef& map) { _arc_maps.push_back(new _core_bits::CrossRefCopy(map)); return *this; } /// \brief Make a copy of the given arc map. /// /// This function makes a copy of the given arc map for the newly /// created digraph. /// The key type of the new map \c tmap should be the Arc type of the /// destination digraph, and the key type of the original map \c map /// should be the Arc type of the source digraph. template DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) { _arc_maps.push_back(new _core_bits::MapCopy(map, tmap)); return *this; } /// \brief Make a copy of the given arc. /// /// This function makes a copy of the given arc. DigraphCopy& arc(const Arc& arc, TArc& tarc) { _arc_maps.push_back(new _core_bits::ItemCopy(arc, tarc)); return *this; } /// \brief Execute copying. /// /// This function executes the copying of the digraph along with the /// copying of the assigned data. void run() { NodeRefMap nodeRefMap(_from); ArcRefMap arcRefMap(_from); _core_bits::DigraphCopySelector:: copy(_from, _to, nodeRefMap, arcRefMap); for (int i = 0; i < int(_node_maps.size()); ++i) { _node_maps[i]->copy(_from, nodeRefMap); } for (int i = 0; i < int(_arc_maps.size()); ++i) { _arc_maps[i]->copy(_from, arcRefMap); } } protected: const From& _from; To& _to; std::vector<_core_bits::MapCopyBase* > _node_maps; std::vector<_core_bits::MapCopyBase* > _arc_maps; }; /// \brief Copy a digraph to another digraph. /// /// This function copies a digraph to another digraph. /// The complete usage of it is detailed in the DigraphCopy class, but /// a short example shows a basic work: ///\code /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run(); ///\endcode /// /// After the copy the \c nr map will contain the mapping from the /// nodes of the \c from digraph to the nodes of the \c to digraph and /// \c acr will contain the mapping from the arcs of the \c to digraph /// to the arcs of the \c from digraph. /// /// \see DigraphCopy template DigraphCopy digraphCopy(const From& from, To& to) { return DigraphCopy(from, to); } /// \brief Class to copy a graph. /// /// Class to copy a graph to another graph (duplicate a graph). The /// simplest way of using it is through the \c graphCopy() function. /// /// This class not only make a copy of a graph, but it can create /// references and cross references between the nodes, edges and arcs of /// the two graphs, and it can copy maps for using with the newly created /// graph. /// /// To make a copy from a graph, first an instance of GraphCopy /// should be created, then the data belongs to the graph should /// assigned to copy. In the end, the \c run() member should be /// called. /// /// The next code copies a graph with several data: ///\code /// GraphCopy cg(orig_graph, new_graph); /// // Create references for the nodes /// OrigGraph::NodeMap nr(orig_graph); /// cg.nodeRef(nr); /// // Create cross references (inverse) for the edges /// NewGraph::EdgeMap ecr(new_graph); /// cg.edgeCrossRef(ecr); /// // Copy an edge map /// OrigGraph::EdgeMap oemap(orig_graph); /// NewGraph::EdgeMap nemap(new_graph); /// cg.edgeMap(oemap, nemap); /// // Copy a node /// OrigGraph::Node on; /// NewGraph::Node nn; /// cg.node(on, nn); /// // Execute copying /// cg.run(); ///\endcode template class GraphCopy { private: typedef typename From::Node Node; typedef typename From::NodeIt NodeIt; typedef typename From::Arc Arc; typedef typename From::ArcIt ArcIt; typedef typename From::Edge Edge; typedef typename From::EdgeIt EdgeIt; typedef typename To::Node TNode; typedef typename To::Arc TArc; typedef typename To::Edge TEdge; typedef typename From::template NodeMap NodeRefMap; typedef typename From::template EdgeMap EdgeRefMap; struct ArcRefMap { ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) : _from(from), _to(to), _edge_ref(edge_ref), _node_ref(node_ref) {} typedef typename From::Arc Key; typedef typename To::Arc Value; Value operator[](const Key& key) const { bool forward = _from.u(key) != _from.v(key) ? _node_ref[_from.source(key)] == _to.source(_to.direct(_edge_ref[key], true)) : _from.direction(key); return _to.direct(_edge_ref[key], forward); } const From& _from; const To& _to; const EdgeRefMap& _edge_ref; const