/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include "test_tools.h" #include #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_GLPK #include #endif #ifdef HAVE_CPLEX #include #endif #ifdef HAVE_SOPLEX #include #endif using namespace lemon; void lpTest(LpSolverBase & lp) { typedef LpSolverBase LP; std::vector x(10); // for(int i=0;i<10;i++) x.push_back(lp.addCol()); lp.addColSet(x); lp.colLowerBound(x,1); lp.colUpperBound(x,1); lp.colBounds(x,1,2); #ifndef GYORSITAS std::vector y(10); lp.addColSet(y); lp.colLowerBound(y,1); lp.colUpperBound(y,1); lp.colBounds(y,1,2); std::map z; z.insert(std::make_pair(12,INVALID)); z.insert(std::make_pair(2,INVALID)); z.insert(std::make_pair(7,INVALID)); z.insert(std::make_pair(5,INVALID)); lp.addColSet(z); lp.colLowerBound(z,1); lp.colUpperBound(z,1); lp.colBounds(z,1,2); { LP::Expr e,f,g; LP::Col p1,p2,p3,p4,p5; LP::Constr c; p1=lp.addCol(); p2=lp.addCol(); p3=lp.addCol(); p4=lp.addCol(); p5=lp.addCol(); e[p1]=2; e.constComp()=12; e[p1]+=2; e.constComp()+=12; e[p1]-=2; e.constComp()-=12; e=2; e=2.2; e=p1; e=f; e+=2; e+=2.2; e+=p1; e+=f; e-=2; e-=2.2; e-=p1; e-=f; e*=2; e*=2.2; e/=2; e/=2.2; e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ (f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ (f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ 2.2*f+f*2.2+f/2.2+ 2*f+f*2+f/2+ 2.2*p1+p1*2.2+p1/2.2+ 2*p1+p1*2+p1/2 ); c = (e <= f ); c = (e <= 2.2); c = (e <= 2 ); c = (e <= p1 ); c = (2.2<= f ); c = (2 <= f ); c = (p1 <= f ); c = (p1 <= p2 ); c = (p1 <= 2.2); c = (p1 <= 2 ); c = (2.2<= p2 ); c = (2 <= p2 ); c = (e >= f ); c = (e >= 2.2); c = (e >= 2 ); c = (e >= p1 ); c = (2.2>= f ); c = (2 >= f ); c = (p1 >= f ); c = (p1 >= p2 ); c = (p1 >= 2.2); c = (p1 >= 2 ); c = (2.2>= p2 ); c = (2 >= p2 ); c = (e == f ); c = (e == 2.2); c = (e == 2 ); c = (e == p1 ); c = (2.2== f ); c = (2 == f ); c = (p1 == f ); //c = (p1 == p2 ); c = (p1 == 2.2); c = (p1 == 2 ); c = (2.2== p2 ); c = (2 == p2 ); c = (2 <= e <= 3); c = (2 <= p1<= 3); c = (2 >= e >= 3); c = (2 >= p1>= 3); e[x[3]]=2; e[x[3]]=4; e[x[3]]=1; e.constComp()=12; lp.addRow(LP::INF,e,23); lp.addRow(LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); lp.addRow(LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); lp.addRow(x[1]+x[3]<=x[5]-3); lp.addRow(-7<=x[1]+x[3]-12<=3); lp.addRow(x[1]<=x[5]); std::ostringstream buf; //Checking the simplify function // //How to check the simplify function? A map gives no information // //on the question whether a given key is or is not stored in it, or // //it does? // Yes, it does, using the find() function. e=((p1+p2)+(p1-p2)); e.simplify(); buf << "Coeff. of p2 should be 0"; // std::cout<0, buf.str()); tolerance=0.02; e.simplify(tolerance); buf << "Coeff. of p2 should be 0"; check(e.find(p2)==e.end(), buf.str()); } { LP::DualExpr e,f,g; LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, p4 = INVALID, p5 = INVALID; e[p1]=2; e[p1]+=2; e[p1]-=2; e=p1; e=f; e+=p1; e+=f; e-=p1; e-=f; e*=2; e*=2.2; e/=2; e/=2.2; e=((p1+p2)+(p1-p2)+ (p1+f)+(f+p1)+(f+g)+ (p1-f)+(f-p1)+(f-g)+ 