/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ ///\file ///\brief Implementation of the LEMON-GLPK mip solver interface. #include extern "C" { #include } #if GLP_MAJOR_VERSION > 4 || (GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION > 15) #define LEMON_glp(func) (glp_##func) #define LEMON_lpx(func) (lpx_##func) #define LEMON_GLP(def) (GLP_##def) #define LEMON_LPX(def) (LPX_##def) #else #define LEMON_glp(func) (lpx_##func) #define LEMON_lpx(func) (lpx_##func) #define LEMON_GLP(def) (LPX_##def) #define LEMON_LPX(def) (LPX_##def) #endif namespace lemon { MipGlpk::MipGlpk() { #if !(GLP_MAJOR_VERSION > 4 || \ (GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION > 15)) LEMON_lpx(set_class)(lp,LEMON_GLP(MIP)); #endif } void MipGlpk::_colType(int i, MipGlpk::ColTypes col_type){ switch (col_type){ case INT: LEMON_glp(set_col_kind)(lp,i,LEMON_GLP(IV)); break; case REAL: LEMON_glp(set_col_kind)(lp,i,LEMON_GLP(CV)); break; default:; //FIXME problem } } MipGlpk::ColTypes MipGlpk::_colType(int i) const { switch (LEMON_glp(get_col_kind)(lp,i)){ case LEMON_GLP(IV): return INT;//Or binary case LEMON_GLP(CV): return REAL; default: return REAL;//Error! } } LpGlpk::SolveExitStatus MipGlpk::_solve() { int result = LEMON_lpx(simplex)(lp); // hack: mip does not contain integer variable #if GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION == 16 int tmp = -1; if (LEMON_glp(get_num_int(lp)) == 0) { tmp = LEMON_lpx(add_cols)(lp, 1); LEMON_glp(set_col_bnds)(lp, tmp, LEMON_GLP(FX), 0.0, 0.0); LEMON_glp(set_col_kind)(lp, tmp, LEMON_GLP(IV)); } #endif if (LEMON_lpx(get_status)(lp)==LEMON_LPX(OPT)) { //Maybe we could try the routine lpx_intopt(lp), a revised //version of lpx_integer result = LEMON_lpx(integer)(lp); switch (result){ case LEMON_LPX(E_OK): solved = true; break; default: solved = false; } } else { solved = false; } #if GLP_MAJOR_VERSION == 4 && GLP_MINOR_VERSION == 16 if (tmp != -1) { int tmpa[2]; tmpa[1] = tmp; LEMON_lpx(del_cols)(lp, 1, tmpa); } #endif return solved ? SOLVED : UNSOLVED; } LpGlpk::SolutionStatus MipGlpk::_getMipStatus() const { if (LEMON_lpx(get_status)(lp)==LEMON_LPX(OPT)){ //Meg kell nezni: ha az LP is infinite, akkor ez is, ha az is //infeasible, akkor ez is, de ez lehet maskepp is infeasible. int stat= LEMON_lpx(mip_status)(lp); switch (stat) { case LEMON_LPX(I_UNDEF)://Undefined (no solve has been run yet) return UNDEFINED; case LEMON_LPX(I_NOFEAS)://There is no feasible integral solution return INFEASIBLE; // case LEMON_LPX(UNBND)://Unbounded // return INFINITE; case LEMON_LPX(I_FEAS)://Feasible return FEASIBLE; case LEMON_LPX(I_OPT)://Feasible return OPTIMAL; default: return UNDEFINED; //to avoid gcc warning //FIXME error } } else return UNDEFINED; //Maybe we could refine this: what does the LP //relaxation look like } MipGlpk::Value MipGlpk::_getPrimal(int i) const { return LEMON_glp(mip_col_val)(lp,i); } MipGlpk::Value MipGlpk::_getPrimalValue() const { return LEMON_glp(mip_obj_val)(lp); } } //END OF NAMESPACE LEMON