NodeRefMap& _node_ref; }; public: /// \brief Constructor of GraphCopy. /// /// Constructor of GraphCopy for copying the content of the /// \c from graph into the \c to graph. GraphCopy(const From& from, To& to) : _from(from), _to(to) {} /// \brief Destructor of GraphCopy /// /// Destructor of GraphCopy. ~GraphCopy() { for (int i = 0; i < int(_node_maps.size()); ++i) { delete _node_maps[i]; } for (int i = 0; i < int(_arc_maps.size()); ++i) { delete _arc_maps[i]; } for (int i = 0; i < int(_edge_maps.size()); ++i) { delete _edge_maps[i]; } } /// \brief Copy the node references into the given map. /// /// This function copies the node references into the given map. /// The parameter should be a map, whose key type is the Node type of /// the source graph, while the value type is the Node type of the /// destination graph. template GraphCopy& nodeRef(NodeRef& map) { _node_maps.push_back(new _core_bits::RefCopy(map)); return *this; } /// \brief Copy the node cross references into the given map. /// /// This function copies the node cross references (reverse references) /// into the given map. The parameter should be a map, whose key type /// is the Node type of the destination graph, while the value type is /// the Node type of the source graph. template GraphCopy& nodeCrossRef(NodeCrossRef& map) { _node_maps.push_back(new _core_bits::CrossRefCopy(map)); return *this; } /// \brief Make a copy of the given node map. /// /// This function makes a copy of the given node map for the newly /// created graph. /// The key type of the new map \c tmap should be the Node type of the /// destination graph, and the key type of the original map \c map /// should be the Node type of the source graph. template GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { _node_maps.push_back(new _core_bits::MapCopy(map, tmap)); return *this; } /// \brief Make a copy of the given node. /// /// This function makes a copy of the given node. GraphCopy& node(const Node& node, TNode& tnode) { _node_maps.push_back(new _core_bits::ItemCopy(node, tnode)); return *this; } /// \brief Copy the arc references into the given map. /// /// This function copies the arc references into the given map. /// The parameter should be a map, whose key type is the Arc type of /// the source graph, while the value type is the Arc type of the /// destination graph. template GraphCopy& arcRef(ArcRef& map) { _arc_maps.push_back(new _core_bits::RefCopy(map)); return *this; } /// \brief Copy the arc cross references into the given map. /// /// This function copies the arc cross references (reverse references) /// into the given map. The parameter should be a map, whose key type /// is the Arc type of the destination graph, while the value type is /// the Arc type of the source graph. template GraphCopy& arcCrossRef(ArcCrossRef& map) { _arc_maps.push_back(new _core_bits::CrossRefCopy(map)); return *this; } /// \brief Make a copy of the given arc map. /// /// This function makes a copy of the given arc map for the newly /// created graph. /// The key type of the new map \c tmap should be the Arc type of the /// destination graph, and the key type of the original map \c map /// should be the Arc type of the source graph. template GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { _arc_maps.push_back(new _core_bits::MapCopy(map, tmap)); return *this; } /// \brief Make a copy of the given arc. /// /// This function makes a copy of the given arc. GraphCopy& arc(const Arc& arc, TArc& tarc) { _arc_maps.push_back(new _core_bits::ItemCopy(arc, tarc)); return *this; } /// \brief Copy the edge references into the given map. /// /// This function copies the edge references into the given map. /// The parameter should be a map, whose key type is the Edge type of /// the source graph, while the value type is the Edge type of the /// destination graph. template GraphCopy& edgeRef(EdgeRef& map) { _edge_maps.push_back(new _core_bits::RefCopy(map)); return *this; } /// \brief Copy the edge cross references into the given map. /// /// This function copies the edge cross references (reverse references) /// into the given map. The parameter should be a map, whose key type /// is the Edge type of the destination graph, while