2.2*f+f*2.2+f/2.2+ 2*f+f*2+f/2+ 2.2*p1+p1*2.2+p1/2.2+ 2*p1+p1*2+p1/2 ); } #endif } void solveAndCheck(LpSolverBase& lp, LpSolverBase::SolutionStatus stat, double exp_opt) { using std::string; lp.solve(); //int decimal,sign; std::ostringstream buf; buf << "Primalstatus should be: " << int(stat); // itoa(stat,buf1, 10); check(lp.primalStatus()==stat, buf.str()); if (stat == LpSolverBase::OPTIMAL) { std::ostringstream sbuf; sbuf << "Wrong optimal value: the right optimum is " << exp_opt; check(std::abs(lp.primalValue()-exp_opt) < 1e-3, sbuf.str()); //+ecvt(exp_opt,2) } } void aTest(LpSolverBase & lp) { typedef LpSolverBase LP; //The following example is very simple typedef LpSolverBase::Row Row; typedef LpSolverBase::Col Col; Col x1 = lp.addCol(); Col x2 = lp.addCol(); //Constraints Row upright=lp.addRow(x1+x2 <=1); lp.addRow(x1+x2 >=-1); lp.addRow(x1-x2 <=1); lp.addRow(x1-x2 >=-1); //Nonnegativity of the variables lp.colLowerBound(x1, 0); lp.colLowerBound(x2, 0); //Objective function lp.obj(x1+x2); lp.max(); //Testing the problem retrieving routines check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!"); check(lp.isMax(),"This is a maximization!"); check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!"); // std::cout<objCoeff(x1)==1,"First term should be 1 in the obj function!"); check(clp->isMax(),"This is a maximization!"); check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!"); // std::cout<colLowerBound(x1)==0, "The lower bound for variable x1 should be 0."); check( clp->colUpperBound(x1)==LpSolverBase::INF, "The upper bound for variable x1 should be infty."); clp->getRowBounds(upright,lb,ub); check( lb==-LpSolverBase::INF, "The lower bound for the first row should be -infty."); check( ub==1,"The upper bound for the first row should be 1."); e = clp->row(upright); check( e.size() == 2, "The row retrieval gives back wrong expression."); check( e[x1] == 1, "The first coefficient should 1."); check( e[x2] == 1, "The second coefficient should 1."); de = clp->col(x1); check( de.size() == 4, "The col retrieval gives back wrong expression."); check( de[upright] == 1, "The first coefficient should 1."); delete clp; //Maximization of x1+x2 //over the triangle with vertices (0,0) (0,1) (1,0) double expected_opt=1; solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt); //Minimization lp.min(); expected_opt=0; solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt); //Vertex (-1,0) instead of (0,0) lp.colLowerBound(x1, -LpSolverBase::INF); expected_opt=-1; solveAndCheck(lp, LpSolverBase::OPTIMAL, expected_opt); //Erase one constraint and return to maximization lp.eraseRow(upright); lp.max(); expected_opt=LpSolverBase::INF; solveAndCheck(lp, LpSolverBase::INFINITE, expected_opt); //Infeasibilty lp.addRow(x1+x2 <=-2); solveAndCheck(lp, LpSolverBase::INFEASIBLE, expected_opt); //Change problem and forget to solve lp.min(); check(lp.primalStatus()==LpSolverBase::UNDEFINED, "Primalstatus should be UNDEFINED"); // lp.solve(); // if (lp.primalStatus()==LpSolverBase::OPTIMAL){ // std::cout<< "Z = "<