the value type is /// the Edge type of the source graph. template GraphCopy& edgeCrossRef(EdgeCrossRef& map) { _edge_maps.push_back(new _core_bits::CrossRefCopy(map)); return *this; } /// \brief Make a copy of the given edge map. /// /// This function makes a copy of the given edge map for the newly /// created graph. /// The key type of the new map \c tmap should be the Edge type of the /// destination graph, and the key type of the original map \c map /// should be the Edge type of the source graph. template GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { _edge_maps.push_back(new _core_bits::MapCopy(map, tmap)); return *this; } /// \brief Make a copy of the given edge. /// /// This function makes a copy of the given edge. GraphCopy& edge(const Edge& edge, TEdge& tedge) { _edge_maps.push_back(new _core_bits::ItemCopy(edge, tedge)); return *this; } /// \brief Execute copying. /// /// This function executes the copying of the graph along with the /// copying of the assigned data. void run() { NodeRefMap nodeRefMap(_from); EdgeRefMap edgeRefMap(_from); ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); _core_bits::GraphCopySelector:: copy(_from, _to, nodeRefMap, edgeRefMap); for (int i = 0; i < int(_node_maps.size()); ++i) { _node_maps[i]->copy(_from, nodeRefMap); } for (int i = 0; i < int(_edge_maps.size()); ++i) { _edge_maps[i]->copy(_from, edgeRefMap); } for (int i = 0; i < int(_arc_maps.size()); ++i) { _arc_maps[i]->copy(_from, arcRefMap); } } private: const From& _from; To& _to; std::vector<_core_bits::MapCopyBase* > _node_maps; std::vector<_core_bits::MapCopyBase* > _arc_maps; std::vector<_core_bits::MapCopyBase* > _edge_maps; }; /// \brief Copy a graph to another graph. /// /// This function copies a graph to another graph. /// The complete usage of it is detailed in the GraphCopy class, /// but a short example shows a basic work: ///\code /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); ///\endcode /// /// After the copy the \c nr map will contain the mapping from the /// nodes of the \c from graph to the nodes of the \c to graph and /// \c ecr will contain the mapping from the edges of the \c to graph /// to the edges of the \c from graph. /// /// \see GraphCopy template GraphCopy graphCopy(const From& from, To& to) { return GraphCopy(from, to); } namespace _core_bits { template struct FindArcSelector { typedef typename Graph::Node Node; typedef typename Graph::Arc Arc; static Arc find(const Graph &g, Node u, Node v, Arc e) { if (e == INVALID) { g.firstOut(e, u); } else { g.nextOut(e); } while (e != INVALID && g.target(e) != v) { g.nextOut(e); } return e; } }; template struct FindArcSelector< Graph, typename enable_if::type> { typedef typename Graph::Node Node; typedef typename Graph::Arc Arc; static Arc find(const Graph &g, Node u, Node v, Arc prev) { return g.findArc(u, v, prev); } }; } /// \brief Find an arc between two nodes of a digraph. /// /// This function finds an arc from node \c u to node \c v in the /// digraph \c g. /// /// If \c prev is \ref INVALID (this is the default value), then /// it finds the first arc from \c u to \c v. Otherwise it looks for /// the next arc from \c u to \c v after \c prev. /// \return The found arc or \ref INVALID if there is no such an arc. /// /// Thus you can iterate through each arc from \c u to \c v as it follows. ///\code /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { /// ... /// } ///\endcode /// /// \note \ref ConArcIt provides iterator interface for the same /// functionality. /// ///\sa ConArcIt ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp template inline typename Graph::Arc findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, typename Graph::Arc prev = INVALID) { return _core_bits::FindArcSelector::find(g, u, v, prev); } /// \brief Iterator for iterating on parallel arcs connecting the same nodes. /// /// Iterator for iterating on parallel arcs connecting the same nodes. It is /// a higher level interface for the \ref findArc() function. You can /// use it the following way: ///\code /// for (ConArcIt it(g, src, trg); it != INVALID; ++it) { /// ... /// } ///\endcode /// ///\sa findArc() ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp template class ConArcIt : public GR::Arc { typedef typename GR::Arc Parent; public: typedef typename GR::Arc Arc; typedef typename GR::Node Node; /// \brief Constructor. /// /// Construct a new ConArcIt iterating on the arcs that /// connects nodes \c u and \c v. ConArcIt(const GR& g, Node u, Node v) : _graph(g) { Parent::operator=(findArc(_graph, u, v)); } /// \brief Constructor. /// /// Construct a new ConArcIt that continues the iterating from arc \c a. ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {} /// \brief Increment operator. /// /// It increments the iterator and gives back the next arc. ConArcIt& operator++() { Parent::operator=(findArc(_graph, _graph.source(*this), _graph.target(*this), *this)); return *this; } private: const GR& _graph; }; namespace _core_bits { template struct FindEdgeSelector { typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; static Edge find(const Graph &g, Node u, Node v, Edge e) { bool b; if (u != v) { if (e == INVALID) { g.firstInc(e, b, u); } else { b = g.u(e) == u; g.nextInc(e, b); } while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { g.nextInc(e, b); } } else { if (e == INVALID) { g.firstInc(e, b, u); } else { b = true; g.nextInc(e, b); } while (e != INVALID && (!b || g.v(e) != v)) { g.nextInc(e, b); } } return e; } }; template struct FindEdgeSelector< Graph, typename enable_if::type> { typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; static Edge find(const Graph &g, Node u, Node v, Edge prev) { return g.findEdge(u, v, prev); } }; } /// \brief Find an edge between two nodes of a graph. /// /// This function finds an edge from node \c u to node \c v in graph \c g. /// If node \c u and node \c v is equal then each loop edge /// will be enumerated once. /// /// If \c prev is \ref INVALID (this is the default value), then /// it finds the first edge from \c u to \c v. Otherwise it looks for /// the next edge from \c u to \c v after \c prev. /// \return The found edge or \ref INVALID if there is no such an edge. /// /// Thus you can iterate through each edge between \c u and \c v /// as it follows. ///\code /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { /// ... /// } ///\endcode /// /// \note \ref ConEdgeIt provides iterator interface for the same /// functionality. /// ///\sa ConEdgeIt template inline typename Graph::Edge findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, typename Graph::Edge p = INVALID) { return _core_bits::FindEdgeSelector::find(g, u, v, p); } /// \brief Iterator for iterating on parallel edges connecting the same nodes. /// /// Iterator for iterating on parallel edges connecting the same nodes. /// It is a higher level interface for the findEdge() function. You can /// use it the following way: ///\code /// for (ConEdgeIt it(g, u, v); it != INVALID; ++it) { /// ... /// } ///\endcode /// ///\sa findEdge() template class ConEdgeIt : public GR::Edge { typedef typename GR::Edge Parent; public: typedef typename GR::Edge Edge; typedef typename GR::Node Node; /// \brief Constructor. /// /// Construct a new ConEdgeIt iterating on the edges that /// connects nodes \c u and \c v. ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) { Parent::operator=(findEdge(_graph, _u, _v)); } /// \brief Constructor. /// /// Construct a new ConEdgeIt that continues iterating from edge \c e. ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {} /// \brief Increment operator. /// /// It increments the iterator and gives back the next edge. ConEdgeIt& operator++() { Parent::operator=(findEdge(_graph, _u, _v, *this)); return *this; } private: const GR& _graph; Node _u, _v; }; ///Dynamic arc look-up between given endpoints. ///Using this class, you can find an arc in a digraph from a given ///source to a given target in amortized time O(logd), ///where d is the out-degree of the source node. /// ///It is possible to find \e all parallel arcs between two nodes with ///the \c operator() member. /// ///This is a dynamic data structure. Consider to use \ref ArcLookUp or ///\ref AllArcLookUp if your digraph is not changed so frequently. /// ///This class uses a self-adjusting binary search tree, the Splay tree ///of Sleator and Tarjan to guarantee the logarithmic amortized ///time bound for arc look-ups. This class also guarantees the ///optimal time bound in a constant factor for any distribution of ///queries. /// ///\tparam GR The type of the underlying digraph. /// ///\sa ArcLookUp ///\sa AllArcLookUp template class DynArcLookUp : protected ItemSetTraits::ItemNotifier::ObserverBase { typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; TEMPLATE_DIGRAPH_TYPEDEFS(GR); public: /// The Digraph type typedef GR Digraph; protected: class AutoNodeMap : public ItemSetTraits::template Map::Type { typedef typename ItemSetTraits::template Map::Type Parent; public: AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} virtual void add(const Node& node) { Parent::add(node); Parent::set(node, INVALID); } virtual void add(const std::vector& nodes) { Parent::add(nodes); for (int i = 0; i < int(nodes.size()); ++i) { Parent::set(nodes[i], INVALID); } } virtual void build() { Parent::build(); Node it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, INVALID); } } }; class ArcLess { const Digraph &g; public: ArcLess(const Digraph &_g) : g(_g) {} bool operator()(Arc a,Arc b) const { return g.target(a) _parent; typename Digraph::template ArcMap _left; typename Digraph::template ArcMap _right; public: ///Constructor ///Constructor. /// ///It builds up the search database. DynArcLookUp(const Digraph &g) : _g(g),_head(g),_parent(g),_left(g),_right(g) { Parent::attach(_g.notifier(typename Digraph::Arc())); refresh(); } protected: virtual void add(const Arc& arc) { insert(arc); } virtual void add(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { insert(arcs[i]); } } virtual void erase(const Arc& arc) { remove(arc); } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { remove(arcs[i]); } } virtual void build() { refresh(); } virtual void clear() { for(NodeIt n(_g);n!=INVALID;++n) { _head[n] = INVALID; } } void insert(Arc arc) { Node s = _g.source(arc); Node t = _g.target(arc); _left[arc] = INVALID; _right[arc] = INVALID; Arc e = _head[s]; if (e == INVALID) { _head[s] = arc; _parent[arc] = INVALID; return; } while (true) { if (t < _g.target(e)) { if (_left[e] == INVALID) { _left[e] = arc; _parent[arc] = e; splay(arc); return; } else { e = _left[e]; } } else { if (_right[e] == INVALID) { _right[e] = arc; _parent[arc] = e; splay(arc); return; } else { e = _right[e]; } } } } void remove(Arc arc) { if (_left[arc] == INVALID) { if (_right[arc] != INVALID) { _parent[_right[arc]] = _parent[arc]; } if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left[_parent[arc]] = _right[arc]; } else { _right[_parent[arc]] = _right[arc]; } } else { _head[_g.source(arc)] = _right[arc]; } } else if (_right[arc] == INVALID) { _parent[_left[arc]] = _parent[arc]; if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left[_parent[arc]] = _left[arc]; } else { _right[_parent[arc]] = _left[arc]; } } else { _head[_g.source(arc)] = _left[arc]; } } else { Arc e = _left[arc]; if (_right[e] != INVALID) { e = _right[e]; while (_right[e] != INVALID) { e = _right[e]; } Arc s = _parent[e]; _right[_parent[e]] = _left[e]; if (_left[e] != INVALID) { _parent[_left[e]] = _parent[e]; } _left[e] = _left[arc]; _parent[_left[arc]] = e; _right[e] = _right[arc]; _parent[_right[arc]] = e; _parent[e] = _parent[arc]; if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left[_parent[arc]] = e; } else { _right[_parent[arc]] = e; } } splay(s); } else { _right[e] = _right[arc]; _parent[_right[arc]] = e; _parent[e] = _parent[arc]; if (_parent[arc] != INVALID) { if (_left[_parent[arc]] == arc) { _left[_parent[arc]] = e; } else { _right[_parent[arc]] = e; } } else { _head[_g.source(arc)] = e; } } } } Arc refreshRec(std::vector &v,int a,int b) { int m=(a+b)/2; Arc me=v[m]; if (a < m) { Arc left = refreshRec(v,a,m-1); _left[me] = left; _parent[left] = me; } else { _left[me] = INVALID; } if (m < b) { Arc right = refreshRec(v,m+1,b); _right[me] = right; _parent[right] = me; } else { _right[me] = INVALID; } return me; } void refresh() { for(NodeIt n(_g);n!=INVALID;++n) { std::vector v; for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); if (!v.empty()) { std::sort(v.begin(),v.end(),ArcLess(_g)); Arc head = refreshRec(v,0,v.size()-1); _head[n] = head; _parent[head] = INVALID; } else _head[n] = INVALID; } } void zig(Arc v) { Arc w = _parent[v]; _parent[v] = _parent[w]; _parent[w] = v; _left[w] = _right[v]; _right[v] = w; if (_parent[v] != INVALID) { if (_right[_parent[v]] == w) { _right[_parent[v]] = v; } else { _left[_parent[v]] = v; } } if (_left[w] != INVALID){ _parent[_left[w]] = w; } } void zag(Arc v) { Arc w = _parent[v]; _parent[v] = _parent[w]; _parent[w] = v; _right[w] = _left[v]; _left[v] = w; if (_parent[v] != INVALID){ if (_left[_parent[v]] == w) { _left[_parent[v]] = v; } else { _right[_parent[v]] = v; } } if (_right[w] != INVALID){ _parent[_right[w]] = w; } } void splay(Arc v) { while (_parent[v] != INVALID) { if (v == _left[_parent[v]]) { if (_parent[_parent[v]] == INVALID) { zig(v); } else { if (_parent[v] == _left[_parent[_parent[v]]]) { zig(_parent[v]); zig(v); } else { zig(v); zag(v); } } } else { if (_parent[_parent[v]] == INVALID) { zag(v); } else { if (_parent[v] == _left[_parent[_parent[v]]]) { zag(v); zig(v); } else { zag(_parent[v]); zag(v); } } } } _head[_g.source(v)] = v; } public: ///Find an arc between two nodes. ///Find an arc between two nodes. ///\param s The source node. ///\param t The target node. ///\param p The previous arc between \c s and \c t. It it is INVALID or ///not given, the operator finds the first appropriate arc. ///\return An arc from \c s to \c t after \c p or ///\ref INVALID if there is no more. /// ///For example, you can count the number of arcs from \c u to \c v in the ///following way. ///\code ///DynArcLookUp ae(g); ///... ///int n = 0; ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; ///\endcode /// ///Finding the arcs take at most O(logd) ///amortized time, specifically, the time complexity of the lookups ///is equal to the optimal search tree implementation for the ///current query distribution in a constant factor. /// ///\note This is a dynamic data structure, therefore the data ///structure is updated after each graph alteration. Thus although ///this data structure is theoretically faster than \ref ArcLookUp ///and \ref AllArcLookUp, it often provides worse performance than ///them. Arc operator()(Node s, Node t, Arc p = INVALID) const { if (p == INVALID) { Arc a = _head[s]; if (a == INVALID) return INVALID; Arc r = INVALID; while (true) { if (_g.target(a) < t) { if (_right[a] == INVALID) { const_cast(*this).splay(a); return r; } else { a = _right[a]; } } else { if (_g.target(a) == t) { r = a; } if (_left[a] == INVALID) { const_cast(*this).splay(a); return r; } else { a = _left[a]; } } } } else { Arc a = p; if (_right[a] != INVALID) { a = _right[a]; while (_left[a] != INVALID) { a = _left[a]; } const_cast(*this).splay(a); } else { while (_parent[a] != INVALID && _right[_parent[a]] == a) { a = _parent[a]; } if (_parent[a] == INVALID) { return INVALID; } else { a = _parent[a]; const_cast(*this).splay(a); } } if (_g.target(a) == t) return a; else return INVALID; } } }; ///Fast arc look-up between given endpoints. ///Using this class, you can find an arc in a digraph from a given ///source to a given target in time O(logd), ///where d is the out-degree of the source node. /// ///It is not possible to find \e all parallel arcs between two nodes. ///Use \ref AllArcLookUp for this purpose. /// ///\warning This class is static, so you should call refresh() (or at ///least refresh(Node)) to refresh this data structure whenever the ///digraph changes. This is a time consuming (superlinearly proportional ///(O(m logm)) to the number of arcs). /// ///\tparam GR The type of the underlying digraph. /// ///\sa DynArcLookUp ///\sa AllArcLookUp template class ArcLookUp { TEMPLATE_DIGRAPH_TYPEDEFS(GR); public: /// The Digraph type typedef GR Digraph; protected: const Digraph &_g; typename Digraph::template NodeMap _head; typename Digraph::template ArcMap _left; typename Digraph::template ArcMap _right; class ArcLess { const Digraph &g; public: ArcLess(const Digraph &_g) : g(_g) {} bool operator()(Arc a,Arc b) const { return g.target(a) &v,int a,int b) { int m=(a+b)/2; Arc me=v[m]; _left[me] = aO(d logd), where d ///is the number of the outgoing arcs of \c n. void refresh(Node n) { std::vector v; for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); if(v.size()) { std::sort(v.begin(),v.end(),ArcLess(_g)); _head[n]=refreshRec(v,0,v.size()-1); } else _head[n]=INVALID; } ///Refresh the full data structure. ///Build up the full search database. In fact, it simply calls ///\ref refresh(Node) "refresh(n)" for each node \c n. /// ///It runs in time O(m logD), where m is ///the number of the arcs in the digraph and D is the maximum ///out-degree of the digraph. void refresh() { for(NodeIt n(_g);n!=INVALID;++n) refresh(n); } ///Find an arc between two nodes. ///Find an arc between two nodes in time O(logd), ///where d is the number of outgoing arcs of \c s. ///\param s The source node. ///\param t The target node. ///\return An arc from \c s to \c t if there exists, ///\ref INVALID otherwise. /// ///\warning If you change the digraph, refresh() must be called before using ///this operator. If you change the outgoing arcs of ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. Arc operator()(Node s, Node t) const { Arc e; for(e=_head[s]; e!=INVALID&&_g.target(e)!=t; e = t < _g.target(e)?_left[e]:_right[e]) ; return e; } }; ///Fast look-up of all arcs between given endpoints. ///This class is the same as \ref ArcLookUp, with the addition ///that it makes it possible to find all parallel arcs between given ///endpoints. /// ///\warning This class is static, so you should call refresh() (or at ///least refresh(Node)) to refresh this data structure whenever the ///digraph changes. This is a time consuming (superlinearly proportional ///(O(m logm)) to the number of arcs). /// ///\tparam GR The type of the underlying digraph. /// ///\sa DynArcLookUp ///\sa ArcLookUp template class AllArcLookUp : public ArcLookUp { using ArcLookUp::_g; using ArcLookUp::_right; using ArcLookUp::_left; using ArcLookUp::_head; TEMPLATE_DIGRAPH_TYPEDEFS(GR); typename GR::template ArcMap _next; Arc refreshNext(Arc head,Arc next=INVALID) { if(head==INVALID) return next; else { next=refreshNext(_right[head],next); _next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) ? next : INVALID; return refreshNext(_left[head],head); } } void refreshNext() { for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); } public: /// The Digraph type typedef GR Digraph; ///Constructor ///Constructor. /// ///It builds up the search database, which remains valid until the digraph ///changes. AllArcLookUp(const Digraph &g) : ArcLookUp(g), _next(g) {refreshNext();} ///Refresh the data structure at a node. ///Build up the search database of node \c n. /// ///It runs in time O(d logd), where d is ///the number of the outgoing arcs of \c n. void refresh(Node n) { ArcLookUp::refresh(n); refreshNext(_head[n]); } ///Refresh the full data structure. ///Build up the full search database. In fact, it simply calls ///\ref refresh(Node) "refresh(n)" for each node \c n. /// ///It runs in time O(m logD), where m is ///the number of the arcs in the digraph and D is the maximum ///out-degree of the digraph. void refresh() { for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); } ///Find an arc between two nodes. ///Find an arc between two nodes. ///\param s The source node. ///\param t The target node. ///\param prev The previous arc between \c s and \c t. It it is INVALID or ///not given, the operator finds the first appropriate arc. ///\return An arc from \c s to \c t after \c prev or ///\ref INVALID if there is no more. /// ///For example, you can count the number of arcs from \c u to \c v in the ///following way. ///\code ///AllArcLookUp ae(g); ///... ///int n = 0; ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; ///\endcode /// ///Finding the first arc take O(logd) time, ///where d is the number of outgoing arcs of \c s. Then the ///consecutive arcs are found in constant time. /// ///\warning If you change the digraph, refresh() must be called before using ///this operator. If you change the outgoing arcs of ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. /// #ifdef DOXYGEN Arc operator()(Node s, Node t, Arc prev=INVALID) const {} #else using ArcLookUp::operator() ; Arc operator()(Node s, Node t, Arc prev) const { return prev==INVALID?(*this)(s,t):_next[prev]; } #endif }; /// @} } //namespace lemon #endif